pandas: powerful Python data analysis toolkit

Release 0.20.1

Wes McKinney & PyData Development Team

May 05, 2017
1 What’s New

1.1 v0.20.1 (May 5, 2017) .. 3

1.1.1 New features ... 5
 1.1.1.1 `agg` API for DataFrame/Series 5
 1.1.1.2 `dtype` keyword for data IO 7
 1.1.1.3 `.to_datetime()` has gained an `origin` parameter 7
 1.1.1.4 Groupby Enhancements .. 8
 1.1.1.5 Better support for compressed URLs in `read_csv` ... 9
 1.1.1.6 Pickle file I/O now supports compression 9
 1.1.1.7 `UInt64` Support Improved 10
 1.1.1.8 GroupBy on Categoricals 10
 1.1.1.9 Table Schema Output ... 12
 1.1.1.10 SciPy sparse matrix from/to SparseDataFrame 12
 1.1.1.11 Excel output for styled DataFrames 13
 1.1.1.12 IntervalIndex .. 14
 1.1.1.13 Other Enhancements ... 16

1.1.2 Backwards incompatible API changes 18
 1.1.2.1 Possible incompatibility for HDF5 formats created with pandas < 0.13.0 ... 18
 1.1.2.2 Map on Index types now return other Index types 19
 1.1.2.3 Accessing datetime fields of Index now return Index .. 20
 1.1.2.4 `pd.unique` will now be consistent with extension types ... 20
 1.1.2.5 S3 File Handling ... 22
 1.1.2.6 Partial String Indexing Changes 22
 1.1.2.7 Concat of different float dtypes will not automatically upcast ... 23
 1.1.2.8 Pandas Google BigQuery support has moved 23
 1.1.2.9 Memory Usage for Index is more Accurate 23
 1.1.2.10 DataFrame.sort_index changes 24
 1.1.2.11 Groupby Describe Formatting 26
 1.1.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame 27
 1.1.2.13 HDFStore where string comparison 28
 1.1.2.14 Index.intersection and inner join now preserve the order of the left Index ... 28
 1.1.2.15 Pivot Table always returns a DataFrame 29
 1.1.2.16 Other API Changes ... 30

1.1.3 Reorganization of the library: Privacy Changes 31
 1.1.3.1 Modules Privacy Has Changed 31
 1.1.3.2 `pandas.errors` ... 32
 1.1.3.3 `pandas.testing` ... 33
 1.1.3.4 `pandas.plotting` ... 33
 1.1.3.5 Other Development Changes 33

1.1.4 Deprecations .. 33
1.4 v0.19.0 (October 2, 2016)

1.4.1 New features
- `merge_asof` for asof-style time-series joining
- `.rolling()` is now time-series aware
- `read_csv` has improved support for duplicate column names
- `read_csv` supports parsing `Categorical` directly
- Categorical Concatenation
- Semi-Month Offsets
- New Index methods
- Google BigQuery Enhancements
- Fine-grained numpy errstate
- `get_dummies` now returns integer dtypes
- Downcast values to smallest possible dtype in `.to_numeric`
- pandas development API
- Other enhancements

1.4.2 API changes
- `Series.tolist()` will now return Python types
- `Series` operators for different indexes
- `Series` type promotion on assignment
- `.to_datetime()` changes
- Merging changes
- `.describe()` changes
- Period changes
- Index `/` no longer used for set operations
- `Index.difference` and `.symmetric_difference` changes
- `Index.unique` consistently returns Index
- `MultiIndex` constructors, `groupby` and `set_index` preserve categorical dtypes
- `read_csv` will progressively enumerate chunks
- Sparse Changes
- Indexer dtype changes

1.4.3 Deprecated changes
- `.ix` deprecation
- `Panel` deprecation
- `groupby.agg()` with a dictionary when renaming
- `plotting` deprecation
- `merge_asof` deprecation
- `rolling()` deprecation
- Other deprecations

1.4.4 Other enhancements
- Downcast values to smallest possible dtype
- `Index` methods
- `Period` changes
- Indexer dtype changes

1.4.5 Other Deprecations
- `.plotting` deprecation
- `groupby.agg()` deprecation
- `.ix` deprecation
- `Panel` deprecation
- `merge_asof` deprecation
- `rolling()` deprecation
- Other deprecations

1.3 v0.19.1 (November 3, 2016)

1.3.1 Performance Improvements

1.3.2 Bug Fixes

1.2.3 Bug Fixes

1.2.2 Performance Improvements

1.2.1 Enhancements

1.1.7.6 Sparse

1.1.7.5 Groupby/Resample/Rolling

1.1.7.4 Plotting

1.1.7.3 I/O

1.1.7.2 Indexing

1.1.7.1 Conversion

1.1.7 Other

1.1.7.9 Other

1.1.7.8 Numeric

1.1.7.7 Reshaping

1.1.7.6 Sparse

1.1.7.5 Groupby/Resample/Rolling

1.1.7.4 Plotting

1.1.7.3 I/O

1.1.7.2 Indexing

1.1.7.1 Conversion

1.1.7 Other

1.1.7.9 Other

1.1.7.8 Numeric

1.1.7.7 Reshaping

1.1.7.6 Sparse

1.1.7.5 Groupby/Resample/Rolling

1.1.7.4 Plotting

1.1.7.3 I/O

1.1.7.2 Indexing

1.1.7.1 Conversion
<table>
<thead>
<tr>
<th>Version</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0.18.1 (May 3, 2016)</td>
<td>1.5.1 New features, 1.5.2 Sparse changes, 1.5.3 API changes</td>
</tr>
<tr>
<td>v0.18.0 (March 13, 2016)</td>
<td>1.6.1 New features, 1.6.2 Backwards incompatible API changes</td>
</tr>
<tr>
<td>v0.17.1 (November 21, 2015)</td>
<td>1.7.1 New features</td>
</tr>
</tbody>
</table>
1.11.2.1 Changes in Timedelta
1.11.2.2 Indexing Changes
1.11.2.3 Categorical Changes
1.11.2.4 Other API Changes
1.11.2.5 Deprecations
1.11.2.6 Removal of prior version deprecations/changes
1.11.3 Performance Improvements
1.11.4 Bug Fixes
1.12 v0.15.2 (December 12, 2014)
1.12.1 API changes
1.12.2 Enhancements
1.12.3 Performance
1.12.4 Bug Fixes
1.13 v0.15.1 (November 9, 2014)
1.13.1 API changes
1.13.2 Enhancements
1.13.3 Bug Fixes
1.14 v0.15.0 (October 18, 2014)
1.14.1 New features
1.14.2 Backwards incompatible API changes
1.14.2.1 Breaking changes
1.14.2.2 Internal Refactoring
1.14.2.3 Deprecations
1.14.2.4 Removal of prior version deprecations/changes
1.14.3 Enhancements
1.14.4 Performance
1.14.5 Bug Fixes
1.15 v0.14.1 (July 11, 2014)
1.15.1 API changes
1.15.2 Enhancements
1.15.3 Performance
1.15.4 Experimental
1.15.5 Bug Fixes
1.16 v0.14.0 (May 31, 2014)
1.16.1 API changes
1.16.2 Display Changes
1.16.3 Text Parsing API Changes
1.16.4 Groupby API Changes
1.16.5 SQL
1.16.6 MultiIndexing Using Slicers
1.16.7 Plotting
1.16.8 Prior Version Deprecations/Changes
1.16.9 Deprecations
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23 v0.9.1</td>
<td>(November 14, 2012)</td>
<td>New features</td>
</tr>
<tr>
<td>1.22 v0.10.0</td>
<td>(December 17, 2012)</td>
<td>New features, N Dimensional Panels (Experimental)</td>
</tr>
<tr>
<td>1.21 v0.10.1</td>
<td>(January 22, 2013)</td>
<td>New features, Updated PyTables Support</td>
</tr>
<tr>
<td>1.20 v0.11.0</td>
<td>(April 22, 2013)</td>
<td>Enhancements, Datetime Conversion, Dtype Gotchas</td>
</tr>
<tr>
<td>1.19 v0.12.0</td>
<td>(July 24, 2013)</td>
<td>Other Enhancements, I/O Enhancements, Internal Refactoring</td>
</tr>
<tr>
<td>1.18 v0.13.0</td>
<td>(January 3, 2014)</td>
<td>Bug Fixes, API changes</td>
</tr>
<tr>
<td>1.17 v0.13.1</td>
<td>(February 3, 2014)</td>
<td>Output Formatting Enhancements, Prior Version Deprecations/Changes</td>
</tr>
<tr>
<td>1.16 v0.14.0</td>
<td>(November 14, 2012)</td>
<td>Bug Fixes</td>
</tr>
</tbody>
</table>

1.16.10 Known Issues 260
1.16.11 Enhancements 260
1.16.12 Performance 265
1.16.13 Experimental 265
1.16.14 Bug Fixes 265

1.17 v0.13.1 (February 3, 2014)......................... 270
1.17.1 Output Formatting Enhancements 271
1.17.2 API changes 274
1.17.3 Prior Version Deprecations/Changes 274
1.17.4 Deprecations 274
1.17.5 Enhancements 274
1.17.6 Performance 277
1.17.7 Experimental 277
1.17.8 Bug Fixes 277

1.18 v0.13.0 (January 3, 2014) 279
1.18.1 API changes 278
1.18.2 Prior Version Deprecations/Changes 281
1.18.3 Deprecations 281
1.18.4 Indexing API Changes 283
1.18.5 Float64Index API Change 283
1.18.6 HDFStore API Changes 284
1.18.7 DataFrame repr Changes 287
1.18.8 Enhancements 287
1.18.9 Experimental 295
1.18.10 Internal Refactoring 298
1.18.11 Bug Fixes 300

1.19 v0.12.0 (July 24, 2013) 300
1.19.1 API changes 301
1.19.2 I/O Enhancements 304
1.19.3 Other Enhancements 306
1.19.4 Experimental Features 308
1.19.5 Bug Fixes 309

1.20 v0.11.0 (April 22, 2013) 311
1.20.1 Selection Choices 312
1.20.2 Selection Deprecations 312
1.20.3 Dtypes 313
1.20.4 Dtype Conversion 314
1.20.5 Dtype Gotchas 315
1.20.6 Datetimes Conversion 317
1.20.7 API changes 319
1.20.8 Enhancements 319

1.21 v0.10.1 (January 22, 2013) 321
1.21.1 API changes 321
1.21.2 New features 322
1.21.3 HDFStore 322

1.22 v0.10.0 (December 17, 2012) 327
1.22.1 File parsing new features 327
1.22.2 API changes 328
1.22.3 New features 333
1.22.4 Wide DataFrame Printing 333
1.22.5 Updated PyTables Support 335
1.22.6 N Dimensional Panels (Experimental) 339

1.23 v0.9.1 (November 14, 2012) 339
1.23.1 New features 339
2 Installation

2.1 Python version support

2.2 Installing pandas

2.2.1 Installing pandas with Anaconda

2.2.2 Installing pandas with Miniconda

2.2.3 Installing from PyPI

2.2.4 Installing using your Linux distribution’s package manager

2.2.5 Installing from source

2.2.6 Running the test suite
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Selection</td>
<td>398</td>
</tr>
<tr>
<td>5.3.1 Getting</td>
<td>399</td>
</tr>
<tr>
<td>5.3.2 Selection by Label</td>
<td>399</td>
</tr>
<tr>
<td>5.3.3 Selection by Position</td>
<td>400</td>
</tr>
<tr>
<td>5.3.4 Boolean Indexing</td>
<td>401</td>
</tr>
<tr>
<td>5.3.5 Setting</td>
<td>402</td>
</tr>
<tr>
<td>5.4 Missing Data</td>
<td>403</td>
</tr>
<tr>
<td>5.5 Operations</td>
<td>404</td>
</tr>
<tr>
<td>5.5.1 Stats</td>
<td>404</td>
</tr>
<tr>
<td>5.5.2 Apply</td>
<td>405</td>
</tr>
<tr>
<td>5.5.3 Histogramming</td>
<td>405</td>
</tr>
<tr>
<td>5.5.4 String Methods</td>
<td>406</td>
</tr>
<tr>
<td>5.6 Merge</td>
<td>406</td>
</tr>
<tr>
<td>5.6.1 Concat</td>
<td>406</td>
</tr>
<tr>
<td>5.6.2 Join</td>
<td>407</td>
</tr>
<tr>
<td>5.6.3 Append</td>
<td>408</td>
</tr>
<tr>
<td>5.7 Grouping</td>
<td>409</td>
</tr>
<tr>
<td>5.8 Reshaping</td>
<td>409</td>
</tr>
<tr>
<td>5.8.1 Stack</td>
<td>410</td>
</tr>
<tr>
<td>5.8.2 Pivot Tables</td>
<td>411</td>
</tr>
<tr>
<td>5.9 Time Series</td>
<td>412</td>
</tr>
<tr>
<td>5.10 Categoricals</td>
<td>413</td>
</tr>
<tr>
<td>5.11 Plotting</td>
<td>415</td>
</tr>
<tr>
<td>5.12 Getting Data In/Out</td>
<td>416</td>
</tr>
<tr>
<td>5.12.1 CSV</td>
<td>416</td>
</tr>
<tr>
<td>5.12.2 HDF5</td>
<td>417</td>
</tr>
<tr>
<td>5.12.3 Excel</td>
<td>417</td>
</tr>
<tr>
<td>5.13 Gotchas</td>
<td>418</td>
</tr>
<tr>
<td>6 Tutorials</td>
<td>419</td>
</tr>
<tr>
<td>6.1 Internal Guides</td>
<td>419</td>
</tr>
<tr>
<td>6.2 pandas Cookbook</td>
<td>419</td>
</tr>
<tr>
<td>6.3 Lessons for New pandas Users</td>
<td>420</td>
</tr>
<tr>
<td>6.4 Practical data analysis with Python</td>
<td>420</td>
</tr>
<tr>
<td>6.5 Exercises for New Users</td>
<td>420</td>
</tr>
<tr>
<td>6.6 Modern Pandas</td>
<td>421</td>
</tr>
<tr>
<td>6.7 Excel charts with pandas, vincent and xlsxwriter</td>
<td>421</td>
</tr>
<tr>
<td>6.8 Various Tutorials</td>
<td>421</td>
</tr>
<tr>
<td>7 Cookbook</td>
<td>423</td>
</tr>
<tr>
<td>7.1 Idioms</td>
<td>423</td>
</tr>
<tr>
<td>7.1.1 if-then...</td>
<td>423</td>
</tr>
<tr>
<td>7.1.2 Splitting</td>
<td>424</td>
</tr>
<tr>
<td>7.1.3 Building Criteria</td>
<td>425</td>
</tr>
<tr>
<td>7.2 Selection</td>
<td>427</td>
</tr>
<tr>
<td>7.2.1 DataFrames</td>
<td>427</td>
</tr>
<tr>
<td>7.2.2 Panels</td>
<td>428</td>
</tr>
<tr>
<td>7.2.3 New Columns</td>
<td>429</td>
</tr>
<tr>
<td>7.3 MultiIndexing</td>
<td>430</td>
</tr>
<tr>
<td>7.3.1 Arithmetic</td>
<td>432</td>
</tr>
<tr>
<td>7.3.2 Slicing</td>
<td>432</td>
</tr>
<tr>
<td>7.3.3 Sorting</td>
<td>434</td>
</tr>
<tr>
<td>7.3.4 Levels</td>
<td>434</td>
</tr>
<tr>
<td>7.3.5 panelnd</td>
<td>434</td>
</tr>
</tbody>
</table>
9 Essential Basic Functionality

9.1 Head and Tail ... 487
9.2 Attributes and the raw ndarray(s) .. 488
9.3 Accelerated operations .. 489
9.4 Flexible binary operations .. 489
 9.4.1 Matching / broadcasting behavior 490
 9.4.2 Missing data / operations with fill values 493
 9.4.3 Flexible Comparisons ... 494
 9.4.4 Boolean Reductions .. 494
 9.4.5 Comparing if objects are equivalent 495
 9.4.6 Comparing array-like objects 496
 9.4.7 Combining overlapping data sets 497
 9.4.8 General DataFrame Combine 498
9.5 Descriptive statistics .. 498
 9.5.1 Summarizing data: describe 501
 9.5.2 Index of Min/Max Values ... 503
 9.5.3 Value counts (histogramming) / Mode 504
 9.5.4 Discretization and quantiling 505
9.6 Function application ... 506
 9.6.1 Tablewise Function Application 507
 9.6.2 Row or Column-wise Function Application 508
 9.6.3 Aggregation API ... 510
 9.6.3.1 Aggregating with multiple functions 511
 9.6.3.2 Aggregating with a dict 512
 9.6.3.3 Mixed Dtypes .. 512
 9.6.3.4 Custom describe .. 513
 9.6.4 Transform API ... 513
 9.6.4.1 Transform with multiple functions 515
 9.6.4.2 Transforming with a dict 516
 9.6.5 Applying Elementwise Functions 516
 9.6.6 Applying with a Panel ... 517
9.7 Reindexing and altering labels ... 520
 9.7.1 Reindexing to align with another object 522
 9.7.2 Aligning objects with each other with align 522
 9.7.3 Filling while reindexing 524
 9.7.4 Limits on filling while reindexing 526
 9.7.5 Dropping labels from an axis 526
 9.7.6 Renaming / mapping labels 527
9.8 Iteration ... 528
 9.8.1 iteritems ... 529
 9.8.2 iterrows .. 530
 9.8.3 itertuples ... 531
9.9 .dt accessor .. 532
9.10 Vectorized string methods .. 535
9.11 Sorting ... 535
 9.11.1 By Index .. 536
 9.11.2 By Values ... 536
 9.11.3 searchsorted ... 537
12 Indexing and Selecting Data 579

9.12 Copying 540
9.13 dtypes 540
 9.13.1 defaults 540
 9.13.2 upcasting 543
 9.13.3 astype 543
 9.13.4 object conversion 545
 9.13.5 gotchas 548
9.14 Selecting columns based on dtype 549

10 Working with Text Data 553

10.1 Splitting and Replacing Strings 555
10.2 Indexing with .str 558
10.3 Extracting Substrings 559
 10.3.1 Extract first match in each subject (extract) 559
 10.3.2 Extract all matches in each subject (extractall) 561
10.4 Testing for Strings that Match or Contain a Pattern 562
10.5 Creating Indicator Variables 563
10.6 Method Summary 564

11 Options and Settings 567

11.1 Overview 567
11.2 Getting and Setting Options 568
11.3 Setting Startup Options in python/ipython Environment 569
11.4 Frequently Used Options 569
11.5 Available Options 575
11.6 Number Formatting 576
11.7 Unicode Formatting 577
11.8 Table Schema Display 578

12 Indexing and Selecting Data 579

12.1 Different Choices for Indexing 580
12.2 Basics 581
12.3 Attribute Access 583
12.4 Slicing ranges 585
12.5 Selection By Label 586
12.6 Selection By Position 589
12.7 Selection By Callable 593
12.8 IX Indexer is Deprecated 595
12.9 Selecting Random Samples 596
12.10 Setting With Enlargement 598
12.11 Fast scalar value getting and setting 599
12.12 Boolean indexing 600
12.13 Indexing with isin 601
12.14 The where() Method and Masking 604
12.15 The query() Method (Experimental) 607
 12.15.1 MultiIndex query() Syntax 610
 12.15.2 query() Use Cases 611
 12.15.3 query() Python versus pandas Syntax Comparison 612
 12.15.4 The in and not in operators 613
 12.15.5 Special use of the == operator with list objects 615
 12.15.6 Boolean Operators 616
 12.15.7 Performance of query() 617
12.16 Duplicate Data .. 618
12.17 Dictionary-like get() method ... 621
12.18 The select() Method .. 622
12.19 The lookup() Method .. 622
12.20 Index objects .. 622
 12.20.1 Setting metadata .. 623
 12.20.2 Set operations on Index objects 624
 12.20.3 Missing values .. 625
12.21 Set / Reset Index ... 625
 12.21.1 Set an index ... 625
 12.21.2 Reset the index .. 627
 12.21.3 Adding an ad hoc index ... 628
12.22 Returning a view versus a copy 628
 12.22.1 Why does assignment fail when using chained indexing? 629
 12.22.2 Evaluation order matters 630
13 MultiIndex / Advanced Indexing 633
 13.1 Hierarchical indexing (MultiIndex) 633
 13.1.1 Creating a MultiIndex (hierarchical index) object 633
 13.1.2 Reconstructing the level labels 636
 13.1.3 Basic indexing on axis with MultiIndex 637
 13.1.4 Defined Levels ... 637
 13.1.5 Data alignment and using reindex 638
 13.2 Advanced indexing with hierarchical index 639
 13.2.1 Using slicers .. 640
 13.2.2 Cross-section .. 645
 13.2.3 Advanced reindexing and alignment 647
 13.2.4 Swapping levels with swaplevel() 648
 13.2.5 Reordering levels with reorder_levels() 648
 13.3 Sorting a MultiIndex ... 648
 13.4 Take Methods ... 651
 13.5 Index Types .. 653
 13.5.1 CategoricalIndex .. 653
 13.5.2 Int64Index and RangeIndex 655
 13.5.3 Float64Index .. 656
 13.5.4 IntervalIndex ... 659
 13.6 Miscellaneous indexing FAQ 660
 13.6.1 Integer indexing ... 660
 13.6.2 Non-monotonic indexes require exact matches 660
 13.6.3 Endpoints are inclusive 661
 13.6.4 Indexing potentially changes underlying Series dtype 662
14 Computational tools .. 663
 14.1 Statistical Functions .. 663
 14.1.1 Percent Change ... 663
 14.1.2 Covariance ... 663
 14.1.3 Correlation .. 665
 14.1.4 Data ranking .. 666
 14.2 Window Functions ... 667
 14.2.1 Method Summary .. 671
 14.2.2 Rolling Windows .. 672
 14.2.3 Time-aware Rolling ... 674
 14.2.4 Rolling Window Endpoints 676
 14.2.5 Time-aware Rolling vs. Resampling 677
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2.6</td>
<td>Centering Windows</td>
<td>677</td>
</tr>
<tr>
<td>14.2.7</td>
<td>Binary Window Functions</td>
<td>678</td>
</tr>
<tr>
<td>14.2.8</td>
<td>Computing rolling pairwise covariances and correlations</td>
<td>679</td>
</tr>
<tr>
<td>14.3</td>
<td>Aggregation</td>
<td>680</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Applying multiple functions</td>
<td>682</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Applying different functions to DataFrame columns</td>
<td>683</td>
</tr>
<tr>
<td>14.4</td>
<td>Expanding Windows</td>
<td>684</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Method Summary</td>
<td>685</td>
</tr>
<tr>
<td>14.5</td>
<td>Exponentially Weighted Windows</td>
<td>687</td>
</tr>
<tr>
<td>15</td>
<td>Working with missing data</td>
<td>691</td>
</tr>
<tr>
<td>15.1</td>
<td>Missing data basics</td>
<td>691</td>
</tr>
<tr>
<td>15.1.1</td>
<td>When / why does data become missing?</td>
<td>691</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Values considered “missing”</td>
<td>692</td>
</tr>
<tr>
<td>15.2</td>
<td>Datetimes</td>
<td>693</td>
</tr>
<tr>
<td>15.3</td>
<td>Inserting missing data</td>
<td>694</td>
</tr>
<tr>
<td>15.4</td>
<td>Calculations with missing data</td>
<td>695</td>
</tr>
<tr>
<td>15.4.1</td>
<td>NA values in GroupBy</td>
<td>696</td>
</tr>
<tr>
<td>15.5</td>
<td>Cleaning / filling missing data</td>
<td>696</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Filling missing values: fillna</td>
<td>697</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Filling with a PandasObject</td>
<td>698</td>
</tr>
<tr>
<td>15.5.3</td>
<td>Dropping axis labels with missing data: dropna</td>
<td>699</td>
</tr>
<tr>
<td>15.5.4</td>
<td>Interpolation</td>
<td>700</td>
</tr>
<tr>
<td>15.5.4.1</td>
<td>Interpolation Limits</td>
<td>705</td>
</tr>
<tr>
<td>15.5.5</td>
<td>Replacing Generic Values</td>
<td>706</td>
</tr>
<tr>
<td>15.5.6</td>
<td>String/Regular Expression Replacement</td>
<td>708</td>
</tr>
<tr>
<td>15.5.7</td>
<td>Numeric Replacement</td>
<td>710</td>
</tr>
<tr>
<td>15.6</td>
<td>Missing data casting rules and indexing</td>
<td>711</td>
</tr>
<tr>
<td>16</td>
<td>Group By: split-apply-combine</td>
<td>715</td>
</tr>
<tr>
<td>16.1</td>
<td>Splitting an object into groups</td>
<td>716</td>
</tr>
<tr>
<td>16.1.1</td>
<td>GroupBy sorting</td>
<td>717</td>
</tr>
<tr>
<td>16.1.2</td>
<td>GroupBy object attributes</td>
<td>718</td>
</tr>
<tr>
<td>16.1.3</td>
<td>GroupBy with MultiIndex</td>
<td>719</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Grouping DataFrame with Index Levels and Columns</td>
<td>721</td>
</tr>
<tr>
<td>16.1.5</td>
<td>DataFrame column selection in GroupBy</td>
<td>722</td>
</tr>
<tr>
<td>16.2</td>
<td>Iterating through groups</td>
<td>723</td>
</tr>
<tr>
<td>16.3</td>
<td>Selecting a group</td>
<td>724</td>
</tr>
<tr>
<td>16.4</td>
<td>Aggregation</td>
<td>724</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Applying multiple functions at once</td>
<td>726</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Applying different functions to DataFrame columns</td>
<td>727</td>
</tr>
<tr>
<td>16.4.3</td>
<td>Cython-optimized aggregation functions</td>
<td>728</td>
</tr>
<tr>
<td>16.5</td>
<td>Transformation</td>
<td>728</td>
</tr>
<tr>
<td>16.5.1</td>
<td>New syntax to window and resample operations</td>
<td>733</td>
</tr>
<tr>
<td>16.6</td>
<td>Filtration</td>
<td>735</td>
</tr>
<tr>
<td>16.7</td>
<td>Dispatching to instance methods</td>
<td>737</td>
</tr>
<tr>
<td>16.8</td>
<td>Flexible apply</td>
<td>738</td>
</tr>
<tr>
<td>16.9</td>
<td>Other useful features</td>
<td>740</td>
</tr>
<tr>
<td>16.9.1</td>
<td>Automatic exclusion of “nuisance” columns</td>
<td>740</td>
</tr>
<tr>
<td>16.9.2</td>
<td>NA and NaT group handling</td>
<td>741</td>
</tr>
<tr>
<td>16.9.3</td>
<td>Grouping with ordered factors</td>
<td>741</td>
</tr>
<tr>
<td>16.9.4</td>
<td>Grouping with a Grouper specification</td>
<td>741</td>
</tr>
<tr>
<td>16.9.5</td>
<td>Taking the first rows of each group</td>
<td>743</td>
</tr>
<tr>
<td>16.9.6</td>
<td>Taking the nth row of each group</td>
<td>743</td>
</tr>
</tbody>
</table>
16.9.7 Enumerate group items .. 745
16.9.8 Plotting ... 746
16.10 Examples .. 747
16.10.1 Regrouping by factor .. 747
16.10.2 Groupby by Indexer to 'resample' data 748
16.10.3 Returning a Series to propagate names 748

17 Merge, join, and concatenate ... 751
17.1 Concatenating objects ... 751
 17.1.1 Set logic on the other axes .. 754
 17.1.2 Concatenating using append .. 755
 17.1.3 Ignoring indexes on the concatenation axis 757
 17.1.4 Concatenating with mixed ndims 758
 17.1.5 More concatenating with group keys 759
 17.1.6 Appending rows to a DataFrame 762
17.2 Database-style DataFrame joining/merging 763
 17.2.1 Brief primer on merge methods (relational algebra) 764
 17.2.2 The merge indicator .. 768
 17.2.3 Merge Dtypes .. 768
 17.2.4 Joining on index .. 771
 17.2.5 Joining key columns on an index 772
 17.2.6 Joining a single Index to a Multi-index 774
 17.2.7 Joining with two multi-indexes 775
 17.2.8 Overlapping value columns 776
 17.2.9 Joining multiple DataFrame or Panel objects 777
 17.2.10 Merging together values within Series or DataFrame columns 777
17.3 Timeseries friendly merging ... 778
 17.3.1 Merging Ordered Data .. 779
 17.3.2 Merging AsOf .. 779

18 Reshaping and Pivot Tables .. 783
18.1 Reshaping by pivoting DataFrame objects 783
18.2 Reshaping by stacking and unstacking 784
 18.2.1 Multiple Levels .. 786
 18.2.2 Missing Data .. 787
 18.2.3 With a MultiIndex ... 789
18.3 Reshaping by Melt .. 790
18.4 Combining with stats and GroupBy 791
18.5 Pivot tables .. 793
 18.5.1 Adding margins .. 795
18.6 Cross tabulations .. 796
 18.6.1 Normalization .. 797
 18.6.2 Adding Margins ... 798
18.7 Tiling ... 798
18.8 Computing indicator / dummy variables 799
18.9 Factorizing values .. 802

19 Time Series / Date functionality .. 803
19.1 Overview .. 804
19.2 Time Stamps vs. Time Spans .. 804
19.3 Converting to Timestamps .. 805
 19.3.1 Invalid Data .. 807
 19.3.2 Epoch Timestamps .. 807
 19.3.3 From Timestamps to Epoch 808
21 Categorical Data

21.1 Object Creation ... 875
21.2 Description ... 878
21.3 Working with categories 879
 21.3.1 Renaming categories 880
 21.3.2 Appending new categories 881
 21.3.3 Removing categories 881
 21.3.4 Removing unused categories 881
 21.3.5 Setting categories 882
21.4 Sorting and Order .. 883
 21.4.1 Reordering .. 884
 21.4.2 Multi Column Sorting 885
21.5 Comparisons .. 886
21.6 Operations .. 888
21.7 Data munging ... 889
 21.7.1 Getting ... 889
 21.7.2 String and datetime accessors 890
 21.7.3 Setting ... 892
 21.7.4 Merging ... 893
 21.7.5 Unioning .. 894
 21.7.6 Concatenation 896
21.8 Getting Data In/Out 897
21.9 Missing Data .. 898
21.10 Differences to R's factor 899
21.11 Gotchas .. 900
 21.11.1 Memory Usage 900
 21.11.2 Old style constructor usage 900
 21.11.3 Categorical is not a numpy array 901
 21.11.4 dtype in apply 902
 21.11.5 Categorical Index 902
 21.11.6 Side Effects 903

22 Visualization ... 905

22.1 Basic Plotting: plot 905
22.2 Other Plots ... 908
 22.2.1 Bar plots ... 910
 22.2.2 Histograms 912
 22.2.3 Box Plots ... 918
 22.2.4 Area Plot ... 926
 22.2.5 Scatter Plot 928
 22.2.6 Hexagonal Bin Plot 932
 22.2.7 Pie plot .. 934
22.3 Plotting with Missing Data 938
22.4 Plotting Tools .. 939
 22.4.1 Scatter Matrix Plot 939
 22.4.2 Density Plot 940
 22.4.3 Andrews Curves 941
 22.4.4 Parallel Coordinates 942
 22.4.5 Lag Plot .. 943
 22.4.6 Autocorrelation Plot 944
 22.4.7 Bootstrap Plot 945
22.4.8 RadViz .. 946
22.5 Plot Formatting 947
 22.5.1 Controlling the Legend 948
 22.5.2 Scales 949
 22.5.3 Plotting on a Secondary Y-axis 950
 22.5.4 Suppressing Tick Resolution Adjustment . 953
 22.5.5 Automatic Date Tick Adjustment 956
 22.5.6 Subplots 956
 22.5.7 Using Layout and Targeting Multiple Axes .. 957
 22.5.8 Plotting With Error Bars 960
 22.5.9 Plotting Tables 962
 22.5.10 Colormaps 965
22.6 Plotting directly with matplotlib 970
22.7 Trellis plotting interface 971

23 Styling ... 973
 23.1 Building Styles 973
 23.1.1 Building Styles Summary 975
 23.2 Finer Control: Slicing 976
 23.3 Finer Control: Display Values 976
 23.4 Built-in Styles 977
 23.4.1 Bar charts 978
 23.5 Sharing Styles 979
 23.6 Other Options 979
 23.6.1 Precision 979
 23.6.2 Captions 980
 23.6.3 Table Styles 980
 23.6.4 CSS Classes 980
 23.6.5 Limitations 981
 23.6.6 Terms 981
 23.7 Fun stuff 981
 23.8 Export to Excel 982
 23.9 Extensibility 983
 23.9.1 Subclassing 984

24 IO Tools (Text, CSV, HDF5, ...) 987
 24.1 CSV & Text files 987
 24.1.1 Parsing options 987
 24.1.1.1 Basic 987
 24.1.1.2 Column and Index Locations and Names .. 988
 24.1.1.3 General Parsing Configuration 989
 24.1.1.4 NA and Missing Data Handling 990
 24.1.1.5 Datetime Handling 990
 24.1.1.6 Iteration 991
 24.1.1.7 Quoting, Compression, and File Format .. 991
 24.1.1.8 Error Handling 992
 24.1.2 Specifying column data types 992
 24.1.3 Specifying Categorical dtype 994
 24.1.4 Naming and Using Columns 995
 24.1.4.1 Handling column names 995
 24.1.5 Duplicate names parsing 996
 24.1.5.1 Filtering columns(usecols) 997
 24.1.6 Comments and Empty Lines 998
 24.1.6.1 Ignoring line comments and empty lines . 998
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.4.2 Writing Excel Files</td>
<td>1043</td>
</tr>
<tr>
<td>24.4.2.1 Writing Excel Files to Disk</td>
<td>1043</td>
</tr>
<tr>
<td>24.4.2.2 Writing Excel Files to Memory</td>
<td>1044</td>
</tr>
<tr>
<td>24.4.3 Excel writer engines</td>
<td>1044</td>
</tr>
<tr>
<td>24.4.4 Style and Formatting</td>
<td>1045</td>
</tr>
<tr>
<td>24.5 Clipboard</td>
<td>1045</td>
</tr>
<tr>
<td>24.6 Pickling</td>
<td>1046</td>
</tr>
<tr>
<td>24.6.1 Compressed pickle files</td>
<td>1047</td>
</tr>
<tr>
<td>24.7 msgpack</td>
<td>1049</td>
</tr>
<tr>
<td>24.7.1 Read/Write API</td>
<td>1052</td>
</tr>
<tr>
<td>24.8 HDF5 (PyTables)</td>
<td>1052</td>
</tr>
<tr>
<td>24.8.1 Read/Write API</td>
<td>1054</td>
</tr>
<tr>
<td>24.8.2 Fixed Format</td>
<td>1056</td>
</tr>
<tr>
<td>24.8.3 Table Format</td>
<td>1056</td>
</tr>
<tr>
<td>24.8.4 Hierarchical Keys</td>
<td>1057</td>
</tr>
<tr>
<td>24.8.5 Storing Types</td>
<td>1058</td>
</tr>
<tr>
<td>24.8.5.1 Storing Mixed Types in a Table</td>
<td>1058</td>
</tr>
<tr>
<td>24.8.5.2 Storing Multi-Index DataFrames</td>
<td>1060</td>
</tr>
<tr>
<td>24.8.6 Querying</td>
<td>1061</td>
</tr>
<tr>
<td>24.8.6.1 Querying a Table</td>
<td>1061</td>
</tr>
<tr>
<td>24.8.6.2 Using timedelta64[ns]</td>
<td>1064</td>
</tr>
<tr>
<td>24.8.6.3 Indexing</td>
<td>1065</td>
</tr>
<tr>
<td>24.8.6.4 Query via Data Columns</td>
<td>1066</td>
</tr>
<tr>
<td>24.8.6.5 Iterator</td>
<td>1068</td>
</tr>
<tr>
<td>24.8.6.6 Advanced Queries</td>
<td>1069</td>
</tr>
<tr>
<td>24.8.6.7 Multiple Table Queries</td>
<td>1071</td>
</tr>
<tr>
<td>24.8.7 Delete from a Table</td>
<td>1073</td>
</tr>
<tr>
<td>24.8.8 Notes & Caveats</td>
<td>1074</td>
</tr>
<tr>
<td>24.8.8.1 Compression</td>
<td>1074</td>
</tr>
<tr>
<td>24.8.8.2 ptrepack</td>
<td>1074</td>
</tr>
<tr>
<td>24.8.8.3 Caveats</td>
<td>1074</td>
</tr>
<tr>
<td>24.8.9 DataTypes</td>
<td>1075</td>
</tr>
<tr>
<td>24.8.9.1 Categorical Data</td>
<td>1075</td>
</tr>
<tr>
<td>24.8.9.2 String Columns</td>
<td>1076</td>
</tr>
<tr>
<td>24.8.10 External Compatibility</td>
<td>1078</td>
</tr>
<tr>
<td>24.8.11 Backwards Compatibility</td>
<td>1080</td>
</tr>
<tr>
<td>24.8.12 Performance</td>
<td>1080</td>
</tr>
<tr>
<td>24.8.13 Experimental</td>
<td>1081</td>
</tr>
<tr>
<td>24.9 Feather</td>
<td>1082</td>
</tr>
<tr>
<td>24.10 SQL Queries</td>
<td>1084</td>
</tr>
<tr>
<td>24.10.1 pandas.read_sql_table</td>
<td>1084</td>
</tr>
<tr>
<td>24.10.2 pandas.read_sql_query</td>
<td>1085</td>
</tr>
<tr>
<td>24.10.3 pandas.read_sql</td>
<td>1086</td>
</tr>
<tr>
<td>24.10.4 pandas.DataFrame.to_sql</td>
<td>1087</td>
</tr>
<tr>
<td>24.10.5 Writing DataFrames</td>
<td>1088</td>
</tr>
<tr>
<td>24.10.5.1 SQL data types</td>
<td>1089</td>
</tr>
<tr>
<td>24.10.6 Reading Tables</td>
<td>1089</td>
</tr>
<tr>
<td>24.10.7 Schema support</td>
<td>1090</td>
</tr>
<tr>
<td>24.10.8 Querying</td>
<td>1090</td>
</tr>
<tr>
<td>24.10.9 Engine connection examples</td>
<td>1092</td>
</tr>
<tr>
<td>24.10.10 Advanced SQLAlchemy queries</td>
<td>1092</td>
</tr>
<tr>
<td>24.10.11 Sqlite fallback</td>
<td>1093</td>
</tr>
<tr>
<td>24.11 Google BigQuery</td>
<td>1093</td>
</tr>
<tr>
<td>24.12 Stata Format</td>
<td>1093</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>24.12.1 Writing to Stata format</td>
<td>1094</td>
</tr>
<tr>
<td>24.12.2 Reading from Stata format</td>
<td>1094</td>
</tr>
<tr>
<td>24.12.2.1 Categorical Data</td>
<td>1095</td>
</tr>
<tr>
<td>24.13 SAS Formats</td>
<td>1096</td>
</tr>
<tr>
<td>24.14 Other file formats</td>
<td>1096</td>
</tr>
<tr>
<td>24.14.1 netCDF</td>
<td>1097</td>
</tr>
<tr>
<td>24.15 Performance Considerations</td>
<td>1097</td>
</tr>
<tr>
<td>25 Remote Data Access</td>
<td>1101</td>
</tr>
<tr>
<td>25.1 DataReader</td>
<td>1101</td>
</tr>
<tr>
<td>26 Enhancing Performance</td>
<td>1103</td>
</tr>
<tr>
<td>26.1 Cython (Writing C extensions for pandas)</td>
<td>1103</td>
</tr>
<tr>
<td>26.1.1 Pure python</td>
<td>1103</td>
</tr>
<tr>
<td>26.1.2 Plain cython</td>
<td>1104</td>
</tr>
<tr>
<td>26.1.3 Adding type</td>
<td>1105</td>
</tr>
<tr>
<td>26.1.4 Using ndarray</td>
<td>1106</td>
</tr>
<tr>
<td>26.1.5 More advanced techniques</td>
<td>1107</td>
</tr>
<tr>
<td>26.2 Using numba</td>
<td>1108</td>
</tr>
<tr>
<td>26.2.1 Jit</td>
<td>1108</td>
</tr>
<tr>
<td>26.2.2 Vectorize</td>
<td>1109</td>
</tr>
<tr>
<td>26.2.3 Caveats</td>
<td>1109</td>
</tr>
<tr>
<td>26.3 Expression Evaluation via eval() (Experimental)</td>
<td>1109</td>
</tr>
<tr>
<td>26.3.1 Supported Syntax</td>
<td>1110</td>
</tr>
<tr>
<td>26.3.2 eval() Examples</td>
<td>1111</td>
</tr>
<tr>
<td>26.3.3 The DataFrame.eval method (Experimental)</td>
<td>1111</td>
</tr>
<tr>
<td>26.3.4 Local Variables</td>
<td>1114</td>
</tr>
<tr>
<td>26.3.5 pandas.eval() Parsers</td>
<td>1115</td>
</tr>
<tr>
<td>26.3.6 pandas.eval() Backends</td>
<td>1116</td>
</tr>
<tr>
<td>26.3.7 pandas.eval() Performance</td>
<td>1116</td>
</tr>
<tr>
<td>26.3.8 Technical Minutia Regarding Expression Evaluation</td>
<td>1117</td>
</tr>
<tr>
<td>27 Sparse data structures</td>
<td>1119</td>
</tr>
<tr>
<td>27.1 SparseArray</td>
<td>1121</td>
</tr>
<tr>
<td>27.2 SparseList</td>
<td>1121</td>
</tr>
<tr>
<td>27.3 SparseIndex objects</td>
<td>1121</td>
</tr>
<tr>
<td>27.4 Sparse Dtypes</td>
<td>1121</td>
</tr>
<tr>
<td>27.5 Sparse Calculation</td>
<td>1124</td>
</tr>
<tr>
<td>27.6 Interaction with scipy.sparse</td>
<td>1124</td>
</tr>
<tr>
<td>27.6.1 SparseDataFrame</td>
<td>1124</td>
</tr>
<tr>
<td>27.6.2 SparseSeries</td>
<td>1125</td>
</tr>
<tr>
<td>28 Frequently Asked Questions (FAQ)</td>
<td>1129</td>
</tr>
<tr>
<td>28.1 DataFrame memory usage</td>
<td>1129</td>
</tr>
<tr>
<td>28.2 Using If/Truth Statements with pandas</td>
<td>1131</td>
</tr>
<tr>
<td>28.2.1 Bitwise boolean</td>
<td>1132</td>
</tr>
<tr>
<td>28.2.2 Using the in operator</td>
<td>1132</td>
</tr>
<tr>
<td>28.3 NaN, Integer NA values and NA type promotions</td>
<td>1132</td>
</tr>
<tr>
<td>28.3.1 Choice of NA representation</td>
<td>1132</td>
</tr>
<tr>
<td>28.3.2 Support for integer NA</td>
<td>1132</td>
</tr>
<tr>
<td>28.3.3 NA type promotions</td>
<td>1133</td>
</tr>
<tr>
<td>28.3.4 Why not make NumPy like R?</td>
<td>1133</td>
</tr>
<tr>
<td>28.4 Differences with NumPy</td>
<td>1134</td>
</tr>
<tr>
<td>28.5 Thread-safety</td>
<td>1134</td>
</tr>
<tr>
<td>28.6 Byte-Ordering Issues</td>
<td>1134</td>
</tr>
</tbody>
</table>
29 rpy2 / R interface

29.1 Transferring R data sets into Python 1135
29.2 Converting DataFrames into R objects 1136

30 pandas Ecosystem

30.1 Statistics and Machine Learning 1137
 30.1.1 Statsmodels ... 1137
 30.1.2 sklearn-pandas ... 1137
30.2 Visualization .. 1137
 30.2.1 Bokeh .. 1137
 30.2.2 yhat/ggplot ... 1137
 30.2.3 Seaborn .. 1138
 30.2.4 Vincent ... 1138
 30.2.5 IPython Vega ... 1138
 30.2.6 Plotly .. 1138
 30.2.7 QtPandas .. 1138
30.3 IDE .. 1138
 30.3.1 IPython .. 1138
 30.3.2 quantopian/qgrid 1139
 30.3.3 Spyder .. 1139
30.4 API .. 1139
 30.4.1 pandas-datareader 1139
 30.4.2 quandl/Python .. 1139
 30.4.3 pydatastream .. 1139
 30.4.4 pandasSDMX .. 1139
 30.4.5 fredapi ... 1140
30.5 Domain Specific ... 1140
 30.5.1 Geopandas .. 1140
 30.5.2 xarray .. 1140
 30.5.3 Odo ... 1140
30.6 Out-of-core ... 1140
 30.6.1 Dask .. 1140
 30.6.2 Blaze .. 1140
 30.6.3 Odo ... 1140

31 Comparison with R / R libraries

31.1 Quick Reference .. 1141
 31.1.1 Querying, Filtering, Sampling 1141
 31.1.2 Sorting .. 1142
 31.1.3 Transforming .. 1142
 31.1.4 Grouping and Summarizing 1142
31.2 Base R .. 1142
 31.2.1 Slicing with R’s c 1142
 31.2.2 aggregate ... 1144
 31.2.3 match/%in% .. 1145
 31.2.4 tapply .. 1145
 31.2.5 subset .. 1146
 31.2.6 with ... 1147
31.3 plyr .. 1148
 31.3.1 ddply ... 1148
31.4 reshape / reshape2 .. 1149
 31.4.1 melt.array .. 1149
 31.4.2 melt.list ... 1149
 31.4.3 melt.data.frame .. 1150
 31.4.4 cast ... 1150
34.1.1 Data manipulations .. 1198
 34.1.1.1 pandas.melt ... 1198
 34.1.1.2 pandas.pivot .. 1199
 34.1.1.3 pandas.pivot_table ... 1199
 34.1.1.4 pandas.crosstab .. 1201
 34.1.1.5 pandas.pivot .. 1201
 34.1.1.6 pandas.melt .. 1201
 34.1.1.7 pandas.merge ... 1202
 34.1.1.8 pandas.merge_ordered .. 1202
 34.1.1.9 pandas.merge_asof ... 1204
 34.1.1.10 pandas.concat .. 1205
 34.1.1.11 pandas.merge_asof .. 1205
 34.1.1.12 pandas.get_dummies ... 1206
 34.1.1.13 pandas.factorize ... 1206
 34.1.1.14 pandas.wide_to_long .. 1207

34.1.2 Excel ... 1198
 34.1.2.1 pandas.read_excel ... 1199
 34.1.2.2 pandas.ExcelFile.parse ... 1201

34.1.3 SAS .. 1198
 34.1.3.1 pandas.read_sas .. 1199

34.1.4 Feather ... 1199
 34.1.4.1 pandas.read_feather .. 1200

34.1.5 JSON .. 1201
 34.1.5.1 pandas.read_json ... 1201
 34.1.5.2 pandas.io.json.json_normalize 1202
 34.1.5.3 pandas.io.json.build_table_schema 1203

34.1.6 HTML ... 1206
 34.1.6.1 pandas.read_html ... 1206

34.1.7 HDFStore: PyTables (HDF5) ... 1208
 34.1.7.1 pandas.read_hdf ... 1208
 34.1.7.2 pandas.HDFStore.put .. 1209
 34.1.7.3 pandas.HDFStore.append ... 1209
 34.1.7.4 pandas.HDFStore.get ... 1210
 34.1.7.5 pandas.HDFStore.select .. 1210

34.1.8 Feather ... 1210
 34.1.8.1 pandas.read_feather .. 1210

34.1.9 SAS ... 1211
 34.1.9.1 pandas.read_sas .. 1211

34.1.10 SQL ... 1211
 34.1.10.1 pandas.read_sql .. 1211

34.1.11 Google BigQuery .. 1212
 34.1.11.1 pandas.read_gbq .. 1212

34.1.12 STATA .. 1213
 34.1.12.1 pandas.read_stata .. 1213
 34.1.12.2 pandas.io.stata.StataReader.data 1214
 34.1.12.3 pandas.io.stata.StataReader.data_label 1214
 34.1.12.4 pandas.io.stata.StataReader.value_labels 1215
 34.1.12.5 pandas.io.stata.StataReader.variable_labels 1215
 34.1.12.6 pandas.io.stata.StataWriter.write_file 1215

34.2 General functions .. 1215
 34.2.1 Data manipulations .. 1215
 34.2.1.1 pandas.melt ... 1216
 34.2.1.2 pandas.pivot ... 1217
 34.2.1.3 pandas.pivot_table ... 1218
 34.2.1.4 pandas.crosstab .. 1219
 34.2.1.5 pandas.cut ... 1220
 34.2.1.6 pandas.qcut ... 1221
 34.2.1.7 pandas.merge .. 1222
 34.2.1.8 pandas.merge_ordered ... 1223
 34.2.1.9 pandas.merge_asof ... 1224
 34.2.1.10 pandas.concat ... 1225
 34.2.1.11 pandas.get_dummies ... 1226
 34.2.1.12 pandas.factorize .. 1227
 34.2.1.13 pandas.unique .. 1228
 34.2.1.14 pandas.wide_to_long ... 1229
 34.2.2 Top-level missing data .. 1229
 34.2.2.1 pandas.isnull .. 1230
 34.2.2.2 pandas.notnull .. 1230
 34.2.3 Top-level conversions .. 1230
 34.2.3.1 pandas.to_numeric .. 1231
 34.2.4 Top-level dealing with datetimelike 1231
 34.2.4.1 pandas.to_datetime ... 1232
 34.2.4.2 pandas.to_timedelta ... 1233
34.2.4.3 pandas.date_range .. 1245
34.2.4.4 pandas.bdate_range .. 1246
34.2.4.5 pandas.period_range .. 1246
34.2.4.6 pandas.timedelta_range ... 1247
34.2.4.7 pandas.infer_freq .. 1247
34.2.5 Top-level evaluation ... 1248
34.2.5.1 pandas.eval ... 1248
34.2.6 Testing ... 1249
34.2.6.1 pandas.test ... 1249
34.3 Series ... 1249
34.3.1 Constructor ... 1249
34.3.1.1 pandas.Series ... 1250
34.3.2 Attributes .. 1362
34.3.3 Conversion .. 1363
34.3.4 Indexing, iteration .. 1363
34.3.4.1 pandas.Series.__iter__ .. 1363
34.3.5 Binary operator functions .. 1363
34.3.6 Function application, GroupBy & Window 1364
34.3.7 Computations / Descriptive Stats 1365
34.3.8 Reindexing / Selection / Label manipulation 1366
34.3.9 Missing data handling .. 1367
34.3.10 Reshaping, sorting ... 1367
34.3.11 Combining / joining / merging 1367
34.3.12 Time series-related .. 1367
34.3.13 Datetimelike Properties .. 1368
34.3.13.1 pandas.Series.dt.date ... 1368
34.3.13.2 pandas.Series.dt.time .. 1369
34.3.13.3 pandas.Series.dt.year ... 1369
34.3.13.4 pandas.Series.dt.month 1369
34.3.13.5 pandas.Series.dt.day .. 1369
34.3.13.6 pandas.Series.dt.hour ... 1369
34.3.13.7 pandas.Series.dt.minute 1369
34.3.13.8 pandas.Series.dt.second 1369
34.3.13.9 pandas.Series.dt.microsecond 1369
34.3.13.10 pandas.Series.dt.nanosecond 1369
34.3.13.11 pandas.Series.dt.is_year_end 1370
34.3.13.12 pandas.Series.dt.is_year_start 1370
34.3.13.13 pandas.Series.dt.is_quarter_end 1370
34.3.13.14 pandas.Series.dt.is_quarter_start 1370
34.3.13.15 pandas.Series.dt.is_month_end 1370
34.3.13.16 pandas.Series.dt.is_month_start 1370
34.3.13.17 pandas.Series.dt.is_leap_year 1371
34.3.13.18 pandas.Series.dt.dayofyear 1371
34.3.13.19 pandas.Series.dt.dayofweek 1371
34.3.13.20 pandas.Series.dt.weekofyear 1371
34.3.13.21 pandas.Series.dt.week ... 1371
34.3.13.22 pandas.Series.dt.weekday 1371
34.3.13.23 pandas.Series.dt.weekday_name 1371
34.3.13.24 pandas.Series.dt.dayofmonth 1371
34.3.13.25 pandas.Series.dt.daysinmonth 1371
34.3.13.26 pandas.Series.dt.tz ... 1371
34.3.13.27 pandas.Series.dt.tz ... 1371
34.3.13.28 pandas.Series.dt.freq ... 1371
34.3.13.29 pandas.Series.dt.to_period 1371
34.3.13.30 pandas.Series.dt.to_period 1371
34.3.13.31 pandas.Series.dt.to_period 1371
34.3.13.32 pandas.Series.dt.to_period 1371
34.3.13.33 pandas.Series.dt.to_period 1371
34.3.13.34 pandas.Series.dt.to_period 1371
34.3.13.35 pandas.Series.dt.to_period 1371
34.3.13.36 pandas.Series.dt.to_period 1371
34.3.13.37 pandas.Series.dt.to_period 1371
34.3.13.38 pandas.Series.dt.to_period 1371
34.3.13.39 pandas.Series.dt.to_period 1371

34.4.9 Missing data handling .. 1545
34.4.10 Reshaping, sorting, transposing 1546
34.4.11 Combining / joining / merging 1546
34.4.12 Time series-related .. 1546
34.4.13 Plotting ... 1547
 34.4.13.1 pandas.DataFrame.plot.area 1547
 34.4.13.2 pandas.DataFrame.plot.bar 1547
 34.4.13.3 pandas.DataFrame.plot.barh 1548
 34.4.13.4 pandas.DataFrame.plot.box 1548
 34.4.13.5 pandas.DataFrame.plot.density 1548
 34.4.13.6 pandas.DataFrame.plot.hexbin 1549
 34.4.13.7 pandas.DataFrame.plot.hist 1549
 34.4.13.8 pandas.DataFrame.plot.kde 1549
 34.4.13.9 pandas.DataFrame.plot.line 1549
 34.4.13.10 pandas.DataFrame.plot.pie 1550
 34.4.13.11 pandas.DataFrame.plot.scatter 1550
34.4.14 Serialization / IO / Conversion 1551
34.4.15 Sparse .. 1551
 34.4.15.1 pandas.SparseDataFrame.to_coo 1551
34.5 Panel .. 1552
 34.5.1 Constructor ... 1552
 34.5.1.1 pandas.Panel 1552
 34.5.2 Attributes and underlying data 1625
 34.5.3 Conversion ... 1625
 34.5.4 Getting and setting 1625
 34.5.5 Indexing, iteration, slicing 1625
 34.5.5.1 pandas.Panel.__iter__ 1626
 34.5.6 Binary operator functions 1626
 34.5.7 Function application, GroupBy 1627
 34.5.8 Computations / Descriptive Stats 1627
 34.5.9 Reindexing / Selection / Label manipulation 1627
 34.5.10 Missing data handling 1628
 34.5.11 Reshaping, sorting, transposing 1628
 34.5.12 Combining / joining / merging 1628
 34.5.13 Time series-related 1628
 34.5.14 Serialization / IO / Conversion 1629
34.6 Index ... 1629
 34.6.1 pandas.Index .. 1629
 34.6.1.1 pandas.Index.T 1630
 34.6.1.2 pandas.Index.asi8 1630
 34.6.1.3 pandas.Index.base 1631
 34.6.1.4 pandas.Index.data 1631
 34.6.1.5 pandas.Index.dtype 1631
 34.6.1.6 pandas.Index.dtype_str 1631
 34.6.1.7 pandas.Index.empty 1631
 34.6.1.8 pandas.Index.flags 1631
 34.6.1.9 pandas.Index.has_duplicates 1631
 34.6.1.10 pandas.Index.hasnans 1631
 34.6.1.11 pandas.Index.inferred_type 1631
 34.6.1.12 pandas.Index.is_all_dates 1631
 34.6.1.13 pandas.Index.is_monotonic 1631
 34.6.1.14 pandas.Index.is_monotonic_decreasing 1632
 34.6.1.15 pandas.Index.is_monotonic_increasing 1632
 34.6.1.16 pandas.Index.is_unique 1632
<table>
<thead>
<tr>
<th>LINE</th>
<th>EXTRACTED TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.10.1.7</td>
<td>pandas.DatetimeIndex.day</td>
</tr>
<tr>
<td>34.10.1.8</td>
<td>pandas.DatetimeIndex.dayofweek</td>
</tr>
<tr>
<td>34.10.1.9</td>
<td>pandas.DatetimeIndex.dayofyear</td>
</tr>
<tr>
<td>34.10.1.10</td>
<td>pandas.DatetimeIndex.days_in_month</td>
</tr>
<tr>
<td>34.10.1.11</td>
<td>pandas.DatetimeIndex.daysinmonth</td>
</tr>
<tr>
<td>34.10.1.12</td>
<td>pandas.DatetimeIndex.dtype</td>
</tr>
<tr>
<td>34.10.1.13</td>
<td>pandas.DatetimeIndex.dtype_str</td>
</tr>
<tr>
<td>34.10.1.14</td>
<td>pandas.DatetimeIndex.empty</td>
</tr>
<tr>
<td>34.10.1.15</td>
<td>pandas.DatetimeIndex.flags</td>
</tr>
<tr>
<td>34.10.1.16</td>
<td>pandas.DatetimeIndex.freq</td>
</tr>
<tr>
<td>34.10.1.17</td>
<td>pandas.DatetimeIndex.freqstr</td>
</tr>
<tr>
<td>34.10.1.18</td>
<td>pandas.DatetimeIndex.has_duplicates</td>
</tr>
<tr>
<td>34.10.1.19</td>
<td>pandas.DatetimeIndex.hasnans</td>
</tr>
<tr>
<td>34.10.1.20</td>
<td>pandas.DatetimeIndex.hour</td>
</tr>
<tr>
<td>34.10.1.21</td>
<td>pandas.DatetimeIndex.inferred_freq</td>
</tr>
<tr>
<td>34.10.1.22</td>
<td>pandas.DatetimeIndex.inferred_type</td>
</tr>
<tr>
<td>34.10.1.23</td>
<td>pandas.DatetimeIndex.is_all_dates</td>
</tr>
<tr>
<td>34.10.1.24</td>
<td>pandas.DatetimeIndex.is_leap_year</td>
</tr>
<tr>
<td>34.10.1.25</td>
<td>pandas.DatetimeIndex.is_monotonic</td>
</tr>
<tr>
<td>34.10.1.26</td>
<td>pandas.DatetimeIndex.is_monotonic_decreasing</td>
</tr>
<tr>
<td>34.10.1.27</td>
<td>pandas.DatetimeIndex.is_monotonic_increasing</td>
</tr>
<tr>
<td>34.10.1.28</td>
<td>pandas.DatetimeIndex.is_month_end</td>
</tr>
<tr>
<td>34.10.1.29</td>
<td>pandas.DatetimeIndex.is_month_start</td>
</tr>
<tr>
<td>34.10.1.30</td>
<td>pandas.DatetimeIndex.is_normalized</td>
</tr>
<tr>
<td>34.10.1.31</td>
<td>pandas.DatetimeIndex.is_quarter_end</td>
</tr>
<tr>
<td>34.10.1.32</td>
<td>pandas.DatetimeIndex.is_quarter_start</td>
</tr>
<tr>
<td>34.10.1.33</td>
<td>pandas.DatetimeIndex.is_unique</td>
</tr>
<tr>
<td>34.10.1.34</td>
<td>pandas.DatetimeIndex.is_year_end</td>
</tr>
<tr>
<td>34.10.1.35</td>
<td>pandas.DatetimeIndex.is_year_start</td>
</tr>
<tr>
<td>34.10.1.36</td>
<td>pandas.DatetimeIndex.itemsize</td>
</tr>
<tr>
<td>34.10.1.37</td>
<td>pandas.DatetimeIndex.microsecond</td>
</tr>
<tr>
<td>34.10.1.38</td>
<td>pandas.DatetimeIndex.minute</td>
</tr>
<tr>
<td>34.10.1.39</td>
<td>pandas.DatetimeIndex.month</td>
</tr>
<tr>
<td>34.10.1.40</td>
<td>pandas.DatetimeIndex.name</td>
</tr>
<tr>
<td>34.10.1.41</td>
<td>pandas.DatetimeIndex.names</td>
</tr>
<tr>
<td>34.10.1.42</td>
<td>pandas.DatetimeIndex.nanosecond</td>
</tr>
<tr>
<td>34.10.1.43</td>
<td>pandas.DatetimeIndex.nbytes</td>
</tr>
<tr>
<td>34.10.1.44</td>
<td>pandas.DatetimeIndex.ndim</td>
</tr>
<tr>
<td>34.10.1.45</td>
<td>pandas.DatetimeIndex.nlevels</td>
</tr>
<tr>
<td>34.10.1.46</td>
<td>pandas.DatetimeIndex.offset</td>
</tr>
<tr>
<td>34.10.1.47</td>
<td>pandas.DatetimeIndex.quarter</td>
</tr>
<tr>
<td>34.10.1.48</td>
<td>pandas.DatetimeIndex.resolution</td>
</tr>
<tr>
<td>34.10.1.49</td>
<td>pandas.DatetimeIndex.second</td>
</tr>
<tr>
<td>34.10.1.50</td>
<td>pandas.DatetimeIndex.shape</td>
</tr>
<tr>
<td>34.10.1.51</td>
<td>pandas.DatetimeIndex.size</td>
</tr>
<tr>
<td>34.10.1.52</td>
<td>pandas.DatetimeIndex.strides</td>
</tr>
<tr>
<td>34.10.1.53</td>
<td>pandas.DatetimeIndex.time</td>
</tr>
<tr>
<td>34.10.1.54</td>
<td>pandas.DatetimeIndex.tz</td>
</tr>
<tr>
<td>34.10.1.55</td>
<td>pandas.DatetimeIndex.tzinfo</td>
</tr>
<tr>
<td>34.10.1.56</td>
<td>pandas.DatetimeIndex.values</td>
</tr>
<tr>
<td>34.10.1.57</td>
<td>pandas.DatetimeIndex.week</td>
</tr>
<tr>
<td>34.10.1.58</td>
<td>pandas.DatetimeIndex.weekday</td>
</tr>
<tr>
<td>34.10.1.59</td>
<td>pandas.DatetimeIndex.weekday_name</td>
</tr>
<tr>
<td>34.10.1.60</td>
<td>pandas.DatetimeIndex.weekofyear</td>
</tr>
</tbody>
</table>
34.11.1.10 pandas.TimedeltaIndex.slice_locs .. 1754
34.11.1.10 pandas.TimedeltaIndex.sort .. 1754
34.11.1.11 pandas.TimedeltaIndex.sort_values 1754
34.11.1.11 pandas.TimedeltaIndex.sortlevel ... 1755
34.11.1.11 pandas.TimedeltaIndex.str .. 1755
34.11.1.11 pandas.TimedeltaIndex.summary .. 1755
34.11.1.11 pandas.TimedeltaIndex.sym_diff ... 1755
34.11.1.11 pandas.TimedeltaIndex.symmetric_difference 1755
34.11.1.11 pandas.TimedeltaIndex.take .. 1756
34.11.1.11 pandas.TimedeltaIndex.to_datetime 1756
34.11.1.11 pandas.TimedeltaIndex.to_native_types 1756
34.11.1.11 pandas.TimedeltaIndex.to_pytimedelta 1757
34.11.1.11 pandas.TimedeltaIndex.to_series .. 1757
34.11.1.12 pandas.TimedeltaIndex.tolist .. 1757
34.11.1.12 pandas.TimedeltaIndex.total_seconds 1757
34.11.1.12 pandas.TimedeltaIndex.transpose .. 1757
34.11.1.12 pandas.TimedeltaIndex.union ... 1757
34.11.1.12 pandas.TimedeltaIndex.unique ... 1758
34.11.1.12 pandas.TimedeltaIndex.value_counts 1758
34.11.1.12 pandas.TimedeltaIndex.view ... 1758
34.11.1.12 pandas.TimedeltaIndex.where ... 1759

34.11.2 Components ... 1759
34.11.3 Conversion ... 1759

34.12 Window ... 1759

34.12.1 Standard moving window functions 1759
34.12.1.1 pandas.core.window.Rolling.count 1760
34.12.1.2 pandas.core.window.Rolling.sum ... 1760
34.12.1.3 pandas.core.window.Rolling.mean 1760
34.12.1.4 pandas.core.window.Rolling.median 1761
34.12.1.5 pandas.core.window.Rolling.var .. 1761
34.12.1.6 pandas.core.window.Rolling.std ... 1761
34.12.1.7 pandas.core.window.Rolling.min .. 1761
34.12.1.8 pandas.core.window.Rolling.max 1762
34.12.1.9 pandas.core.window.Rolling.corr 1762
34.12.1.10 pandas.core.window.Rolling.cov 1762
34.12.1.10 pandas.core.window.Rolling.skew 1763
34.12.1.11 pandas.core.window.Rolling.kurt 1763
34.12.1.11 pandas.core.window.Rolling.apply 1763
34.12.1.14 pandas.core.window.Rolling.quantile 1763
34.12.1.15 pandas.core.window.Window.mean 1763
34.12.1.16 pandas.core.window.Window.sum 1764

34.12.2 Standard expanding window functions 1764
34.12.2.1 pandas.core.window.Expanding.count 1764
34.12.2.2 pandas.core.window.Expanding.sum 1765
34.12.2.3 pandas.core.window.Expanding.mean 1765
34.12.2.4 pandas.core.window.Expanding.median 1765
34.12.2.5 pandas.core.window.Expanding.var 1765
34.12.2.6 pandas.core.window.Expanding.std 1766
34.12.2.7 pandas.core.window.Expanding.min 1766
34.12.2.8 pandas.core.window.Expanding.max 1766
34.12.2.9 pandas.core.window.Expanding.corr 1766
34.12.2.10 pandas.core.window.Expanding.cov 1767
34.12.2.11 pandas.core.window.Expanding.skew 1767
34.12.2.12 pandas.core.window.Expanding.kurt 1767
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.13.3.35</td>
<td>pandas.core.groupby.DataFrameGroupBy.idxmax</td>
</tr>
<tr>
<td>34.13.3.36</td>
<td>pandas.core.groupby.DataFrameGroupBy.idxmin</td>
</tr>
<tr>
<td>34.13.3.37</td>
<td>pandas.core.groupby.DataFrameGroupBy.mad</td>
</tr>
<tr>
<td>34.13.3.38</td>
<td>pandas.core.groupby.DataFrameGroupBy.pct_change</td>
</tr>
<tr>
<td>34.13.3.39</td>
<td>pandas.core.groupby.DataFrameGroupBy.plot</td>
</tr>
<tr>
<td>34.13.3.40</td>
<td>pandas.core.groupby.DataFrameGroupBy.quantile</td>
</tr>
<tr>
<td>34.13.3.41</td>
<td>pandas.core.groupby.DataFrameGroupBy.rank</td>
</tr>
<tr>
<td>34.13.3.42</td>
<td>pandas.core.groupby.DataFrameGroupBy.resample</td>
</tr>
<tr>
<td>34.13.3.43</td>
<td>pandas.core.groupby.DataFrameGroupBy.shift</td>
</tr>
<tr>
<td>34.13.3.44</td>
<td>pandas.core.groupby.DataFrameGroupBy.size</td>
</tr>
<tr>
<td>34.13.3.45</td>
<td>pandas.core.groupby.DataFrameGroupBy.skew</td>
</tr>
<tr>
<td>34.13.3.46</td>
<td>pandas.core.groupby.DataFrameGroupBy.take</td>
</tr>
<tr>
<td>34.13.3.47</td>
<td>pandas.core.groupby.DataFrameGroupBy.tshift</td>
</tr>
<tr>
<td>34.13.3.48</td>
<td>pandas.core.groupby.SeriesGroupBy.nlargest</td>
</tr>
<tr>
<td>34.13.3.49</td>
<td>pandas.core.groupby.SeriesGroupBy.nsmallest</td>
</tr>
<tr>
<td>34.13.3.50</td>
<td>pandas.core.groupby.SeriesGroupBy.nunique</td>
</tr>
<tr>
<td>34.13.3.51</td>
<td>pandas.core.groupby.SeriesGroupBy.unique</td>
</tr>
<tr>
<td>34.13.3.52</td>
<td>pandas.core.groupby.SeriesGroupBy.value_counts</td>
</tr>
<tr>
<td>34.13.3.53</td>
<td>pandas.core.groupby.DataFrameGroupBy.corrwith</td>
</tr>
<tr>
<td>34.13.3.54</td>
<td>pandas.core.groupby.DataFrameGroupBy.boxplot</td>
</tr>
<tr>
<td>34.14</td>
<td>Resampling</td>
</tr>
<tr>
<td>34.14.1</td>
<td>Indexing, iteration</td>
</tr>
<tr>
<td>34.14.2</td>
<td>Function application</td>
</tr>
<tr>
<td>34.14.3</td>
<td>Upsampling</td>
</tr>
<tr>
<td>34.14.4</td>
<td>Computations / Descriptive Stats</td>
</tr>
</tbody>
</table>
35 Internals

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1859</td>
</tr>
<tr>
<td>35.1</td>
<td>1859</td>
</tr>
<tr>
<td>35.1.1</td>
<td>1860</td>
</tr>
<tr>
<td>35.2</td>
<td>1860</td>
</tr>
<tr>
<td>35.2.1</td>
<td>1861</td>
</tr>
<tr>
<td>35.2.2</td>
<td>1862</td>
</tr>
</tbody>
</table>

36 Release Notes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1865</td>
</tr>
<tr>
<td>36.1</td>
<td>1865</td>
</tr>
<tr>
<td>36.1.1</td>
<td>1866</td>
</tr>
<tr>
<td>36.2</td>
<td>1872</td>
</tr>
<tr>
<td>36.2.1</td>
<td>1872</td>
</tr>
<tr>
<td>36.3</td>
<td>1873</td>
</tr>
<tr>
<td>36.3.1</td>
<td>1873</td>
</tr>
<tr>
<td>36.4</td>
<td>1874</td>
</tr>
<tr>
<td>36.4.1</td>
<td>1874</td>
</tr>
<tr>
<td>36.5</td>
<td>1878</td>
</tr>
<tr>
<td>36.5.1</td>
<td>1878</td>
</tr>
<tr>
<td>36.6</td>
<td>1880</td>
</tr>
<tr>
<td>36.6.1</td>
<td>1880</td>
</tr>
<tr>
<td>36.7</td>
<td>1883</td>
</tr>
<tr>
<td>36.7.1</td>
<td>1883</td>
</tr>
<tr>
<td>36.8</td>
<td>1885</td>
</tr>
<tr>
<td>36.8.1</td>
<td>1886</td>
</tr>
<tr>
<td>36.9</td>
<td>1889</td>
</tr>
<tr>
<td>36.9.1</td>
<td>1889</td>
</tr>
<tr>
<td>36.10</td>
<td>1890</td>
</tr>
<tr>
<td>36.10.1</td>
<td>1890</td>
</tr>
<tr>
<td>36.11</td>
<td>1892</td>
</tr>
<tr>
<td>36.11.1</td>
<td>1893</td>
</tr>
<tr>
<td>36.12</td>
<td>1894</td>
</tr>
<tr>
<td>36.12.1</td>
<td>1895</td>
</tr>
<tr>
<td>36.13</td>
<td>1896</td>
</tr>
<tr>
<td>36.13.1</td>
<td>1896</td>
</tr>
<tr>
<td>36.14</td>
<td>1897</td>
</tr>
<tr>
<td>36.14.1</td>
<td>1897</td>
</tr>
<tr>
<td>36.15</td>
<td>1900</td>
</tr>
<tr>
<td>36.15.1</td>
<td>1900</td>
</tr>
</tbody>
</table>
36.16 pandas 0.14.0 ... 1901
 36.16.1 Thanks ... 1902
36.17 pandas 0.13.1 ... 1904
 36.17.1 New Features .. 1904
 36.17.2 API Changes .. 1905
 36.17.3 Experimental Features 1905
 36.17.4 Improvements to existing features 1905
 36.17.5 Bug Fixes ... 1906
36.18 pandas 0.13.0 ... 1907
 36.18.1 New Features .. 1908
 36.18.2 Experimental Features 1908
 36.18.3 Improvements to existing features 1908
 36.18.4 API Changes .. 1911
 36.18.5 Internal Refactoring ... 1914
 36.18.6 Bug Fixes ... 1916
36.19 pandas 0.12.0 ... 1921
 36.19.1 New Features .. 1922
 36.19.2 Improvements to existing features 1922
 36.19.3 API Changes .. 1923
 36.19.4 Experimental Features 1925
 36.19.5 Bug Fixes ... 1925
36.20 pandas 0.11.0 ... 1928
 36.20.1 New Features .. 1929
 36.20.2 Improvements to existing features 1931
 36.20.3 API Changes .. 1932
 36.20.4 Bug Fixes ... 1934
36.21 pandas 0.10.1 ... 1934
 36.21.1 New Features .. 1934
 36.21.2 API Changes .. 1935
 36.21.3 Improvements to existing features 1935
 36.21.4 Bug Fixes ... 1935
36.22 pandas 0.10.0 ... 1936
 36.22.1 New Features .. 1937
 36.22.2 Experimental Features 1938
 36.22.3 API Changes .. 1938
 36.22.4 Improvements to existing features 1938
 36.22.5 Bug Fixes ... 1940
36.23 pandas 0.9.1 ... 1941
 36.23.1 New Features .. 1941
 36.23.2 API Changes .. 1942
 36.23.3 Improvements to existing features 1942
 36.23.4 Bug Fixes ... 1942
36.24 pandas 0.9.0 ... 1944
 36.24.1 New Features .. 1944
 36.24.2 Improvements to existing features 1944
 36.24.3 API Changes .. 1945
 36.24.4 Bug Fixes ... 1945
36.25 pandas 0.8.1 ... 1949
 36.25.1 New Features .. 1949
 36.25.2 Improvements to existing features 1949
 36.25.3 Bug Fixes ... 1950
36.26 pandas 0.8.0 ... 1951
 36.26.1 New Features .. 1951
 36.26.2 Improvements to existing features 1952
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
- Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

- Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
- Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
- Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
- Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
- Intuitive merging and joining data sets
- Flexible reshaping and pivoting of data sets
- Hierarchical labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format
- Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

- **pandas is fast.** Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool.

- **pandas is a dependency of statsmodels,** making it an important part of the statistical computing ecosystem in Python.

- **pandas has been used extensively in production in financial applications.**

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.
WHAT'S NEW

These are new features and improvements of note in each release.

1.1 v0.20.1 (May 5, 2017)

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- New `.agg()` API for Series/DataFrame similar to the groupby-rolling-resample API’s, see here.
- Integration with the `feather-format`, including a new top-level `pd.read_feather()` and `DataFrame.to_feather()` method, see here.
- The `.ix` indexer has been deprecated, see here.
- `Panel` has been deprecated, see here.
- Addition of an `IntervalIndex` and `Interval` scalar type, see here.
- Improved user API when grouping by index levels in `.groupby()`, see here.
- Improved support for `UInt64` dtypes, see here.
- A new orient for JSON serialization, `orient='table'`, that uses the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook, see here.
- Experimental support for exporting styled DataFrames (`DataFrame.style`) to Excel, see here.
- Window binary corr/cov operations now return a MultiIndexed DataFrame rather than a Panel, as Panel is now deprecated, see here.
- Support for S3 handling now uses `s3fs`, see here.
- Google BigQuery support now uses the pandas-gbq library, see here.

Warning: Pandas has changed the internal structure and layout of the codebase. This can affect imports that are not from the top-level pandas.* namespace, please see the changes here.

Check the [API Changes](#) and [deprecations](#) before updating.
What’s new in v0.20.0

- **New features**
 - `agg` API for DataFrame/Series
 - `dtype` keyword for data IO
 - `.to_datetime()` has gained an `origin` parameter
 - Groupby Enhancements
 - Better support for compressed URLs in `read_csv`
 - Pickle file I/O now supports compression
 - UInt64 Support Improved
 - GroupBy on Categoricals
 - Table Schema Output
 - SciPy sparse matrix from/to SparseDataFrame
 - Excel output for styled DataFrames
 - IntervalIndex
 - Other Enhancements

- **Backwards incompatible API changes**
 - Possible incompatibility for HDF5 formats created with pandas < 0.13.0
 - Map on Index types now return other Index types
 - Accessing datetime fields of Index now return Index
 - `pd.unique` will now be consistent with extension types
 - S3 File Handling
 - Partial String Indexing Changes
 - Concat of different float dtypes will not automatically upcast
 - Pandas Google BigQuery support has moved
 - Memory Usage for Index is more Accurate
 - DataFrame.sort_index changes
 - Groupby Describe Formatting
 - Window Binary Corr/Cov operations return a MultiIndex DataFrame
 - HDFStore where string comparison
 - Index.intersection and inner join now preserve the order of the left Index
 - Pivot Table always returns a DataFrame
 - Other API Changes
• Reorganization of the library: Privacy Changes
 – Modules Privacy Has Changed
 – pandas.errors
 – pandas.testing
 – pandas.plotting
 – Other Development Changes

• Deprecations
 – Deprecate .ix
 – Deprecate Panel
 – Deprecate groupby.agg() with a dictionary when renaming
 – Deprecate .plotting
 – Other Deprecations

• Removal of prior version deprecations/changes

• Performance Improvements

• Bug Fixes
 – Conversion
 – Indexing
 – I/O
 – Plotting
 – Groupby/Resample/Rolling
 – Sparse
 – Reshaping
 – Numeric
 – Other

1.1.1 New features

1.1.1.1 agg API for DataFrame/Series

Series & DataFrame have been enhanced to support the aggregation API. This is a familiar API from groupby, window operations, and resampling. This allows aggregation operations in a concise way by using `agg()` and `transform()`. The full documentation is here (GH1623).

Here is a sample

```
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
                    index=pd.date_range('1/1/2000', periods=10))
...
In [2]: df.iloc[3:7] = np.nan
```
One can operate using string function names, callables, lists, or dictionaries of these.

Using a single function is equivalent to apply.

```
In [4]: df.agg('sum')
Out [4]:
   A   B   C
0  3.46  0.14 -0.43
```

Multiple aggregations with a list of functions.

```
In [5]: df.agg(['sum', 'min'])
Out [5]:
   A   B   C
  sum  3.46 -0.14 -0.43
  min -1.19 -1.07 -1.28
```

Using a dict provides the ability to apply specific aggregations per column. You will get a matrix-like output of all of the aggregators. The output has one column per unique function. Those functions applied to a particular column will be NaN:

```
In [6]: df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
Out [6]:
   A   B
   max  NaN  1.17
   min -1.19 -1.07
   sum  3.46  NaN
```

The API also supports a `transform()` function for broadcasting results.

```
In [7]: df.transform(['abs', lambda x: x - x.min()])
Out [7]:
   A   B   C
0  1.47  2.67  0.06
0  0.78  1.98  1.07
0  2.35  3.55  0.58
0  NaN  NaN  NaN
0  NaN  NaN  NaN
0  NaN  NaN  NaN
0  NaN  NaN  NaN
0  0.90  2.09  1.17
```

Chapter 1. What’s New
When presented with mixed dtypes that cannot be aggregated, `.agg()` will only take the valid aggregations. This is similar to how `groupby` `.agg()` works. (GH15015)

```
In [8]: df = pd.DataFrame({'A': [1, 2, 3],
                 ...:                  'B': [1., 2., 3.],
                 ...:                  'C': ['foo', 'bar', 'baz'],
                 ...:                  'D': pd.date_range('20130101', periods=3))

In [9]: df.dtypes
Out[9]:
A    int64
B    float64
C     object
D  datetime64[ns]
dtype: object

In [10]: df.agg(['min', 'sum'])
Out[10]:
     A   B   C   D
min  1.0 1.0  bar 2013-01-01
sum  6.0 6.0  foobarbaz   NaT
```

1.1.1.2 `dtype` keyword for data IO

The 'python' engine for `read_csv()`, as well as the `read_fwf()` function for parsing fixed-width text files and `read_excel()` for parsing Excel files, now accept the `dtype` keyword argument for specifying the types of specific columns (GH14295). See the io docs for more information.

```
In [11]: data = "a b\n1 2\n3 4"

In [12]: pd.read_fwf(StringIO(data)).dtypes
Out[12]:
   a   b
dtype: object

In [13]: pd.read_fwf(StringIO(data), dtype={'a':'float64', 'b':'object'}).dtypes
Out[13]:
   a   b
dtype: object
```

1.1.1.3 `.to_datetime()` has gained an `origin` parameter

`.to_datetime()` has gained a new parameter, `origin`, to define a reference date from where to compute the resulting timestamps when parsing numerical values with a specific unit specified. (GH11276, GH11745)

For example, with 1960-01-01 as the starting date:

```
In [11]: data = "a b\n1 2\n3 4"

In [12]: pd.read_fwf(StringIO(data), dtypes={'a':np.float64, 'b':np.object, 'c':pd.Timedelta}).dtypes
Out[12]:
   a   b   c
dtype: object
```

1.1. v0.20.1 (May 5, 2017)
The default is set at \texttt{origin='unix'}, which defaults to 1970-01-01 00:00:00, which is commonly called ‘unix epoch’ or POSIX time. This was the previous default, so this is a backward compatible change.

1.1.1.4 Groupby Enhancements

Strings passed to \texttt{DataFrame.groupby()} as the \texttt{by} parameter may now reference either column names or index level names. Previously, only column names could be referenced. This allows to easily group by a column and index level at the same time. (GH5677)
1.1.1.5 Better support for compressed URLs in read_csv

The compression code was refactored (GH12688). As a result, reading dataframes from URLs in read_csv() or read_table() now supports additional compression methods: xz, bz2, and zip (GH14570). Previously, only gzip compression was supported. By default, compression of URLs and paths are now inferred using their file extensions. Additionally, support for bz2 compression in the python 2 C-engine improved (GH14874).

In [21]: url = 'https://github.com/{repo}/raw/{branch}/{path}'.format(
 : repo = 'pandas-dev/pandas',
 : branch = 'master',
 : path = 'pandas/tests/io/parser/data/salaries.csv.bz2',
 :)

In [22]: df = pd.read_table(url, compression='infer') # default, infer compression
In [23]: df = pd.read_table(url, compression='bz2') # explicitly specify compression
In [24]: df.head(2)
Out[24]:
 S X E M
0 13876.0 1.0000 1.0000 1.0000
1 11608.0 1.0000 3.0000 0.0000

1.1.1.6 Pickle file I/O now supports compression

read_pickle(), DataFrame.to_pickle() and Series.to_pickle() can now read from and write to compressed pickle files. Compression methods can be an explicit parameter or be inferred from the file extension. See the docs here.

In [25]: df = pd.DataFrame({
 : 'A': np.random.randn(1000),
 : 'B': 'foo',
 : 'C': pd.date_range('20130101', periods=1000, freq='s')})

Using an explicit compression type

In [26]: df.to_pickle("data.pkl.compress", compression="gzip")
In [27]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")
In [28]: rt.head()
Out[28]:
 A B C
0 0.384316 foo 2013-01-01 00:00:00
1 1.574159 foo 2013-01-01 00:00:01
2 1.588931 foo 2013-01-01 00:00:02
3 0.476720 foo 2013-01-01 00:00:03
4 0.473424 foo 2013-01-01 00:00:04

The default is to infer the compression type from the extension (compression='infer'):

In [29]: df.to_pickle("data.pkl.gz")
In [30]: rt = pd.read_pickle("data.pkl.gz")
pandas: powerful Python data analysis toolkit, Release 0.20.1

In [31]: rt.head()
Out[31]:
 A B C
0 0.384316 foo 2013-01-01 00:00:00
1 1.574159 foo 2013-01-01 00:00:01
2 1.588931 foo 2013-01-01 00:00:02
3 0.476720 foo 2013-01-01 00:00:03
4 0.473424 foo 2013-01-01 00:00:04

In [32]: df["A"].to_pickle("s1.pkl.bz2")
In [33]: rt = pd.read_pickle("s1.pkl.bz2")
In [34]: rt.head()
Out[34]:
 A
0 0.384316
1 1.574159
2 1.588931
3 0.476720
4 0.473424
Name: A, dtype: float64

1.1.1.7 UInt64 Support Improved

Pandas has significantly improved support for operations involving unsigned, or purely non-negative, integers. Previously, handling these integers would result in improper rounding or data-type casting, leading to incorrect results. Notably, a new numerical index, UInt64Index, has been created (GH14937)

In [35]: idx = pd.UInt64Index([1, 2, 3])
In [36]: df = pd.DataFrame({'A': ['a', 'b', 'c']}, index=idx)
In [37]: df.index
Out[37]: UInt64Index([1, 2, 3], dtype='uint64')

- Bug in converting object elements of array-like objects to unsigned 64-bit integers (GH4471, GH14982)
- Bug in Series.unique() in which unsigned 64-bit integers were causing overflow (GH14721)
- Bug in DataFrame construction in which unsigned 64-bit integer elements were being converted to objects (GH14881)
- Bug in pd.read_csv() in which unsigned 64-bit integer elements were being improperly converted to the wrong data types (GH14983)
- Bug in pd.unique() in which unsigned 64-bit integers were causing overflow (GH14915)
- Bug in pd.value_counts() in which unsigned 64-bit integers were being erroneously truncated in the output (GH14934)

1.1.1.8 GroupBy on Categoricals

In previous versions, .groupby(..., sort=False) would fail with a ValueError when grouping on a categorical series with some categories not appearing in the data. (GH13179)
In [38]: chromosomes = np.r_[np.arange(1, 23).astype(str), ['X', 'Y']]

In [39]: df = pd.DataFrame({
...: 'A': np.random.randint(100),
...: 'B': np.random.randint(100),
...: 'C': np.random.randint(100),
...: 'chromosomes': pd.Categorical(np.random.choice(chromosomes, 100), categories=chromosomes, ordered=True))

In [40]: df
Out[40]:
 A B C chromosomes
0 21 62 10 17
1 21 62 10 Y
2 21 62 10 13
3 21 62 10 8
4 21 62 10 22
5 21 62 10 3
6 21 62 10 19
...
93 21 62 10 17
94 21 62 10 Y
95 21 62 10 Y
96 21 62 10 22
97 21 62 10 5
98 21 62 10 20
99 21 62 10 X

[100 rows x 4 columns]

Previous Behavior:

In [3]: df[df.chromosomes != '1'].groupby('chromosomes', sort=False).sum()

ValueError: items in new_categories are not the same as in old categories

New Behavior:

In [41]: df[df.chromosomes != '1'].groupby('chromosomes', sort=False).sum()
Out[41]:
 A B C
chromosomes
2 42.0 124.0 20.0
3 105.0 310.0 50.0
4 63.0 186.0 30.0
5 84.0 248.0 40.0
6 84.0 248.0 40.0
7 63.0 186.0 30.0
8 189.0 558.0 90.0
...
20 126.0 372.0 60.0
21 42.0 124.0 20.0
22 84.0 248.0 40.0
X 63.0 186.0 30.0
Y 126.0 372.0 60.0
1 NaN NaN NaN
1.1.1.9 Table Schema Output

The new orient 'table' for `DataFrame.to_json()` will generate a Table Schema compatible string representation of the data.

```python
In [42]: df = pd.DataFrame({
    ....:     'A': [1, 2, 3],
    ....:     'B': ['a', 'b', 'c'],
    ....:     'C': pd.date_range('2016-01-01', freq='d', periods=3),
    ....: }, index=pd.Index(range(3), name='idx'))

In [43]: df
Out[43]:
   A  B          C
idx
0  1  a 2016-01-01
1  2  b 2016-01-02
2  3  c 2016-01-03

In [44]: df.to_json(orient='table')

See IO: Table Schema for more information.
```

Additionally, the repr for DataFrame and Series can now publish this JSON Table schema representation of the Series or DataFrame if you are using IPython (or another frontend like nteract using the Jupyter messaging protocol). This gives frontends like the Jupyter notebook and nteract more flexibility in how they display pandas objects, since they have more information about the data. You must enable this by setting the `display.html.table_schema` option to True.

1.1.1.10 SciPy sparse matrix from/to SparseDataFrame

Pandas now supports creating sparse dataframes directly from `scipy.sparse.spmatrix` instances. See the documentation for more information. (GH4343)

All sparse formats are supported, but matrices that are not in COOrdinate format will be converted, copying data as needed.

```python
In [45]: from scipy.sparse import csr_matrix

In [46]: arr = np.random.random(size=(1000, 5))

In [47]: arr[arr < .9] = 0

In [48]: sp_arr = csr_matrix(arr)
```
In [49]: sp_arr
Out[49]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'
 with 500 stored elements in Compressed Sparse Row format>

In [50]: sdf = pd.SparseDataFrame(sp_arr)

In [51]: sdf
Out[51]:
 0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN 0.997522
4 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN 0.911034
6 NaN NaN NaN NaN NaN
...
993 0.925879 NaN NaN NaN NaN
994 NaN NaN NaN NaN 0.955585
995 NaN NaN NaN NaN NaN
996 NaN NaN NaN NaN NaN
997 NaN NaN NaN NaN NaN
998 NaN NaN NaN NaN 0.904855
999 NaN NaN NaN NaN NaN

[1000 rows x 5 columns]

To convert a SparseDataFrame back to sparse SciPy matrix in COO format, you can use:

In [52]: sdf.to_coo()
Out[52]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'
 with 500 stored elements in COOrdinate format>

1.1.1.11 Excel output for styled DataFrames

Experimental support has been added to export DataFrame.style formats to Excel using the openpyxl engine. (GH15530)

For example, after running the following, styled.xlsx renders as below:

In [53]: np.random.seed(24)
In [54]: df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
In [55]: df = pd.concat([df, pd.DataFrame(np.random.RandomState(24).randn(10, 4),
 columns=list('BCDE'))],
 axis=1)
In [56]: df.iloc[0, 2] = np.nan
In [57]: df
Out[57]:
 A B C D E
0 1.000 NaN 1.993 4.995 8.000
1 2.000 NaN 3.995 5.997 9.000
2 3.000 NaN 4.993 6.997 10.000
3 4.000 NaN 5.995 7.997 11.000
4 5.000 NaN 6.993 8.997 12.000
5 6.000 NaN 7.995 9.997 13.000
6 7.000 NaN 8.993 10.997 14.000
7 8.000 NaN 9.995 11.997 15.000
8 9.000 NaN 10.993 12.997 16.000
9 10.000 NaN 11.995 13.997 17.000
10 0.997 NaN 12.993 14.997 18.000

1.1. v0.20.1 (May 5, 2017)
pandas: powerful Python data analysis toolkit, Release 0.20.1

```python
In [58]: styled = df.style.
    :  applymap(lambda val: 'color: %s' % 'red' if val < 0 else 'black').
    :  highlight_max().

In [59]: styled.to_excel('styled.xlsx', engine='openpyxl')
```

See the Style documentation for more detail.

1.1.1.12 IntervalIndex

pandas has gained an IntervalIndex with its own `dtype`, `interval` as well as the Interval scalar type. These allow first-class support for interval notation, specifically as a return type for the categories in `cut()` and `qcut()`. The IntervalIndex allows some unique indexing, see the docs. (GH7640, GH8625)

Warning: These indexing behaviors of the IntervalIndex are provisional and may change in a future version of pandas. Feedback on usage is welcome.

Previous behavior:
The returned categories were strings, representing Intervals
In [1]: c = pd.cut(range(4), bins=2)

In [2]: c
Out[2]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3], (1.5, 3]]
Categories (2, object): [(-0.003, 1.5] < (1.5, 3]]

In [3]: c.categories
Out[3]: Index(['(-0.003, 1.5]', '(1.5, 3]'), dtype='object')

New behavior:

In [60]: c = pd.cut(range(4), bins=2)

In [61]: c
Out[61]:
[(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

In [62]: c.categories
→
IntervalIndex([(-0.003, 1.5], (1.5, 3.0]
 closed='right',
 dtype='interval[float64]')

Furthermore, this allows one to bin other data with these same bins, with NaN representing a missing value similar to other dtypes.

In [63]: pd.cut([0, 3, 5, 1], bins=c.categories)
Out[63]:
[(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]]
Categories (2, interval[float64]): [(-0.003, 1.5] < (1.5, 3.0]]

An IntervalIndex can also be used in Series and DataFrame as the index.

In [64]: df = pd.DataFrame({'A': range(4),
 : 'B': pd.cut([0, 3, 1, 1], bins=c.categories)}
 :).set_index('B')

In [65]: df
Out[65]:
 A
 B
 (-0.003, 1.5] 0
 (1.5, 3.0] 1
 (-0.003, 1.5] 2
 (-0.003, 1.5] 3

Selecting via a specific interval:

In [66]: df.loc[pd.Interval(1.5, 3.0)]
Out[66]:
 A
 1
Name: (1.5, 3.0], dtype: int64

Selecting via a scalar value that is contained in the intervals.
1.1.1.13 Other Enhancements

- `DataFrame.rolling()` now accepts the parameter `closed='right'` to choose the rolling window-endpoint closedness. See the documentation (GH13965).
- Integration with the feather-format, including a new top-level `pd.read_feather()` and `DataFrame.to_feather()` method, see here.
- `Series.str.replace()` now accepts a callable, as replacement, which is passed to `re.sub` (GH15055).
- `Series.str.replace()` now accepts a compiled regular expression as a pattern (GH15446).
- `Series.sort_index` accepts parameters `kind` and `na_position` (GH13589, GH14444).
- `DataFrame` and `DataFrame.groupby()` have gained a `nunique()` method to count the distinct values over an axis (GH14336, GH15197).
- `DataFrame` has gained a `melt()` method, equivalent to `pd.melt()`, for unpivoting from a wide to long format (GH12640).
- `pd.read_excel()` now preserves sheet order when using `sheetname=None` (GH9930).
- Multiple offset aliases with decimal points are now supported (e.g. `0.5min` is parsed as `30s`) (GH8419).
- `.isnull()` and `.notnull()` have been added to `Index` object to make them more consistent with the `Series` API (GH15300).
- New `UnsortedIndexError` (subclass of `KeyError`) raised when indexing/slicing into an unsorted `MultiIndex` (GH11897). This allows differentiation between errors due to lack of sorting or an incorrect key. See here.
- `MultiIndex` has gained a `.to_frame()` method to convert to a `DataFrame` (GH12397).
- `pd.cut` and `pd.qcut` now support `datetime64` and `timedelta64` dtypes (GH14714, GH14798).
- `pd.qcut` has gained the `duplicates='raise'` option to control whether to raise on duplicated edges (GH7751).
- `Series` provides a `.to_excel` method to output Excel files (GH8825).
- The `usecols` argument in `pd.read_csv()` now accepts a callable function as a value (GH14154).
- The `skiprows` argument in `pd.read_csv()` now accepts a callable function as a value (GH10882).
- The `nrows` and `chunksize` arguments in `pd.read_csv()` are supported if both are passed (GH6774, GH15755).
- `DataFrame.plot` now prints a title above each subplot if `subplots=True` and `title` is a list of strings (GH14753).
- `DataFrame.plot` can pass the `matplotlib` 2.0 default color cycle as a single string as color parameter, see here. (GH15516).
- `Series.interpolate()` now supports `timedelta` as an index type with `method='time'` (GH6424).
• Addition of a level keyword to DataFrame/Series.rename to rename labels in the specified level of a MultiIndex (GH4160).

• DataFrame.reset_index() will now interpret a tuple index.name as a key spanning across levels of columns, if this is a MultiIndex (GH16164).

• Timedelta.isoformat method added for formatting Timedeltas as an ISO 8601 duration. See the Timedelta docs (GH15136).

• .select_dtypes() now allows the string datetimetz to generically select datetimes with tz (GH14910).

• The .to_latex() method will now accept multicolumn and multirow arguments to use the accompanying LaTeX enhancements.

• pd.merge_asof() gained the option direction='backward'|'forward'|'nearest' (GH14887).

• Series/DataFrame.asfreq() have gained a fill_value parameter, to fill missing values (GH3715).

• Series/DataFrame.resample.asfreq have gained a fill_value parameter, to fill missing values during resampling (GH3715).

• pandas.util.hash_pandas_object() has gained the ability to hash a MultiIndex (GH15224).

• Series/DataFrame.squeeze() have gained the axis parameter. (GH15339).

• DataFrame.to_excel() has a new freeze_panes parameter to turn on Freeze Panes when exporting to Excel (GH15160).

• pd.read_html() will parse multiple header rows, creating a MultiIndex header. (GH13434).

• HTML table output skips colspan or rowspan attribute if equal to 1. (GH15403).

• pandas.io.formats.style.Styler template now has blocks for easier extension, see the example notebook (GH15649).

• Styler.render() now accepts **kwargs to allow user-defined variables in the template (GH15649).

• Compatibility with Jupyter notebook 5.0; MultiIndex column labels are left-aligned and MultiIndex row-labels are top-aligned (GH15379).

• TimedeltaIndex now has a custom date-tick formatter specifically designed for nanosecond level precision (GH8711).

• pd.api.types.union_categoricals gained the ignore_ordered argument to allow ignoring the ordered attribute of unioned categoricals (GH13410). See the categorical union docs for more information.

• DataFrame.to_latex() and DataFrame.to_string() now allow optional header aliases. (GH15536)

• Re-enable the parse_dates keyword of pd.read_excel() to parse string columns as dates (GH14326).

• Added .empty property to subclasses of Index. (GH15270)

• Enabled floor division for Timedelta and TimedeltaIndex (GH15828).

• pandas.io.json.json_normalize() gained the option errors='ignore'|'raise'; the default is errors='raise' which is backward compatible. (GH14583).

• pandas.io.json.json_normalize() with an empty list will return an empty DataFrame (GH15534).

• pandas.io.json.json_normalize() has gained a sep option that accepts str to separate joined fields; the default is """, which is backward compatible. (GH14883).
MultiIndex.remove_unused_levels() has been added to facilitate removing unused levels. (GH15694)

pd.read_csv() will now raise a ParserError error whenever any parsing error occurs (GH15913, GH15925)

pd.read_csv() now supports the error_bad_lines and warn_bad_lines arguments for the Python parser (GH15925)

The display.show_dimensions option can now also be used to specify whether the length of a Series should be shown in its repr (GH7117).

parallel_coordinates() has gained a sort_labels keyword argument that sorts class labels and the colors assigned to them (GH15908)

Options added to allow one to turn on/off using bottleneck and numexpr, see here (GH16157)

Dataframe.style.bar() now accepts two more options to further customize the bar chart. Bar alignment is set with align='left'|'mid'|'zero', the default is “left”, which is backward compatible; You can now pass a list of color=[color_negative, color_positive]. (GH14757)

1.1.2 Backwards incompatible API changes

1.1.2.1 Possible incompatibility for HDF5 formats created with pandas < 0.13.0

pd.TimeSeries was deprecated officially in 0.17.0, though has already been an alias since 0.13.0. It has been dropped in favor of pd.Series. (GH15098).

This may cause HDF5 files that were created in prior versions to become unreadable if pd.TimeSeries was used. This is most likely to be for pandas < 0.13.0. If you find yourself in this situation. You can use a recent prior version of pandas to read in your HDF5 files, then write them out again after applying the procedure below.

```python
In [2]: s = pd.TimeSeries([1,2,3], index=pd.date_range('20130101', periods=3))
In [3]: s
Out[3]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64
In [4]: type(s)
Out[4]: pandas.core.series.TimeSeries
In [5]: s = pd.Series(s)
In [6]: s
Out[6]:
2013-01-01 1
2013-01-02 2
2013-01-03 3
Freq: D, dtype: int64
In [7]: type(s)
Out[7]: pandas.core.series.Series
```
1.1.2.2 Map on Index types now return other Index types

Map on an Index now returns an Index, not a numpy array (GH12766)

In [68]: idx = Index([1, 2])

In [69]: idx
Out[69]: Int64Index([1, 2], dtype='int64')

In [70]: mi = MultiIndex.from_tuples([(1, 2), (2, 4)])

In [71]: mi
Out[71]: MultiIndex(levels=[[1, 2], [2, 4]],
labels=[[0, 1], [0, 1]])

Previous Behavior:

In [5]: idx.map(lambda x: x * 2)
Out[5]: array([2, 4])

In [6]: idx.map(lambda x: (x, x * 2))
Out[6]: array(((1, 2), (2, 4)), dtype=object)

In [7]: mi.map(lambda x: x)
Out[7]: array(((1, 2), (2, 4)), dtype=object)

In [8]: mi.map(lambda x: x[0])
Out[8]: array([1, 2])

New Behavior:

In [72]: idx.map(lambda x: x * 2)
Out[72]: Int64Index([2, 4], dtype='int64')

In [73]: idx.map(lambda x: (x, x * 2))
Out[73]: MultiIndex(levels=[[1, 2], [2, 4]],
labels=[[0, 1], [0, 1]])

In [74]: mi.map(lambda x: x)
Out[74]: MultiIndex(levels=[[1, 2], [2, 4]],
labels=[[0, 1], [0, 1]])

In [75]: mi.map(lambda x: x[0])
Out[75]: Int64Index([1, 2], dtype='int64')

Map on a Series with datetime64 values may return int64 dtypes rather than int32.

In [76]: s = Series(date_range('2011-01-02T00:00', '2011-01-02T02:00', freq='H').tz_localize('Asia/Tokyo'))

In [77]: s
Out[77]:
0 2011-01-02 00:00:00+09:00
1.2.3 Accessing datetime fields of Index now return Index

The datetime-related attributes (see here for an overview) of DatetimeIndex, PeriodIndex and TimedeltaIndex previously returned numpy arrays. They will now return a new Index object, except in the case of a boolean field, where the result will still be a boolean ndarray. (GH15022)

Previous behaviour:

```
In [1]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')
In [2]: idx.hour
Out[2]: array([ 0, 10, 20, 6, 16], dtype=int32)
```

New Behavior:

```
In [79]: idx = pd.date_range("2015-01-01", periods=5, freq='10H')
In [80]: idx.hour
Out[80]: Int64Index([0, 10, 20, 6, 16], dtype='int64')
```

This has the advantage that specific Index methods are still available on the result. On the other hand, this might have backward incompatibilities: e.g. compared to numpy arrays, Index objects are not mutable. To get the original ndarray, you can always convert explicitly using np.asarray(idx.hour).

1.2.4 pd.unique will now be consistent with extension types

In prior versions, using Series.unique() and pandas.unique() on Categorical and tz-aware data-types would yield different return types. These are now made consistent. (GH15903)

 • Datetime tz-aware

 Previous behaviour:
Series

In [5]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]).unique()

Out[5]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
 dtype=object)

In [6]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]))

Out[6]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

Index

In [7]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]).unique()

Out[7]: DatetimeIndex(['2016-01-01 00:00:00-05:00'],
 dtype='datetime64[ns, US/Eastern]',
 freq=None)

In [8]: pd.unique([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')])

Out[8]: array(['2016-01-01T05:00:00.000000000'], dtype='datetime64[ns]')

New Behavior:

Series, returns an array of Timestamp tz-aware

In [81]: pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]).unique()

Out[81]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
 dtype=object)

In [82]: pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]))

Out[82]: array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
 dtype=object)

Index, returns a DatetimeIndex

In [83]: pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]).unique()

Out[83]: DatetimeIndex(['2016-01-01 00:00:00-05:00'],
 dtype='datetime64[ns, US/Eastern]',
 freq=None)

In [84]: pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
 pd.Timestamp('20160101', tz='US/Eastern')]))

Out[84]: DatetimeIndex(['2016-01-01 00:00:00-05:00'],
 dtype='datetime64[ns, US/Eastern]',
 freq=None)

• Categoricals

Previous behaviour:

In [1]: pd.Series(list('baabc'), dtype='category').unique()

Out[1]: [b, a, c]

Categories (3, object): [b, a, c]
In [2]: pd.unique(pd.Series(list('baabc'), dtype='category'))
Out[2]: array(['b', 'a', 'c'], dtype=object)

New Behavior:

returns a Categorical
In [85]: pd.Series(list('baabc'), dtype='category').unique()
Out[85]:
[b, a, c]
Categories (3, object): [b, a, c]

1.1.2.5 S3 File Handling

pandas now uses s3fs for handling S3 connections. This shouldn’t break any code. However, since s3fs is not a required dependency, you will need to install it separately, like boto in prior versions of pandas. (GH11915).

1.1.2.6 Partial String Indexing Changes

DatetimeIndex Partial String Indexing now works as an exact match, provided that string resolution coincides with index resolution, including a case when both are seconds (GH14826). See Slice vs. Exact Match for details.

In [87]: df = DataFrame({'a': [1, 2, 3]}, DatetimeIndex(['2011-12-31 23:59:59', '2012-01-01 00:00:00', '2012-01-01 00:00:01']))

Previous Behavior:

In [4]: df['2011-12-31 23:59:59']
Out[4]:
a
2011-12-31 23:59:59 1

In [5]: df['a']['2011-12-31 23:59:59']
Out[5]:
2011-12-31 23:59:59 1
Name: a, dtype: int64

New Behavior:

In [4]: df['2011-12-31 23:59:59']
KeyError: '2011-12-31 23:59:59'

In [5]: df['a']['2011-12-31 23:59:59']
Out[5]: 1
1.1.2.7 Concat of different float dtypes will not automatically upcast

Previously, `concat` of multiple objects with different float dtypes would automatically upcast results to a dtype of float64. Now the smallest acceptable dtype will be used (GH13247)

```python
In [88]: df1 = pd.DataFrame(np.array([1.0], dtype=np.float32, ndmin=2))

In [89]: df1.dtypes
Out[89]:
0  float32
dtype: object

In [90]: df2 = pd.DataFrame(np.array([np.nan], dtype=np.float32, ndmin=2))

In [91]: df2.dtypes
Out[91]:
0  float32
dtype: object

Previous Behavior:

```python
In [7]: pd.concat([df1, df2]).dtypes
Out[7]:
0 float64
dtype: object
```
New Behavior:

```
In [8]: index = Index(['foo', 'bar', 'baz'])
In [9]: index.memory_usage(deep=True)
Out[9]: 180
In [10]: index.get_loc('foo')
Out[10]: 0
In [11]: index.memory_usage(deep=True)
Out[11]: 260
```

### 1.1.2.10 DataFrame.sort_index changes

In certain cases, calling `.sort_index()` on a MultiIndexed DataFrame would return the same DataFrame without seeming to sort. This would happen with a lexsorted, but non-monotonic levels. (GH15622, GH15687, GH14015, GH13431, GH15797)

This is unchanged from prior versions, but shown for illustration purposes:

```
In [93]: df = DataFrame(np.arange(6), columns=['value'], index=MultiIndex.from_product([list('BA'), range(3)]))
In [94]: df
Out[94]:
 value
 B 0 0
 1 1
 2 2
 A 0 3
 1 4
 2 5

In [95]: df.index.is_lexsorted()
Out[95]: False
In [96]: df.index.is_monotonic
Out[96]: False
```

Sorting works as expected:

```
In [97]: df.sort_index()
Out[97]:
 value
 A 0 3
 1 4
 2 5
 B 0 0
 1 1
 2 2
```
In [98]: df.sort_index().index.is_lexsorted()
Out[98]: True

In [99]: df.sort_index().index.is_monotonic
Out[99]: True

However, this example, which has a non-monotonic 2nd level, doesn't behave as desired.

In [100]: df = pd.DataFrame(
.....:     {'value': [1, 2, 3, 4]},
.....:     index=pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']],
.....:                    labels=[[0, 0, 1, 1], [0, 1, 0, 1]]))

In [101]: df
Out[101]:
     value
a  bb  1
   aa  2
b  bb  3
   aa  4

Previous Behavior:

In [11]: df.sort_index()
Out[11]:
     value
a  bb  1
   aa  2
b  bb  3
   aa  4

In [14]: df.sort_index().index.is_lexsorted()
Out[14]: True

In [15]: df.sort_index().index.is_monotonic
Out[15]: False

New Behavior:

In [102]: df.sort_index()
Out[102]:
     value
a  aa  2
   bb  1
b  aa  4
   bb  3

In [103]: df.sort_index().index.is_lexsorted()
Out[103]: True

In [104]: df.sort_index().index.is_monotonic
Out[104]: True
1.1.2.11 Groupby Describe Formatting

The output formatting of `groupby.describe()` now labels the `describe()` metrics in the columns instead of the index. This format is consistent with `groupby.agg()` when applying multiple functions at once. (GH4792)

Previous Behavior:

```python
In [1]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

In [2]: df.groupby('A').describe()
Out[2]:
 B
 A
 1 count 2.000000
 mean 1.500000
 std 0.707107
 min 1.000000
 25% 1.250000
 50% 1.500000
 75% 1.750000
 max 2.000000
 2 count 2.000000
 mean 3.500000
 std 0.707107
 min 3.000000
 25% 3.250000
 50% 3.500000
 75% 3.750000
 max 4.000000

In [3]: df.groupby('A').agg([np.mean, np.std, np.min, np.max])
```

New Behavior:

```python
In [105]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, 2, 3, 4]})

In [106]: df.groupby('A').describe()
Out[106]:
 B
 A count mean std min 25% 50% 75% max
 1 2.0 1.5 0.707107 1.0 1.25 1.5 1.75 2.0
 2 2.0 3.5 0.707107 3.0 3.25 3.5 3.75 4.0

In [107]: df.groupby('A').agg([np.mean, np.std, np.min, np.max])
```

→

```python
 B
 A mean std amin amax
 1 1.5 0.707107 1 2
 2 3.5 0.707107 3 4
```
1.1.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame

A binary window operation, like `.corr()` or `.cov()`, when operating on a `.rolling()`, `.expanding()`, or `.ewm()` object, will now return a 2-level MultiIndexed DataFrame rather than a Panel, as Panel is now deprecated, see here. These are equivalent in function, but a MultiIndexed DataFrame enjoys more support in pandas. See the section on Windowed Binary Operations for more information. (GH15677)

```
In [108]: np.random.seed(1234)
In [109]: df = pd.DataFrame(np.random.rand(100, 2),
 columns=pd.Index(['A', 'B'], name='bar'),
 index=pd.date_range('20160101',
 periods=100, freq='D', name='foo'))
In [110]: df.tail()
Out[110]:
bar A B
foo
2016-04-05 0.640880 0.126205
2016-04-06 0.171465 0.737086
2016-04-07 0.127029 0.369650
2016-04-08 0.604334 0.103104
2016-04-09 0.802374 0.945553
```

Previous Behavior:

```
In [2]: df.rolling(12).corr()
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 100 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: 2016-01-01 00:00:00 to 2016-04-09 00:00:00
Major_axis axis: A to B
Minor_axis axis: A to B
```

New Behavior:

```
In [111]: res = df.rolling(12).corr()
In [112]: res.tail()
Out[112]:
bar A B
 foo bar
2016-04-07 B -0.132090 1.000000
2016-04-08 A 1.000000 -0.145775
 B -0.145775 1.000000
2016-04-09 A 1.000000 0.119645
 B 0.119645 1.000000
```

Retrieving a correlation matrix for a cross-section

```
In [113]: df.rolling(12).corr().loc['2016-04-07']
Out[113]:
bar A B
 foo bar
2016-04-07 A 1.000000 -0.132090
 B -0.132090 1.000000
```
1.1.2.13 HDFStore where string comparison

In previous versions most types could be compared to string column in a HDFStore usually resulting in an invalid comparison, returning an empty result frame. These comparisons will now raise a TypeError (GH15492).

```python
In [114]: df = pd.DataFrame({"unparsed_date": ['2014-01-01', '2014-01-01']})
In [115]: df.to_hdf('store.h5', 'key', format='table', data_columns=True)
In [116]: df.dtypes
Out[116]:
unparsed_date object
dtype: object

Previous Behavior:
```
```python
In [4]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
File "<string>", line 1
 (unparsed_date > 1970-01-01 00:00:01.388552400)
 ^
SyntaxError: invalid token
```

New Behavior:
```
In [18]: ts = pd.Timestamp('2014-01-01')
In [19]: pd.read_hdf('store.h5', 'key', where='unparsed_date > ts')
TypeError: Cannot compare 2014-01-01 00:00:00 of type <class 'pandas.tslib.Timestamp'> to string column
```

1.1.2.14 Index.intersection and inner join now preserve the order of the left Index

Index.intersection() now preserves the order of the calling Index (left) instead of the other Index (right) (GH15582). This affects inner joins, DataFrame.join() and merge(), and the .align method.

- Index.intersection

```
In [117]: left = pd.Index([2, 1, 0])
In [118]: left
Out[118]: Int64Index([2, 1, 0], dtype='int64')
In [119]: right = pd.Index([1, 2, 3])
In [120]: right
Out[120]: Int64Index([1, 2, 3], dtype='int64')

Previous Behavior:
```
```python
In [4]: left.intersection(right)
Out[4]: Int64Index([1, 2], dtype='int64')
```

New Behavior:
```
In [121]: left.intersection(right)
Out[121]: Int64Index([2, 1], dtype='int64')
```
• **DataFrame.join** and **pd.merge**

```python
In [122]: left = pd.DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0])

In [123]: left
Out[123]:
 a
2 20
1 10
0 0

In [124]: right = pd.DataFrame({'b': [100, 200, 300]}, index=[1, 2, 3])

In [125]: right
Out[125]:
 b
1 100
2 200
3 300
```

Previous Behavior:

```python
In [4]: left.join(right, how='inner')
Out[4]:
 a b
1 10 100
2 20 200
```

New Behavior:

```python
In [126]: left.join(right, how='inner')
Out[126]:
 a b
2 20 200
1 10 100
```

**1.1.2.15 Pivot Table always returns a DataFrame**

The documentation for `pivot_table()` states that a DataFrame is always returned. Here a bug is fixed that allowed this to return a Series under certain circumstance. ([GH4386](https://github.com/pandas-dev/pandas/issues/4386))

```python
In [127]: df = DataFrame({'col1': [3, 4, 5],
 'col2': ['C', 'D', 'E'],
 'col3': [1, 3, 9]})

In [128]: df
Out[128]:
 col1 col2 col3
0 3 C 1
1 4 D 3
2 5 E 9
```

Previous Behavior:

```python
In [2]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
Out[2]:
```

1.1. v0.20.1 (May 5, 2017)
New Behavior:

```python
In [129]: df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
Out[129]:
 col1
col3 col2
1 C 3
3 D 4
9 E 5
```

1.1.2.16 Other API Changes

- `numexpr` version is now required to be >= 2.4.6 and it will not be used at all if this requisite is not fulfilled (GH15213).
- `CParseError` has been renamed to `ParserError` in `pd.read_csv()` and will be removed in the future (GH12665).
- `SparseArray.cumsum()` and `SparseSeries.cumsum()` will now always return `SparseArray` and `SparseSeries` respectively (GH12855).
- `DataFrame.applymap()` with an empty DataFrame will return a copy of the empty DataFrame instead of a Series (GH8222).
- `Series.map()` now respects default values of dictionary subclasses with a `__missing__` method, such as `collections.Counter` (GH15999).
- `.loc` has compat with `.ix` for accepting iterators, and NamedTuples (GH15120).
- `interpolate()` and `fillna()` will raise a `ValueError` if the `limit` keyword argument is not greater than 0. (GH9217)
- `pd.read_csv()` will now issue a `ParserWarning` whenever there are conflicting values provided by the `dialect` parameter and the user (GH14898).
- `pd.read_csv()` will now raise a `ValueError` for the C engine if the quote character is larger than than one byte (GH11592).
- `inplace` arguments now require a boolean value, else a `ValueError` is thrown (GH14189).
- `pandas.api.types.is_datetime64_ns_dtype` will now report `True` on a tz-aware dtype, similar to `pandas.api.types.is_datetime64_any_dtype` (GH10409).
- `DataFrame.asof()` will return a null filled Series instead the scalar `NaN` if a match is not found (GH15118).
- `Series.sort_values()` accepts a one element list of `bool` for consistency with the behavior of `DataFrame.sort_values()` (GH15604).
- `.merge()` and `.join()` on category dtype columns will now preserve the category dtype when possible (GH10409).
• SparseDataFrame.default_fill_value will be 0, previously was nan in the return from pd.get_dummies(..., sparse=True) (GH15594)

• The default behaviour of Series.str.match has changed from extracting groups to matching the pattern. The extracting behaviour was deprecated since pandas version 0.13.0 and can be done with the Series.str.extract method (GH5224). As a consequence, the as_indexer keyword is ignored (no longer needed to specify the new behaviour) and is deprecated.

• NaT will now correctly report False for datetimelike boolean operations such as is_month_start (GH15781)

• NaT will now correctly return np.nan for Timedelta and Period accessor such as days and quarter (GH15782)

• NaT will now returns NaT for tz_localize and tz_convert methods (GH15830)

• DataFrame and Panel constructors with invalid input will now raise ValueError rather than PandasError, if called with scalar inputs and not axes (GH15541)

• DataFrame and Panel constructors with invalid input will now raise ValueError rather than pandas.core.common.PandasError, if called with scalar inputs and not axes; The exception PandasError is removed as well. (GH15541)

• The exception pandas.core.common.AmbiguousIndexError is removed as it is not referenced (GH15541)

1.1.3 Reorganization of the library: Privacy Changes

1.1.3.1 Modules Privacy Has Changed

Some formerly public python/c/c++/cython extension modules have been moved and/or renamed. These are all removed from the public API. Furthermore, the pandas.core, pandas.compat, and pandas.util top-level modules are now considered to be PRIVATE. If indicated, a deprecation warning will be issued if you reference these modules. (GH12588)
pandas: powerful Python data analysis toolkit, Release 0.20.1

<table>
<thead>
<tr>
<th>Previous Location</th>
<th>New Location</th>
<th>Deprecated</th>
</tr>
</thead>
<tbody>
<tr>
<td>pandas.lib</td>
<td>pandas._libs.lib</td>
<td>X</td>
</tr>
<tr>
<td>pandas.tslib</td>
<td>pandas._libs.tslib</td>
<td>X</td>
</tr>
<tr>
<td>pandas.computation</td>
<td>pandas.core.computation</td>
<td>X</td>
</tr>
<tr>
<td>pandas.msgpack</td>
<td>pandas.io.msgpack</td>
<td></td>
</tr>
<tr>
<td>pandas.index</td>
<td>pandas._libs.index</td>
<td></td>
</tr>
<tr>
<td>pandas.algos</td>
<td>pandas._libs.algos</td>
<td></td>
</tr>
<tr>
<td>pandas.hashtable</td>
<td>pandas._libs.hashtable</td>
<td></td>
</tr>
<tr>
<td>pandas.indexes</td>
<td>pandas.core.indexes</td>
<td></td>
</tr>
<tr>
<td>pandas.json</td>
<td>pandas._libs.json / pandas.io.json</td>
<td>X</td>
</tr>
<tr>
<td>pandas.parser</td>
<td>pandas._libs.parsers</td>
<td>X</td>
</tr>
<tr>
<td>pandas.formats</td>
<td>pandas.io.formats</td>
<td></td>
</tr>
<tr>
<td>pandas.sparse</td>
<td>pandas.core.sparse</td>
<td></td>
</tr>
<tr>
<td>pandas.tools</td>
<td>pandas.core.reshape</td>
<td>X</td>
</tr>
<tr>
<td>pandas.types</td>
<td>pandas.core.dtypes</td>
<td>X</td>
</tr>
<tr>
<td>pandas.io.sas.saslib</td>
<td>pandas.io.sas._sas</td>
<td></td>
</tr>
<tr>
<td>pandas._join</td>
<td>pandas._libs.join</td>
<td></td>
</tr>
<tr>
<td>pandas._hash</td>
<td>pandas._libs.hashing</td>
<td></td>
</tr>
<tr>
<td>pandas._period</td>
<td>pandas._libs.period</td>
<td></td>
</tr>
<tr>
<td>pandas._sparse</td>
<td>pandas._libs.sparse</td>
<td></td>
</tr>
<tr>
<td>pandas._testing</td>
<td>pandas._libs.testing</td>
<td></td>
</tr>
<tr>
<td>pandas._window</td>
<td>pandas._libs.window</td>
<td></td>
</tr>
</tbody>
</table>

Some new subpackages are created with public functionality that is not directly exposed in the top-level namespace: pandas.errors, pandas.plotting and pandas.testing (more details below). Together with pandas.api.types and certain functions in the pandas.io and pandas.tseries submodules, these are now the public subpackages.

Further changes:

- The function `union_categoricals()` is now importable from pandas.api.types, formerly from pandas.types.concat (GH15998)
- The type import pandas.tslib.NaTType is deprecated and can be replaced by using `type(pandas.NaT)` (GH16146)
- The public functions in pandas.tools.hashing deprecated from that locations, but are now importable from pandas.util (GH16223)
- The modules in pandas.util: decorators, print_versions, doctools, validators, depr_module are now private. Only the functions exposed in pandas.util itself are public (GH16223)

1.1.3.2 pandas.errors

We are adding a standard public module for all pandas exceptions & warnings pandas.errors. (GH14800). Previously these exceptions & warnings could be imported from pandas.core.common or pandas.io.common. These exceptions and warnings will be removed from the *.common locations in a future release. (GH15541)

The following are now part of this API:

```python
['DtypeWarning',
 'EmptyDataError',
 'OutOfBoundsDatetime',
 'ParserError',
 'ParserWarning',
 'PerformanceWarning',
]```

32 Chapter 1. What's New
1.1.3.3 pandas.testing

We are adding a standard module that exposes the public testing functions in pandas.testing (GH9895). Those functions can be used when writing tests for functionality using pandas objects.

The following testing functions are now part of this API:

- `testing.assert_frame_equal()`
- `testing.assert_series_equal()`
- `testing.assert_index_equal()`

1.1.3.4 pandas.plotting

A new public pandas.plotting module has been added that holds plotting functionality that was previously in either pandas.tools.plotting or in the top-level namespace. See the deprecations sections for more details.

1.1.3.5 Other Development Changes

- Building pandas for development now requires cython >= 0.23 (GH14831)
- Require at least 0.23 version of cython to avoid problems with character encodings (GH14699)
- Switched the test framework to use pytest (GH13097)
- Reorganization of tests directory layout (GH14854, GH15707).

1.1.4 Deprecations

1.1.4.1 Deprecate .ix

The .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers. .ix offers a lot of magic on the inference of what the user wants to do. To wit, .ix can decide to index **positionally** OR via **labels**, depending on the data type of the index. This has caused quite a bit of user confusion over the years. The full indexing documentation is here. (GH14218)

The recommended methods of indexing are:

- .loc if you want to **label** index
- .iloc if you want to **positionally** index.

Using .ix will now show a DeprecationWarning with a link to some examples of how to convert code here.

```python
In [130]: df = pd.DataFrame({
    ....:     'A': [1, 2, 3],
    ....:     'B': [4, 5, 6],
    ....:     'index': list('abc')
    ....: },
In [131]: df
Out[131]:
     A  B
0  1  4
1  2  5
2  3  6
```
Previous Behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

```python
In [3]: df.ix[[0, 2], 'A']
Out[3]:
a 1
b 2
c 3
Name: A, dtype: int64
```

Using `.loc`. Here we will select the appropriate indexes from the index, then use label indexing.

```python
In [132]: df.loc[df.index[[0, 2]], 'A']
Out[132]:
a 1
b 2
c 3
Name: A, dtype: int64
```

Using `.iloc`. Here we will get the location of the ‘A’ column, then use positional indexing to select things.

```python
In [133]: df.iloc[[0, 2], df.columns.get_loc('A')]
Out[133]:
a 1
b 2
c 3
Name: A, dtype: int64
```

1.1.4.2 Deprecate Panel

Panel is deprecated and will be removed in a future version. The recommended way to represent 3-D data are with a MultiIndex on a DataFrame via the `to_frame()` or with the xarray package. Pandas provides a `to_xarray()` method to automate this conversion. For more details see Deprecate Panel documentation. (GH13563).

```python
In [134]: p = tm.makePanel()

In [135]: p
```

```python
Out[135]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

Convert to a MultiIndex DataFrame

```python
In [136]: p.to_frame()
Out[136]:
```

<table>
<thead>
<tr>
<th>minor</th>
<th>ItemA</th>
<th>ItemB</th>
<th>ItemC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000-01-03 A</td>
<td>-1.409432</td>
<td>0.209395</td>
</tr>
<tr>
<td></td>
<td>2000-01-03 B</td>
<td>-1.347533</td>
<td>-0.896581</td>
</tr>
<tr>
<td></td>
<td>2000-01-03 C</td>
<td>1.272395</td>
<td>-0.161137</td>
</tr>
<tr>
<td></td>
<td>2000-01-03 D</td>
<td>-0.591863</td>
<td>-1.051539</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>minor</th>
<th>ItemA</th>
<th>ItemB</th>
<th>ItemC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000-01-04 A</td>
<td>1.422986</td>
<td>-0.592886</td>
</tr>
</tbody>
</table>
Convert to an xarray DataArray

```python
In [137]: p.to_xarray()
Out[137]:
<xarray.DataArray (items: 3, major_axis: 3, minor_axis: 4)>
array([[[ 0.628776, 0.988138, -0.938153, -0.223019],
     [ 0.186494, -0.072608, -1.239072, 2.123692],
     [ 0.952478, -0.550603, 0.139683, 0.122273]],
    [[-1.409432, -1.347533, 1.272395, -0.591863],
     [ 1.422986, 0.363565, -1.449567, -0.414505],
     [-2.147855, -0.014752, -1.195524, -1.425795]],
    [[ 0.209395, -0.896581, -0.161137, -1.051539],
     [-0.592886, 1.104352, 0.889157, -0.319561],
     [-1.473116, -0.43155 , 0.288377, -0.619993]])
Coordinates:
* items (items) object 'ItemA' 'ItemB' 'ItemC'
* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05
* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'
```

1.1.4.3 Deprecate groupby.agg() with a dictionary when renaming

The `.groupby(...)`.agg(...), `.rolling(...)`.agg(...), and `.resample(...)`.agg(...) syntax can accept a variable of inputs, including scalars, list, and a dict of column names to scalars or lists. This provides a useful syntax for constructing multiple (potentially different) aggregations.

However, `.agg(...)` can also accept a dict that allows ‘renaming’ of the result columns. This is a complicated and confusing syntax, as well as not consistent between `Series` and `DataFrame`. We are deprecating this ‘renaming’ functionality.

- We are deprecating passing a dict to a grouped/rolled/resampled `Series`. This allowed one to rename the resulting aggregation, but this had a completely different meaning than passing a dictionary to a grouped `DataFrame`, which accepts column-to-aggregations.
- We are deprecating passing a dict-of-dicts to a grouped/rolled/resampled `DataFrame` in a similar manner.

This is an illustrative example:

```python
In [138]: df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
     ....:     'B': range(5),
     ....:     'C': range(5)})
     ....:

In [139]: df
Out[139]:
   A  B  C
0 1  0  0
1 1  1  1
```
Here is a typical useful syntax for computing different aggregations for different columns. This is a natural, and useful syntax. We aggregate from the dict-to-list by taking the specified columns and applying the list of functions. This returns a MultiIndex for the columns (this is not deprecated).

```
In [140]: df.groupby('A').agg({'B': 'sum', 'C': 'min'})
Out[140]:
        B  C
   A
1  3  0
2  7  3
```

Here’s an example of the first deprecation, passing a dict to a grouped Series. This is a combination aggregation & renaming:

```
In [6]: df.groupby('A').B.agg({'foo': 'count'})
```

```
FutureWarning: using a dict on a Series for aggregation is deprecated and will be removed in a future version
```

```
Out[6]:
   foo
   A
1  3
2  2
```

You can accomplish the same operation, more idiomatically by:

```
In [141]: df.groupby('A').B.agg({'count': 'sum'}).rename(columns={'count': 'foo'})
```

```
Out[141]:
   foo
   A
1  3
2  2
```

Here’s an example of the second deprecation, passing a dict-of-dict to a grouped DataFrame:

```
In [23]: (df.groupby('A')
       .agg({'B': {'foo': 'sum'}, 'C': {'bar': 'min'}})
       )
```

```
FutureWarning: using a dict with renaming is deprecated and will be removed in a future version
```

```
Out[23]:
   B   C
   foo  bar
   A
1  3  0
2  7  3
```

You can accomplish nearly the same by:

```
In [142]: (df.groupby('A')
       .......: .agg({'B': 'sum', 'C': 'min'})
       .......: .rename(columns={'B': 'foo', 'C': 'bar'})
       .......: )
```
1.1.4.4 Deprecate .plotting

The `pandas.tools.plotting` module has been deprecated, in favor of the top level `pandas.plotting` module. All the public plotting functions are now available from `pandas.plotting` (GH12548).

Furthermore, the top-level `pandas.scatter_matrix` and `pandas.plot_params` are deprecated. Users can import these from `pandas.plotting` as well.

Previous script:

```python
pd.tools.plotting.scatter_matrix(df)
pd.scatter_matrix(df)
```

Should be changed to:

```python
pd.plotting.scatter_matrix(df)
```

1.1.4.5 Other Deprecations

- `SparseArray.to_dense()` has deprecated the `fill` parameter, as that parameter was not being respected (GH14647)
- `SparseSeries.to_dense()` has deprecated the `sparse_only` parameter (GH14647)
- `Series.repeat()` has deprecated the `reps` parameter in favor of `repeats` (GH12662)
- The `Series` constructor and `.astype` method have deprecated accepting timestamp dtypes without a frequency (e.g. `np.datetime64`) for the `dtype` parameter (GH15524)
- `Index.repeat()` and `MultiIndex.repeat()` have deprecated the `n` parameter in favor of `repeats` (GH12662)
- `Categorical.searchsorted()` and `Series.searchsorted()` have deprecated the `v` parameter in favor of `value` (GH12662)
- `TimedeltaIndex.searchsorted()`, `DatetimeIndex.searchsorted()`, and `PeriodIndex.searchsorted()` have deprecated the `key` parameter in favor of `value` (GH12662)
- `DataFrame.astype()` has deprecated the `raise_on_error` parameter in favor of `errors` (GH14878)
- `Series.sortlevel` and `DataFrame.sortlevel` have been deprecated in favor of `Series.sort_index` and `DataFrame.sort_index` (GH15099)
- importing `concat` from `pandas.tools.merge` has been deprecated in favor of imports from the `pandas` namespace. This should only affect explicit imports (GH15358)
- `Series/DataFrame/Panel.consolidate()` been deprecated as a public method. (GH15483)
- The `as_indexer` keyword of `Series.str.match()` has been deprecated (ignored keyword) (GH15257).
- The following top-level pandas functions have been deprecated and will be removed in a future version (GH13790, GH15940)
- pd.pnow(), replaced by Period.now()
- pd.Term, is removed, as it is not applicable to user code. Instead use in-line string expressions in the where clause when searching in HDFStore
- pd.Expr, is removed, as it is not applicable to user code.
- pd.match(), is removed.
- pd.groupby(), replaced by using the .groupby() method directly on a Series/DataFrame
- pd.get_store(), replaced by a direct call to pd.HDFStore(...)

- is_any_int_dtypes, is_floating_dtypes, and is_sequence are deprecated from pandas.api.types (GH16042)

1.1.5 Removal of prior version deprecations/changes

- The pandas.rpy module is removed. Similar functionality can be accessed through the rpy2 project. See the R interfacing docs for more details.
- The pandas.io.ga module with a google-analytics interface is removed (GH11308). Similar functionality can be found in the Google2Pandas package.
- pd.to_datetime and pd.to_timedelta have dropped the coerce parameter in favor of errors (GH13602)
- pandas.stats.fama_macbeth, pandas.stats.ols, pandas.stats.plm, and pandas.stats.var, as well as the top-level pandas.fama_macbeth and pandas.ols routines are removed. Similar functionality can be found in the statsmodels package. (GH11898)
- The TimeSeries and SparseTimeSeries classes, aliases of Series and SparseSeries, are removed (GH10890, GH15098).
- Series.is_time_series is dropped in favor of Series.index.is_all_dates (GH15098)
- The deprecated irow, icol, iget and iget_value methods are removed in favor of iloc and iat as explained here (GH10711).
- The deprecated DataFrame.iterkv() has been removed in favor of DataFrame.iteritems() (GH10711)
- The Categorical constructor has dropped the name parameter (GH10632)
- Categorical has dropped support for NaN categories (GH10748)
- The take_last parameter has been dropped from duplicated(), drop_duplicates(), nlargest(), and nsmallest() methods (GH10236, GH10792, GH10920)
- Series, Index, and DataFrame have dropped the sort and order methods (GH10726)
- Where clauses in pytables are only accepted as strings and expressions types and not other data-types (GH12027)
- DataFrame has dropped the combineAdd and combineMult methods in favor of add and mul respectively (GH10735)

1.1.6 Performance Improvements

- Improved performance of pd.wide_to_long() (GH14779)
• Improved performance of `pd.factorize()` by releasing the GIL with object dtype when inferred as strings (GH14859, GH16057)

• Improved performance of timeseries plotting with an irregular DatetimeIndex (or with `compat_x=True`) (GH15073).

• Improved performance of `groupby().cummin()` and `groupby().cummax()` (GH15048, GH15109, GH15561, GH15635)

• Improved performance and reduced memory when indexing with a MultiIndex (GH15245)

• When reading buffer object in `read_sas()` method without specified format, filepath string is inferred rather than buffer object. (GH14947)

• Improved performance of `.rank()` for categorical data (GH15498)

• Improved performance when using `.unstack()` (GH15503)

• Improved performance of merge/join on category columns (GH10409)

• Improved performance of `drop_duplicates()` on bool columns (GH12963)

• Improve performance of `pd.core.groupby.GroupBy.apply` when the applied function used the `.name` attribute of the group DataFrame (GH15062).

• Improved performance of `iloc` indexing with a list or array (GH15504).

• Improved performance of `Series.sort_index()` with a monotonic index (GH15694)

• Improved performance in `pd.read_csv()` on some platforms with buffered reads (GH16039)

1.1.7 Bug Fixes

1.1.7.1 Conversion

• Bug in `Timestamp.replace` now raises `TypeError` when incorrect argument names are given; previously this raised `ValueError` (GH15240)

• Bug in `Timestamp.replace` with compat for passing long integers (GH15030)

• Bug in `Timestamp` returning UTC based time/date attributes when a timezone was provided (GH13303, GH6538)

• Bug in `Timestamp` incorrectly localizing timezones during construction (GH11481, GH15777)

• Bug in `TimedeltaIndex` addition where overflow was being allowed without error (GH14816)

• Bug in `TimedeltaIndex` raising a `ValueError` when boolean indexing with `loc` (GH14946)

• Bug in catching an overflow in `Timestamp + Timedelta/Offset` operations (GH15126)

• Bug in `DatetimeIndex.round()` and `Timestamp.round()` floating point accuracy when rounding by milliseconds or less (GH14440, GH15578)

• Bug in `astype()` where `inf` values were incorrectly converted to integers. Now raises error now with `astype()` for Series and DataFrames (GH14265)

• Bug in `DataFrame(...) .apply(to_numeric)` when values are of type decimal.Decimal. (GH14827)

• Bug in `describe()` when passing a numpy array which does not contain the median to the percentiles keyword argument (GH14908)

• Cleaned up `PeriodIndex` constructor, including raising on floats more consistently (GH13277)

• Bug in using `__deepcopy__` on empty NDFrame objects (GH15370)
• Bug in \texttt{.replace()} may result in incorrect dtypes. (GH12747, GH15765)
• Bug in \texttt{Series.replace} and \texttt{DataFrame.replace} which failed on empty replacement dicts (GH15289)
• Bug in \texttt{Series.replace} which replaced a numeric by string (GH15743)
• Bug in \texttt{Index} construction with NaN elements and integer dtype specified (GH15187)
• Bug in \texttt{Series} construction with a datetimetz (GH14928)
• Bug in \texttt{Series.dt.round()} inconsistent behaviour on NaT’s with different arguments (GH14940)
• Bug in \texttt{Series} constructor when both \texttt{copy=True} and \texttt{dtype} arguments are provided (GH15125)
• Incorrect dtyped \texttt{Series} was returned by comparison methods (e.g., \texttt{lt}, \texttt{gt}, ...) against a constant for an empty \texttt{DataFrame} (GH15077)
• Bug in \texttt{Series.ffill()} with mixed dtypes containing tz-aware datetimes. (GH14956)
• Bug in \texttt{DataFrame.fillna()} where the argument \texttt{downcast} was ignored when fillna value was of type \texttt{dict} (GH15277)
• Bug in \texttt{.asfreq()}, where frequency was not set for empty \texttt{Series} (GH14320)
• Bug in \texttt{DataFrame} construction with nulls and datetimes in a list-like (GH15869)
• Bug in \texttt{DataFrame.fillna()} with tz-aware datetimes (GH15855)
• Bug in \texttt{is_string_dtype}, \texttt{is_timedelta64_ns_dtype}, and \texttt{is_string_like_dtype} in which an error was raised when \texttt{None} was passed in (GH15941)
• Bug in the return type of \texttt{pd.unique} on a \texttt{Categorical}, which was returning an \texttt{ndarray} and not a \texttt{Categorical} (GH15903)
• Bug in \texttt{Index.to_series()} where the index was not copied (and so mutating later would change the original), (GH15949)
• Bug in indexing with partial string indexing with a len-1 \texttt{DataFrame} (GH16071)
• Bug in \texttt{Series} construction where passing invalid dtype didn’t raise an error. (GH15520)

1.1.7.2 Indexing

• Bug in \texttt{Index} power operations with reversed operands (GH14973)
• Bug in \texttt{DataFrame.sort_values()} when sorting by multiple columns where one column is of type \texttt{int64} and contains NaT (GH14922)
• Bug in \texttt{DataFrame.reindex()} in which \texttt{method} was ignored when passing \texttt{columns} (GH14992)
• Bug in \texttt{DataFrame.loc} with indexing a \texttt{MultiIndex} with a \texttt{Series} indexer (GH14730, GH15424)
• Bug in \texttt{DataFrame.loc} with indexing a \texttt{MultiIndex} with a \texttt{numpy} array (GH15434)
• Bug in \texttt{Series.asof} which raised if the series contained all \texttt{np.nan} (GH15713)
• Bug in \texttt{.at} when selecting from a tz-aware column (GH15822)
• Bug in \texttt{Series.where()} and \texttt{DataFrame.where()} where array-like conditionals were being rejected (GH15414)
• Bug in \texttt{Series.where()} where TZ-aware data was converted to float representation (GH15701)
• Bug in \texttt{.loc} that would not return the correct dtype for scalar access for a \texttt{DataFrame} (GH11617)
• Bug in output formatting of a \texttt{MultiIndex} when names are integers (GH12223, GH15262)
• Bug in `Categorical.searchsorted()` where alphabetical instead of the provided categorical order was used (GH14522)

• Bug in `Series.iloc` where a `Categorical` object for list-like indexes input was returned, where a `Series` was expected. (GH14580)

• Bug in `DataFrame.isin` comparing datetimelike to empty frame (GH15473)

• Bug in `.reset_index()` when an all NaN level of a MultiIndex would fail (GH6322)

• Bug in `.reset_index()` when raising error for index name already present in MultiIndex columns (GH16120)

• Bug in creating a MultiIndex with tuples and not passing a list of names; this will now raise `ValueError` (GH15110)

• Bug in the HTML display with with a MultiIndex and truncation (GH14882)

• Bug in the display of `.info()` where a qualifier (+) would always be displayed with a MultiIndex that contains only non-strings (GH15245)

• Bug in `pd.concat()` where the names of MultiIndex of resulting DataFrame are not handled correctly when None is presented in the names of MultiIndex of input DataFrame (GH15787)

• Bug in `DataFrame.sort_index()` and `Series.sort_index()` where na_position doesn’t work with a MultiIndex (GH14784, GH16604)

• Bug in `pd.concat()` when combining objects with a `CategoricalIndex` (GH16111)

• Bug in indexing with a scalar and a `CategoricalIndex` (GH16123)

1.1.7.3 I/O

• Bug in `pd.to_numeric()` in which float and unsigned integer elements were being improperly casted (GH14941, GH15005)

• Bug in `pd.read_fwf()` where the skiprows parameter was not being respected during column width inference (GH11256)

• Bug in `pd.read_csv()` in which the dialect parameter was not being verified before processing (GH14898)

• Bug in `pd.read_csv()` in which missing data was being improperly handled with `usecols` (GH6710)

• Bug in `pd.read_csv()` in which a file containing a row with many columns followed by rows with fewer columns would cause a crash (GH14125)

• Bug in `pd.read_csv()` for the C engine where `usecols` were being indexed incorrectly with `parse_dates` (GH14792)

• Bug in `pd.read_csv()` with `parse_dates` when multiline headers are specified (GH15376)

• Bug in `pd.read_csv()` with `float_precision='round_trip'` which caused a segfault when a text entry is parsed (GH15140)

• Bug in `pd.read_csv()` when an index was specified and no values were specified as null values (GH15835)

• Bug in `pd.read_csv()` in which certain invalid file objects caused the Python interpreter to crash (GH15337)

• Bug in `pd.read_csv()` in which invalid values for `nrows` and `chunksize` were allowed (GH15140)

• Bug in `pd.read_csv()` for the Python engine in which unhelpful error messages were being raised when parsing errors occurred (GH15910)

• Bug in `pd.read_csv()` in which the `skipfooter` parameter was not being properly validated (GH15925)
- Bug in `pd.to_csv()` in which there was numeric overflow when a timestamp index was being written (GH15982)
- Bug in `pd.util.hashing.hash_pandas_object()` in which hashing of categoricals depended on the ordering of categories, instead of just their values. (GH15143)
- Bug in `.to_json()` where `lines=True` and contents (keys or values) contain escaped characters (GH15096)
- Bug in `.to_json()` causing single byte ascii characters to be expanded to four byte unicode (GH15344)
- Bug in `.to_json()` for the C engine where rollover was not correctly handled for case where frac is odd and diff is exactly 0.5 (GH15716, GH15864)
- Bug in `pd.read_json()` for Python 2 where `lines=True` and contents contain non-ascii unicode characters (GH15132)
- Bug in `pd.read_msgpack()` in which Series categoricals were being improperly processed (GH14901)
- Bug in `pd.read_msgpack()` which did not allow loading of a dataframe with an index of type CategoricalIndex (GH15487)
- Bug in `pd.read_msgpack()` when deserializing a CategoricalIndex (GH15487)
- Bug in `DataFrame.to_records()` with converting a DatetimeIndex with a timezone (GH13937)
- Bug in `DataFrame.to_records()` which failed with unicode characters in column names (GH11879)
- Bug in `.to_sql()` when writing a DataFrame with numeric index names (GH15404).
- Bug in `DataFrame.to_html()` with `index=False` and `max_rows` raising in IndexError (GH14998)
- Bug in `pd.read_hdf()` passing a Timestamp to the `where` parameter with a non date column (GH15492)
- Bug in `DataFrame.to_stata()` and StataWriter which produces incorrectly formatted files to be produced for some locales (GH13856)
- Bug in StataReader and StataWriter which allows invalid encodings (GH15723)
- Bug in the Series repr not showing the length when the output was truncated (GH15962).

1.1.7.4 Plotting

- Bug in `DataFrame.hist` where `plt.tight_layout` caused an AttributeError (use `matplotlib >= 2.0.1`) (GH9351)
- Bug in `DataFrame.boxplot` where `fontsize` was not applied to the tick labels on both axes (GH15108)
- Bug in the date and time converters pandas registers with matplotlib not handling multiple dimensions (GH16026)
- Bug in `pd.scatter_matrix()` could accept either `color` or `c`, but not both (GH14855)

1.1.7.5 Groupby/Resample/Rolling

- Bug in `.groupby(..).resample()` when passed the `on= kwarg. (GH15021)
- Properly set `__name__` and `__qualname__` for Groupby.* functions (GH14620)
- Bug in GroupBy.get_group() failing with a categorical grouper (GH15155)
- Bug in `.groupby(...).rolling(...)` when on is specified and using a DatetimeIndex (GH15130, GH13966)
- Bug in groupby operations with timedelta64 when passing numeric_only=False (GH5724)
- Bug in groupby.apply() coercing object dtypes to numeric types, when not all values were numeric (GH14423, GH15421, GH15670)
- Bug in resample, where a non-string loffset argument would not be applied when resampling a timeseries (GH13218)
- Bug in DataFrame.groupby().describe() when grouping on Index containing tuples (GH14848)
- Bug in groupby().nunique() with a datetimelike-grouper where bins counts were incorrect (GH13453)
- Bug in groupby.transform() that would coerce the resultant dtypes back to the original (GH10972, GH11444)
- Bug in groupby.agg() incorrectly localizing timezone on datetime (GH15426, GH10668, GH13046)
- Bug in .rolling/expanding() functions where count() was not counting np.inf, nor handling object dtypes (GH12541)
- Bug in .rolling() where pd.Timedelta or datetime.timedelta was not accepted as a window argument (GH15440)
- Bug in Rolling.quantile function that caused a segmentation fault when called with a quantile value outside of the range [0, 1] (GH15463)
- Bug in DataFrame.resample().median() if duplicate column names are present (GH14233)

1.1.7.6 Sparse

- Bug in SparseSeries.reindex on single level with list of length 1 (GH15447)
- Bug in repr-formatting a SparseDataFrame after a value was set on (a copy of) one of its series (GH15488)
- Bug in SparseDataFrame construction with lists not coercing to dtype (GH15682)
- Bug in sparse array indexing in which indices were not being validated (GH15863)

1.1.7.7 Reshaping

- Bug in pd.merge_asof() where left_index or right_index caused a failure when multiple by was specified (GH15676)
- Bug in pd.merge_asof() where left_index/right_index together caused a failure when tolerance was specified (GH15135)
- Bug in DataFrame.pivot_table() where dropna=True would not drop all-NaN columns when the columns was a category dtype (GH15193)
- Bug in pd.melt() where passing a tuple value for value_vars caused a TypeError (GH15348)
- Bug in pd.pivot_table() where no error was raised when values argument was not in the columns (GH14938)
- Bug in pd.concat() in which concatenating with an empty dataframe with join='inner' was being improperly handled (GH15328)
- Bug with sort=True in DataFrame.join and pd.merge when joining on indexes (GH15582)
- Bug in DataFrame.nsmallest and DataFrame.nlargest where identical values resulted in duplicated rows (GH15297)
1.1.7.8 Numeric

- Bug in .rank() which incorrectly ranks ordered categories (GH15420)
- Bug in .corr() and .cov() where the column and index were the same object (GH14617)
- Bug in .mode() where mode was not returned if was only a single value (GH15714)
- Bug in pd.cut() with a single bin on an all 0s array (GH15428)
- Bug in pd.qcut() with a single quantile and an array with identical values (GH15431)
- Bug in pandas.tools.utils.cartesian_product() with large input can cause overflow on windows (GH15265)
- Bug in .eval() which caused multiline evals to fail with local variables not on the first line (GH15342)

1.1.7.9 Other

- Compat with SciPy 0.19.0 for testing on .interpolate() (GH15662)
- Compat for 32-bit platforms for .qcut/cut; bins will now be int64 dtype (GH14866)
- Bug in interactions with Qt when a QtApplication already exists (GH14372)
- Avoid use of np.finfo() during import pandas removed to mitigate deadlock on Python GIL misuse (GH14641)

1.2 v0.19.2 (December 24, 2016)

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

- Compatibility with Python 3.6
- Added a Pandas Cheat Sheet. (GH13202).

What’s new in v0.19.2

- Enhancements
- Performance Improvements
- Bug Fixes

1.2.1 Enhancements

The pd.merge_asof(), added in 0.19.0, gained some improvements:

- pd.merge_asof() gained left_index/right_index and left_by/right_by arguments (GH14253)
- pd.merge_asof() can take multiple columns in by parameter and has specialized dtypes for better performance (GH13936)
1.2.2 Performance Improvements

- Performance regression with `PeriodIndex` (GH14822)
- Performance regression in indexing with `getitem` (GH14930)
- Improved performance of `.replace()` (GH12745)
- Improved performance `Series` creation with a datetime index and dictionary data (GH14894)

1.2.3 Bug Fixes

- Compat with python 3.6 for pickling of some offsets (GH14685)
- Compat with python 3.6 for some indexing exception types (GH14684, GH14689)
- Compat with python 3.6 for deprecation warnings in the test suite (GH14681)
- Compat with python 3.6 for Timestamp pickles (GH14689)
- Compat with `dateutil==2.6.0`; segfault reported in the testing suite (GH14621)
- Allow `nanoseconds` in `Timestamp.replace` as a kwarg (GH14621)
- Bug in `pd.read_csv` in which aliasing was being done for `na_values` when passed in as a dictionary (GH14203)
- Bug in `pd.read_csv` in which column indices for a dict-like `na_values` were not being respected (GH14203)
- Bug in `pd.read_csv` where reading files fails, if the number of headers is equal to the number of lines in the file (GH14515)
- Bug in `pd.read_csv` for the Python engine in which an unhelpful error message was being raised when multi-char delimiters were not being respected with quotes (GH14582)
- Fix bugs (GH14734, GH13654) in `pd.read_sas` and `pandas.io.sas.sas7bdat.SAS7BDATReader` that caused problems when reading a SAS file incrementally.
- Bug in `pd.read_csv` for the Python engine in which an unhelpful error message was being raised when `skipfooter` was not being respected by Python’s CSV library (GH13879)
- Bug in `.fillna()` in which timezone aware datetime64 values were incorrectly rounded (GH14872)
- Bug in `.groupby(..., sort=True)` of a non-lexsorted MultiIndex when grouping with multiple levels (GH14776)
- Bug in `pd.cut` with negative values and a single bin (GH14652)
- Bug in `pd.to_numeric` where a 0 was not unsigned on a `downcast='unsigned'` argument (GH14401)
- Bug in plotting regular and irregular timeseries using shared axes (`sharex=True` or `ax.twinx()`) (GH13341, GH14322).
- Bug in not propagating exceptions in parsing invalid datetimes, noted in python 3.6 (GH14561)
- Bug in resampling a `DatetimeIndex` in local TZ, covering a DST change, which would raise `AmbiguousTimeError` (GH14682)
- Bug in indexing that transformed `RecursionError` into `KeyError` or `IndexingError` (GH14554)
- Bug in `HDFStore` when writing a `MultiIndex` when using `data_columns=True` (GH14435)
- Bug in `HDFStore.append()` when writing a `Series` and passing a `min_itemsize` argument containing a value for the index (GH1412)
• Bug when writing to a HDFStore in table format with a min_itemsize value for the index and without asking to append (GH10381)
• Bug in Series.groupby.nunique() raising an IndexError for an empty Series (GH12553)
• Bug in DataFrame.nlargest and DataFrame.nsmallest when the index had duplicate values (GH13412)
• Bug in clipboard functions on linux with python2 with unicode and separators (GH13747)
• Bug in clipboard functions on Windows 10 and python 3 (GH14362, GH12807)
• Bug in .to_clipboard() and Excel compat (GH12529)
• Bug in DataFrame.combine_first() for integer columns (GH14687).
• Bug in pd.read_csv() in which the dtype parameter was not being respected for empty data (GH14712)
• Bug in pd.read_csv() in which the nrows parameter was not being respected for large input when using the C engine for parsing (GH7626)
• Bug in pd.merge_asof() could not handle timezone-aware DatetimeIndex when a tolerance was specified (GH14844)
• Explicit check in to_stata and StataWriter for out-of-range values when writing doubles (GH14618)
• Bug in .plot(kind='kde') which did not drop missing values to generate the KDE Plot, instead generating an empty plot. (GH14821)
• Bug in unstack() if called with a list of column(s) as an argument, regardless of the dtypes of all columns, they get coerced to object (GH11847)

1.3 v0.19.1 (November 3, 2016)

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance improvements. We recommend that all users upgrade to this version.

What’s new in v0.19.1

• Performance Improvements
• Bug Fixes

1.3.1 Performance Improvements

• Fixed performance regression in factorization of Period data (GH14338)
• Fixed performance regression in Series.asof(where) when where is a scalar (GH14461)
• Improved performance in DataFrame.asof(where) when where is a scalar (GH14461)
• Improved performance in .to_json() when lines=True (GH14408)
• Improved performance in certain types of loc indexing with a MultiIndex (GH14551).
1.3.2 Bug Fixes

- Source installs from PyPI will now again work without cython installed, as in previous versions (GH14204)
- Compat with Cython 0.25 for building (GH14496)
- Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418).
- Fixed regression in DataFrame.quantile when missing values where present in some columns (GH14357).
- Fixed regression in Index.difference where the freq of a DatetimeIndex was incorrectly set (GH14323)
- Added back pandas.core.common.array_equivalent with a deprecation warning (GH14555).
- Bug in pd.read_csv for the C engine in which quotation marks were improperly parsed in skipped rows (GH14459)
- Bug in pd.read_csv for Python 2.x in which Unicode quote characters were no longer being respected (GH14477)
- Fixed regression in Index.append when categorical indices were appended (GH14545).
- Fixed regression in pd.DataFrame where constructor fails when given dict with None value (GH14381)
- Fixed regression in DatetimeIndex._maybe_cast_slice_bound when index is empty (GH14354).
- Bug in localizing an ambiguous timezone when a boolean is passed (GH14402)
- Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow in the negative direction was not being caught (GH14068, GH14453)
- Bug in string indexing against data with object Index may raise AttributeError (GH14424)
- Correctly raise ValueError on empty input to pd.eval() and df.query() (GH13139)
- Bug in RangeIndex.intersection when result is a empty set (GH14364).
- Bug in groupby-transform broadcasting that could cause incorrect dtype coercion (GH14457)
- Bug in Series._setitem__ which allowed mutating read-only arrays (GH14359).
- Bug in DataFrame.insert where multiple calls with duplicate columns can fail (GH14291)
- pd.merge() will raise ValueError with non-boolean parameters in passed boolean type arguments (GH14434)
- Bug in Timestamp where dates very near the minimum (1677-09) could underflow on creation (GH14415)
- Bug in pd.concat where names of the keys were not propagated to the resulting MultiIndex (GH14252)
- Bug in pd.concat where axis cannot take string parameters 'rows' or 'columns' (GH14369)
- Bug in pd.concat with dataframes heterogeneous in length and tuple keys (GH14438)
- Bug in MultiIndex.set_levels where illegal level values were still set after raising an error (GH13754)
- Bug in DataFrame.to_json where lines=True and a value contained a } character (GH14391)
- Bug in df.groupby causing an AttributeError when grouping a single index frame by a column and the index level (:issue'14327')
- Bug in df.groupby where TypeError raised when pd.Grouper(key=...) is passed in a list (GH14334)
- Bug in pd.pivot_table may raise TypeError or ValueError when index or columns is not scalar and values is not specified (GH14380)
1.4 v0.19.0 (October 2, 2016)

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- `merge_asof()` for asof-style time-series joining, see here
- `.rolling()` is now time-series aware, see here
- `read_csv()` now supports parsing Categorical data, see here
- A function `union_categorical()` has been added for combining categoricals, see here
- `PeriodIndex` now has its own `period` dtype, and changed to be more consistent with other `Index` classes. See here
- Sparse data structures gained enhanced support of `int` and `bool` dtypes, see here
- Comparison operations with `Series` no longer ignores the index, see here for an overview of the API changes.
- Introduction of a pandas development API for utility functions, see here.
- Deprecation of `Panel4D` and `PanelND`. We recommend to represent these types of n-dimensional data with the `xarray` package.
- Removal of the previously deprecated modules `pandas.io.data`, `pandas.io.wb`, `pandas.tools.rplot`.

Warning: pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.

What’s new in v0.19.0

- **New features**
 - `merge_asof` for asof-style time-series joining
 - `.rolling()` is now time-series aware
 - `read_csv` has improved support for duplicate column names
 - `read_csv` supports parsing Categorical directly
 - Categorical Concatenation
 - Semi-Month Offsets
 - New Index methods
 - Google BigQuery Enhancements
 - Fine-grained numpy errstate
 - `get_dummies` now returns integer dtypes
 - Downcast values to smallest possible dtype in `to_numeric`
 - pandas development API
 - Other enhancements
• API changes
 – Series.tolist() will now return Python types
 – Series operators for different indexes
 • Arithmetic operators
 • Comparison operators
 • Logical operators
 • Flexible comparison methods
 – Series type promotion on assignment
 – .to_datetime() changes
 – Merging changes
 – .describe() changes
 – Period changes
 • PeriodIndex now has period dtype
 • Period('NaT') now returns pd.NaT
 • PeriodIndex.values now returns array of Period object
 – Index +/− no longer used for set operations
 – Index.difference and .symmetric_difference changes
 – Index.unique consistently returns Index
 – MultiIndex constructors, groupby and set_index preserve categorical dtypes
 – read_csv will progressively enumerate chunks
 – Sparse Changes
 • int64 and bool support enhancements
 • Operators now preserve dtypes
 • Other sparse fixes
 – Indexer dtype changes
 – Other API Changes
• Deprecations
• Removal of prior version deprecations/changes
• Performance Improvements
• Bug Fixes

1.4.1 New features

1.4.1.1 merge_asof for asof-style time-series joining

A long-time requested feature has been added through the merge_asof() function, to support asof style joining of time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is here.
The `merge_asof()` performs an asof merge, which is similar to a left-join except that we match on nearest key rather than equal keys.

```
In [1]: left = pd.DataFrame({'a': [1, 5, 10],
                         'left_val': ['a', 'b', 'c']})
In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
                        'right_val': [1, 2, 3, 6, 7]})
In [3]: left
Out[3]:
   a  left_val
0  1     a
1  5     b
2 10    c
In [4]: right
   a  right_val
0  1     1
1  2     2
2  3     3
3  6     6
4  7     7
```

We typically want to match exactly when possible, and use the most recent value otherwise.

```
In [5]: pd.merge_asof(left, right, on='a')
Out[5]:
   a  left_val  right_val
0  1     a      1
1  5     b      3
2 10    c      7
```

We can also match rows ONLY with prior data, and not an exact match.

```
In [6]: pd.merge_asof(left, right, on='a', allow_exact_matches=False)
Out[6]:
   a  left_val  right_val
0  1     a      NaN
1  5     b      3.0
2 10    c      7.0
```

In a typical time-series example, we have trades and quotes and we want to asof-join them. This also illustrates using the by parameter to group data before merging.

```
In [7]: trades = pd.DataFrame({'time': pd.to_datetime(['20160525 13:30:00.023',
                                                      '20160525 13:30:00.038',
                                                      '20160525 13:30:00.048',
                                                      '20160525 13:30:00.048'],
                                      'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'],
                                      'price': [51.95, 51.95, 720.77, 720.92, 98.00],
```

```
In [8]: quotes = pd.DataFrame(
           
           
           'quantity': [75, 155,
           100, 100, 100],
           columns=['time', 'ticker', 'price', 'quantity'])

In [9]: trades
Out[9]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
</tr>
</tbody>
</table>

In [10]: quotes

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.030</td>
<td>MSFT</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.041</td>
<td>MSFT</td>
<td>51.99</td>
<td>52.00</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.049</td>
<td>AAPL</td>
<td>97.99</td>
<td>98.01</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.072</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.88</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.075</td>
<td>MSFT</td>
<td>52.01</td>
<td>52.03</td>
</tr>
</tbody>
</table>

An asof merge joins on the on, typically a datetimelike field, which is ordered, and in this case we are using a grouper in the by field. This is like a left-outer join, except that forward filling happens automatically taking the most recent non-NaN value.

In [11]: pd.merge_asof(trades, quotes,
           
           on='time',
           by='ticker')

Out[11]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>51.95</td>
<td>51.96</td>
</tr>
</tbody>
</table>
This returns a merged DataFrame with the entries in the same order as the original left passed DataFrame (trades in this case), with the fields of the quotes merged.

### 1.4.1.2 rolling() is now time-series aware

.rolling() objects are now time-series aware and can accept a time-series offset (or convertible) for the window argument (GH13327, GH12995). See the full documentation [here](#).

```python
In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))
...

In [13]: dft
Out[13]:
 B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0
```

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

```python
In [14]: dft.rolling(2).sum()
Out[14]:
 B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN
```

```python
In [15]: dft.rolling(2, min_periods=1).sum()
```

Specifying an offset allows a more intuitive specification of the rolling frequency.

```python
In [16]: dft.rolling('2s').sum()
Out[16]:
 B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
```
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

```python
In [17]: dft = DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index = pd.Index([pd.Timestamp('20130101 09:00:00'),
 pd.Timestamp('20130101 09:00:02'),
 pd.Timestamp('20130101 09:00:03'),
 pd.Timestamp('20130101 09:00:05'),
 pd.Timestamp('20130101 09:00:06')],
 name='foo'))
```

```python
In [18]: dft
Out[18]:
 B
0 0
1 1
2 2
3 NaN
4 4

In [19]: dft.rolling(2).sum()
```

```python
Out[19]:
 B
0 NaN
1 1.0
2 3.0
3 NaN
4 NaN
```

Using the time-specification generates variable windows for this sparse data.

```python
In [20]: dft.rolling('2s').sum()
```

```python
Out[20]:
 B
0 0.0
1 1.0
2 3.0
3 NaN
4 4.0
```

Furthermore, we now allow an optional `on` parameter to specify a column (rather than the default of the index) in a DataFrame.

```python
In [21]: dft = dft.reset_index()
In [22]: dft
```

```python
Out[22]:
 foo B
0 0.0
1 1.0
2 2.0
3 NaN
4 NaN
```
### 1.4.1.3 `read_csv` has improved support for duplicate column names

Duplicate column names are now supported in `read_csv()` whether they are in the file or passed in as the `names` parameter (GH7160, GH9424)

```python
In [24]: data = '0,1,2
3,4,5'

In [25]: names = ['a', 'b', 'a']
```

**Previous behavior:**

```python
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
 a b a
0 2 1 2
1 5 4 5
```

The first a column contained the same data as the second a column, when it should have contained the values [0, 3].

**New behavior:**

```python
In [26]: pd.read_csv(StringIO(data), names=names)
Out[26]:
 a b a.1
0 0 1 2
1 3 4 5
```

### 1.4.1.4 `read_csv` supports parsing Categorical directly

The `read_csv()` function now supports parsing a Categorical column when specified as a dtype (GH10153). Depending on the structure of the data, this can result in a faster parse time and lower memory usage compared to converting to Categorical after parsing. See the io docs here.

```python
In [27]: data = 'col1,col2,col3
na,b,1
na,b,2
nc,d,3'

In [28]: pd.read_csv(StringIO(data))
Out[28]:
 col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
```
In [29]: pd.read_csv(StringIO(data)).dtypes
   col1   object
   col2   object
   col3   int64
dtype: object

In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
   col1   category
   col2   category
   col3   category
dtype: object

Individual columns can be parsed as a Categorical using a dict specification

In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
   col1   category
   col2   object
   col3   int64
dtype: object

Note: The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the to_numeric() function, or as appropriate, another converter such as to_datetime().

In [32]: df = pd.read_csv(StringIO(data), dtype='category')

In [33]: df.dtypes
Out[33]:
   col1   category
   col2   category
   col3   category
dtype: object

In [34]: df['col3']
Out[34]:
    0 1
   1 2
   2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [36]: df['col3']
Out[36]:
    0 1
   1 2
   2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]
1.4.1.5 Categorical Concatenation

- A function `union_categoricals()` has been added for combining categoricals, see *Unioning Categoricals* (GH13361, GH13763, issue:13846, GH14173)

```python
In [37]: from pandas.api.types import union_categoricals

In [38]: a = pd.Categorical(['b', 'c'])

In [39]: b = pd.Categorical(['a', 'b'])

In [40]: union_categoricals([a, b])
Out[40]:
[b, c, a, b]
Categories (3, object): [b, c, a]
```

- `concat` and `append` now can concat category dtypes with different categories as object dtype (GH13524)

```python
In [41]: s1 = pd.Series(['a', 'b'], dtype='category')

In [42]: s2 = pd.Series(['b', 'c'], dtype='category')

Previous behavior:

```python
In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat
```

New behavior:

```python
In [43]: pd.concat([s1, s2])
Out[43]:
0   a
1   b
0   b
1   c
```

1.4.1.6 Semi-Month Offsets

Pandas has gained new frequency offsets, `SemiMonthEnd` (‘SM’) and `SemiMonthBegin` (‘SMS’). These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively. (GH1543)

```python
In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin

SemiMonthEnd:

```python
In [45]: Timestamp('2016-01-01') + SemiMonthEnd()
Out[45]: Timestamp('2016-01-15 00:00:00')
```

```python
In [46]: pd.date_range('2015-01-01', freq='SM', periods=4)
```

SemiMonthBegin:
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.

```python
In [49]: pd.date_range('2015-01-01', freq='SMS-16', periods=4)
```

```
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'],
 dtype='datetime64[ns]', freq='SMS-16')
```

```
In [50]: pd.date_range('2015-01-01', freq='SM-14', periods=4)
```

```
 dtype='datetime64[ns]', freq='SM-14')
```

### 1.4.1.7 New Index methods

The following methods and options are added to Index, to be more consistent with the Series and DataFrame API.

Index now supports the `.where()` function for same shape indexing (GH13170)

```python
In [51]: idx = pd.Index(['a', 'b', 'c'])
In [52]: idx.where([True, False, True])
```

```
Out[52]: Index(['a', nan, 'c'], dtype='object')
```

Index now supports `.dropna()` to exclude missing values (GH6194)

```python
In [53]: idx = pd.Index([1, 2, np.nan, 4])
In [54]: idx.dropna()
```

```
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')
```

For `MultiIndex`, values are dropped if any level is missing by default. Specifying `how='all'` only drops values where all levels are missing.

```python
In [55]: midx = pd.MultiIndex.from_arrays([[[1, 2, np.nan, 4],
 [1, 2, np.nan, np.nan]])
In [56]: midx
```

```
Out[56]: MultiIndex(levels=[[1, 2, 4], [1, 2]], labels=[[0, 1, -1, 2], [0, 1, -1, -1]])
```

```python
In [57]: midx.dropna()
```

```
Out[57]: MultiIndex(levels=[[1, 2, 4], [1, 2]], labels=[[0, 1], [0, 1]])
```

```python
In [58]: midx.dropna(how='all')
```
Index now supports `.str.extractall()` which returns a DataFrame, see the docs here (GH10008, GH13156)

```python
In [59]: idx = pd.Index(["a1a2", "b1", "c1"])
In [60]: idx.str.extractall(r"[ab](?P<digit>\d)")
Out[60]:
 digit
 match
0 0
1 1
1 0
```

Index.astype() now accepts an optional boolean argument `copy`, which allows optional copying if the requirements on dtype are satisfied (GH13209)

### 1.4.1.8 Google BigQuery Enhancements

- The `read_gbq()` method has gained the `dialect` argument to allow users to specify whether to use BigQuery’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).
- The `to_gbq()` method now allows the DataFrame column order to differ from the destination table schema (GH11359).

### 1.4.1.9 Fine-grained numpy errstate

Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported. Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaNs. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the `numpy.errstate` context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas codebase. (GH13109, GH13145)

After upgrading pandas, you may see new RuntimeWarnings being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use `numpy.errstate` around the source of the `RuntimeWarning` to control how these conditions are handled.

### 1.4.1.10 get_dummies now returns integer dtypes

The `pd.get_dummies` function now returns dummy-encoded columns as small integers, rather than floats (GH8725). This should provide an improved memory footprint.

Previous behavior:

```python
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
 a float64
 b float64
```
New behavior:

```
In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[61]:
a uint8
b uint8
c uint8
dtype: object
```

1.4.1.11 Downcast values to smallest possible dtype in `to_numeric`

`pd.to_numeric()` now accepts a `downcast` parameter, which will downcast the data if possible to smallest specified numerical dtype (GH13352)

```
In [62]: s = ['1', 2, 3]
In [63]: pd.to_numeric(s, downcast='unsigned')
Out[63]: array([1, 2, 3], dtype=uint8)
In [64]: pd.to_numeric(s, downcast='integer')
```

1.4.1.12 pandas development API

As part of making pandas API more uniform and accessible in the future, we have created a standard sub-package of pandas, pandas.api to hold public API's. We are starting by exposing type introspection functions in pandas.api.types. More sub-packages and officially sanctioned API's will be published in future versions of pandas (GH13147, GH13634)

The following are now part of this API:

```
In [65]: import pprint
In [66]: from pandas.api import types
In [67]: funcs = [f for f in dir(types) if not f.startswith('_')]
In [68]: pprint.pprint(funcs)
['CategoricalDtype', 'DatetimeTZDtype', 'IntervalDtype', 'PeriodDtype', 'infer_dtype', 'is_any_int_dtypes', 'is_bool', 'is_bool_dtypes', 'is_categorical', 'is_categorical_dtypes', 'is_complex', 'is_complex_dtypes', 'is_datetime64_any_dtypes', 'is_datetime64_dtypes',
```
Note: Calling these functions from the internal module pandas.core.common will now show a DeprecationWarning (GH13990)

1.4.1.13 Other enhancements

- Timestamp can now accept positional and keyword parameters similar to datetime.datetime() (GH10758, GH11630)

```
In [69]: pd.Timestamp(2012, 1, 1)
Out[69]: Timestamp('2012-01-01 00:00:00')
```

```
In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)

Out[70]: Timestamp('2012-01-01 08:30:00')
```

- The .resample() function now accepts a on= or level= parameter for resampling on a datetimelike column or MultiIndex level (GH13500)
```python
In [71]: df = pd.DataFrame({
 'date': pd.date_range('2015-01-01', freq='W', periods=5),
 'a': np.arange(5),
 'v': np.arange(5)}
 ,
 index=pd.MultiIndex.from_arrays([1, 2, 3, 4, 5],
 pd.date_range('2015-01-01', freq='W', periods=5)),
 names=['v', 'd'])
```

```python
In [72]: df
Out[72]:
 a date
 v d
1 0 2015-01-04
2 1 2015-01-11
3 2 2015-01-18
4 3 2015-01-25
5 4 2015-02-01
```

```python
In [73]: df.resample('M', on='date').sum()
```

```python
 a
date
2015-01-31 6
2015-02-28 4
```

```python
In [74]: df.resample('M', level='d').sum()
```

```python
 a
 d
date
2015-01-31 6
2015-02-28 4
```

- The `.get_credentials()` method of `GbqConnector` can now first try to fetch the application default credentials. See the docs for more details (GH13577).
- The `.tz_localize()` method of `DatetimeIndex` and `Timestamp` has gained the `errors` keyword, so you can potentially coerce nonexistent timestamps to `NaT`. The default behavior remains to raising a `NonExistentTimeError` (GH13057).
- `.to_hdf/read_hdf()` now accept path objects (e.g. `pathlib.Path`, `py.path.local`) for the file path (GH11773)
- The `pd.read_csv()` with engine='python' has gained support for the `decimal` (GH12933), `na_filter` (GH13321) and the `memory_map` option (GH13381).
- Consistent with the Python API, `pd.read_csv()` will now interpret `+inf` as positive infinity (GH13274)
- The `pd.read_html()` has gained support for the `na_values`, `converters`, and `keep_default_na` options (GH13461)
- `Categorical.astype()` now accepts an optional boolean argument `copy`, effective when `dtype` is categorical (GH13209)
- `DataFrame` has gained the `.asof()` method to return the last non-NaN values according to the selected subset (GH13358)

1.4. v0.19.0 (October 2, 2016)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- The DataFrame constructor will now respect key ordering if a list of OrderedDict objects are passed in (GH13304)
- pd.read_html() has gained support for the decimal option (GH12907)
- Series has gained the properties .is_monotonic, .is_monotonic_increasing, .is_monotonic_decreasing, similar to Index (GH13336)
- DataFrame.to_sql() now allows a single value as the SQL type for all columns (GH11886).
- Series.append now supports the ignore_index option (GH13677)
- .to_stata() and StataWriter can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536)
- .to_stata() and StataWriter will automatically convert datetime64[ns] columns to Stata format %tc, rather than raising a ValueError (GH12259)
- read_stata() and StataReader raise with a more explicit error message when reading Stata files with repeated value labels when convert_categoricals=True (GH13923)
- DataFrame.style will now render sparsified MultiIndexes (GH11655)
- DataFrame.style will now show column level names (e.g. DataFrame.columns.names) (GH13775)
- DataFrame has gained support to re-order the columns based on the values in a row using df.sort_values(by='...', axis=1) (GH10806)

```
In [75]: df = pd.DataFrame({'A': [2, 7], 'B': [3, 5], 'C': [4, 8]},
 index=['row1', 'row2'])

In [76]: df.sort_values(by='row2', axis=1)
```

```
Out[76]:
 B A C
row1 3 2 4
row2 5 7 8
```

- Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH13746)
- to_html() now has a border argument to control the value in the opening <table> tag. The default is the value of the html.border option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).
- Raise ImportError in the sql functions when sqlalchemy is not installed and a connection string is used (GH11920).
- Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)
- Timestamp, Period, DatetimeIndex, PeriodIndex and .dt accessor have gained a .is_leap_year property to check whether the date belongs to a leap year. (GH13727)
- astype() will now accept a dict of column name to data types mapping as the dtype argument. (GH12086)
- The pd.read_json and DataFrame.to_json has gained support for reading and writing json lines with lines option see Line delimited json (GH9180)
- `read_excel()` now supports the `true_values` and `false_values` keyword arguments (GH13347)
- `groupby()` will now accept a scalar and a single-element list for specifying `level` on a non-MultiIndex grouper. (GH13907)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be `object` dtype, rather than raising an exception (GH10001).
- `pd.Timedelta(None)` is now accepted and will return `NaT`, mirroring `pd.Timestamp` (GH13687)
- `pd.read_stata()` can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH11526)
- `Series` and `Index` now support `divmod` which will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH14208).

### 1.4.2 API changes

#### 1.4.2.1 `Series.tolist()` will now return Python types

`Series.tolist()` will now return Python types in the output, mimicking NumPy `.tolist()` behavior (GH10904)

```
In [78]: s = pd.Series([1,2,3])

Previous behavior:

In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>

New behavior:

In [79]: type(s.tolist()[0])
Out[79]: int
```

#### 1.4.2.2 `Series` operators for different indexes

Following `Series` operators have been changed to make all operators consistent, including `DataFrame` (GH1134, GH4581, GH13538)

- `Series` comparison operators now raise `ValueError` when `index` are different.
- `Series` logical operators align both `index` of left and right hand side.

**Warning:** Until 0.18.1, comparing `Series` with the same length, would succeed even if the `.index` are different (the result ignores `.index`). As of 0.19.0, this will raise `ValueError` to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like `.eq`.

As a result, `Series` and `DataFrame` operators behave as below:
Arithmetic operators

Arithmetic operators align both index (no changes).

```python
In [80]: s1 = pd.Series([1, 2, 3], index=list('ABC'))
In [81]: s2 = pd.Series([2, 2, 2], index=list('ABD'))
In [82]: s1 + s2
Out[82]:
A 3.0
B 4.0
C NaN
D NaN
dtype: float64

In [83]: df1 = pd.DataFrame([1, 2, 3], index=list('ABC'))
In [84]: df2 = pd.DataFrame([2, 2, 2], index=list('ABD'))
In [85]: df1 + df2
Out[85]:
 0
A 3.0
B 4.0
C NaN
D NaN
```

Comparison operators

Comparison operators raise `ValueError` when `.index` are different.

**Previous Behavior (Series):**

Series compared values ignoring the `.index` as long as both had the same length:

```python
In [1]: s1 == s2
Out[1]:
A False
B True
C False
dtype: bool
```

**New behavior (Series):**

```python
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
```

**Note:** To achieve the same result as previous versions (compare values based on locations ignoring `.index`), compare both `.values`.

```python
In [86]: s1.values == s2.values
Out[86]: array([False, True, False], dtype=bool)
```

If you want to compare `Series` aligning its `.index`, see flexible comparison methods section below:
In [87]: s1.eq(s2)
Out[87]:
A   False
B   True
C   False
D   False
dtype: bool

Current Behavior (DataFrame, no change):

In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects

Logical operators

Logical operators align both .index of left and right hand side.

Previous behavior (Series), only left hand side index was kept:

In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A   True
B   False
C   False
dtype: bool

New behavior (Series):

In [88]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [89]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [90]: s1 & s2
Out[90]:
A   True
B   False
C   False
D   False
dtype: bool

Note: Series logical operators fill a NaN result with False.

Note: To achieve the same result as previous versions (compare values based on only left hand side index), you can use reindex_like:

In [91]: s1 & s2.reindex_like(s1)
Out[91]:
A   True
B   False
Current Behavior (DataFrame, no change):

```python
In [92]: df1 = pd.DataFrame([True, False, True], index=list('ABC'))
In [93]: df2 = pd.DataFrame([True, True, True], index=list('ABD'))
In [94]: df1 & df2
Out[94]:
 0
A True
B False
C NaN
D NaN
```

Flexible comparison methods

Series flexible comparison methods like `eq`, `ne`, `le`, `lt`, `ge` and `gt` now align both index. Use these operators if you want to compare two Series which has the different index.

```python
In [95]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd'])
In [97]: s1.eq(s2)
Out[97]:
a False
b True
c False
d False
dtype: bool
In [98]: s1.ge(s2)
Out[98]:
a False
b True
c True
d False
dtype: bool
```

Previously, this worked the same as comparison operators (see above).

### 1.4.2.3 Series type promotion on assignment

A Series will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)

```python
In [99]: s = pd.Series()

Previous behavior:

```python
In [2]: s['a'] = pd.Timestamp("2016-01-01")
```
In [3]: s[“b”] = 3.0
TypeError: invalid type promotion

New behavior:

In [100]: s[“a”] = pd.Timestamp(“2016-01-01”)
In [101]: s[“b”] = 3.0
In [102]: s
Out[102]:
a 2016-01-01 00:00:00
b 3
dtype: object

1.4.2.4 .to_datetime() changes

Previously if .to_datetime() encountered mixed integers/floats and strings, but no datetimes with errors='coerce' it would convert all to NaT.

Previous behavior:

In [2]: pd.to_datetime([1, ‘foo’], errors=’coerce’)
Out[2]: DatetimeIndex([‘NaT’, ‘NaT’], dtype=’datetime64[ns]’, freq=None)

Current behavior:

This will now convert integers/floats with the default unit of ns.

In [104]: pd.to_datetime([1, ‘foo’], errors=’coerce’)
Out[104]: DatetimeIndex([’1970-01-01 00:00:00.000000001’, ‘NaT’], dtype=
˓→’datetime64[ns]’, freq=None)

Bug fixes related to .to_datetime():

• Bug in pd.to_datetime() when passing integers or floats, and no unit and errors='coerce' (GH13180).
• Bug in pd.to_datetime() when passing invalid datatypes (e.g. bool); will now respect the errors keyword (GH13176)
• Bug in pd.to_datetime() which overflowed on int8, and int16 dtypes (GH13451)
• Bug in pd.to_datetime() raise AttributeError with NaN and the other string is not valid when errors='ignore' (GH12424)
• Bug in pd.to_datetime() did not cast floats correctly when unit was specified, resulting in truncated datetime (GH13834)

1.4.2.5 Merging changes

Merging will now preserve the dtype of the join keys (GH8596)

1.4. v0.19.0 (October 2, 2016)
In [105]: df1 = pd.DataFrame({'key': [1], 'v1': [10]})

In [106]: df1
Out[106]:
 key v1
0 1 10

In [107]: df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})

In [108]: df2
Out[108]:
 key v1
0 1 20
1 2 30

Previous behavior:

In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
 key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0

In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object

New behavior:

We are able to preserve the join keys

In [109]: pd.merge(df1, df2, how='outer')
Out[109]:
 key v1 v1_y
0 1 10 20.0
1 1 20 NaN
2 2 30 30.0

In [110]: pd.merge(df1, df2, how='outer').dtypes
Out[110]:
key int64
v1 int64
dtype: object

Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.

In [111]: pd.merge(df1, df2, how='outer', on='key')
Out[111]:
 key v1_x v1_y
0 1 10.0 20
1 2 NaN 30

In [112]: pd.merge(df1, df2, how='outer', on='key').dtypes
Out[112]:
key float64
v1 float64
dtype: object
1.4.2.6 .describe() changes

Percentile identifiers in the index of a .describe() output will now be rounded to the least precision that keeps them distinct (GH13104)

```python
In [113]: s = pd.Series([0, 1, 2, 3, 4])
In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])
```

Previous behavior:

The percentiles were rounded to at most one decimal place, which could raise ValueError for a data frame if the percentiles were duplicated.

```python
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
   count    5.000000
      mean    2.000000
       std   1.581139
        min    0.000000
       0.0%    0.000400
      0.1%    0.002000
      0.1%    0.004000
       50%    2.000000
      99.9%   3.996000
     100.0%   3.998000
     100.0%   3.999600
       max    4.000000
dtype: float64
```

```python
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
```

New behavior:

```python
In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[115]:
   count    5.000000
      mean    2.000000
       std   1.581139
        min    0.000000
       0.01%   0.000400
       0.05%   0.002000
       0.1%   0.004000
       50%    2.000000
      99.9%   3.996000
     99.95%   3.998000
     99.99%   3.999600
       max    4.000000
dtype: float64
```
```python
In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
```

```
  count  5.000000
  mean   2.000000
  std    1.581139
  0.01%  0.000400
  0.05%  0.002000
  0.1%   0.004000
  50%    2.000000
  99.9%  3.996000
  99.95% 3.998000
  99.99% 3.999600
  max    4.000000
```

Furthermore:

- Passing duplicated `percentiles` will now raise a `ValueError`.
- Bug in `.describe()` on a DataFrame with a mixed-dtype column index, which would previously raise a `TypeError` (GH13288)

1.4.2.7 Period changes

PeriodIndex now has period dtype

PeriodIndex now has its own `period` dtype. The `period` dtype is a pandas extension dtype like `category` or the `timezone aware dtype` (`datetime64[ns, tz]`) (GH13941). As a consequence of this change, `PeriodIndex` no longer has an integer dtype:

Previous behavior:

```python
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')
In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
In [4]: pi.dtype
Out[4]: dtype('int64')
```

New behavior:

```python
In [117]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [118]: pi
Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]', freq='D')
In [119]: pd.api.types.is_integer_dtype(pi)
Out[119]: False
In [120]: pd.api.types.is_period_dtype(pi)
```
Period('NaT') now returns pd.NaT

Previously, Period has its own Period('NaT') representation different from pd.NaT. Now Period('NaT') has been changed to return pd.NaT. (GH12759, GH13582)

Previous behavior:

```python
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
```

New behavior:

These result in pd.NaT without providing freq option.

```python
In [123]: pd.Period('NaT')
Out[123]: NaT
In [124]: pd.Period(None)
Out[124]: NaT
```

To be compatible with Period addition and subtraction, pd.NaT now supports addition and subtraction with int. Previously it raised ValueError.

Previous behavior:

```python
In [5]: pd.NaT + 1
...:
ValueError: Cannot add integral value to Timestamp without freq.
```

New behavior:

```python
In [125]: pd.NaT + 1
Out[125]: NaT
In [126]: pd.NaT - 1
Out[126]: NaT
```

PeriodIndex.values now returns array of Period object

.values is changed to return an array of Period objects, rather than an array of integers (GH13988).

Previous behavior:
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
array([492, 493])

New behavior:

In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)

1.4.2.8 Index + / - no longer used for set operations

Addition and subtraction of the base Index type and of DatetimeIndex (not the numeric index types) previously performed set operations (set union and difference). This behavior was already deprecated since 0.15.0 (in favor using the specific .union() and .difference() methods), and is now disabled. When possible, + and - are now used for element-wise operations, for example for concatenating strings or subtracting datetimes (GH8227, GH14127).

Previous behavior:

In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .-union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')

New behavior: the same operation will now perform element-wise addition:

In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
Out[129]: Index(['aa', 'bc'], dtype='object')

Note that numeric Index objects already performed element-wise operations. For example, the behavior of adding two integer Indexes is unchanged. The base Index is now made consistent with this behavior.

In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='int64')

Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:

Previous behavior:

In [1]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
FutureWarning: using '-' to provide set differences with datetimelike Indexes is warning deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)

New behavior:

In [131]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)

1.4.2.9 Index.difference and .symmetric_difference changes

Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as any other values. (GH13514)
In [132]: idx1 = pd.Index([1, 2, 3, np.nan])
In [133]: idx2 = pd.Index([0, 1, np.nan])

Previous behavior:

In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')

New behavior:

In [134]: idx1.difference(idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='float64')
In [135]: idx1.symmetric_difference(idx2)
Out[135]: Float64Index([0.0, 2.0, 3.0], dtype='float64')

1.4.2.10 Index.unique consistently returns Index

Index.unique() now returns unique values as an Index of the appropriate dtype. (GH13395). Previously, most Index classes returned np.ndarray, and DatetimeIndex, TimedeltaIndex and PeriodIndex returned Index to keep metadata like timezone.

Previous behavior:

In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]: DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
 '2011-01-03 00:00:00+09:00'],
 dtype='datetime64[ns, Asia/Tokyo]', freq=None)

New behavior:

In [136]: pd.Index([1, 2, 3]).unique()
Out[136]: Int64Index([1, 2, 3], dtype='int64')
In [137]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
Out[137]: DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
 '2011-01-03 00:00:00+09:00'],
 dtype='datetime64[ns, Asia/Tokyo]', freq=None)

1.4.2.11 MultiIndex constructors, groupby and set_index preserve categorical dtypes

MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype in MultiIndex levels (GH13743, GH13854).
In [138]: cat = pd.Categorical(['a', 'b'], categories=list("bac"))

In [139]: lvl1 = ['foo', 'bar']

In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1])

In [141]: midx
Out[141]: MultiIndex(levels=[['b', 'a', 'c'], ['bar', 'foo']],
 labels=[[1, 0], [1, 0]])

Previous behavior:

In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')

In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')

New behavior: the single level is now a CategoricalIndex:

In [142]: midx.levels[0]
Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category')

In [143]: midx.get_level_values(0)
Out[143]: CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype='category')

An analogous change has been made to MultiIndex.from_product. As a consequence, groupby and set_index also preserve categorical dtypes in indexes

In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat})

In [145]: df_grouped = df.groupby(by=['A', 'C']).first()

In [146]: df_set_idx = df.set_index(['A', 'C'])

Previous behavior:

In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')

In [12]: df_grouped.reset_index().dtypes
Out[12]:
A int64
C object
B float64
dtype: object

In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')

In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object
New behavior:

```python
In [147]: df_grouped.index.levels[1]
Out[147]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False,
                     name='C', dtype='category')

In [148]: df_grouped.reset_index().dtypes
   →
   A     int64
   C    category
   B  float64
dtype: object

In [149]: df_set_idx.index.levels[1]
   →
   CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, name='C')

In [150]: df_set_idx.reset_index().dtypes
   →
   A     int64
   C    category
   B     int64
dtype: object
```

1.4.12.2 read_csv will progressively enumerate chunks

When `read_csv()` is called with chunksize=\(n \) and without specifying an index, each chunk used to have an independently generated index from 0 to \(n-1 \). They are now given instead a progressive index, starting from 0 for the first chunk, from \(n \) for the second, and so on, so that, when concatenated, they are identical to the result of calling `read_csv()` without the chunksize= argument (GH12185).

```python
In [151]: data = 'A,B
0,1
2,3
4,5
6,7'

In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
   A  B
0  0  1
1  2  3
0  4  5
1  6  7

In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[152]:
   A  B
0  0  1
1  2  3
2  4  5
3  6  7
```
1.4.2.13 Sparse Changes

These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.

int64 and bool support enhancements

Sparse data structures now gained enhanced support of int64 and bool dtype (GH667, GH13849).

Previously, sparse data were float64 dtype by default, even if all inputs were of int or bool dtype. You had to specify dtype explicitly to create sparse data with int64 dtype. Also, fill_value had to be specified explicitly because the default was np.nan which doesn’t appear in int64 or bool data.

```python
In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

# specifying int64 dtype, but all values are stored in sp_values because
# fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)
```

As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64 dtype, False for bool dtype).

```python
In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[153]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)

In [154]: pd.SparseArray([True, False, False, False])
Out[154]:
[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)
```

See the docs for more details.
Operators now preserve dtypes

- Sparse data structure now can preserve dtype after arithmetic ops (GH13848)

```python
In [155]: s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)

In [156]: s.dtype
Out[156]: dtype('int64')

In [157]: s + 1
Out[157]:
0    1
1    3
2    1
3    2
dtype: int64

BlockIndex
Block locations: array([1, 3], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
```

- Sparse data structure now support astype to convert internal dtype (GH13900)

```python
In [158]: s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0)

In [159]: s
Out[159]:
   0     1
   1     0
   2     2
   3     0
dtype: float64

BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)

In [160]: s.astype(np.int64)
   ...
   0     1
   1     0
   2     2
   3     0
dtype: int64

BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
```

astype fails if data contains values which cannot be converted to specified dtype. Note that the limitation is applied to fill_value which default is np.nan.

```python
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype
```
Other sparse fixes

- Subclassed `SparseDataFrame` and `SparseSeries` now preserve class types when slicing or transposing. (GH13787)
- `SparseArray` with bool dtype now supports logical (bool) operators (GH14000)
- Bug in `SparseSeries` with MultiIndex [] indexing may raise IndexError (GH13144)
- Bug in `SparseSeries` with MultiIndex [] indexing result may have normal Index (GH13144)
- Bug in `SparseDataFrame` in which axis=None did not default to axis=0 (GH13048)
- Bug in `SparseSeries` and `SparseDataFrame` creation with object dtype may raise TypeError (GH11633)
- Bug in `SparseDataFrame` doesn’t respect passed `SparseArray` or `SparseSeries` ‘s dtype and fill_value (GH13866)
- Bug in `SparseArray` and `SparseSeries` don’t apply ufunc to fill_value (GH13853)
- Bug in `SparseSeries.abs` incorrectly keeps negative fill_value (GH13853)
- Bug in single row slicing on multi-type `SparseDataFrame` s, types were previously forced to float (GH13917)
- Bug in `SparseSeries` slicing changes integer dtype to float (GH8292)
- Bug in `SparseDataFrame` comparison ops may raise TypeError (GH13001)
- Bug in `SparseDataFrame.isnull` raises ValueError (GH8276)
- Bug in `SparseSeries` representation with bool dtype may raise IndexError (GH13110)
- Bug in `SparseSeries` and `SparseDataFrame` of bool or int64 dtype may display its values like float64 dtype (GH13110)
- Bug in sparse indexing using `SparseArray` with bool dtype may return incorrect result (GH13985)
- Bug in `SparseArray` created from `SparseSeries` may lose dtype (GH13999)
- Bug in `SparseSeries` comparison with dense returns normal Series rather than `SparseSeries` (GH13999)

1.4.2.14 Indexer dtype changes

Note: This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations

Methods such as `Index.get_indexer` that return an indexer array, coerce that array to a “platform int”, so that it can be directly used in 3rd party library operations like `numpy.take`. Previously, a platform int was defined as `np.int_`, which corresponds to a C integer, but the correct type, and what is being used now, is `np.intp`, which corresponds to the C integer size that can hold a pointer (GH3033, GH13972).

These types are the same on many platform, but for 64 bit python on Windows, `np.int_` is 32 bits, and `np.intp` is 64 bits. Changing this behavior improves performance for many operations on that platform.

Previous behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')

New behavior:
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')

1.4.2.15 Other API Changes

- Timestamp.to_pydatetime will issue a UserWarning when warn=True, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH14101).
- Series.unique() with datetime and timezone now returns return array of Timestamp with timezone (GH13565).
- Panel.to_sparse() will raise a NotImplementedError exception when called (GH13778).
- Index.reshape() will raise a NotImplementedError exception when called (GH12882).
- .filter() enforces mutual exclusion of the keyword arguments (GH12399).
- eval’s upcasting rules for float32 types have been updated to be more consistent with NumPy’s rules. New behavior will not upcast to float64 if you multiply a pandas float32 object by a scalar float64 (GH12388).
- An UnsupportedFunctionCall error is now raised if NumPy ufuncs like np.mean are called on groupby or resample objects (GH12811).
- __setitem__ will no longer apply a callable rhs as a function instead of storing it. Call where directly to get the previous behavior (GH13299).
- Calls to .sample() will respect the random seed set via numpy.random.seed(n) (GH13161)
- Styler.apply is now more strict about the outputs your function must return. For axis=0 or axis=1, the output shape must be identical. For axis=None, the output must be a DataFrame with identical columns and index labels (GH13222).
- Float64Index.astype(int) will now raise ValueError if Float64Index contains NaN values (GH13149)
- TimedeltaIndex.astype(int) and DatetimeIndex.astype(int) will now return Int64Index instead of np.array (GH13209)
- Passing Period with multiple frequencies to normal Index now returns Index with object dtype (GH13664)
- PeriodIndexfillna with Period has different freq now coerces to object dtype (GH13664)
- Faceted boxplots from DataFrame.boxplot(by=col) now return a Series when return_type is not None. Previously these returned an OrderedDict. Note that when return_type=None, the default, these still return a 2-D NumPy array (GH12216, GH7096).
- pd.read_hdf will now raise a ValueError instead of KeyError, if a mode other than r, r+ and a is supplied. (GH13623)
• pd.read_csv(), pd.read_table(), and pd.read_hdf() raise the built-in FileNotFoundError exception for Python 3.x when called on a nonexistent file; this is back-ported as IOError in Python 2.x (GH14086)

• More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of CParserError (GH13652).

• pd.read_csv() in the C engine will now issue a ParserWarning or raise a ValueError when sep encoded is more than one character long (GH14065)

• DataFrame.values will now return float64 with a DataFrame of mixed int64 and uint64 dtypes, conforming to np.find_common_type (GH10364, GH13917)

• .groupby.groups will now return a dictionary of Index objects, rather than a dictionary of np.ndarray or lists (GH14293)

1.4.3 Deprecations

• Series.reshape and Categorical.reshape have been deprecated and will be removed in a subsequent release (GH12882, GH12882)

• PeriodIndex.to_datetime has been deprecated in favor of PeriodIndex.to_timestamp (GH8254)

• Timestamp.to_datetime has been deprecated in favor of Timestamp.to_pydatetime (GH8254)

• Index.to_datetime and DatetimeIndex.to_datetime have been deprecated in favor of pd.to_datetime (GH8254)

• pandas.core.datetools module has been deprecated and will be removed in a subsequent release (GH14094)

• SparseList has been deprecated and will be removed in a future version (GH13784)

• DataFrame.to_html() and DataFrame.to_latex() have dropped the colSpace parameter in favor of col_space (GH13857)

• DataFrame.to_sql() has deprecated the flavor parameter, as it is superfluous when SQLAlchemy is not installed (GH13611)

• Deprecated read_csv keywords:
 – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320)
 – buffer_lines has been deprecated and will be removed in a future version (GH13360)
 – as_recarray has been deprecated and will be removed in a future version (GH13373)
 – skip_footer has been deprecated in favor of skipfooter and will be removed in a future version (GH13349)

• top-level pd.ordered_merge() has been renamed to pd.merge_ordered() and the original name will be removed in a future version (GH13358)

• Timestamp.offset property (and named arg in the constructor), has been deprecated in favor of freq (GH12160)

• pd.tseries.util.pivot_annual is deprecated. Use pivot_table as alternative, an example is here (GH736)

• pd.tseries.util.isleapyear has been deprecated and will be removed in a subsequent release. Datetime-likes now have a .is_leap_year property (GH13727)
• Panel4D and PanelND constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a to_xarray() method to automate this conversion (GH13564).

• pandas.tseries.frequencies.get_standard_freq is deprecated. Use pandas.tseries.frequencies.to_offset(freq).rule_code instead (GH13874)

• pandas.tseries.frequencies.to_offset's freqstr keyword is deprecated in favor of freq (GH13874)

• Categorical.from_array has been deprecated and will be removed in a future version (GH13854)

1.4.4 Removal of prior version deprecations/changes

• The SparsePanel class has been removed (GH13778)

• The pd.sandbox module has been removed in favor of the external library pandas-qt (GH13670)

• The pandas.io.data and pandas.io.wb modules are removed in favor of the pandas-datareader package (GH13724).

• The pandas.tools.rplot module has been removed in favor of the seaborn package (GH13855)

• DataFrame.to_csv() has dropped the engine parameter, as was deprecated in 0.17.1 (GH11274, GH13419)

• DataFrame.to_dict() has dropped the outtype parameter in favor of orient (GH13627, GH8486)

• pd.Categorical has dropped setting of the ordered attribute directly in favor of the set_ordered method (GH13671)

• pd.Categorical has dropped the levels attribute in favor of categories (GH8376)

• DataFrame.to_sql() has dropped the mysql option for the flavor parameter (GH13611)

• Panel.shift() has dropped the lags parameter in favor of periods (GH14041)

• pd.Index has dropped the diff method in favor of difference (GH13669)

• pd.DataFrame has dropped the to_wide method in favor of to_panel (GH14039)

• Series.to_csv has dropped the nanRep parameter in favor of na_rep (GH13804)

• Series.xs, DataFrame.xs, Panel.xs, Panel.major_xs, and Panel.minor_xs have dropped the copy parameter (GH13781)

• str.split has dropped the return_type parameter in favor of expand (GH13701)

• Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH13590, GH13868). Now legacy time rules raises ValueError. For the list of currently supported offsets, see here.

• The default value for the return_type parameter for DataFrame.plot.box and DataFrame.boxplot changed from None to "axes". These methods will now return a matplotlib axes by default instead of a dictionary of artists. See here (GH6581).

• The tquery and uquery functions in the pandas.io.sql module are removed (GH5950).

1.4.5 Performance Improvements

• Improved performance of sparse IntIndex.intersect (GH13082)
• Improved performance of sparse arithmetic with BlockIndex when the number of blocks are large, though recommended to use IntIndex in such cases (GH13082)
• Improved performance of DataFrame.quantile() as it now operates per-block (GH11623)
• Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH13166, GH13334)
• Improved performance of DataFrameGroupBy.transform(GH12737)
• Improved performance of Index and Series.duplicated(GH10235)
• Improved performance of Index.difference(GH12044)
• Improved performance of RangeIndex.is_monotonic_increasing and is_monotonic_decreasing(GH13749)
• Improved performance of datetime string parsing in DatetimeIndex (GH13692)
• Improved performance of hashing Period (GH12817)
• Improved performance of factorize of datetime with timezone (GH13750)
• Improved performance of by lazily creating indexing hashtables on larger Indexes (GH14266)
• Improved performance of groupby.groups (GH14293)
• Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH14308)

1.4.6 Bug Fixes

• Bug in groupby().shift(), which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH13813)
• Bug in groupby().cumsum() calculating cumprod when axis=1. (GH13994)
• Bug in pd.to_timedelta() in which the errors parameter was not being respected (GH13613)
• Bug in io.json.json_normalize(), where non-ascii keys raised an exception (GH13213)
• Bug when passing a not-default-indexed Series as xerr or yerr in .plot() (GH11858)
• Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH9161, GH13544)
• Bug in DataFrame assignment with an object-dtyped Index where the resultant column is mutable to the original object. (GH13522)
• Bug in matplotlib AutoDataFormatter; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH13131)
• Bug in selection from a HDFStore with a fixed format and start and/or stop specified will now return the selected range (GH8287)
• Bug in Categorical.from_codes() where an unhelpful error was raised when an invalid ordered parameter was passed in (GH14058)
• Bug in Series construction from a tuple of integers on windows not returning default dtype (int64) (GH13646)
• Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow was not being caught (GH14068)
• Bug in .groupby(...).resample(...) when the same object is called multiple times (GH13174)
• Bug in .to_records() when index name is a unicode string (GH13172)
• Bug in calling .memory_usage() on object which doesn’t implement (GH12924)
• Regression in Series.quantile with nans (also shows up in .median() and .describe()); furthermore now names the Series with the quantile (GH13098, GH13146)
• Bug in SeriesGroupBy.transform with datetime values and missing groups (GH13191)
• Bug where empty Series were incorrectly coerced in datetime-like numeric operations (GH13844)
• Bug in Categorical constructor when passed a Categorical containing datetimes with timezones (GH14190)
• Bug in Series.str.extractall() with str index raises ValueError (GH13156)
• Bug in Series.str.extractall() with single group and quantifier (GH13382)
• Bug in DatetimeIndex and Period subtraction raises ValueError or AttributeError rather than TypeError (GH13078)
• Bug in Index and Series created with NaN and NaT mixed data may not have datetime64 dtype (GH13324)
• Bug in Index and Series may ignore np.datetime64('nat') and np.timedelta64('nat') to infer dtype (GH13324)
• Bug in PeriodIndex and Period subtraction raises AttributeError (GH13071)
• Bug in PeriodIndex construction returning a float64 index in some circumstances (GH13067)
• Bug in .resample(..) with a PeriodIndex not changing its freq appropriately when empty (GH13067)
• Bug in .resample(..) with a PeriodIndex not retaining its type or name with an empty DataFrame appropriately when empty (GH13212)
• Bug in groupby(..).apply(..) when the passed function returns scalar values per group (GH13468).
• Bug in groupby(..).resample(..) where passing some keywords would raise an exception (GH13235)
• Bug in .tz_convert on a tz-aware DateTimeIndex that relied on index being sorted for correct results (GH13306)
• Bug in .tz_localize with dateutil.tz.tzlocal may return incorrect result (GH13583)
• Bug in DatetimeTZDtype dtype with dateutil.tz.tzlocal cannot be regarded as valid dtype (GH13583)
• Bug in pd.read_hdf() where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)
• Bug in .rolling() that allowed a negative integer window in construction of the Rolling() object, but would later fail on aggregation (GH13383)
• Bug in Series indexing with tuple-valued data and a numeric index (GH13509)
• Bug in printing pd.DataFrame where unusual elements with the object dtype were causing segfaults (GH13717)
• Bug in ranking Series which could result in segfaults (GH13445)
• Bug in various index types, which did not propagate the name of passed index (GH12309)
• Bug in DatetimeIndex, which did not honour the copy=True (GH13205)
• Bug in DatetimeIndex.is_normalized returns incorrectly for normalized date_range in case of local timezones (GH13459)
pandas: powerful Python data analysis toolkit, Release 0.20.1

• Bug in `pd.concat` and `.append` may coerces `datetime64` and `timedelta` to object dtype containing python built-in `datetime` or `timedelta` rather than `Timestamp` or `Timedelta` (GH13626)

• Bug in `PeriodIndex.append` may raises `AttributeError` when the result is object dtype (GH13221)

• Bug in `CategoricalIndex.append` may accept normal list (GH13626)

• Bug in `pd.concat` and `.append` with the same timezone get reset to UTC (GH7795)

• Bug in `Series` and `DataFrame .append` raises `AmbiguousTimeError` if data contains datetime near DST boundary (GH13626)

• Bug in `DataFrame.to_csv()` in which float values were being quoted even though quotations were specified for non-numeric values only (GH12922, GH13259)

• Bug in `DataFrame.describe()` raising `ValueError` with only boolean columns (GH13898)

• Bug in `MultiIndex` slicing where extra elements were returned when level is non-unique (GH12896)

• Bug in `.str.replace` does not raise `TypeError` for invalid replacement (GH13438)

• Bug in `MultiIndex.from_arrays` which didn’t check for input array lengths matching (GH13599)

• Bug in `cartesian_product` and `MultiIndex.from_product` which may raise with empty input arrays (GH12546)

• Bug in `pd.read_csv()` which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH13703)

• Bug in `pd.read_csv()` which caused errors to be raised when a dictionary containing scalars is passed in for `na_values` (GH12224)

• Bug in `pd.read_csv()` which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)

• Bug in `pd.read_csv()` with engine='python' which raised errors when a numpy array was passed in for `usecols` (GH12546)

• Bug in `pd.read_csv()` where the index columns were being incorrectly parsed when parsed as dates with a `thousands` parameter (GH14066)

• Bug in `pd.read_csv()` with engine='python' in which NaN values weren’t being detected after data was converted to numeric values (GH13314)

• Bug in `pd.read_csv()` in which the `nrows` argument was not properly validated for both engines (GH10476)

• Bug in `pd.read_csv()` with engine='python' in which infinities of mixed-case forms were not being interpreted properly (GH13274)

• Bug in `pd.read_csv()` with engine='python' in which trailing NaN values were not being parsed (GH13320)

• Bug in `pd.read_csv()` with engine='python' when reading from a `tempfile.TemporaryFile` on Windows with Python 3 (GH13398)

• Bug in `pd.read_csv()` that prevents `usecols` kwarg from accepting single-byte unicode strings (GH13219)

• Bug in `pd.read_csv()` that prevents `usecols` from being an empty set (GH13402)

• Bug in `pd.read_csv()` in the C engine where the NULL character was not being parsed as NULL (GH14012)

• Bug in `pd.read_csv()` with engine='c' in which NULL quotechar was not accepted even though quoting was specified as None (GH13411)
• Bug in `pd.read_csv()` with engine='c' in which fields were not properly cast to float when quoting was specified as non-numeric (GH13411)
• Bug in `pd.read_csv()` in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)
• Bug in `pd.read_csv()`, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH13549)
• Bug in `pd.read_csv`, `pd.read_table`, `pd.read_fwf`, `pd.read_stata` and `pd.read_sas` where files were opened by parsers but not closed if both chunksize and iterator were None. (GH13940)
• Bug in `StataReader`, `StataWriter`, `XportReader` and SAS7BDATReader where a file was not properly closed when an error was raised. (GH13940)
• Bug in `pd.pivot_table()` where margins_name is ignored when aggfunc is a list (GH13354)
• Bug in `pd.Series.str.zfill`, `center`, `ljust`, `rjust`, and `pad` when passing non-integers, did not raise TypeError (GH13598)
• Bug in checking for any null objects in a TimedeltaIndex, which always returned True (GH13603)
• Bug in `Series` arithmetic raises TypeError if it contains datetime-like as object dtype (GH13043)
• Bug `Series.isnull()` and `Series.notnull()` ignore Period('NaT') (GH13737)
• Bug `Series.fillna()` and `Series.dropna()` don’t affect to Period('NaT') (GH13737)
• Bug in `.fillna(value=np.nan)` incorrectly raises KeyError on a category dtype typed Series (GH14021)
• Bug in extension dtype creation where the created types were not is/identical (GH13285)
• Bug in `.resample(…)` where incorrect warnings were triggered by IPython introspection (GH13618)
• Bug in NaT-Period raises AttributeError (GH13071)
• Bug in `Series` comparison may output incorrect result if rhs contains NaT (GH9005)
• Bug in `Series` and `Index` comparison may output incorrect result if it contains NaT with object dtype (GH13592)
• Bug in `Period` addition raises TypeError if Period is on right hand side (GH13069)
• Bug in Period and Series or Index comparison raises TypeError (GH13200)
• Bug in `pd.set_eng_float_format()` that would prevent NaN and Inf from formatting (GH11981)
• Bug in `.unstack` with Categorical dtype resets .ordered to True (GH13249)
• Clean some compile time warnings in datetime parsing (GH13607)
• Bug in `factorize` raises AmbiguousTimeError if data contains datetime near DST boundary (GH13750)
• Bug in `.set_index` raises AmbiguousTimeError if new index contains DST boundary and multi levels (GH12920)
• Bug in `.shift` raises AmbiguousTimeError if data contains datetime near DST boundary (GH13926)
• Bug in `pd.read_hdf()` returns incorrect result when a DataFrame with a categorical column and a query which doesn’t match any values (GH13792)
• Bug in `.iloc` when indexing with a non lex-sorted MultiIndex (GH13797)
• Bug in `.loc` when indexing with date strings in a reverse sorted DatetimeIndex (GH14316)
• Bug in `Series` comparison operators when dealing with zero dim NumPy arrays (GH13006)
• Bug in `.combine_first` may return incorrect dtype (GH7630, GH10567)
• Bug in `groupby` where `apply` returns different result depending on whether first result is `None` or not (GH12824)
• Bug in `groupby(...).nth()` where the group key is included inconsistently if called after `.head()`/.tail() (GH12839)
• Bug in `.to_html`, `.to_latex` and `.to_string` silently ignore custom datetime formatter passed through the formatters key word (GH10690)
• Bug in `DataFrame.iterrows()`, not yielding a Series subclasse if defined (GH13977)
• Bug in `pd.to_numeric` when `errors='coerce'` and input contains non-hashable objects (GH13324)
• Bug in invalid Timedelta arithmetic and comparison may raise `ValueError` rather than `TypeError` (GH13624)
• Bug in invalid datetime parsing in `to_datetime` and `DatetimeIndex` may raise `TypeError` rather than `ValueError` (GH11169, GH11287)
• Bug in `Index` created with tz-aware Timestamp and mismatched tz option incorrectly coerces timezone (GH13692)
• Bug in `DatetimeIndex` with nanosecond frequency does not include timestamp specified with end (GH13672)
• Bug in `Series` when setting a slice with a `np.timedelta64` (GH14155)
• Bug in `Index` raises OutOfBoundsDatetme if datetime exceeds `datetime64[ns]` bounds, rather than coercing to object dtype (GH13663)
• Bug in `Index` may ignore specified `datetime64` or `timedelta64` passed as dtype (GH13981)
• Bug in `RangeIndex` can be created without no arguments rather than raises `TypeError` (GH13793)
• Bug in `.value_counts()` raises OutOfBoundsDatetme if data exceeds `datetime64[ns]` bounds (GH13663)
• Bug in `DatetimeIndex` may raise OutOfBoundsDatetme if input `np.datetime64` has other unit than `ns` (GH1114)
• Bug in `Series` creation with `np.datetime64` which has other unit than `ns` as object dtype results in incorrect values (GH13876)
• Bug in `resample` with timedelta data where data was casted to float (GH13119).
• Bug in `pd.isnull()` `pd.notnull()` raise `TypeError` if input datetime-like has other unit than `ns` (GH13389)
• Bug in `pd.merge()` may raise `TypeError` if input datetime-like has other unit than `ns` (GH13389)
• Bug in `HDFStore/read_hdf()` discarded `DatetmeIndex.name` if tz was set (GH13884)
• Bug in `Categorical.remove_unused_categories()` changes `.codes` dtype to platform int (GH13261)
• Bug in `groupby` with `as_index=False` returns all NaN’s when grouping on multiple columns including a categorical one (GH13204)
• Bug in `df.groupby(...) [...]` where `getitem` with `Int64Index` raised an error (GH13731)
• Bug in the CSS classes assigned to `DataFrame.style` for index names. Previously they were assigned "col_heading level<n> col<css>" where `n` was the number of levels + 1. Now they are assigned "index_name level<n>", where `n` is the correct level for that MultiIndex.
• Bug where `pd.read_gbq()` could throw `ImportError`: No module named discovery as a result of a naming conflict with another python package called apiclient (GH13454)
• Bug in `Index.union` returns an incorrect result with a named empty index (GH13432)
• Bugs in `Index.difference` and `DataFrame.join` raise in Python3 when using mixed-integer indexes (GH13432, GH12814)
• Bug in subtract tz-aware `datetime.datetime` from tz-aware `datetime64` series (GH14088)
• Bug in `.to_excel()` when DataFrame contains a MultiIndex which contains a label with a NaN value (GH13511)
• Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise ValueError (GH13930)
• Bug in `concat` and `groupby` for hierarchical frames with `RangeIndex` levels (GH13542).
• Bug in `Series.str.contains()` for Series containing only NaN values of object dtype (GH14171)
• Bug in `agg()` function on groupby dataframe changes dtype of `datetime64[ns]` column to `float64` (GH12821)
• Bug in using NumPy ufunc with PeriodIndex to add or subtract integer raise IncompatibleFrequency. Note that using standard operator like + or - is recommended, because standard operators use more efficient path (GH13980)
• Bug in operations on NaT returning float instead of `datetime64[ns]` (GH12941)
• Bug in Series flexible arithmetic methods (like `.add()`) raises ValueError when `axis=None` (GH13894)
• Bug in `DataFrame.to_csv()` with MultiIndex columns in which a stray empty line was added (GH6618)
• Bug in `DatetimeIndex`, `TimedeltaIndex` and `PeriodIndex.equals()` may return True when input isn’t Index but contains the same values (GH13107)
• Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH14146)
• Bug in `pd.eval()` and HDFStore query truncating long float literals with python 2 (GH14241)
• Bug in `Index` raises KeyError displaying incorrect column when column is not in the df and columns contains duplicate values (GH13822)
• Bug in Period and PeriodIndex creating wrong dates when frequency has combined offset aliases (GH13874)
• Bug in `.to_string()` when called with an integer `line_width` and `index=False` raises an UnboundLocalError exception because idx referenced before assignment.
• Bug in `eval()` where the resolvers argument would not accept a list (GH14095)
• Bugs in `stack`, `get_dummies`, `make_axis_dummies` which don’t preserve categorical dtypes in (multi)indexes (GH13854)
• `PeriodIndex` can now accept list and array which contains pd.NaT (GH13430)
• Bug in `df.groupby` where `.median()` returns arbitrary values if grouped data frame contains empty bins (GH13629)
• Bug in `Index.copy()` where name parameter was ignored (GH14302)
1.5 v0.18.1 (May 3, 2016)

This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

- `.groupby(...)` has been enhanced to provide convenient syntax when working with `.rolling(...)`, `.expanding(...)` and `.resample(...)` per group, see here
- `pd.to_datetime()` has gained the ability to assemble dates from a DataFrame, see here
- Method chaining improvements, see here.
- Custom business hour offset, see here.
- Many bug fixes in the handling of sparse, see here
- Expanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).

What’s new in v0.18.1

- **New features**
 - Custom Business Hour
 - `.groupby(...)` syntax with window and resample operations
 - Method chaining improvements
 - `.where()` and `.mask()`
 - `.loc[]`, `.iloc[]`, `.ix[]`
 - `[]` indexing
 - Partial string indexing on `DateTimeIndex` when part of a `MultiIndex`
 - Assembling Datetimes
 - Other Enhancements
- **Sparse changes**
- **API changes**
 - `.groupby(...).nth()` changes
 - `numpy.function compatibility`
 - Using `.apply` on groupby resampling
 - Changes in `read_csv` exceptions
 - `to_datetime` error changes
 - Other API changes
 - Deprecations
- **Performance Improvements**
- **Bug Fixes**
1.5.1 New features

1.5.1.1 Custom Business Hour

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to specify arbitrary holidays. For details, see Custom Business Hour (GH11514)

```python
In [1]: from pandas.tseries.offsets import CustomBusinessHour
In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [3]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
```

Friday before MLK Day

```python
In [4]: dt = datetime(2014, 1, 17, 15)
In [5]: dt + bhour_us
Out[5]: Timestamp('2014-01-17 16:00:00')
```

Tuesday after MLK Day (Monday is skipped because it’s a holiday)

```python
In [6]: dt + bhour_us * 2
Out[6]: Timestamp('2014-01-20 09:00:00')
```

1.5.1.2 .groupby(...) syntax with window and resample operations

.groupby(...) has been enhanced to provide convenient syntax when working with .rolling(...), .expanding(...) and .resample(...) per group, see (GH12486, GH12738).

You can now use .rolling(...) and .expanding(...) as methods on groupbys. These return another deferred object (similar to what .rolling() and .expanding() do on ungrouped pandas objects). You can then operate on these RollingGroupby objects in a similar manner.

Previously you would have to do this to get a rolling window mean per-group:

```python
                      ...:          'B': np.arange(40)})
In [8]: df
Out[8]:
   A  B
0  0  0
1  1  1
2  2  2
3  3  3
4  4  4
5  5  5
6  6  6
... ...
33 3 33
34 3 34
35 3 35
36 3 36
37 3 37
38 3 38
```

1.5. v0.18.1 (May 3, 2016)
In [9]: df.groupby('A').apply(lambda x: x.rolling(4).B.mean())
Out[9]:
A
 0 NaN
 1 NaN
 2 NaN
 3 1.5
 4 2.5
 5 3.5
 6 4.5
 ...
 3 33 NaN
 34 NaN
 35 33.5
 36 34.5
 37 35.5
 38 36.5
 39 37.5
Name: B, Length: 40, dtype: float64

Now you can do:

In [10]: df.groupby('A').rolling(4).B.mean()
Out[10]:
A
 0 NaN
 1 NaN
 2 NaN
 3 1.5
 4 2.5
 5 3.5
 6 4.5
 ...
 3 33 NaN
 34 NaN
 35 33.5
 36 34.5
 37 35.5
 38 36.5
 39 37.5
Name: B, Length: 40, dtype: float64

For \texttt{.resample(\ldots)} type of operations, previously you would have to:

In [11]: df = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
 periods=4, freq='W'),
 'group': [1, 1, 2, 2],
 'val': [5, 6, 7, 8]}).set_index('date')

In [12]: df
Out[12]:
 group val
1.5.1.3 Method chaining improvements

The following methods / indexers now accept a callable. It is intended to make these more useful in method chains, see the documentation. (GH11485, GH12533)
• `.where()` and `.mask()`
• `.loc[]`, `.iloc[]`, and `.ix[]`
• [] indexing

`.where()` and `.mask()`

These can accept a callable for the condition and other arguments.

```python
In [15]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
In [16]: df.where(lambda x: x > 4, lambda x: x + 10)
Out[16]:
   A  B  C
0  11 14  7
1  12  5  8
2  13  6  9
```

`.loc[]`, `.iloc[]`, `.ix[]`

These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or anything which is valid for these indexer's input.

```python
# callable returns bool indexer
In [17]: df.loc[lambda x: x.A >= 2, lambda x: x.sum() > 10]
Out[17]:
   B  C
0  5  8
1  6  9

# callable returns list of labels
In [18]: df.loc[lambda x: [1, 2], lambda x: ['A', 'B']]
Out[18]:
   A  B
0  2  5
1  3  6
```

[] indexing

Finally, you can use a callable in [] indexing of Series, DataFrame and Panel. The callable must return a valid input for [] indexing depending on its class and index type.

```python
In [19]: df['A']
Out[19]:
0  1
1  2
2  3
Name: A, dtype: int64
```

Using these methods / indexers, you can chain data selection operations without using temporary variable.
In [20]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [21]: (bb.groupby(['year', 'team'])
 : .sum()
 : .loc[lambda df: df.r > 100]
 :)

Out[21]:

<table>
<thead>
<tr>
<th>year</th>
<th>team</th>
<th>stint</th>
<th>g</th>
<th>ab</th>
<th>r</th>
<th>h</th>
<th>X2b</th>
<th>X3b</th>
<th>hr</th>
<th>rbi</th>
<th>sb</th>
<th>cs</th>
<th>bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>CIN</td>
<td>6</td>
<td>379</td>
<td>745</td>
<td>101</td>
<td>203</td>
<td>35</td>
<td>2</td>
<td>36</td>
<td>125.0</td>
<td>10.0</td>
<td>1.0</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>DET</td>
<td>5</td>
<td>301</td>
<td>1062</td>
<td>162</td>
<td>283</td>
<td>54</td>
<td>4</td>
<td>37</td>
<td>144.0</td>
<td>24.0</td>
<td>7.0</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>HOU</td>
<td>4</td>
<td>311</td>
<td>926</td>
<td>109</td>
<td>218</td>
<td>47</td>
<td>6</td>
<td>14</td>
<td>77.0</td>
<td>10.0</td>
<td>4.0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LAN</td>
<td>11</td>
<td>413</td>
<td>1021</td>
<td>153</td>
<td>293</td>
<td>61</td>
<td>3</td>
<td>36</td>
<td>154.0</td>
<td>7.0</td>
<td>5.0</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>NYN</td>
<td>13</td>
<td>622</td>
<td>1854</td>
<td>240</td>
<td>509</td>
<td>101</td>
<td>3</td>
<td>61</td>
<td>243.0</td>
<td>22.0</td>
<td>4.0</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>SFN</td>
<td>5</td>
<td>482</td>
<td>1305</td>
<td>198</td>
<td>337</td>
<td>67</td>
<td>6</td>
<td>40</td>
<td>171.0</td>
<td>26.0</td>
<td>7.0</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>TEX</td>
<td>2</td>
<td>198</td>
<td>729</td>
<td>115</td>
<td>200</td>
<td>40</td>
<td>4</td>
<td>28</td>
<td>115.0</td>
<td>21.0</td>
<td>4.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>TOR</td>
<td>4</td>
<td>459</td>
<td>1408</td>
<td>187</td>
<td>378</td>
<td>96</td>
<td>2</td>
<td>58</td>
<td>223.0</td>
<td>4.0</td>
<td>2.0</td>
<td>190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>year</th>
<th>team</th>
<th>so</th>
<th>ibb</th>
<th>hbp</th>
<th>sh</th>
<th>sf</th>
<th>gidp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>CIN</td>
<td>127.0</td>
<td>14.0</td>
<td>1.0</td>
<td>1.0</td>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>DET</td>
<td>176.0</td>
<td>3.0</td>
<td>10.0</td>
<td>4.0</td>
<td>8.0</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>HOU</td>
<td>212.0</td>
<td>3.0</td>
<td>9.0</td>
<td>16.0</td>
<td>6.0</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>LAN</td>
<td>141.0</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>NYN</td>
<td>310.0</td>
<td>24.0</td>
<td>23.0</td>
<td>18.0</td>
<td>15.0</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>SFN</td>
<td>188.0</td>
<td>51.0</td>
<td>8.0</td>
<td>16.0</td>
<td>6.0</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>TEX</td>
<td>140.0</td>
<td>4.0</td>
<td>5.0</td>
<td>2.0</td>
<td>8.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>TOR</td>
<td>265.0</td>
<td>16.0</td>
<td>12.0</td>
<td>4.0</td>
<td>16.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

1.5.1.4 Partial string indexing on `DateTimeIndex` when part of a MultiIndex

Partial string indexing now matches on `DateTimeIndex` when part of a MultiIndex (GH10331)

In [22]: dft2 = pd.DataFrame(np.random.randn(20, 1),
 : columns=['A'],
 : index=pd.MultiIndex.from_product([pd.date_range('20130101',
 : periods=10, freq='12H'),
 : ['a', 'b'])))

In [23]: dft2

Out[23]:

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-01 12:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-02 00:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-02 12:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-03 00:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-03 12:00:00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013-01-04 00:00:00</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2013-01-04 12:00:00 a 0.749185
 b -0.675521
2013-01-05 00:00:00 a 0.440266
 b 0.688972
2013-01-05 12:00:00 a -0.276646
 b 1.924533

[20 rows x 1 columns]

In [24]: dft2.loc['2013-01-05']

Out[24]:

A
2013-01-05 00:00:00 a 0.440266
 b 0.688972
2013-01-05 12:00:00 a -0.276646
 b 1.924533

On other levels

In [25]: idx = pd.IndexSlice

In [26]: dft2 = dft2.swaplevel(0, 1).sort_index()

In [27]: dft2

Out[27]:

A
a 2013-01-01 00:00:00 0.156998
 2013-01-01 12:00:00 1.057633
 2013-01-02 00:00:00 -0.524627
 2013-01-02 12:00:00 1.910759
 2013-01-03 00:00:00 0.513082
 2013-01-03 12:00:00 1.043945
 2013-01-04 00:00:00 1.459927
...
...
b 2013-01-02 12:00:00 0.787965
 2013-01-03 00:00:00 -0.546416
 2013-01-03 12:00:00 2.107785
 2013-01-04 00:00:00 1.015405
 2013-01-04 12:00:00 -0.675521
 2013-01-05 00:00:00 0.688972
 2013-01-05 12:00:00 1.924533

[20 rows x 1 columns]

In [28]: dft2.loc[idx[:, '2013-01-05'], :]

Out[28]:

A
a 2013-01-05 00:00:00 0.440266
 2013-01-05 12:00:00 -0.276646
b 2013-01-05 00:00:00 0.688972
 2013-01-05 12:00:00 1.924533

1.5.1.5 Assembling Datetimes

pd.to_datetime() has gained the ability to assemble datetimes from a passed in DataFrame or a dict.
In [29]: df = pd.DataFrame({'year': [2015, 2016],
 'month': [2, 3],
 'day': [4, 5],
 'hour': [2, 3]})

In [30]: df
Out[30]:
 day hour month year
0 4 2 2 2015
1 5 3 3 2016

Assembling using the passed frame.

In [31]: pd.to_datetime(df)
Out[31]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.

In [32]: pd.to_datetime(df[['year', 'month', 'day']])
Out[32]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

1.5.1.6 Other Enhancements

- pd.read_csv() now supports delim_whitespace=True for the Python engine (GH12958)
- pd.read_csv() now supports opening ZIP files that contains a single CSV, via extension inference or explicit compression='zip' (GH12175)
- pd.read_csv() now supports opening files using xz compression, via extension inference or explicit compression='xz' is specified; xz compressions is also supported by DataFrame.to_csv in the same way (GH11852)
- pd.read_msgpack() now always gives writeable ndarrays even when compression is used (GH12359).
- pd.read_msgpack() now supports serializing and de-serializing categoricals with msgpack (GH12573)
- .to_json() now supports NDFrames that contain categorical and sparse data (GH10778)
- interpolate() now supports method='akima' (GH7588).
- pd.read_excel() now accepts path objects (e.g. pathlib.Path, py.path.local) for the file path, in line with other read_* functions (GH12655)
- Added .weekday_name property as a component to DatetimeIndex and the .dt accessor. (GH1128)
- Index.take now handles allow_fill and fill_value consistently (GH12631)

In [33]: idx = pd.Index([1., 2., 3., 4.], dtype='float')
default, allow_fill=True, fill_value=None
In [34]: idx.take([2, -1])
Index now supports .str.get_dummies() which returns MultiIndex, see Creating Indicator Variables (GH10008, GH10103)

```
In [36]: idx = pd.Index(['a|b', 'a|c', 'b|c'])
In [37]: idx.str.get_dummies('|')
Out[37]:
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],
          labels=[[1, 1, 0], [1, 0, 1], [0, 1, 1]],
          names=['a', 'b', 'c'])
```

pd.crosstab() has gained a normalize argument for normalizing frequency tables (GH12569). Examples in the updated docs here.

• .resample(..).interpolate() is now supported (GH12925)
• .isin() now accepts passed sets (GH12988)

1.5.2 Sparse changes

These changes conform sparse handling to return the correct types and work to make a smoother experience with indexing.

SparseArray.take now returns a scalar for scalar input, SparseArray for others. Furthermore, it handles a negative indexer with the same rule as Index (GH10560, GH12796)

```
In [38]: s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
In [39]: s.take(0)
Out[39]: nan
In [40]: s.take([1, 2, 3])
```

Fill: nan
IntIndex
Indices: array([1, 2], dtype=int32)

• Bug in SparseSeries[] indexing with Ellipsis raises KeyError (GH9467)
• Bug in SparseArray[] indexing with tuples are not handled properly (GH12966)
• Bug in SparseSeries.loc[] with list-like input raises TypeError (GH10560)
• Bug in SparseSeries.iloc[] with scalar input may raise IndexError (GH10560)
• Bug in SparseSeries.loc[].iloc[] with slice returns SparseArray, rather than SparseSeries (GH10560)
• Bug in SparseDataFrame.loc[].iloc[] may results in dense Series, rather than SparseSeries (GH12787)
• Bug in SparseArray addition ignores fill_value of right hand side (GH12910)
- Bug in `SparseArray mod` raises `AttributeError` (GH12910)
- Bug in `SparseArray pow` calculates `1 ** np.nan` as `np.nan` which must be `1` (GH12910)
- Bug in `SparseArray comparison` output may incorrect result or raise `ValueError` (GH12971)
- Bug in `SparseSeries.__repr__` raises `TypeError` when it is longer than `max_rows` (GH10560)
- Bug in `SparseSeries.shape` ignores `fill_value` (GH10452)
- Bug in `SparseSeries and SparseArray` may have different `dtype` from its dense values (GH12908)
- Bug in `SparseSeries.reindex` incorrectly handle `fill_value` (GH12797)
- Bug in `SparseArray.to_frame()` results in `DataFrame`, rather than `SparseDataFrame` (GH9850)
- Bug in `SparseSeries.value_counts()` does not count `fill_value` (GH6749)
- Bug in `SparseArray.to_dense()` does not preserve `dtype` (GH10648)
- Bug in `pd.concat()` of `SparseSeries` results in `dense` (GH10536)
- Bug in `pd.concat()` of `SparseDataFrame` incorrectly handle `fill_value` (GH9765)
- Bug in `pd.concat()` of `SparseDataFrame` may raise `AttributeError` (GH12174)
- Bug in `SparseArray.shift()` may raise `NameError` or `TypeError` (GH12908)

1.5.3 API changes

1.5.3.1 `.groupby(..).nth()` changes

The index in `.groupby(..).nth()` output is now more consistent when the `as_index` argument is passed (GH11039):

```python
In [41]: df = DataFrame({'A' : ['a', 'b', 'a'],
                   'B' : [1, 2, 3]})

In [42]: df
Out[42]:
   A  B
0  a  1
1  b  2
2  a  3
```

Previous Behavior:

```python
In [3]: df.groupby('A', as_index=True)['B'].nth(0)
Out[3]:
   B
0  1
1  2
Name: B, dtype: int64

In [4]: df.groupby('A', as_index=False)['B'].nth(0)
Out[4]:
   B
0  1
1  2
Name: B, dtype: int64
```
New Behavior:

```python
In [43]: df.groupby('A', as_index=True)['B'].nth(0)
Out[43]:
   A
a  1
b  2
Name: B, dtype: int64

In [44]: df.groupby('A', as_index=False)['B'].nth(0)
Out[44]:
   0  1
   1  2
Name: B, dtype: int64
```

Furthermore, previously, a .groupby would always sort, regardless if `sort=False` was passed with `nth()`.

```python
In [45]: np.random.seed(1234)
In [46]: df = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
In [47]: df['c'] = np.random.randint(0, 4, 100)

In [4]: df.groupby('c', sort=True).nth(1)
Out[4]:
   a     b
   c
0 -0.334077  0.002118
1  0.036142 -2.074978
2 -0.720589  0.887163
3  0.859588 -0.636524

In [5]: df.groupby('c', sort=False).nth(1)
Out[5]:
   a     b
   c
0 -0.334077  0.002118
1  0.036142 -2.074978
2 -0.720589  0.887163
3  0.859588 -0.636524
```

New Behavior:

```python
In [48]: df.groupby('c', sort=True).nth(1)
Out[48]:
   a     b
   c
0 -0.334077  0.002118
1  0.036142 -2.074978
2 -0.720589  0.887163
3  0.859588 -0.636524

In [49]: df.groupby('c', sort=False).nth(1)

```

98 Chapter 1. What's New
2 -0.720589 0.887163
3 0.859588 -0.636524
0 -0.334077 0.002118
1 0.036142 -2.074978

1.5.3.2 numpy function compatibility

Compatibility between pandas array-like methods (e.g. `sum` and `take`) and their numpy counterparts has been greatly increased by augmenting the signatures of the pandas methods so as to accept arguments that can be passed in from numpy, even if they are not necessarily used in the pandas implementation (GH12644, GH12638, GH12687)

- `.searchsorted()` for Index and TimedeltaIndex now accept a sorter argument to maintain compatibility with numpy’s `searchsorted` function (GH12238)
- Bug in numpy compatibility of `np.round()` on a Series (GH12600)

An example of this signature augmentation is illustrated below:

```
In [50]: sp = pd.SparseDataFrame([[1, 2, 3]])
In [51]: sp
Out[51]:
   0
0   1
1   2
2   3
```

Previous behaviour:

```
In [2]: np.cumsum(sp, axis=0)
...:
TypeError: cumsum() takes at most 2 arguments (4 given)
```

New behaviour:

```
In [52]: np.cumsum(sp, axis=0)
Out[52]:
   0
0   1
1   3
2   6
```

1.5.3.3 Using `.apply` on groupby resampling

Using apply on resampling groupby operations (using a `pd.TimeGrouper`) now has the same output types as similar apply calls on other groupby operations. (GH11742).

```
In [53]: df = pd.DataFrame({'date': pd.to_datetime(['10/10/2000', '11/10/2000']), 'value': [10, 13]})
....:
   date  value
0 2000-10-10  10
1 2000-11-10  13
```
Previous behavior:

```python
In [1]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
   →sum())
Out[1]:
...  
TypeError: cannot concatenate a non-NDFrame object

# Output is a Series
In [2]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x['value']
   →sum())
Out[2]:
   date             
2000-10-31       value 10
2000-11-30       value 13
dtype: int64
```

New Behavior:

```python
# Output is a Series
In [55]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
   →sum())
Out[55]:
   date
2000-10-31   10
2000-11-30   13
Freq: M, dtype: int64

# Output is a DataFrame
In [56]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value']
   →sum()))
Out[56]:
   value
date
2000-10-31 10
2000-11-30 13
```

1.5.3.4 Changes in `read_csv` exceptions

In order to standardize the `read_csv` API for both the c and python engines, both will now raise an `EmptyDataError`, a subclass of `ValueError`, in response to empty columns or header (GH12493, GH12506)

Previous behaviour:

```python
In [1]: df = pd.read_csv(StringIO(''), engine='c')
...  
ValueError: No columns to parse from file

In [2]: df = pd.read_csv(StringIO(''), engine='python')
...  
StopIteration
```

New behaviour:

```python
In [1]: df = pd.read_csv(StringIO(''), engine='c')
...  
pandas.io.common.EmptyDataError: No columns to parse from file
```
In addition to this error change, several others have been made as well:

- CParserError now sub-classes ValueError instead of just a Exception (GH12551)
- A CParserError is now raised instead of a generic Exception in read_csv when the c engine cannot parse a column (GH12506)
- A ValueError is now raised instead of a generic Exception in read_csv when the c engine encounters a NaN value in an integer column (GH12506)
- A ValueError is now raised instead of a generic Exception in read_csv when true_values is specified, and the c engine encounters an element in a column containing unencodable bytes (GH12506)
- pandas.parser.OverflowError exception has been removed and has been replaced with Python’s built-in OverflowError exception (GH12506)
- pd.read_csv() no longer allows a combination of strings and integers for the usecols parameter (GH12678)

1.5.3.5 to_datetime error changes

Bugs in pd.to_datetime() when passing a unit with convertible entries and errors='coerce' or non-convertible with errors='ignore'. Furthermore, an OutOfBoundsDatet ime exception will be raised when an out-of-range value is encountered for that unit when errors='raise'. (GH11758, GH13052, GH13059)

Previous behaviour:

```
In [27]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[27]: NaT
```
```
In [28]: pd.to_datetime(11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long
```
```
In [29]: pd.to_datetime(11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long
```

New behaviour:

```
In [2]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[2]: Timestamp('2014-12-31 16:31:00')
```
```
In [3]: pd.to_datetime(11111111, unit='D', errors='ignore')
Out[3]: 11111111
```
```
In [4]: pd.to_datetime(11111111, unit='D', errors='raise')
OutOfBoundsDateTime: cannot convert input with unit 'D'
```

1.5.3.6 Other API changes

- .swaplevel() for Series, DataFrame, Panel, and MultiIndex now features defaults for its first two parameters i and j that swap the two innermost levels of the index. (GH12934)
• `.searchsorted()` for `Index` and `TimedeltaIndex` now accept a `sorter` argument to maintain compatibility with numpy’s `searchsorted` function (GH12238)

• `Period` and `PeriodIndex` now raises `IncompatibleFrequency` error which inherits `ValueError` rather than raw `ValueError` (GH12615)

• `Series.apply` for category dtype now applies the passed function to each of the `.categories` (and not the `.codes`), and returns a category dtype if possible (GH12473)

• `read_csv` will now raise a `TypeError` if `parse_dates` is neither a boolean, list, or dictionary (matches the doc-string) (GH5636)

• The default for `.query()`/.eval() is now `engine=None`, which will use `numexpr` if it’s installed; otherwise it will fallback to the python engine. This mimics the pre-0.18.1 behavior if `numexpr` is installed (and which, previously, if `numexpr` was not installed, `.query()`/.eval() would raise) (GH12749)

• `pd.show_versions()` now includes pandas_datareader version (GH12740)

• Provide a proper `__name__` and `__qualname__` attributes for generic functions (GH12021)

• `pd.concat(ignore_index=True)` now uses RangeIndex as default (GH12695)

• `pd.merge()` and `DataFrame.join()` will show a `UserWarning` when merging/joining a single- with a multi-leveled dataframe (GH9455, GH12219)

• Compat with `scipy > 0.17` for deprecated `piecewise_polynomial` interpolation method; support for the replacement from_derivatives method (GH12887)

1.5.3.7 Deprecations

• The method name `Index.sym_diff()` is deprecated and can be replaced by `Index.symmetric_difference()` (GH12591)

• The method name `Categorical.sort()` is deprecated in favor of `Categorical.sort_values()` (GH12882)

1.5.4 Performance Improvements

• Improved speed of SAS reader (GH12656, GH12961)

• Performance improvements in `.groupby(...)`.cumcount() (GH11039)

• Improved memory usage in `pd.read_csv()` when using `skiprows=an_integer` (GH13005)

• Improved performance of `DataFrame.to_sql` when checking case sensitivity for tables. Now only checks if table has been created correctly when table name is not lower case. (GH12876)

• Improved performance of `Period` construction and time series plotting (GH12903, GH11831).

• Improved performance of `.str.encode()` and `.str.decode()` methods (GH13008)

• Improved performance of `to_numeric` if input is numeric dtype (GH12777)

• Improved performance of sparse arithmetic with `IntIndex` (GH13036)

1.5.5 Bug Fixes

• `usecols` parameter in `pd.read_csv` is now respected even when the lines of a CSV file are not even (GH12203)
• Bug in `groupby.transform(..)` when axis=1 is specified with a non-monotonic ordered index (GH12713)
• Bug in `Period` and `PeriodIndex` creation raises `KeyError` if freq="Minute" is specified. Note that "Minute" freq is deprecated in v0.17.0, and recommended to use freq="T" instead (GH11854)
• Bug in `.resample(...)`.count() with a `PeriodIndex` always raising a `TypeError` (GH12774)
• Bug in `.resample(...)`. with a `PeriodIndex` casting to a `DatetimeIndex` when empty (GH12868)
• Bug in `.resample(...)`. with a `PeriodIndex` when resampling to an existing frequency (GH12770)
• Bug in printing data which contains `Period` with different freq raises Value Error (GH12615)
• Bug in `Series` creation with `Categorical` and `dtype='category'` (GH12574)
• Bugs in concatenation with a coercable dtype was too aggressive, resulting in different dtypes in output formatting when an object was longer than `display.max_rows` (GH12411, GH12045, GH11594, GH10571, GH12211)
• Bug in `float_format` option with option not being validated as a callable. (GH12706)
• Bug in `GroupBy.filter` when dropna=False and no groups fulfilled the criteria (GH12768)
• Bug in __name__ of .cum* functions (GH12021)
• Bug in .astype() of a `Float64Index/Int64Index` to an `Int64Index` (GH12881)
• Bug in round tripping an integer based index in `.to_json()/*.read_json()` when orient='index' (the default) (GH12866)
• Bug in plotting `Categorical` dtypes cause error when attempting stacked bar plot (GH13019)
• Compat with >= numpy 1.11 for NaT comparisons (GH12969)
• Bug in .drop() with a non-unique `MultiIndex`. (GH12701)
• Bug in .concat of `datetime` tz-aware and naive `DataFrames` (GH12467)
• Bug in correctly raising a `ValueError` in `.resample(..).fillna(..)` when passing a non-string (GH12952)
• Bug fixes in various encoding and header processing issues in `pd.read_sas()` (GH12659, GH12654, GH12647, GH12809)
• Bug in `pd.crosstab()` where would silently ignore aggfunc if values=None (GH12569).
• Potential seg fault in `DataFrame.to_json` when serialising `datetime.time` (GH11473).
• Potential seg fault in `DataFrame.to_json` when attempting to serialise 0d array (GH11299).
• Seg fault in `to_json` when attempting to serialise a `DataFrame` or `Series` with non-ndarray values; now supports serialization of category, sparse, and `datetime64[ns, tz]` dtypes (GH10778).
• Bug in `DataFrame.to_json` with unsupported dtype not passed to default handler (GH12554).
• Bug in .align not returning the sub-class (GH12983)
• Bug in aligning a `Series` with a `DataFrame` (GH13037)
• Bug in ABCPanel in which Panel4D was not being considered as a valid instance of this generic type (GH12810)
• Bug in consistency of .name on .groupby(..).apply(..) cases (GH12363)
• Bug in Timestamp.__repr__ that caused pprint to fail in nested structures (GH12622)
• Bug in Timedelta.min and Timedelta.max, the properties now report the true minimum/maximum timedeltas as recognized by pandas. See the documentation. (GH12727)

• Bug in .quantile() with interpolation may coerce to float unexpectedly (GH12772)

• Bug in .quantile() with empty Series may return scalar rather than empty Series (GH12772)

• Bug in .loc with out-of-bounds in a large indexer would raise IndexError rather than KeyError (GH12527)

• Bug in resampling when using a TimedeltaIndex and .asfreq(), would previously not include the final fencepost (GH12926)

• Bug in equality testing with a Categorical in a DataFrame (GH12564)

• Bug in GroupBy.first(), .last() returns incorrect row when TimeGrouper is used (GH7453)

• Bug in pd.read_csv() with the c engine when specifying skiprows with newlines in quoted items (GH10911, GH12775)

• Bug in DataFrame timezone lost when assigning tz-aware datetime Series with alignment (GH12981)

• Bug in .value_counts() when normalize=True and dropna=True where nulls still contributed to the normalized count (GH12558)

• Bug in Series.value_counts() loses name if its dtype is category (GH12835)

• Bug in Series.value_counts() loses timezone info (GH12835)

• Bug in Series.value_counts(normalize=True) with Categorical raises UnboundLocalError (GH12835)

• Bug in Panel.fillna() ignoring inplace=True (GH12633)

• Bug in pd.read_csv() when specifying names, usecols, and parse_dates simultaneously with the c engine (GH9755)

• Bug in pd.read_csv() when specifying delim_whitespace=True and lineterminator simultaneously with the c engine (GH12912)

• Bug in Series.rename, DataFrame.rename and DataFrame.rename_axis not treating Series as mappings to relabel (GH12623).

• Clean in .rolling.min and .rolling.max to enhance dtype handling (GH12373)

• Bug in groupby where complex types are coerced to float (GH12902)

• Bug in Series.map raises TypeError if its dtype is category or tz-aware datetime (GH12473)

• Bugs on 32bit platforms for some test comparisons (GH12972)

• Bug in index coercion when falling back from RangeIndex construction (GH12893)

• Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)

• Bug in slicing subclassed DataFrame defined to return subclassed Series may return normal Series (GH11539)

• Bug in .str accessor methods may raise ValueError if input has name and the result is DataFrame or MultiIndex (GH12617)

• Bug in DataFrame.last_valid_index() and DataFrame.first_valid_index() on empty frames (GH12800)

• Bug in CategoricalIndex.get_loc returns different result from regular Index (GH12531)

• Bug in PeriodIndex.resample where name not propagated (GH12769)
• Bug in `date_range` closed keyword and timezones (GH12684).
• Bug in `pd.concat` raises `AttributeError` when input data contains tz-aware datetime and timedelta (GH12620)
• Bug in `pd.concat` did not handle empty Series properly (GH11082)
• Bug in `.plot.bar` alignment when width is specified with int (GH12979)
• Bug in `fill_value` is ignored if the argument to a binary operator is a constant (GH12723)
• Bug in `pd.read_html()` when using bs4 flavor and parsing table with a header and only one column (GH9178)
• Bug in `.pivot_table` when `margins=True` and `dropna=True` where nulls still contributed to margin count (GH12577)
• Bug in `.pivot_table` when `dropna=False` where table index/column names disappear (GH12133)
• Bug in `pd.crosstab()` when `margins=True` and `dropna=False` which raised (GH12642)
• Bug in `Series.name` when name attribute can be a hashable type (GH12610)
• Bug in `.describe()` resets categorical columns information (GH11558)
• Bug where `loffset` argument was not applied when calling `resample().count()` on a timeseries (GH12725)

• `pd.read_excel()` now accepts column names associated with keyword argument `names` (GH12870)
• Bug in `pd.to_numeric()` with `Index` returns np.ndarray, rather than Index (GH12777)
• Bug in `pd.to_numeric()` with datetime-like may raise `TypeError` (GH12777)
• Bug in `pd.to_numeric()` with scalar raises `ValueError` (GH12777)

1.6 v0.18.0 (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718, GH11273)

Warning: numexpr version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)

Highlights include:

• Moving and expanding window functions are now methods on Series and DataFrame, similar to `.groupby`, see here.
• Adding support for a `RangeIndex` as a specialized form of the `Int64Index` for memory savings, see here.
• API breaking change to the `.resample` method to make it more `.groupby` like, see here.
• Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a `TypeError`, see here.
• The `.to_xarray()` function has been added for compatibility with the xarray package, see here.
• The `read_sas` function has been enhanced to read `sas7bdat` files, see here.
• Addition of the `.str.extractall()` method, and API changes to the `.str.extract()` method and `.str.cat()` method.
• `pd.test()` top-level nose test runner is available (GH4327).

Check the API Changes and deprecations before updating.

What’s new in v0.18.0

• New features
 – Window functions are now methods
 – Changes to rename
 – Range Index
 – Changes to `str.extract`
 – Addition of `str.extractall`
 – Changes to `str.cat`
 – Datetimelike rounding
 – Formatting of Integers in FloatIndex
 – Changes to dtype assignment behaviors
 – to_xarray
 – Latex Representation
 – `pd.read_sas()` changes
 – Other enhancements

• Backwards incompatible API changes
 – NaT and Timedelta operations
 – Changes to msgpack
 – Signature change for `.rank`
 – Bug in `QuarterBegin` with `n=0`
 – Resample API
 * Downsampling
 * Upsampling
 * Previous API will work but with deprecations
 – Changes to `eval`
 – Other API Changes
 – Deprecations
 – Removal of deprecated float indexers
 – Removal of prior version deprecations/changes

• Performance Improvements
1.6.1 New features

1.6.1.1 Window functions are now methods

Window functions have been refactored to be methods on Series/DataFrame objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby. See the full documentation here (GH11603, GH12373)

```
In [1]: np.random.seed(1234)
In [2]: df = pd.DataFrame({'A' : range(10), 'B' : np.random.randn(10)})
In [3]: df
Out[3]:
   A   B
0  0  0.471435
1  1 -1.190976
2  2  1.432707
3  3 -0.312652
4  4 -0.720589
5  5  0.887163
6  6  0.859588
7  7 -0.636524
8  8  0.015696
9  9 -2.242685
```

Previous Behavior:

```
In [8]: pd.rolling_mean(df,window=3)
  FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with DataFrame.rolling(window=3,center=False).mean()
Out[8]:
   A   B
0  NaN  NaN
1  NaN  NaN
2  1   0.237722
3  2   -0.023640
4  3   0.133155
5  4   -0.048693
6  5   0.342054
7  6   0.370076
8  7   0.079587
9  8  -0.954504
```

New Behavior:

```
In [4]: r = df.rolling(window=3)
```

These show a descriptive repr

```
In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0]
```
with tab-completion of available methods and properties.

```
In [9]: r.
   ...: r.A  r.agg  r.apply  r.count  r.exclusions  r.max  r.
   ...: →median  r.name  r.skew  r.sum
   ...: r.B  r.aggregate  r.corr  r.cov  r.kurt  r.mean  r.
   ...: →min  r.quantile  r.std  r.var
```

The methods operate on the Rolling object itself

```
In [6]: r.mean()
Out[6]:
   A   B
0  NaN NaN
1  NaN NaN
2 1.0  0.237722
3 2.0 -0.023640
4 3.0  0.133155
5 4.0 -0.048693
6 5.0  0.342054
7 6.0  0.370076
8 7.0  0.079587
9 8.0 -0.954504
```

They provide getitem accessors

```
In [7]: r['A'].mean()
Out[7]:
   0   NaN
   1   NaN
   2   1.0
   3   2.0
   4   3.0
   5   4.0
   6   5.0
   7   6.0
   8   7.0
   9   8.0
Name: A, dtype: float64
```

And multiple aggregations

```
In [8]: r.agg({'A' : ['mean','std'],
   ...:     'B' : ['mean','std']})
Out[8]:
   A   B
   mean std  mean  std
0 NaN  NaN  NaN  NaN
1 NaN  NaN  NaN  NaN
2 1.0  1.0  0.237722  1.327364
3 2.0  1.0 -0.023640  1.335505
4 3.0  1.0  0.133155  1.143778
5 4.0  1.0 -0.048693  0.835747
6 5.0  1.0  0.342054  1.143778
7 6.0  1.0  0.370076  0.871850
8 7.0  1.0  0.079587  0.750099
9 8.0  1.0 -0.954504  1.162285
1.6.1.2 Changes to rename

Series.rename and NDFrame.rename_axis can now take a scalar or list-like argument for altering the Series or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)

```
In [9]: s = pd.Series(np.random.randn(5))
In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, dtype: float64
```

```
In [11]: df = pd.DataFrame(np.random.randn(5, 2))
In [12]: (df.rename_axis("indexname")

....:
 ...: .rename_axis("columns_name", axis="columns")

....:
Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152
```

The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a label to a new label. This continues to work as before for function or dict-like values.

1.6.1.3 Range Index

A RangeIndex has been added to the Int64Index sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python range object (xrange in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to Int64Index if needed.

This will now be the default constructed index for NDFrame objects, rather than previous an Int64Index. (GH939, GH12070, GH12071, GH12109, GH12888)

Previous Behavior:

```
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 ..., 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64',
 length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
```
New Behavior:

```
In [13]: s = pd.Series(range(1000))
In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)
In [15]: s.index.nbytes
```

1.6.1.4 Changes to str.extract

The `.str.extract` method takes a regular expression with capture groups, finds the first match in each subject string, and returns the contents of the capture groups (GH11386).

In v0.18.0, the `expand` argument was added to `extract`.

- `expand=False`: it returns a Series, Index, or DataFrame, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).
- `expand=True`: it always returns a DataFrame, which is more consistent and less confusing from the perspective of a user.

Currently the default is `expand=None` which gives a FutureWarning and uses `expand=False`. To avoid this warning, please explicitly specify `expand`.

```
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=None)
```

FutureWarning: currently extract(expand=...) means expand=False (return Index/Series/ → DataFrame)
but in a future version of pandas this will be changed to expand=True (return

```
Out[1]:
0 1
1 2
2 NaN
dtype: object
```

Extracting a regular expression with one group returns a Series if `expand=False`.

```
In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
```

```
Out[16]:
0 1
1 2
2 NaN
dtype: object
```

It returns a DataFrame with one column if `expand=True`.

```
In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
```

```
Out[17]:
 0
0 1
1 2
2 NaN
```

Calling on an Index with a regex with exactly one capture group returns an Index if `expand=False`.
In [18]: s = pd.Series(["a1", "b2", "c3"], ["A1", "B2", "C3"])
In [19]: s.index
Out[19]: Index(['A1', 'B2', 'C3'], dtype='object')
In [20]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[20]: Index(['A', 'B', 'C'], dtype='object', name='letter')

It returns a DataFrame with one column if expand=True.

In [21]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[21]:
      letter
0      A
1      B
2      C

Calling on an Index with a regex with more than one capture group raises ValueError if expand=False.

>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index

It returns a DataFrame if expand=True.

In [22]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[22]:
      letter  1
0      A  11
1      B  22
2      C  33

In summary, extract (expand=True) always returns a DataFrame with a row for every subject string, and a column for every capture group.

1.6.1.5 Addition of str.extractall

The .str.extractall method was added (GH11386). Unlike extract, which returns only the first match.

In [23]: s = pd.Series(["ala2", "b1", "c1"], ["A", "B", "C"])
In [24]: s
Out[24]:
A  ala2
B  b1
C  c1
dtype: object
In [25]: s.str.extract("(?P<letter>[ab])(?P<digit>[0-9])", expand=False)
Out[25]:
      letter  1
A      a  1
B      b  1
C  NaN  NaN

The extractall method returns all matches.
### 1.6.1.6 Changes to str.cat

The method `.str.cat()` concatenates the members of a `Series`. Before, if `NaN` values were present in the Series, calling `.str.cat()` on it would return `NaN`, unlike the rest of the `Series.str.*` API. This behavior has been amended to ignore `NaN` values by default. (GH11435).

A new, friendlier `ValueError` is added to protect against the mistake of supplying the `sep` as an arg, rather than as a kwarg. (GH11334).

```python
In [27]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ')
Out[27]: 'a b c'

In [28]: pd.Series(['a','b',np.nan,'c']).str.cat(sep=' ', na_rep='?')

Out[28]: 'a b ? c'

In [2]: pd.Series(['a','b',np.nan,'c']).str.cat(' ')
ValueError: Did you mean to supply a `sep` keyword?
```

### 1.6.1.7 Datetimelike rounding

`DatetimeIndex`, `Timestamp`, `TimedeltaIndex`, `Timedelta` have gained the `.round()`, `.floor()` and `.ceil()` method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)

Naive datetimes

```python
In [29]: dr = pd.date_range('20130101 09:12:56.1234', periods=3)

In [30]: dr
Out[30]: DatetimeIndex(['2013-01-01 09:12:56.123400', '2013-01-02 09:12:56.123400',
 '2013-01-03 09:12:56.123400'],
 dtype='datetime64[ns]', freq='D')

In [31]: dr.round('s')

→ DatetimeIndex(['2013-01-01 09:12:56', '2013-01-02 09:12:56',
 '2013-01-03 09:12:56'],
 dtype='datetime64[ns]', freq=None)

Timestamp scalar
In [32]: dr[0]

→ Timestamp('2013-01-01 09:12:56.123400', freq='D')

In [33]: dr[0].round('10s')

→ Timestamp('2013-01-01 09:13:00')
```
Tz-aware are rounded, floored and ceiled in local times

```
In [34]: dr = dr.tz_localize('US/Eastern')
In [35]: dr
Out[35]:
Dateti\nmeIndex(['2013-01-01 09:12:56.123400-05:00',
 '2013-01-02 09:12:56.123400-05:00',
 '2013-01-03 09:12:56.123400-05:00'],
 dtype='datetime64[ns, US/Eastern]', freq='D')

In [36]: dr.round('s')
Out[36]:
Datet\nmeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
 '2013-01-03 09:12:56-05:00'],
 dtype='datetime64[ns, US/Eastern]', freq=None)

Timedeltas
```

```
In [37]: t = timedelta_range('1 days 2 hr 13 min 45 us',periods=3,freq='d')
In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',
 '3 days 02:13:00.000045'],
 dtype='timedelta64[ns]', freq='D')

In [39]: t.round('10min')
Out[39]:
TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'],
 dtype='timedelta64[ns]', freq=None)

Timedelta scalar
In [40]: t[0]
Out[40]:
Timedelta('1 days 02:13:00.000045')

In [41]: t[0].round('2h')
Out[41]:
Timedelta('1 days 02:00:00')
```

In addition, `.round()`, `.floor()` and `.ceil()` will be available thru the `.dt` accessor of Series.

```
In [42]: s = pd.Series(dr)
In [43]: s
Out[43]:
0 2013-01-01 09:12:56.123400-05:00
1 2013-01-02 09:12:56.123400-05:00
2 2013-01-03 09:12:56.123400-05:00
dtype: datetime64[ns, US/Eastern]

In [44]: s.dt.round('D')
Out[44]:
0 2013-01-01 00:00:00-05:00
```
1.6.1.8 Formatting of Integers in FloatIndex

Integers in FloatIndex, e.g. 1., are now formatted with a decimal point and a 0 digit, e.g. 1.0 (GH11713) This change not only affects the display to the console, but also the output of IO methods like .to_csv or .to_html.

Previous Behavior:

```python
In [2]: s = pd.Series([1,2,3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
```

New Behavior:

```python
In [45]: s = pd.Series([1,2,3], index=np.arange(3.))
In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
dtype: int64
In [47]: s.index
Out[47]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [48]: print(s.to_csv(path=None))
0.0,1
1.0,2
2.0,3
```

1.6.1.9 Changes to dtype assignment behaviors

When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (GH10503)

Previous Behavior:
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
                      'b': pd.Series([100, 200, 300], dtype='uint32'))

In [7]: df.dtypes
Out[7]:
a    int64
b    uint32
dtype: object

In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
a    int64
b    int64
dtype: object

New Behavior:

In [49]: df = pd.DataFrame({'a': [0, 1, 1],
                         'b': pd.Series([100, 200, 300], dtype='uint32'))

In [50]: df.dtypes
Out[50]:
a    int64
b    uint32
dtype: object
In [51]: ix = df['a'] == 1
In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [53]: df.dtypes
Out[53]:
a    int64
b    int64
dtype: object

When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be downcasted
to integer without losing precision, the dtype of the slice will be set to float instead of integer.

Previous Behavior:

In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
                        columns=list('abc'),
                        index=[[4,4,8], [8,10,12]])

In [5]: df
Out[5]:
   a  b  c
4  5  6
10 11 12
8  9 10

In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
   a  b  c
0  4  8  1
1 10  4  5
2  8 12  7

New Behavior:

In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
                         columns=list('abc'),
                         index=[[4,4,8], [8,10,12]])

In [55]: df
Out[55]:
   a  b  c
0  4  8  1
1 10  4  5
2  8 12  7

In [56]: df.loc[4, 'c'] = np.array([0., 1.])

In [57]: df
Out[57]:
   a  b  c
0  4  8  1
1 10  4  5
2  8 12  7

1.6.1.10 to_xarray

In a future version of pandas, we will be deprecating Panel and other > 2 ndim objects. In order to provide for continuity, all NDFrame objects have gained the .to_xarray() method in order to convert to xarray objects, which has a pandas-like interface for > 2 ndim. (GH11972)

See the xarray full-documentation here.

In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))

In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]])
Coordinates:
* items        (items) int64 0 1
* major_axis   (major_axis) int64 0 1 2
* minor_axis   (minor_axis) int64 0 1 2 3
### 1.6.1.11 Latex Representation

`DataFrame` has gained a `.repr_latex()` method in order to allow for conversion to latex in an iPython/jupyter notebook using nbconvert. (GH11778)

Note that this must be activated by setting the option `pd.display.latex.repr=True` (GH12182)

For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement `pd.display.latex.repr=True` in the first cell to have the contained DataFrame output also stored as latex.

The options `display.latex.escape` and `display.latex.longtable` have also been added to the configuration and are used automatically by the `to_latex` method. See the available options docs for more info.

### 1.6.1.12 `pd.read_sas()` changes

`read_sas` has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see here. (GH4052)

### 1.6.1.13 Other enhancements

- Handle truncated floats in SAS xport files (GH11713)
- Added option to hide index in `Series.to_string` (GH11729)
  - `read_excel` now supports s3 urls of the format s3://bucketname/filename (GH11447)
  - Add support for `AWS_S3_HOST` env variable when reading from s3 (GH12198)
- A simple version of `Panel.round()` is now implemented (GH11763)
- For Python 3.x, `round(DataFrame), round(Series), round(Panel)` will work (GH11763)
- `sys.getsizeof(obj)` returns the memory usage of a pandas object, including the values it contains (GH11597)
- `Series` gained an `is_unique` attribute (GH11946)
- `DataFrame.quantile` and `Series.quantile` now accept interpolation keyword (GH10174).
- Added `DataFrame.style.format` for more flexible formatting of cell values (GH11692)
- `DataFrame.select_dtypes` now allows the `np.float16` typecode (GH11990)
- `pivot_table()` now accepts most iterables for the `values` parameter (GH12017)
- Added Google BigQuery service account authentication support, which enables authentication on remote servers. (GH11881, GH12572). For further details see here
- `HDFStore` is now iterable: for k in store is equivalent to for k in store.keys() (GH12221).
- Add missing methods/fields to `Period` (GH8848)
- The entire codebase has been PEP-ified (GH12096)

### 1.6.2 Backwards incompatible API changes

- the leading whitespaces have been removed from the output of `.to_string(index=False)` method (GH11833)
- the `out` parameter has been removed from the `Series.round()` method. (GH11763)
- `DataFrame.round()` leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- DataFrame.head(0) and DataFrame.tail(0) return empty frames, rather than self. (GH11937)
- Series.head(0) and Series.tail(0) return empty series, rather than self. (GH11937)
- to_msgpack and read_msgpack encoding now defaults to 'utf-8'. (GH12170)
- the order of keyword arguments to text file parsing functions (.read_csv(), .read_table(), .read_fwf()) changed to group related arguments. (GH11555)
- NaTType.isoformat now returns the string 'NaT' to allow the result to be passed to the constructor of Timestamp. (GH12300)

1.6.2.1 NaT and Timedelta operations

NaT and Timedelta have expanded arithmetic operations, which are extended to Series arithmetic where applicable. Operations defined for datetime64[ns] or timedelta64[ns] are now also defined for NaT (GH11564).

NaT now supports arithmetic operations with integers and floats.

```python
In [58]: pd.NaT * 1
Out[58]: NaT

In [59]: pd.NaT * 1.5
Out[59]: NaT

In [60]: pd.NaT / 2
Out[60]: NaT

In [61]: pd.NaT * np.nan
Out[61]: NaT
```

NaT defines more arithmetic operations with datetime64[ns] and timedelta64[ns].

```python
In [62]: pd.NaT / pd.NaT
Out[62]: nan

In [63]: pd.Timedelta('1s') / pd.NaT
Out[63]: nan
```

NaT may represent either a datetime64[ns] null or a timedelta64[ns] null. Given the ambiguity, it is treated as a timedelta64[ns], which allows more operations to succeed.

```python
In [64]: pd.NaT + pd.NaT
Out[64]: NaT

same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
Out[65]: Timedelta('0 days 00:00:02')
```

as opposed to

```python
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
```

However, when wrapped in a Series whose dtype is datetime64[ns] or timedelta64[ns], the dtype information is respected.
In [66]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
Out[66]:
0 NaT
dtype: timedelta64[ns]

Timedelta division by floats now works.

In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')

Subtraction by Timedelta in a Series by a Timestamp works (GH11925)

In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))
In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
dtype: timedelta64[ns]
In [70]: pd.Timestamp('2012-01-01') - ser
Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
dtype: datetime64[ns]

NaT.isoformat() now returns 'NaT'. This change allows pd.Timestamp to rehydrate any timestamp like object from its isoformat (GH12300).

1.6.2.2 Changes to msgpack

Forward incompatible changes in msgpack writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (GH12129, GH10527).

Bugs in to_msgpack and read_msgpack introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.

<table>
<thead>
<tr>
<th>Packed with</th>
<th>Can be unpacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-0.17 / Python 2</td>
<td>any</td>
</tr>
<tr>
<td>pre-0.17 / Python 3</td>
<td>any</td>
</tr>
<tr>
<td>0.17 / Python 2</td>
<td>• ==0.17 / Python 2</td>
</tr>
<tr>
<td></td>
<td>• &gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.17 / Python 3</td>
<td>&gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
1.6.2.3 Signature change for .rank

Series.rank and DataFrame.rank now have the same signature (GH11759)

Previous signature

```python
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
 ascending=True, pct=False)
Out[3]:
 0 1
 1 2
dtype: float64

In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
 method='average', na_option='keep',
 ascending=True, pct=False)
Out[4]:
 0
 1 0
 1 1
```

New signature

```python
In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=None,
 na_option='keep', ascending=True, pct=False)
Out[71]:
 0 1.0
 1 2.0
dtype: float64

In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=None,
 na_option='keep', ascending=True, pct=False)
```

1.6.2.4 Bug in QuarterBegin with n=0

In previous versions, the behavior of the QuarterBegin offset was inconsistent depending on the date when the n parameter was 0. (GH11406)

The general semantics of anchored offsets for n=0 is to not move the date when it is an anchor point (e.g., a quarter start date), and otherwise roll forward to the next anchor point.

```python
In [73]: d = pd.Timestamp('2014-02-01')

In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')

In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[75]: Timestamp('2014-02-01 00:00:00')

In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
Out[76]: Timestamp('2014-04-01 00:00:00')
```
For the QuarterBegin offset in previous versions, the date would be rolled *backwards* if date was in the same month as the quarter start date.

```python
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')
```

This behavior has been corrected in version 0.18.0, which is consistent with other anchored offsets like MonthBegin and YearBegin.

```python
In [77]: d = pd.Timestamp('2014-02-15')
In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')
```

### 1.6.2.5 Resample API

Like the change in the window functions API *above*, `.resample(...)` is changing to have a more groupby-like API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).

```python
In [79]: np.random.seed(1234)
In [80]: df = pd.DataFrame(np.random.rand(10,4),
.....: columns=list('ABCD'),
.....: index=pd.date_range('2010-01-01 09:00:00', periods=10,
˓→freq='s'))
.....:
In [81]: df
Out[81]:
 A B C D
 2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
 2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
 2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
 2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196
 2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
 2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
 2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
 2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
 2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
 2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316
```

**Previous API:**

You would write a resampling operation that immediately evaluates. If a `how` parameter was not provided, it would default to `how='mean'`.

```python
In [6]: df.resample('2s')
Out[6]:
 A B C D
 2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
 2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
 2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
 2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
 2010-01-01 09:00:08 0.510470 0.924868 0.442141 0.909316
```
You could also specify a `how` directly

```
In [7]: df.resample('2s', how='sum')
Out [7]:
 A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
```

New API:

Now, you can write `.resample().` as a 2-stage operation like `.groupby().`, which yields a `Resampler`.

```
In [82]: r = df.resample('2s')
In [83]: r
Out [83]: DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, ...
 →convention=start, base=0]
```

Downsampling

You can then use this object to perform operations. These are downsampling operations (going from a higher frequency to a lower one).

```
In [84]: r.mean()
Out [84]:
 A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.63165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
```

```
In [85]: r.sum()
Out [85]:
 A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.848208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
```

Furthermore, resample now supports `getitem` operations to perform the resample on specific columns.

```
In [86]: r[['A','C']].mean()
Out [86]:
 A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.63165
2010-01-01 09:00:08 0.510470 0.573201
```
and `aggregate` type operations.

```python
In [87]: r.agg({'A': 'mean', 'B': 'sum'})
Out[87]:
 A B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634
```

These accessors can of course, be combined

```python
In [88]: r[['A','B']].agg([['mean','sum']])
Out[88]:
 mean sum mean sum
2010-01-01 09:00:00 0.485748 0.894701 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.588635 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.629165 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.219477 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.068634 0.534317 1.068634
```

### Upsampling

Upsampling operations take you from a lower frequency to a higher frequency. These are now performed with the `Resampler` objects with `backfill()`, `ffill()`, `fillna()` and `asfreq()` methods.

```python
In [89]: s = pd.Series(np.arange(5,dtype='int64'),
 : index=date_range('2010-01-01', periods=5, freq='Q'))
 :
In [90]: s
Out[90]:
2010-03-31 0
2010-06-30 1
2010-09-30 2
2010-12-31 3
2011-03-31 4
Freq: Q-DEC, dtype: int64
```

Previously

```python
In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
```
New API

```python
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
```

**Note:** In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like `mean`) even though you were upsampling, providing a bit of confusion.

### Previous API will work but with deprecations

**Warning:** This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:

```python
In [4]: r = df.resample('2s')
In [6]: r*10
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
 use .resample(...).mean() instead of .resample(...)
Out[6]:
 A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
```

However, getting and assignment operations directly on a `Resampler` will raise a `ValueError`:

```python
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
 use .resample(...).mean() instead of .resample(...)
```

There is a situation where the new API can not perform all the operations when using original code. This code is
intending to resample every 2s, take the mean AND then take the min of those results.

```
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
```

The new API will:

```
In [92]: df.resample('2s').min()
Out[92]:
 A B C D
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581
```

The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise an exception.

To replicate the original operation

```
In [93]: df.resample('2s').mean().min()
Out[93]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
```

### 1.6.2.6 Changes to eval

In prior versions, new columns assignments in an eval expression resulted in an inplace change to the DataFrame. (GH9297, GH8664, GH10486)

```
In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})

In [95]: df
Out[95]:
 a b
0 0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4

In [12]: df.eval('c = a + b')
```

```
FutureWarning: eval expressions containing an assignment currently default to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
```

```
In [13]: df
```
In version 0.18.0, a new `inplace` keyword was added to choose whether the assignment should be done inplace or return a copy.

```python
In [96]: df
Out[96]:
 a b c
0 0.0 0.0 0.0
1 2.5 1.3 3.5
2 5.0 2.7 7.0
3 7.5 3.1 10.5
4 10.0 4.4 14.0

In [97]: df.eval('d = c - b', inplace=False)

In [98]: df

In [99]: df.eval('d = c - b', inplace=True)

Out[100]:
 a b c d
0 0.0 0.0 0.0 0.0
1 2.5 1.3 3.5 2.5
2 5.0 2.7 7.0 5.0
3 7.5 3.1 10.5 7.5
4 10.0 4.4 14.0 10.0
```

**Warning:** For backwards compatibility, `inplace` defaults to `True` if not specified. This will change in a future version of pandas. If your code depends on an inplace assignment you should update to explicitly set `inplace=True`.

The `inplace` keyword parameter was also added to the `query` method.
In [101]: df.query('a > 5')
Out[101]:
    a  b  c  d
3  7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

In [102]: df.query('a > 5', inplace=True)

In [103]: df
Out[103]:
    a  b  c  d
3  7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

**Warning:** Note that the default value for `inplace` in a query is `False`, which is consistent with prior versions.

eval has also been updated to allow multi-line expressions for multiple assignments. These expressions will be evaluated one at a time in order. Only assignments are valid for multi-line expressions.

In [104]: df
Out[104]:
    a  b  c  d
3  7.5 3 10.5 7.5
4 10.0 4 14.0 10.0

In [105]: df.eval(""'
   .....: e = d + a
   .....: f = e - 22
   .....: g = f / 2.0"'", inplace=True)
   
In [106]: df
Out[106]:
    a  b  c  d  e  f  g
3  7.5 3 10.5 7.5 15.0 -7.0 -3.5
4 10.0 4 14.0 10.0 20.0 -2.0 -1.0

1.6.2.7 Other API Changes

- `DataFrame.between_time` and `Series.between_time` now only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises a `ValueError`. (GH11818)

In [107]: s = pd.Series(range(10), pd.date_range('2015-01-01', freq='H', periods=10))

In [108]: s.between_time("7:00am", "9:00am")
Out[108]:
2015-01-01 07:00:00    7
2015-01-01 08:00:00    8
2015-01-01 09:00:00    9
Freq: H, dtype: int64

This will now raise.
• `memory_usage()` now includes values in the index, as does `memory_usage` in `.info()` (GH11597)
• `DataFrame.to_latex()` now supports non-ascii encodings (eg `utf-8`) in Python 2 with the parameter encoding (GH7061)
• `pandas.merge()` and `DataFrame.merge()` will show a specific error message when trying to merge with an object that is not of type `DataFrame` or a subclass (GH12081)
• `DataFrame.unstack` and `Series.unstack` now take `fill_value` keyword to allow direct replacement of missing values when an unstack results in missing values in the resulting `DataFrame`. As an added benefit, specifying `fill_value` will preserve the data type of the original stacked data. (GH9746)
• As part of the new API for `window functions` and `resampling`, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in `groupby`.
• Statistical functions for `NDFrame` objects (like `sum()`, `mean()`, `min()`) will now raise if non-numpy-compatible arguments are passed in for **kwargs (GH12301)
• `.to_latex` and `.to_html` gain a `decimal` parameter like `.to_csv`; the default is `'.'` (GH12031)
• More helpful error message when constructing a `DataFrame` with empty data but with indices (GH8020)
• `.describe()` will now properly handle bool dtype as a categorical (GH6625)
• More helpful error message with an invalid `.transform` with user defined input (GH10165)
• Exponentially weighted functions now allow specifying `alpha` directly (GH10789) and raise `ValueError` if parameters violate $0 < \alpha \leq 1$ (GH12492)

1.6.2.8 Deprecations

• The functions `pd.rolling_*`, `pd.expanding_*`, and `pd.ewm*` are deprecated and replaced by the corresponding method call. Note that the new suggested syntax includes all of the arguments (even if default) (GH11603)
• The `freq` and `how` arguments to the `.rolling`, `.expanding`, and `.ewm` (new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (GH11603).

For example, instead of `s.rolling(window=5,freq='D').max()` to get the max value on a rolling 5 Day window, one could use `s.resample('D').mean().rolling(window=5).max()`, which first resamples the data to daily data, then provides a rolling 5 day window.

• `pd.tseries.frequencies.get_offset_name` function is deprecated. Use offset’s `.freqstr` property as alternative (GH11192)

• `pandas.stats.fama_macbeth` routines are deprecated and will be removed in a future version (GH6077)

• `pandas.stats.ols`, `pandas.stats.plm` and `pandas.stats.var` routines are deprecated and will be removed in a future version (GH6077)

• show a `FutureWarning` rather than a `DeprecationWarning` on using long-time deprecated syntax in `HDFStore.select`, where the `where` clause is not a string-like (GH12027)

• The `pandas.options.display.mpl_style` configuration has been deprecated and will be removed in a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).

### 1.6.2.9 Removal of deprecated float indexers

In GH4892 indexing with floating point numbers on a non-`Float64Index` was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is removed and these will now raise a `TypeError`. (GH12165, GH12333)

```python
In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])

In [110]: s
Out[110]:
4 1
5 2
6 3
dtype: int64

In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))

In [112]: s2
Out[112]:
a 1
b 2
c 3
dtype: int64
```

Previous Behavior:

```python
this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2

this is positional indexing
In [3]: s.iloc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
```

1.6. v0.18.0 (March 13, 2016)
Out[3]: 2

# this is label indexing
In [4]: s.loc[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[4]: 2

# .ix would coerce 1.0 to the positional 1, and index
In [5]: s2.ix[1.0] = 10
FutureWarning: scalar indexers for index type Index should be integers and not floating point
In [6]: s2
Out[6]:
a 1
b 10
c 3
dtype: int64

New Behavior:

For iloc, getting & setting via a float scalar will always raise.

In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexers [2.0] of <type 'float'>

Other indexers will coerce to a like integer for both getting and setting. The FutureWarning has been dropped for .loc, .ix and [].

In [113]: s[5.0]
Out[113]: 2

In [114]: s.loc[5.0]
Out[114]: 2

and setting

In [115]: s_copy = s.copy()

In [116]: s_copy[5.0] = 10

In [117]: s_copy
Out[117]:
   4   1
   5  10
   6   3
dtype: int64

In [118]: s_copy = s.copy()

In [119]: s_copy.loc[5.0] = 10

In [120]: s_copy
Out[120]:
   4   1
   5  10
Positional setting with `.ix` and a float indexer will ADD this value to the index, rather than previously setting the value by position.

In [3]: s2.ix[1.0] = 10
In [4]: s2
Out[4]:
   a  1
   b  2
   c  3
   1.0 10
dtype: int64

Slicing will also coerce integer-like floats to integers for a non-Float64Index.

In [121]: s.loc[5.0:6]
Out[121]:
   5  2
   6  3
dtype: int64

Note that for floats that are NOT coercible to ints, the label based bounds will be excluded

In [122]: s.loc[5.1:6]
Out[122]:
   6  3
dtype: int64

Float indexing on a Float64Index is unchanged.

In [123]: s = pd.Series([1, 2, 3], index=np.arange(3.))
In [124]: s[1.0]
Out[124]:
   1.0  2
   dtype: int64
In [125]: s[1.0:2.5]
   \\\\\\\Out[125]:
   1.0  2
   2.0  3
dtype: int64

1.6.2.10 Removal of prior version deprecations/changes

- Removal of `rolling_corr_pairwise` in favor of `.rolling().corr(pairwise=True)` (GH4950)
- Removal of `expanding_corr_pairwise` in favor of `.expanding().corr(pairwise=True)` (GH4950)
- Removal of `DataMatrix` module. This was not imported into the pandas namespace in any event (GH12111)
- Removal of `cols` keyword in favor of `subset` in DataFrame.duplicated() and DataFrame.drop_duplicates() (GH6680)
- Removal of the `read_frame` and `frame_query` (both aliases for `pd.read_sql`) and `write_frame` (alias of `to_sql`) functions in the `pd.io.sql` namespace, deprecated since 0.14.0 (GH6292).
pandas: powerful Python data analysis toolkit, Release 0.20.1

• Removal of the order keyword from .factorize() (GH6930)

1.6.3 Performance Improvements

• Improved performance of andrews_curves (GH11534)
• Improved huge DatetimeIndex, PeriodIndex and TimedeltaIndex’s ops performance including NaT (GH10277)
• Improved performance of pandas.concat (GH11958)
• Improved performance of StataReader (GH11591)
• Improved performance in construction of Categoricals with Series of datetimes containing NaT (GH12077)
• Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros (GH11871) and with whitespace preceding the time zone (GH9714)

1.6.4 Bug Fixes

• Bug in GroupBy.size when data-frame is empty. (GH11699)
• Bug in Period.end_time when a multiple of time period is requested (GH11738)
• Regression in .clip with tz-aware datetimes (GH11838)
• Bug in date_range when the boundaries fell on the frequency (GH11804, GH12409)
• Bug in consistency of passing nested dicts to .groupby(...).agg(...) (GH9052)
• Accept unicode in Timedelta constructor (GH11995)
• Bug in value label reading for StataReader when reading incrementally (GH12014)
• Bug in vectorized DateOffset when n parameter is 0 (GH11370)
• Compat for numpy 1.11 w.r.t. NaT comparison changes (GH12049)
• Bug in read_csv when reading from a StringIO in threads (GH11790)
• Bug in not treating NaT as a missing value in datetimelikes when factorizing & with Categoricals (GH12077)
• Bug in getitem when the values of a Series were tz-aware (GH12089)
• Bug in Series.str.get_dummies when one of the variables was ‘name’ (GH12180)
• Bug in pd.concat while concatenating tz-aware NaT series. (GH11693, GH11755, GH12217)
• Bug in pd.read_stata with version <= 108 files (GH12232)
• Bug in Series.resample using a frequency of Nano when the index is a DatetimeIndex and contains non-zero nanosecond parts (GH12037)
• Bug in resampling with .nunique and a sparse index (GH12352)
• Removed some compiler warnings (GH12471)
• Work around compat issues with boto in python 3.5 (GH11915)
• Bug in NaT subtraction from Timestamp or DatetimeIndex with timezones (GH11718)
• Bug in subtraction of Series or a single tz-aware Timestamp (GH12290)
• Use compat iterators in PY2 to support \texttt{.next()} (GH12299)
• Bug in \texttt{Timedelta.round} with negative values (GH11690)
• Bug in \texttt{.loc} against \texttt{CategoricalIndex} may result in normal Index (GH11586)
• Bug in \texttt{DataFrame.info} when duplicated column names exist (GH11761)
• Bug in \texttt{.copy} of datetime tz-aware objects (GH11794)
• Bug in \texttt{Series.apply} and \texttt{Series.map} where \texttt{timedelta64} was not boxed (GH11349)
• Bug in \texttt{DataFrame.set_index()} with tz-aware Series (GH12358)
• Bug in subclasses of \texttt{DataFrame} where \texttt{AttributeError} did not propagate (GH11808)
• Bug groupby on tz-aware data where selection not returning \texttt{Timestamp} (GH11616)
• Bug in \texttt{pd.read_clipboard} and \texttt{pd.to_clipboard} functions not supporting Unicode; upgrade included \texttt{pyperclip} to v1.5.15 (GH9263)
• Bug in \texttt{DataFrame.query} containing an assignment (GH8664)
• Bug in \texttt{from_msgpack} where \texttt{__contains__()} fails for columns of the unpacked DataFrame, if the DataFrame has object columns. (GH11880)
• Bug in \texttt{.resample} on categorical data with \texttt{TimedeltaIndex} (GH12169)
• Bug in timezone info lost when broadcasting scalar datetime to \texttt{DataFrame} (GH11682)
• Bug in \texttt{Index} creation from \texttt{Timestamp} with mixed tz coerces to UTC (GH11488)
• Bug in \texttt{to_numeric} where it does not raise if input is more than one dimension (GH11776)
• Bug in parsing timezone offset strings with non-zero minutes (GH11708)
• Bug in \texttt{df.plot} using incorrect colors for bar plots under matplotlib 1.5+ (GH11614)
• Bug in the \texttt{groupby plot} method when using keyword arguments (GH11805).
• Bug in \texttt{DataFrame.duplicated} and \texttt{drop_duplicates} causing spurious matches when setting \texttt{keep=False} (GH11864)
• Bug in \texttt{.loc} result with duplicated key may have \texttt{Index} with incorrect dtype (GH11497)
• Bug in \texttt{pd.rolling_median} where memory allocation failed even with sufficient memory (GH11696)
• Bug in \texttt{DataFrame.style} with spurious zeros (GH12134)
• Bug in \texttt{DataFrame.style} with integer columns not starting at 0 (GH12125)
• Bug in \texttt{.style.bar} may not rendered properly using specific browser (GH11678)
• Bug in rich comparison of \texttt{Timedelta} with a \texttt{numpy.array} of \texttt{Timedelta} that caused an infinite recursion (GH11835)
• Bug in \texttt{DataFrame.round} dropping column index name (GH11986)
• Bug in \texttt{df.replace} while replacing value in mixed dtype \texttt{Dataframe} (GH11698)
• Bug in \texttt{Index} prevents copying name of passed \texttt{Index}, when a new name is not provided (GH1193)
• Bug in \texttt{read_excel} failing to read any non-empty sheets when empty sheets exist and \texttt{sheetname=None} (GH11711)
• Bug in \texttt{read_excel} failing to raise \texttt{NotImplemented} error when keywords \texttt{parse_dates} and \texttt{date_parser} are provided (GH11544)
• Bug in \texttt{read_sql} with \texttt{pymysql} connections failing to return chunked data (GH11522)
• Bug in `.to_csv` ignoring formatting parameters `decimal`, `na_rep`, `float_format` for float indexes (GH11553)
• Bug in `Int64Index` and `Float64Index` preventing the use of the modulo operator (GH9244)
• Bug in `MultiIndex.drop` for not lexsorted multi-indexes (GH12078)
• Bug in `DataFrame` when masking an empty `DataFrame` (GH11859)
• Bug in `.plot` potentially modifying the `colors` input when the number of columns didn’t match the number of series provided (GH12039).
• Bug in `Series.plot` failing when index has a `CustomBusinessDay` frequency (GH7222).
• Bug in `.to_sql` for `datetime.time` values with sqlite fallback (GH8341)
• Bug in `read_excel` failing to read data with one column when `squeeze=True` (GH12157)
• Bug in `read_excel` failing to read one empty column (GH12292, GH9002)
• Bug in `.groupby` where a `KeyError` was not raised for a wrong column if there was only one row in the dataframe (GH11741)
• Bug in `.read_csv` with `dtype` specified on empty data producing an error (GH12048)
• Bug in `.read_csv` where strings like `'2E'` are treated as valid floats (GH12237)
• Bug in building `pandas` with debugging symbols (GH12123)
• Removed millisecond property of `DatetimeIndex`. This would always raise a `ValueError` (GH12019).
• Bug in `Series` constructor with read-only data (GH11502)
• Removed `pandas.util.testing.choice()`. Should use `np.random.choice()`, instead. (GH12386)
• Bug in `.loc` setitem indexer preventing the use of a TZ-aware `DatetimeIndex` (GH12050)
• Bug in `.style` indexes and multi-indexes not appearing (GH11655)
• Bug in `to_msgpack` and `from_msgpack` which did not correctly serialize or deserialize `NaT` (GH12307).
• Bug in `.skew` and `.kurt` due to roundoff error for highly similar values (GH11974)
• Bug in `Timestamp` constructor where microsecond resolution was lost if HHMMSS were not separated with `:'` (GH10041)
• Bug in `buffer_rd_bytes` src->buffer could be freed more than once if reading failed, causing a segfault (GH12098)
• Bug in `crosstab` where arguments with non-overlapping indexes would return a `KeyError` (GH10291)
• Bug in `DataFrame.apply` in which reduction was not being prevented for cases in which `dtype` was not a `numpy` data type (GH12244)
• Bug when initializing categorical series with a scalar value. (GH12336)
• Bug when specifying a UTC `DatetimeIndex` by setting `utc=True` in `.to_datetime` (GH11934)
• Bug when increasing the buffer size of CSV reader in `read_csv` (GH12494)
• Bug when setting columns of a `DataFrame` with duplicate column names (GH12344)
1.7 v0.17.1 (November 21, 2015)

Note: We are proud to announce that pandas has become a sponsored project of the (NUMFocus organization). This will help ensure the success of development of pandas as a world-class open-source project.

This is a minor bug-fix release from 0.17.0 and includes a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• Support for Conditional HTML Formatting, see here
• Releasing the GIL on the csv reader & other ops, see here
• Fixed regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376)

What’s new in v0.17.1

• New features
  – Conditional HTML Formatting
• Enhancements
• API changes
  – Deprecations
• Performance Improvements
• Bug Fixes

1.7.1 New features

1.7.1.1 Conditional HTML Formatting

Warning: This is a new feature and is under active development. We’ll be adding features an possibly making breaking changes in future releases. Feedback is welcome.

We’ve added experimental support for conditional HTML formatting: the visual styling of a DataFrame based on the data. The styling is accomplished with HTML and CSS. Acesses the styler class with the pandas.DataFrame.style, attribute, an instance of Styler with your data attached.

Here’s a quick example:

```
In [1]: np.random.seed(123)
In [2]: df = DataFrame(np.random.randn(10, 5), columns=list('abcde'))
In [3]: html = df.style.background_gradient(cmap='viridis', low=.5)
```

We can render the HTML to get the following table.
Styler interacts nicely with the Jupyter Notebook. See the documentation for more.

1.7.2 Enhancements

- DatetimeIndex now supports conversion to strings with astype(str) (GH10442)
- Support for compression (gzip/bz2) in pandas.DataFrame.to_csv() (GH7615)
- `pd.read_*` functions can now also accept `pathlib.Path` or `py._path.local.LocalPath` objects for the `filepath_or_buffer` argument. (GH11033) - The DataFrame and Series functions .to_csv(), .to_html() and .to_latex() can now handle paths beginning with tildes (e.g. ~/Documents/) (GH11438)
- DataFrame now uses the fields of a namedtuple as columns, if columns are not supplied (GH11181)
- DataFrame.itertuples() now returns namedtuple objects, when possible. (GH11269, GH11625)
- Added `axvlines_kwds` to parallel coordinates plot (GH10709)
- Option to .info() and .memory_usage() to provide for deep introspection of memory consumption. Note that this can be expensive to compute and therefore is an optional parameter. (GH11595)

```python
In [4]: df = DataFrame({'A': ['foo']*1000})
In [5]: df['B'] = df['A'].astype('category')

shows the '+' as we have object dtypes
In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
 A 1000 non-null object
 B 1000 non-null category
dtypes: category(1), object(1)
memory usage: 9.0+ KB

we have an accurate memory assessment (but can be expensive to compute this)
In [7]: df.info(memory_usage='deep')

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
 A 1000 non-null object
 B 1000 non-null category
dtypes: category(1), object(1)
memory usage: 75.4 KB
```

- Index now has a `fillna` method (GH10089)

```python
In [8]: pd.Index([1, np.nan, 3]).fillna(2)
Out[8]: Float64Index([1.0, 2.0, 3.0], dtype='float64')
```

- Series of type category now make .str.<...> and .dt.<...> accessor methods / properties available, if the categories are of that type. (GH10661)

```python
In [9]: s = pd.Series(list('aabb')).astype('category')
In [10]: s
Out[10]:
```

---

136 Chapter 1. What's New
In [11]: s.str.contains("a")
Out[11]:
0  True
1  True
2  False
3  False
dtype: bool

In [12]: date = pd.Series(pd.date_range('1/1/2015', periods=5)).astype('category')

In [13]: date
Out[13]:
0 2015-01-01
1 2015-01-02
2 2015-01-03
3 2015-01-04
4 2015-01-05
dtype: category

In [14]: date.dt.day
Out[14]:
0 1
1 2
2 3
3 4
4 5
dtype: int64

• *pivot_table* now has a *margins_name* argument so you can use something other than the default of ‘All’ (GH3335)

• Implement export of *datetime64[ns, tz]* dtypes with a fixed HDF5 store (GH11411)

• Pretty printing sets (e.g. in DataFrame cells) now uses set literal syntax (\{x, y\}) instead of Legacy Python syntax (set([x, y])) (GH11215)

• Improve the error message in *pandas.io.gbq.to_gbq()* when a streaming insert fails (GH11285) and when the DataFrame does not match the schema of the destination table (GH11359)

### 1.7.3 API changes

• raise *NotImplementedError* in *Index.shift* for non-supported index types (GH8038)

• *min* and *max* reductions on *datetime64* and *timedelta64* dtyped series now result in *NaT* and not *nan* (GH11245).

• Indexing with a null key will raise a *TypeError*, instead of a *ValueError* (GH11356)
• Series.ptp will now ignore missing values by default (GH11163)

1.7.3.1 Deprecations

• The pandas.io.ga module which implements google-analytics support is deprecated and will be removed in a future version (GH11308)

• Deprecate the engine keyword in .to_csv(), which will be removed in a future version (GH11274)

1.7.4 Performance Improvements

• Checking monotonic-ness before sorting on an index (GH11080)

• Series.dropna performance improvement when its dtype can’t contain NaN (GH11159)

• Release the GIL on most datetime field operations (e.g. DatetimeIndex.year, Series.dt.year), normalization, and conversion to and from Period, DatetimeIndex.to_period and PeriodIndex.to_timestamp (GH11263)

• Release the GIL on some rolling algs: rolling_median, rolling_mean, rolling_max, rolling_min, rolling_var, rolling_kurt, rolling_skew (GH11450)

• Release the GIL when reading and parsing text files in read_csv, read_table (GH11272)

• Improved performance of rolling_median (GH11450)

• Improved performance of to_excel (GH11352)

• Performance bug in repr of Categorical categories, which was rendering the strings before chopping them for display (GH11305)

• Performance improvement in Categorical.remove_unused_categories, (GH11643).

• Improved performance of Series constructor with no data and DatetimeIndex (GH11433)

• Improved performance of shift, cumprod, and cumsum with groupby (GH4095)

1.7.5 Bug Fixes

• SparseArray.__iter__() now does not cause PendingDeprecationWarning in Python 3.5 (GH11622)

• Regression from 0.16.2 for output formatting of long floats/nan, restored in (GH11302)

• Series.sort_index() now correctly handles the inplace option (GH11402)

• Incorrectly distributed .c file in the build on PyPi when reading a csv of floats and passing na_values=<a scalar> would show an exception (GH11374)

• Bug in .to_latex() output broken when the index has a name (GH10660)

• Bug in HDFStore.append with strings whose encoded length exceeded the max unencoded length (GH11234)

• Bug in merging datetime64[ns, tz] dtypes (GH11405)

• Bug in HDFStore.select when comparing with a numpy scalar in a where clause (GH11283)

• Bug in using DataFrame.ix with a multi-index indexer (GH11372)

• Bug in date_range with ambiguous endpoints (GH11626)
• Prevent adding new attributes to the accessors \texttt{.str}, \texttt{.dt} and \texttt{.cat}. Retrieving such a value was not possible, so error out on setting it. (GH10673)

• Bug in tz-conversions with an ambiguous time and \texttt{.dt} accessors (GH11295)

• Bug in output formatting when using an index of ambiguous times (GH11619)

• Bug in comparisons of Series vs list-likes (GH11339)

• Bug in \texttt{DataFrame.replace} with a \texttt{datetime64[ns, tz]} and a non-compat \texttt{to_replace} (GH11326, GH11153)

• Bug in isnull where numpy.datetime64('NaT') in a numpy.array was not determined to be null(GH11206)

• Bug in list-like indexing with a mixed-integer Index (GH11320)

• Bug in \texttt{pivot_table} with \texttt{margins=True} when indexes are of \texttt{Categorical} dtype (GH10993)

• Bug in \texttt{DataFrame.plot} cannot use hex strings colors (GH10299)

• Regression in \texttt{DataFrame.drop_duplicates} from 0.16.2, causing incorrect results on integer values (GH11150)

• Bug in \texttt{pd.eval} where unary ops in a list error (GH11235)

• Bug in \texttt{squeeze()} with zero length arrays (GH11230, GH8999)

• Bug in \texttt{describe()} dropping column names for hierarchical indexes (GH11517)

• Bug in \texttt{DataFrame.pct_change()} not propagating \texttt{axis} keyword on \texttt{.fillna} method (GH11150)

• Bug in \texttt{.to_csv()} when a mix of integer and string column names are passed as the \texttt{columns} parameter (GH11637)

• Bug in indexing with a range, (GH11652)

• Bug in inference of numpy scalars and preserving dtype when setting columns (GH11638)

• Bug in \texttt{to_sql} using unicode column names giving UnicodeEncodeError with (GH11431).

• Fix regression in setting of \texttt{xticks} in \texttt{plot} (GH11529).

• Bug in \texttt{holiday.dates} where observance rules could not be applied to holiday and doc enhancement (GH11477, GH11533)

• Fix plotting issues when having plain \texttt{Axes} instances instead of \texttt{SubplotAxes} (GH11520, GH11556).

• Bug in \texttt{DataFrame.to_latex()} produces an extra rule when \texttt{header=False} (GH7124)

• Bug in \texttt{df.groupby(...).apply(func)} when a func returns a Series containing a new datetimelike column (GH11324)

• Bug in \texttt{pandas.json} when file to load is big (GH11344)

• Bugs in \texttt{to_excel} with duplicate columns (GH11007, GH10982, GH10970)

• Fixed a bug that prevented the construction of an empty series of dtype \texttt{datetime64[ns, tz]} (GH11245).

• Bug in \texttt{read_excel} with multi-index containing integers (GH11317)

• Bug in \texttt{to_excel} with openpyxl 2.2+ and merging (GH11408)

• Bug in \texttt{DataFrame.to_dict()} produces a \texttt{np.datetime64} object instead of \texttt{Timestamp} when only datetime is present in data (GH11327)

• Bug in \texttt{DataFrame.corr()} raises exception when computes Kendall correlation for DataFrames with boolean and not boolean columns (GH11560)
• Bug in the link-time error caused by C inline functions on FreeBSD 10+ (with clang) (GH10510)
• Bug in DataFrame.to_csv in passing through arguments for formatting MultiIndexes, including date_format (GH7791)
• Bug in DataFrame.join() with how='right' producing a TypeError (GH11519)
• Bug in Series.quantile with empty list results has Index with object dtype (GH11588)
• Bug in pd.merge results in empty Int64Index rather than Index(dtype=object) when the merge result is empty (GH11588)
• Bug in Categorical.remove_unused_categories when having NaN values (GH11599)
• Bug in DataFrame.to_sparse() loses column names for MultiIndexes (GH11600)
• Bug in DataFrame.round() with non-unique column index producing a Fatal Python error (GH11611)
• Bug in DataFrame.round() with decimals being a non-unique indexed Series producing extra columns (GH11618)

1.8 v0.17.0 (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.17.0 will no longer support compatibility with Python version 3.2 (GH9118)

Warning: The pandas.io.data package is deprecated and will be replaced by the pandas-datareader package. This will allow the data modules to be independently updated to your pandas installation. The API for pandas-datareader v0.1.1 is exactly the same as in pandas v0.17.0 (GH8961, GH10861).

After installing pandas-datareader, you can easily change your imports:

from pandas.io import data, wb

becomes

from pandas_datareader import data, wb

Highlights include:

• Release the Global Interpreter Lock (GIL) on some cython operations, see here
• Plotting methods are now available as attributes of the .plot accessor, see here
• The sorting API has been revamped to remove some long-time inconsistencies, see here
• Support for a datetime64[ns] with timezones as a first-class dtype, see here
• The default for to_datetime will now be to raise when presented with unparsable formats, previously this would return the original input. Also, date parse functions now return consistent results. See here
• The default for dropna in HDFStore has changed to False, to store by default all rows even if they are all NaN, see here
• Datetime accessor (dt) now supports `Series.dt.strftime` to generate formatted strings for datetime-likes, and `Series.dt.total_seconds` to generate each duration of the timedelta in seconds. See [here](#).
• Period and `PeriodIndex` can handle multiplied freq like `3D`, which corresponding to 3 days span. See [here](#).
• Development installed versions of pandas will now have PEP440 compliant version strings (GH9518).
• Development support for benchmarking with the Air Speed Velocity library (GH8361).
• Support for reading SAS xport files, see [here](#).
• Documentation comparing SAS to pandas, see [here](#).
• Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see [here](#).
• Display format with plain text can optionally align with Unicode East Asian Width, see [here](#).
• Compatibility with Python 3.5 (GH11097).
• Compatibility with matplotlib 1.5.0 (GH11111).

Check the API Changes and deprecations before updating.

### What’s new in v0.17.0

- **New features**
  - Datetime with TZ
  - Releasing the GIL
  - Plot submethods
  - Additional methods for `dt` accessor
    - `strftime`
    - `total_seconds`
  - Period Frequency Enhancement
  - Support for SAS XPORT files
  - Support for Math Functions in `.eval()`
  - Changes to Excel with `MultiIndex`
  - Google BigQuery Enhancements
  - Display Alignment with Unicode East Asian Width
  - Other enhancements
- **Backwards incompatible API changes**
  - Changes to sorting API
  - Changes to `to_datetime` and `to_timedelta`
    - Error handling
    - Consistent Parsing
  - Changes to Index Comparisons
  - Changes to Boolean Comparisons vs. None
  - `HDFStore` dropna behavior
1.8.1 New features

1.8.1.1 Datetime with TZ

We are adding an implementation that natively supports datetime with timezones. A Series or a DataFrame column previously could be assigned a datetime with timezones, and would work as an object dtype. This had performance issues with a large number rows. See the docs for more details. (GH8260, GH10763, GH11034).

The new implementation allows for having a single-timezone across all rows, with operations in a performant manner.

```python
In [1]: df = DataFrame({'A' : date_range('20130101', periods=3),
 ...: 'B' : date_range('20130101', periods=3, tz='US/Eastern'),
 ...: 'C' : date_range('20130101', periods=3, tz='CET'))

In [2]: df
Out[2]:
 A B C
0 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
1 2013-01-02 00:00:00-05:00 2013-01-02 00:00:00+01:00
2 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00

In [3]: df.dtypes
 →
A datetime64[ns]
B datetime64[ns, US/Eastern]
C datetime64[ns, CET]
dtype: object

In [4]: df.B
Out[4]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
Name: B, dtype: datetime64[ns, US/Eastern]

In [5]: df.B.dt.tz_localize(None)
 →
0 2013-01-01
1 2013-01-02
```
This uses a new-dtype representation as well, that is very similar in look-and-feel to its numpy cousin `datetime64[ns]`

```
In [6]: df['B'].dtype
Out[6]: datetime64[ns, US/Eastern]
```

```
In [7]: type(df['B'].dtype)
```

```
Out[7]: pandas.core.dtypes.dtypes.DatetimeTZDtype
```

**Note:** There is a slightly different string repr for the underlying `DateTimeIndex` as a result of the dtype changes, but functionally these are the same.

**Previous Behavior:**

```
In [1]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[1]: DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00', '2013-01-03 00:00:00-05:00'],
 dtype='datetime64[ns]', freq='D', tz='US/Eastern')
```

```
In [2]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
```

```
Out[2]: dtype('<M8[ns]')
```

**New Behavior:**

```
In [8]: pd.date_range('20130101',periods=3,tz='US/Eastern')
Out[8]: DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00', '2013-01-03 00:00:00-05:00'],
 dtype='datetime64[ns, US/Eastern]', freq='D')
```

```
In [9]: pd.date_range('20130101',periods=3,tz='US/Eastern').dtype
```

```
Out[9]: dtype('datetime64[ns, US/Eastern]
```

### 1.8.1.2 Releasing the GIL

We are releasing the global-interpreter-lock (GIL) on some cython operations. This will allow other threads to run simultaneously during computation, potentially allowing performance improvements from multi-threading. Notably `groupby`, `nsmallest`, `value_counts` and some indexing operations benefit from this. (GH8882)

For example the groupby expression in the following code will have the GIL released during the factorization step, e.g. `df.groupby('key')` as well as the `.sum()` operation.

```
N = 1000000
ngroups = 10
df = DataFrame({'key' : np.random.randint(0,ngroups,size=N),
 'data' : np.random.randn(N) })
df.groupby('key')['data'].sum()
```

Releasing of the GIL could benefit an application that uses threads for user interactions (e.g. QT), or performing multi-threaded computations. A nice example of a library that can handle these types of computation-in-parallel is the dask library.
1.8.1.3 Plot submethods

The Series and DataFrame .plot() method allows for customizing plot types by supplying the kind keyword arguments. Unfortunately, many of these kinds of plots use different required and optional keyword arguments, which makes it difficult to discover what any given plot kind uses out of the dozens of possible arguments.

To alleviate this issue, we have added a new, optional plotting interface, which exposes each kind of plot as a method of the .plot attribute. Instead of writing series.plot(kind=<kind>, ...), you can now also use series.plot.<kind>(...):

In [10]: df = pd.DataFrame(np.random.rand(10, 2), columns=['a', 'b'])
In [11]: df.plot.bar()

![Bar plot]

As a result of this change, these methods are now all discoverable via tab-completion:

```
In [12]: df.plot.<TAB>
df.plot.area df.plot.barche df.plot.density df.plot.hist df.plot.line
 →df.plot.scatter
 df.plot.bar df.plot.boxe df.plot.hexbin df.plot.kde df.plot.pie
```

Each method signature only includes relevant arguments. Currently, these are limited to required arguments, but in the future these will include optional arguments, as well. For an overview, see the new Plotting API documentation.

1.8.1.4 Additional methods for dt accessor

strftime

We are now supporting a Series.dt.strftime method for datetime-likes to generate a formatted string (GH10110). Examples:

```
DatetimeIndex
In [13]: s = pd.Series(pd.date_range('20130101', periods=4))
```
In [14]: s
Out[14]:
0  2013-01-01  
1  2013-01-02  
2  2013-01-03  
3  2013-01-04  
dtype: datetime64[ns]

In [15]: s.dt.strftime('%Y/%m/%d')
Out[15]:
0  2013/01/01  
1  2013/01/02  
2  2013/01/03  
3  2013/01/04  
dtype: object

# PeriodIndex
In [16]: s = pd.Series(pd.period_range('20130101', periods=4))

In [17]: s
Out[17]:
0  2013-01-01  
1  2013-01-02  
2  2013-01-03  
3  2013-01-04  
dtype: object

In [18]: s.dt.strftime('%Y/%m/%d')
Out[18]:
0  2013/01/01  
1  2013/01/02  
2  2013/01/03  
3  2013/01/04  
dtype: object

The string format is as the python standard library and details can be found here

**total_seconds**

d.Series of type timedelta64 has new method .dt.total_seconds() returning the duration of the timedelta in seconds (GH10817)

# TimedeltaIndex
In [19]: s = pd.Series(pd.timedelta_range('1 minutes', periods=4))

In [20]: s
Out[20]:
0  0 days 00:01:00  
1  1 days 00:01:00  
2  2 days 00:01:00  
3  3 days 00:01:00  
dtype: timedelta64[ns]
1.8.1.5 Period Frequency Enhancement

Period, PeriodIndex and period_range can now accept multiplied freq. Also, Period.freq and PeriodIndex.freq are now stored as a DateOffset instance like DatetimeIndex, and not as str (GH7811)

A multiplied freq represents a span of corresponding length. The example below creates a period of 3 days. Addition and subtraction will shift the period by its span.

```
In [22]: p = pd.Period('2015-08-01', freq='3D')
In [23]: p
Out[23]: Period('2015-08-01', '3D')
In [24]: p + 1
Out[24]: Period('2015-08-04', '3D')
In [25]: p - 2
Out[25]: Period('2015-07-26', '3D')
In [26]: p.to_timestamp()
Out[26]: Timestamp('2015-08-01 00:00:00')
In [27]: p.to_timestamp(how='E')
Out[27]: Timestamp('2015-08-03 00:00:00')
```

You can use the multiplied freq in PeriodIndex and period_range.

```
In [28]: idx = pd.period_range('2015-08-01', periods=4, freq='2D')
In [29]: idx
Out[29]: PeriodIndex(['2015-08-01', '2015-08-03', '2015-08-05', '2015-08-07'], dtype='period[2D]', freq='2D')
In [30]: idx + 1
Out[30]: PeriodIndex(['2015-08-03', '2015-08-05', '2015-08-07', '2015-08-09'], dtype='period[2D]', freq='2D')
```

1.8.1.6 Support for SAS XPORT files

read_sas() provides support for reading SAS XPORT format files. (GH4052).
df = pd.read_sas('sas_xport.xpt')

It is also possible to obtain an iterator and read an XPORT file incrementally.

```python
for df in pd.read_sas('sas_xport.xpt', chunksize=10000)
do_something(df)
```

See the docs for more details.

### 1.8.1.7 Support for Math Functions in .eval()

`eval()` now supports calling math functions (GH4893)

```python
df = pd.DataFrame({'a': np.random.randn(10)})
df.eval("b = sin(a)")
```

The support math functions are `sin`, `cos`, `exp`, `log`, `expm1`, `log1p`, `sqrt`, `log`, `arcsin`, `arccos`, `arctan`, `arccosh`, `arcsinh`, `arctanh`, `abs` and `arctan2`.

These functions map to the intrinsics for the NumExpr engine. For the Python engine, they are mapped to NumPy calls.

### 1.8.1.8 Changes to Excel with MultiIndex

In version 0.16.2 a DataFrame with MultiIndex columns could not be written to Excel via `to_excel`. That functionality has been added (GH10564), along with updating `read_excel` so that the data can be read back with, no loss of information, by specifying which columns/rows make up the MultiIndex in the `header` and `index_col` parameters (GH4679)

See the documentation for more details.

```python
In [31]: df = pd.DataFrame([[1,2,3,4],[5,6,7,8]],
 columns = pd.MultiIndex.from_product([['foo','bar'], ['a','b']]),
 index = pd.MultiIndex.from_product([['j'], ['l', 'k']]),
 names = ['col1', 'col2', 'i1', 'i2'])

In [32]: df
Out[32]:
 col1 foo bar
 col2 a b a b
j l 1 2 3 4
 k 5 6 7 8

In [33]: df.to_excel('test.xlsx')

In [34]: df = pd.read_excel('test.xlsx', header=[0,1], index_col=[0,1])

In [35]: df
Out[35]:
 col1 foo bar
 col2 a b a b
Previously, it was necessary to specify the `has_index_names` argument in `read_excel`, if the serialized data had index names. For version 0.17.0 the output format of `to_excel` has been changed to make this keyword unnecessary - the change is shown below.

Old

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>idx_name</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2000-01-07 00:00:00</td>
<td>0.968129</td>
<td>0.906529</td>
<td>0.05343</td>
<td>0.02619</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2000-01-10 00:00:00</td>
<td>-0.16632</td>
<td>1.981993</td>
<td>1.833093</td>
<td>0.803685</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2000-01-11 00:00:00</td>
<td>0.121057</td>
<td>0.36946</td>
<td>-0.02888</td>
<td>1.683975</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2000-01-12 00:00:00</td>
<td>-1.70456</td>
<td>-0.73098</td>
<td>-0.38088</td>
<td>0.020946</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2000-01-13 00:00:00</td>
<td>-1.20024</td>
<td>1.907733</td>
<td>0.629318</td>
<td>1.507033</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2000-01-14 00:00:00</td>
<td>-0.66344</td>
<td>0.073188</td>
<td>1.583482</td>
<td>0.735205</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2000-01-17 00:00:00</td>
<td>0.716635</td>
<td>-2.07952</td>
<td>1.760536</td>
<td>0.970309</td>
<td></td>
</tr>
</tbody>
</table>

New

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>idx_name</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2000-01-07 00:00:00</td>
<td>0.968129</td>
<td>0.906529</td>
<td>0.05343</td>
<td>0.02619</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2000-01-10 00:00:00</td>
<td>-0.16632</td>
<td>1.981993</td>
<td>1.833093</td>
<td>0.803685</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2000-01-11 00:00:00</td>
<td>0.121057</td>
<td>0.36946</td>
<td>-0.02888</td>
<td>1.683975</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2000-01-12 00:00:00</td>
<td>-1.70456</td>
<td>-0.73098</td>
<td>-0.38088</td>
<td>0.020946</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2000-01-13 00:00:00</td>
<td>-1.20024</td>
<td>1.907733</td>
<td>0.629318</td>
<td>1.507033</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2000-01-14 00:00:00</td>
<td>-0.66344</td>
<td>0.073188</td>
<td>1.583482</td>
<td>0.735205</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2000-01-17 00:00:00</td>
<td>0.716635</td>
<td>-2.07952</td>
<td>1.760536</td>
<td>0.970309</td>
<td></td>
</tr>
</tbody>
</table>

Warning: Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the `has_index_names` argument must specified to `True`.

1.8.1.9 Google BigQuery Enhancements

- Added ability to automatically create a table/dataset using the `pandas.io.gbq.to_gbq()` function if the destination table/dataset does not exist. (GH8325, GH11121).
- Added ability to replace an existing table and schema when calling the `pandas.io.gbq.to_gbq()` function via the `if_exists` argument. See the docs for more details (GH8325).
- `InvalidColumnOrder` and `InvalidPageToken` in the gbq module will raise `ValueError` instead of `IOError`.
• The `generate_bq_schema()` function is now deprecated and will be removed in a future version (GH11121).
• The gbq module will now support Python 3 (GH11094).

1.8.1.10 Display Alignment with Unicode East Asian Width

Warning: Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If a DataFrame or Series contains these characters, the default output cannot be aligned properly. The following options are added to enable precise handling for these characters.

- `display.unicode.east_asian_width`: Whether to use the Unicode East Asian Width to calculate the display text width. (GH2612)
- `display.unicode.ambiguous_as_wide`: Whether to handle Unicode characters belong to Ambiguous as Wide. (GH11102)

```python
In [36]: df = pd.DataFrame({u'': ['UK', u''], u'': ['Alice', u'']})
In [37]: df;

In [38]: pd.set_option('display.unicode.east_asian_width', True)
In [39]: df;

In [40]: pd.set_option('display.unicode.east_asian_width', True)
In [41]: df;
```

For further details, see [here](#).

1.8.1.11 Other enhancements

• Support for `openpyxl` >= 2.2. The API for style support is now stable (GH10125)
• `merge` now accepts the argument `indicator` which adds a Categorical-type column (by default called `_merge`) to the output object that takes on the values (GH8790)

<table>
<thead>
<tr>
<th>Observation Origin</th>
<th>_merge value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge key only in 'left' frame</td>
<td>left_only</td>
</tr>
<tr>
<td>Merge key only in 'right' frame</td>
<td>right_only</td>
</tr>
<tr>
<td>Merge key in both frames</td>
<td>both</td>
</tr>
</tbody>
</table>

1.8. v0.17.0 (October 9, 2015)
In [40]: df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})

In [41]: df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})

In [42]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[42]:
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>col</td>
<td>col_left</td>
<td>col_right</td>
<td>_merge</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>NaN</td>
<td>left_only</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>2.0</td>
<td>both</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
</tbody>
</table>

For more, see the updated docs

• **pd.to_numeric** is a new function to coerce strings to numbers (possibly with coercion) (GH11133)
• **pd.merge** will now allow duplicate column names if they are not merged upon (GH10639).
• **pd.pivot** will now allow passing index as None (GH3962).
• **pd.concat** will now use existing Series names if provided (GH10698).

In [43]: foo = pd.Series([1,2], name='foo')

In [44]: bar = pd.Series([1,2])

In [45]: baz = pd.Series([4,5])

Previous Behavior:

In [1] pd.concat([foo, bar, baz], 1)
Out[1]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 2 5</td>
<td></td>
</tr>
</tbody>
</table>

New Behavior:

In [46]: pd.concat([foo, bar, baz], 1)
Out[46]:
foo	0 1
0	1 1 4
1	2 2 5

• **DataFrame** has gained the **nlargest** and **nsmallest** methods (GH10393)
• Add a **limit_direction** keyword argument that works with **limit** to enable **interpolate** to fill NaN values forward, backward, or both (GH9218, GH10420, GH11115)

In [47]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13])

In [48]: ser.interpolate(limit=1, limit_direction='both')
Out[48]:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
</tr>
</tbody>
</table>
• Added a `DataFrame.round` method to round the values to a variable number of decimal places (GH10568).

```python
In [49]: df = pd.DataFrame(np.random.random([3, 3]), columns=['A', 'B', 'C'],
                     index=['first', 'second', 'third'])
In [50]: df
Out[50]:
   A          B          C
first 0.342764  0.304121  0.417022
second 0.681301  0.875457  0.510422
third  0.669314  0.585937  0.624904
In [51]: df.round(2)
   A  B  C
first 0.34 0.30 0.42
second 0.68 0.88 0.51
third  0.67 0.59 0.62
In [52]: df.round({'A': 0, 'C': 2})
   A  B  C
first 0.0 0.304121  0.42
second 1.0 0.875457  0.51
third  1.0 0.585937  0.62
```

• `drop_duplicates` and `duplicated` now accept a `keep` keyword to target first, last, and all duplicates. The `take_last` keyword is deprecated, see here (GH6511, GH8505)

```python
In [53]: s = pd.Series(['A', 'B', 'C', 'A', 'B', 'D'])
In [54]: s.drop_duplicates()
Out[54]:
0  A
1  B
2  C
5  D
dtype: object
In [55]: s.drop_duplicates(keep='last')
   A  B  C
2  C
4  B
5  D
dtype: object
In [56]: s.drop_duplicates(keep=False)
   C
2
5
```
• Reindex now has a tolerance argument that allows for finer control of *Limits on filling while reindexing* (GH10411):

```python
In [57]: df = pd.DataFrame({'x': range(5),
                      't': pd.date_range('2000-01-01', periods=5)})
   ....:
   ....:

In [58]: df.reindex([0.1, 1.9, 3.5],
       ....:       method='nearest',
       ....:       tolerance=0.2)
   ....:

Out[58]:
   t  x
0.1 2000-01-01 0.0
1.9 2000-01-03 2.0
3.5 NaT  NaN
```

When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into a Timedelta if possible. This allows you to specify tolerance with a string:

```python
In [59]: df = df.set_index('t')

In [60]: df.reindex(pd.to_datetime(['1999-12-31']),
       ....:       method='nearest',
       ....:       tolerance='1 day')
   ....:

Out[60]:
   x
1999-12-31 0
```

tolerance is also exposed by the lower level `Index.get_indexer` and `Index.get_loc` methods.

• Added functionality to use the base argument when resampling a TimeDeltaIndex (GH10530)

• DatetimeIndex can be instantiated using strings contains NaT (GH7599)

• `to_datetime` can now accept the yearfirst keyword (GH7599)

• `pandas.tseries.offsets` larger than the Day offset can now be used with a Series for addition/subtraction (GH10699). See the *docs* for more details.

• `pd.Timedelta.total_seconds()` now returns Timedelta duration to ns precision (previously microsecond precision) (GH10939)

• PeriodIndex now supports arithmetic with np.ndarray (GH10638)

• Support pickling of Period objects (GH10439)

• `.as_blocks` will now take a copy optional argument to return a copy of the data, default is to copy (no change in behavior from prior versions), (GH9607)

• regex argument to `DataFrame.filter` now handles numeric column names instead of raising `ValueError` (GH10384).

• Enable reading gzip compressed files via URL, either by explicitly setting the compression parameter or by inferring from the presence of the HTTP Content-Encoding header in the response (GH8685)

• Enable writing Excel files in memory using StringIO/BytesIO (GH7074)

• Enable serialization of lists and dicts to strings in `ExcelWriter` (GH8188)
• SQL io functions now accept a SQLAlchemy connectable. (GH7877)
• pd.read_sql and to_sql can accept database URI as con parameter (GH10214)
• read_sql_table will now allow reading from views (GH10750).
• Enable writing complex values to HDFStores when using the table format (GH10447)
• Enable pd.read_hdf to be used without specifying a key when the HDF file contains a single dataset (GH10443)
• pd.read_stata will now read Stata 11B type files. (GH9882)
• msgpack submodule has been updated to 0.4.6 with backward compatibility (GH10581)
• DataFrame.to_dict now accepts orient='index' keyword argument (GH10844).
• DataFrame.apply will return a Series of dicts if the passed function returns a dict and reduce=True (GH8735).
• Allow passing kwargs to the interpolation methods (GH10378).
• Improved error message when concatenating an empty iterable of DataFrame objects (GH9157)
• pd.read_csv can now read bz2-compressed files incrementally, and the C parser can read bz2-compressed files from AWS S3 (GH11070, GH11072).
• In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071).
• Read CSV files from AWS S3 incrementally, instead of first downloading the entire file. (Full file download still required for compressed files in Python 2.) (GH11070, GH11073)
• pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074).

1.8.2 Backwards incompatible API changes

1.8.2.1 Changes to sorting API

The sorting API has had some longtime inconsistencies. (GH9816, GH8239).
Here is a summary of the API PRIOR to 0.17.0:
• Series.sort is INPLACE while DataFrame.sort returns a new object.
• Series.order returns a new object
• It was possible to use Series/DataFrame.sort_index to sort by values by passing the by keyword.
• Series/DataFrame.sortlevel worked only on a MultiIndex for sorting by index.

To address these issues, we have revamped the API:
• We have introduced a new method, DataFrame.sort_values(), which is the merger of DataFrame.sort(), Series.sort(), and Series.order(), to handle sorting of values.
• The existing methods Series.sort(), Series.order(), and DataFrame.sort() have been deprecated and will be removed in a future version.
• The by argument of DataFrame.sort_index() has been deprecated and will be removed in a future version.
• The existing method .sort_index() will gain the level keyword to enable level sorting.
We now have two distinct and non-overlapping methods of sorting. A * marks items that will show a FutureWarning.

To sort by the values:

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Series.order()</td>
<td>Series.sort_values()</td>
</tr>
<tr>
<td>*Series.sort()</td>
<td>Series.sort_values(inplace=True)</td>
</tr>
<tr>
<td>*DataFrame.sort()</td>
<td>DataFrame.sort_values(by=...)</td>
</tr>
<tr>
<td>*DataFrame.sort(columns=...)</td>
<td>DataFrame.sort_values(by=...)</td>
</tr>
</tbody>
</table>

To sort by the index:

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.sort_index()</td>
<td>Series.sort_index()</td>
</tr>
<tr>
<td>Series.sortlevel(level=...)</td>
<td>Series.sort_index(level=...)</td>
</tr>
<tr>
<td>DataFrame.sort_index()</td>
<td>DataFrame.sort_index()</td>
</tr>
<tr>
<td>DataFrame.sortlevel(level=...)</td>
<td>DataFrame.sort_index(level=...)</td>
</tr>
<tr>
<td>*DataFrame.sort()</td>
<td>DataFrame.sort_index()</td>
</tr>
</tbody>
</table>

We have also deprecated and changed similar methods in two Series-like classes, Index and Categorical.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Index.order()</td>
<td>Index.sort_values()</td>
</tr>
<tr>
<td>*Categorical.order()</td>
<td>Categorical.sort_values()</td>
</tr>
</tbody>
</table>

1.8.2.2 Changes to to_datetime and to_timedelta

Error handling

The default for `pd.to_datetime` error handling has changed to `errors='raise'`. In prior versions it was `errors='ignore'`. Furthermore, the `coerce` argument has been deprecated in favor of `errors='coerce'`. This means that invalid parsing will raise rather that return the original input as in previous versions. (GH10636)

Previous Behavior:

```python
In [2]: pd.to_datetime(['2009-07-31', 'asd'])
Out[2]: array(['2009-07-31', 'asd'], dtype=object)
```

New Behavior:

```python
In [3]: pd.to_datetime(['2009-07-31', 'asd'])
ValueError: Unknown string format
```

Of course you can coerce this as well.

```python
In [61]: to_datetime(['2009-07-31', 'asd'], errors='coerce')
Out[61]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
```

To keep the previous behavior, you can use `errors='ignore'`:

```python
In [62]: to_datetime(['2009-07-31', 'asd'], errors='ignore')
Out[62]: array(['2009-07-31', 'asd'], dtype=object)
```

Furthermore, `pd.to_timedelta` has gained a similar API, of `errors='raise' | 'ignore' | 'coerce'`, and the `coerce` keyword has been deprecated in favor of `errors='coerce'`.
Consistent Parsing

The string parsing of `to_datetime`, `Timestamp` and `DatetimeIndex` has been made consistent. (GH7599)

Prior to v0.17.0, `Timestamp` and `to_datetime` may parse year-only datetime-string incorrectly using today’s date, otherwise `DatetimeIndex` uses the beginning of the year. `Timestamp` and `to_datetime` may raise `ValueError` in some types of datetime-string which `DatetimeIndex` can parse, such as a quarterly string.

Previous Behavior:

```python
In [1]: Timestamp('2012Q2')
Traceback ...
ValueError: Unable to parse 2012Q2

# Results in today's date.
In [2]: Timestamp('2014')
Out [2]: 2014-08-12 00:00:00
```

v0.17.0 can parse them as below. It works on `DatetimeIndex` also.

New Behavior:

```python
In [63]: Timestamp('2012Q2')
Out[63]: Timestamp('2012-04-01 00:00:00')

In [64]: Timestamp('2014')
Out[64]: Timestamp('2014-01-01 00:00:00')

In [65]: DatetimeIndex(['2012Q2', '2014'])
Out[65]: DatetimeIndex(['2012-04-01', '2014-01-01'], dtype='datetime64[ns]', freq=None)
```

Note: If you want to perform calculations based on today’s date, use `Timestamp.now()` and pandas.tseries.offsets.

```python
In [66]: import pandas.tseries.offsets as offsets

In [67]: Timestamp.now()
Out[67]: Timestamp('2017-05-05 12:19:58.258672')

In [68]: Timestamp.now() + offsets.DateOffset(years=1)
Out[68]: Timestamp('2018-05-05 12:19:58.259903')
```

1.8.2.3 Changes to Index Comparisons

Operator equal on `Index` should behavior similarly to `Series` (GH9947, GH10637)

Starting in v0.17.0, comparing `Index` objects of different lengths will raise a `ValueError`. This is to be consistent with the behavior of `Series`.

Previous Behavior:

```python
In [2]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[2]: array([ True, False, False], dtype=bool)
```
In [3]: pd.Index([1, 2, 3]) == pd.Index([2])
Out[3]: array([False, True, False], dtype=bool)

In [4]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
Out[4]: False

New Behavior:

In [8]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[8]: array([True, False, False], dtype=bool)

In [9]: pd.Index([1, 2, 3]) == pd.Index([2])
ValueError: Lengths must match to compare

In [10]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
ValueError: Lengths must match to compare

Note that this is different from the numpy behavior where a comparison can be broadcast:

In [69]: np.array([1, 2, 3]) == np.array([1])
Out[69]: array([True, False, False], dtype=bool)

or it can return False if broadcasting can not be done:

In [70]: np.array([1, 2, 3]) == np.array([1, 2])
Out[70]: False

1.8.2.4 Changes to Boolean Comparisons vs. None

Boolean comparisons of a Series vs None will now be equivalent to comparing with np.nan, rather than raise TypeError. (GH1079).

In [71]: s = Series(range(3))

In [72]: s.iloc[1] = None

In [73]: s
Out[73]:
 0 0.0
 1 NaN
 2 2.0
 dtype: float64

Previous Behavior:

In [5]: s==None
TypeError: Could not compare <type 'NoneType'> type with Series

New Behavior:

In [74]: s==None
Out[74]:
 0 False
 1 False
Usually you simply want to know which values are null.

```python
In [75]: s.isnull()
Out[75]:
0    False
1     True
2    False
dtype: bool
```

Warning: You generally will want to use `isnull/notnull` for these types of comparisons, as `isnull/notnull` tells you which elements are null. One has to be mindful that `nan`'s don’t compare equal, but `None`'s do. Note that Pandas/numpy uses the fact that `np.nan != np.nan`, and treats `None` like `np.nan`.

```python
In [76]: None == None
Out[76]: True
In [77]: np.nan == np.nan
Out[77]: False
```

1.8.2.5 HDFStore dropna behavior

The default behavior for HDFStore write functions with `format='table'` is now to keep rows that are all missing. Previously, the behavior was to drop rows that were all missing save the index. The previous behavior can be replicated using the `dropna=True` option. (GH9382)

Previous Behavior:

```python
In [78]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
                                      'col2':[1, np.nan, np.nan]})
```

```python
In [79]: df_with_missing.to_hdf('file.h5', 'df_with_missing', format='table', mode='w')
In [28]: pd.read_hdf('file.h5', 'df_with_missing')
```

```python
Out[28]:
col1  col2
0    0.0 1.0
1    NaN NaN
2    2.0 NaN
```
New Behavior:

```python
In [80]: df_with_missing.to_hdf('file.h5',
   ....:   'df_with_missing',
   ....:   format='table',
   ....:   mode='w')

In [81]: pd.read_hdf('file.h5', 'df_with_missing')
Out[81]:
   col1  col2
0   0.0   1.0
1  NaN  NaN
2   2.0  NaN
```

See the docs for more details.

1.8.2.6 Changes to `display.precision` option

The `display.precision` option has been clarified to refer to decimal places (GH10451).

Earlier versions of pandas would format floating point numbers to have one less decimal place than the value in `display.precision`.

```python
In [1]: pd.set_option('display.precision', 2)
In [2]: pd.DataFrame({'x': [123.456789]})
Out[2]:
   x
0  123.5
```

If interpreting precision as “significant figures” this did work for scientific notation but that same interpretation did not work for values with standard formatting. It was also out of step with how numpy handles formatting.

Going forward the value of `display.precision` will directly control the number of places after the decimal, for regular formatting as well as scientific notation, similar to how numpy’s `precision` print option works.

```python
In [82]: pd.set_option('display.precision', 2)
In [83]: pd.DataFrame({'x': [123.456789]})
Out[83]:
   x
0  123.46
```

To preserve output behavior with prior versions the default value of `display.precision` has been reduced to 6 from 7.

1.8.2.7 Changes to `Categorical.unique`

`Categorical.unique` now returns new `Categoricals` with categories and codes that are unique, rather than returning `np.array` (GH10508)

- unordered category: values and categories are sorted by appearance order.
- ordered category: values are sorted by appearance order, categories keep existing order.
In [84]: cat = pd.Categorical(['C', 'A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=True)

In [85]: cat
Out[85]: [C, A, B, C]
Categories (3, object): [A < B < C]

In [86]: cat.unique()
Out[86]: [C, A, B]
Categories (3, object): [A < B < C]

In [87]: cat = pd.Categorical(['C', 'A', 'B', 'C'], categories=['A', 'B', 'C'])

In [88]: cat
Out[88]: [C, A, B, C]
Categories (3, object): [A, B, C]

In [89]: cat.unique()
Out[89]: [C, A, B]
Categories (3, object): [C, A, B]

1.8.2.8 Changes to bool passed as header in Parsers

In earlier versions of pandas, if a bool was passed the header argument of read_csv, read_excel, or read_html it was implicitly converted to an integer, resulting in header=0 for False and header=1 for True (GH6113)

A bool input to header will now raise a TypeError

In [29]: df = pd.read_csv('data.csv', header=False)
TypeError: Passing a bool to header is invalid. Use header=None for no header or header=int or list-like of ints to specify the row(s) making up the column names

1.8.2.9 Other API Changes

- Line and kde plot with subplots=True now uses default colors, not all black. Specify color='k' to draw all lines in black (GH9894)
- Calling the .value_counts() method on a Series with a categorical dtype now returns a Series with a CategoricalIndex (GH10704)
- The metadata properties of subclasses of pandas objects will now be serialized (GH10553).
- groupby using Categorical follows the same rule as Categorical.unique described above (GH10508)
- When constructing DataFrame with an array of complex64 dtype previously meant the corresponding column was automatically promoted to the complex128 dtype. Pandas will now preserve the itemsize of the
input for complex data (GH10952)

- some numeric reduction operators would return ValueError, rather than TypeError on object types that includes strings and numbers (GH11131)
- Passing currently unsupported chunksize argument to read_excel or ExcelFile.parse will now raise NotImplementedError (GH8011)
- Allow an ExcelFile object to be passed into read_excel (GH11198)
- DatetimeIndex.union does not infer freq if self and the input have None as freq (GH11086)
- NaT’s methods now either raise ValueError, or return np.nan or NaT (GH9513)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>return np.nan</td>
<td>weekday, isoweekday</td>
</tr>
<tr>
<td>return NaT</td>
<td>date, now, replace, to_datetime, today</td>
</tr>
<tr>
<td>return np.datetime64('NaT')</td>
<td>to_datetime64 (unchanged)</td>
</tr>
<tr>
<td>raise ValueError</td>
<td>All other public methods (names not beginning with underscores)</td>
</tr>
</tbody>
</table>

1.8.2.10 Deprecations

- For Series the following indexing functions are deprecated (GH10177).

<table>
<thead>
<tr>
<th>Deprecated Function</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>.irow(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
<tr>
<td>.iget(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
<tr>
<td>.iget_value(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
</tbody>
</table>

- For DataFrame the following indexing functions are deprecated (GH10177).

<table>
<thead>
<tr>
<th>Deprecated Function</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>.irow(i)</td>
<td>.iloc[i]</td>
</tr>
<tr>
<td>.iget_value(i, j)</td>
<td>.iloc[i, j] or .iat[i, j]</td>
</tr>
<tr>
<td>.icol(j)</td>
<td>.iloc[:, j]</td>
</tr>
</tbody>
</table>

Note: These indexing function have been deprecated in the documentation since 0.11.0.

- Categorical.name was deprecated to make Categorical more numpy.ndarray like. Use Series(cat, name="whatever") instead (GH10482).
- Setting missing values (NaN) in a Categorical’s categories will issue a warning (GH10748). You can still have missing values in the values.
- drop_duplicates and duplicated’s take_last keyword was deprecated in favor of keep (GH6511, GH8505)
- Series.nsmallest and nlargest’s take_last keyword was deprecated in favor of keep (GH10792)
- DataFrame.combineAdd and DataFrame.combineMult are deprecated. They can easily be replaced by using the add and mul methods: DataFrame.add(other, fill_value=0) and DataFrame.mul(other, fill_value=1.) (GH10735).
- TimeSeries deprecated in favor of Series (note that this has been an alias since 0.13.0) (GH10890)
- SparsePanel deprecated and will be removed in a future version (GH11157).
- Series.is_time_series deprecated in favor of Series.index.is_all_dates (GH11135)
- Legacy offsets (like 'A@JAN') are deprecated (note that this has been alias since 0.8.0) (GH10878)
• **WidePanel** deprecated in favor of **Panel, LongPanel** in favor of **DataFrame** (note these have been aliases since < 0.11.0). (GH10892)

• **DataFrame.convert_objects** has been deprecated in favor of type-specific functions **pd.to_datetime, pd.to_timestamp** and **pd.to_numeric** (new in 0.17.0) (GH11133).

1.8.2.11 Removal of prior version deprecations/changes

• Removal of **na_last** parameters from **Series.order()** and **Series.sort()**, in favor of **na_position**. (GH5231)

• **Remove of percentile_width** from **.describe()**, in favor of **percentiles**. (GH7088)

• **Removal of colSpace parameter** from **DataFrame.to_string()**, in favor of **col_space**, circa 0.8.0 version.

• **Removal of automatic time-series broadcasting** (GH2304)

```python
In [90]: np.random.seed(1234)
```

```python
In [91]: df = DataFrame(np.random.randn(5,2),columns=list('AB'),index=date_range('20130101',periods=5))
```

```python
In [92]: df
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.471435</td>
<td>-1.190976</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.432707</td>
<td>-0.312652</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.720589</td>
<td>0.887163</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.859588</td>
<td>-0.636524</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.015696</td>
<td>-2.242685</td>
</tr>
</tbody>
</table>

Previously

```python
In [3]: df + df.A
```

```python
FutureWarning: TimeSeries broadcasting along DataFrame index by default is deprecated.
Please use DataFrame.<op> to explicitly broadcast arithmetic operations along the index
```

```text
Out[3]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.942870</td>
<td>-0.719541</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>2.865414</td>
<td>1.120055</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-1.441177</td>
<td>0.166574</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>1.719177</td>
<td>0.223065</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.031393</td>
<td>-2.226989</td>
</tr>
</tbody>
</table>

Current

```python
In [93]: df.add(df.A,axis='index')
```

```text
Out[93]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.942870</td>
<td>-0.719541</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>2.865414</td>
<td>1.120055</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-1.441177</td>
<td>0.166574</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>1.719177</td>
<td>0.223065</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.031393</td>
<td>-2.226989</td>
</tr>
</tbody>
</table>
• Remove table keyword in HDFStore.put/append, in favor of using format= (GH4645)
• Remove kind in read_excel/ExcelFile as its unused (GH4712)
• Remove infer_type keyword from pd.read_html as its unused (GH4770, GH7032)
• Remove offset and timeRule keywords from Series.tshift/shift, in favor of freq (GH4853, GH4864)
• Remove pd.load/pd.save aliases in favor of pd.to_pickle/pd.read_pickle (GH3787)

1.8.3 Performance Improvements

• Development support for benchmarking with the Air Speed Velocity library (GH8361)
• Added vbench benchmarks for alternative ExcelWriter engines and reading Excel files (GH7171)
• Performance improvements in Categorical.value_counts (GH10804)
• Performance improvements in SeriesGroupBy.nunique and SeriesGroupBy.value_counts and SeriesGroupby.transform (GH10820, GH11077)
• Performance improvements in DataFrame.drop_duplicates with integer dtypes (GH10917)
• Performance improvements in DataFrame.duplicated with wide frames. (GH10161, GH11180)
• 4x improvement in timedelta string parsing (GH6755, GH10426)
• 8x improvement in timedelta64 and datetime64 ops (GH6755)
• Significantly improved performance of indexing MultiIndex with slicers (GH10287)
• 8x improvement in iloc using list-like input (GH10791)
• Improved performance of Series.isin for datetimelike/integer Series (GH10287)
• 20x improvement in concat of Categoricals when categories are identical (GH10587)
• Improved performance of to_datetime when specified format string is ISO8601 (GH10178)
• 2x improvement of Series.value_counts for float dtype (GH10821)
• Enable infer_datetime_format in to_datetime when date components do not have 0 padding (GH11142)
• Regression from 0.16.1 in constructing DataFrame from nested dictionary (GH1084)
• Performance improvements in addition/subtraction operations for DateOffset with Series or DatetimeIndex (GH10744, GH11205)

1.8.4 Bug Fixes

• Bug in incorrect computation of .mean() on timedelta64 [ns] because of overflow (GH9442)
• Bug in .isin on older numpies (:issue: 11232)
• Bug in DataFrame.to_html(index=False) renders unnecessary name row (GH10344)
• Bug in DataFrame.to_latex() the column_format argument could not be passed (GH9402)
• Bug in DatetimeIndex when localizing with NaT (GH10477)
• Bug in Series.dt ops in preserving meta-data (GH10477)
• Bug in preserving NaT when passed in an otherwise invalid to_datetime construction (GH10477)
• Bug in DataFrame.apply when function returns categorical series. (GH9573)
• Bug in to_datetime with invalid dates and formats supplied (GH10154)
• Bug in Index.drop_duplicates dropping name(s) (GH10115)
• Bug in Series.quantile dropping name (GH10881)
• Bug in pd.Series when setting a value on an empty Series whose index has a frequency. (GH10193)
• Bug in pd.Series.interpolate with invalid order keyword values. (GH10633)
• Bug in DataFrame.plot raises ValueError when color name is specified by multiple characters (GH10387)
• Bug in Index construction with a mixed list of tuples (GH10697)
• Bug in DataFrame.reset_index when index contains NaT. (GH10388)
• Bug in ExcelReader when worksheet is empty (GH6403)
• Bug in BinGrouper.group_info where returned values are not compatible with base class (GH10914)
• Bug in clearing the cache on DataFrame.pop and a subsequent inplace op (GH10912)
• Bug in indexing with a mixed-integer Index causing an ImportError (GH10610)
• Bug in Series.count when index has nulls (GH10946)
• Bug in pickling of a non-regular freq DatetimeIndex (GH11002)
• Bug causing DataFrame.where to not respect the axis parameter when the frame has a symmetric shape. (GH9736)
• Bug in Table.select_column where name is not preserved (GH10392)
• Bug in offsets.generate_range where start and end have finer precision than offset (GH9907)
• Bug in pd.rolling_* where Series.name would be lost in the output (GH10565)
• Bug in stack when index or columns are not unique. (GH10417)
• Bug in setting a Panel when an axis has a multi-index (GH10360)
• Bug in USFederalHolidayCalendar where USMemorialDay and USMartinLutherKingJr were incorrect (GH10278 and GH9760)
• Bug in .sample() where returned object, if set, gives unnecessary SettingWithCopyWarning (GH10738)
• Bug in .sample() where weights passed as Series were not aligned along axis before being treated positionally, potentially causing problems if weight indices were not aligned with sampled object. (GH10738)
• Regression fixed in (GH9311, GH6620, GH9345), where groupby with a datetime-like converting to float with certain aggregators (GH10979)
• Bug in DataFrame.interpolate with axis=1 and inplace=True (GH10395)
• Bug in io.sql.get_schema when specifying multiple columns as primary key (GH10385).
• Bug in groupby(sort=False) with datetime-like Categorical raises ValueError (GH10505)
• Bug in groupby(axis=1) with filter() throws IndexError (GH11041)
• Bug in test_categorical on big-endian builds (GH10425)
• Bug in Series.shift and DataFrame.shift not supporting categorical data (GH9416)
• Bug in Series.map using categorical Series raises AttributeError (GH10324)
• Bug in MultiIndex.get_level_values including Categorical raises AttributeError (GH10460)
• Bug in pd.get_dummies with sparse=True not returning SparseDataFrame (GH10531)
• Bug in Index subtypes (such as PeriodIndex) not returning their own type for .drop and .insert methods (GH10620)
• Bug in algos.outer_join_indexer when right array is empty (GH10618)
• Bug in filter (regression from 0.16.0) and transform when grouping on multiple keys, one of which is datetime-like (GH10114)
• Bug in to_datetime and to_timedelta causing Index name to be lost (GH10875)
• Bug in len(DataFrame.groupby) causing IndexError when there’s a column containing only NaNs (issue: 11016)
• Bug that caused segfault when resampling an empty Series (GH10228)
• Bug in DateTimeIndex and PeriodIndex.value_counts resets name from its result, but retains in result’s Index. (GH10150)
• Bug in pd.eval using numexpr engine coerces 1 element numpy array to scalar (GH10546)
• Bug in pd.concat with axis=0 when column is of dtype category (GH10177)
• Bug in read_msgpack where input type is not always checked (GH10369, GH10630)
• Bug in pd.read_csv with kwargs index_col=False, index_col=['a', 'b'] or dtype (GH10413, GH10467, GH10577)
• Bug in Series.from_csv with header kwarg not setting the Series.name or the Series.index.name (GH10483)
• Bug in groupby.var which caused variance to be inaccurate for small float values (GH10448)
• Bug in Series.plot(kind='hist') Y Label not informative (GH10485)
• Bug in read_csv when using a converter which generates a uint8 type (GH9266)
• Bug causes memory leak in time-series line and area plot (GH9003)
• Bug when setting a Panel sliced along the major or minor axes when the right-hand side is a DataFrame (GH11014)
• Bug that returns None and does not raise NotImplemented when operator functions (e.g. .add) of Panel are not implemented (GH7692)
• Bug in line and kde plot cannot accept multiple colors when subplots=True (GH8984)
• Bug in DataFrame.plot raises ValueError when color name is specified by multiple characters (GH10387)
• Bug in left and right align of Series with MultiIndex may be inverted (GH10665)
• Bug in left and right join of with MultiIndex may be inverted (GH10741)
• Bug in read_stata when reading a file with a different order set in columns (GH10757)
• Bug in Categorical may not representing properly when category contains tz or Period (GH10713)
• Bug in Categorical.__iter__ may not returning correct datetime and Period (GH10713)
• Bug in indexing with a PeriodIndex on an object with a PeriodIndex (GH4125)
• Bug in read_csv with engine='c': EOF preceded by a comment, blank line, etc. was not handled correctly (GH10728, GH10548)
• Reading “famafrench” data via `DataReader` results in HTTP 404 error because of the website url is changed (GH10591).
• Bug in `read_msgpack` where DataFrame to decode has duplicate column names (GH9618)
• Bug in `io.common.get_filepath_or_buffer` which caused reading of valid S3 files to fail if the bucket also contained keys for which the user does not have read permission (GH10604)
• Bug in vectorised setting of timestamp columns with python `datetime.date` and numpy `datetime64` (GH10408, GH10412)
• Bug in `Index.take` may add unnecessary `freq` attribute (GH10791)
• Bug in `merge` with empty DataFrame may raise `IndexError` (GH10824)
• Bug in `to_latex` where unexpected keyword argument for some documented arguments (GH10888)
• Bug in indexing of large DataFrame where `IndexError` is uncaught (GH10645 and GH10692)
• Bug in `read_csv` when using the `nrows` or `chunksize` parameters if file contains only a header line (GH9535)
• Bug in serialization of category types in HDF5 in presence of alternate encodings. (GH10366)
• Bug in `pd.DataFrame` when constructing an empty DataFrame with a string dtype (GH9428)
• Bug in `pd.DataFrame.diff` when DataFrame is not consolidated (GH10907)
• Bug in `pd.unique` for arrays with the `datetime64` or `timedelta64` dtype that meant an array with object dtype was returned instead the original dtype (GH9431)
• Bug in `Timedelta` raising error when slicing from 0s (GH10583)
• Bug in `DatetimeIndex.take` and `TimedeltaIndex.take` may not raise `IndexError` against invalid index (GH10295)
• Bug in `Series([np.nan]).astype('M8[ms]')`, which now returns `Series([pd.NaT])` (GH10747)
• Bug in `PeriodIndex.order` reset freq (GH10295)
• Bug in `date_range` when `freq` divides end as nanos (GH10885)
• Bug in `iloc` allowing memory outside bounds of a Series to be accessed with negative integers (GH10779)
• Bug in `read_msgpack` where encoding is not respected (GH10581)
• Bug preventing access to the first index when using `iloc` with a list containing the appropriate negative integer (GH10547, GH10779)
• Bug in `TimedeltaIndex` formatter causing error while trying to save DataFrame with `TimedeltaIndex` using `to_csv` (GH10833)
• Bug in `DataFrame.where` when handling Series slicing (GH10218, GH9558)
• Bug where `pd.read_gbq` throws `ValueError` when Bigquery returns zero rows (GH10273)
• Bug `to_json` which was causing segmentation fault when serializing 0-rank ndarray (GH9576)
• Bug in plotting functions may raise `IndexError` when plotted on `GridSpec` (GH10819)
• Bug in plot result may show unnecessary minor ticklabels (GH10657)
• Bug in `groupby` incorrect computation for aggregation on DataFrame with NaT (E.g first, last, min). (GH10590, GH11010)
• Bug when constructing DataFrame where passing a dictionary with only scalar values and specifying columns did not raise an error (GH10856)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- Bug in `.var()` causing roundoff errors for highly similar values (GH10242)
- Bug in `DataFrame.plot (subplots=True)` with duplicated columns outputs incorrect result (GH10962)
- Bug in `Index` arithmetic may result in incorrect class (GH10638)
- Bug in `date_range` results in empty if freq is negative annually, quarterly and monthly (GH11018)
- Bug in `DatetimeIndex` cannot infer negative freq (GH11018)
- Remove use of some deprecated numpy comparison operations, mainly in tests. (GH10569)
- Bug in `Index` dtype may not applied properly (GH11017)
- Bug in `io.gbq` when testing for minimum google api client version (GH10652)
- Bug in `DataFrame` construction from nested `dict` with `timedelta` keys (GH11129)
- Bug in `.fillna` against may raise `TypeError` when data contains datetime dtype (GH7095, GH11153)
- Bug in `.groupby` when number of keys to group by is same as length of index (GH11185)
- Bug in `convert_objects` where converted values might not be returned if all null and `coerce` (GH9589)
- Bug in `convert_objects` where `copy` keyword was not respected (GH9589)

1.9 v0.16.2 (June 12, 2015)

This is a minor bug-fix release from 0.16.1 and includes a large number of bug fixes along some new features (`pipe()` method), enhancements, and performance improvements.

We recommend that all users upgrade to this version.

Highlights include:

- A new `pipe` method, see here
- Documentation on how to use `numba` with `pandas`, see here

What’s new in v0.16.2

- **New features**
 - `Pipe`
 - `Other Enhancements`
- **API Changes**
- **Performance Improvements**
- **Bug Fixes**

1.9.1 New features

1.9.1.1 Pipe

We’ve introduced a new method `DataFrame.pipe()`. As suggested by the name, `pipe` should be used to pipe data through a chain of function calls. The goal is to avoid confusing nested function calls like
The pipe method is inspired by unix pipes, which stream text through processes. More recently dplyr and magrittr
have introduced the popular \((%>%)\) pipe operator for R.
See the documentation for more. (GH10129)

1.9.1.2 Other Enhancements

- Added \(rsplit\) to Index/Series String Methods (GH10303)
- Removed the hard-coded size limits on the DataFrame HTML representation in the IPython notebook, and leave this to IPython itself (only for IPython v3.0 or greater). This eliminates the duplicate scroll bars that appeared in the notebook with large frames (GH10231).

Note that the notebook has a toggle output scrolling feature to limit the display of very large frames (by clicking left of the output). You can also configure the way DataFrames are displayed using the pandas options, see here.
- \(axis\) parameter of DataFrame.quantile now accepts also index and column. (GH9543)

1.9.2 API Changes

- \(Holiday\) now raises \(NotImplementedError\) if both \(offset\) and \(observance\) are used in the constructor instead of returning an incorrect result (GH10217).

1.9.3 Performance Improvements

- Improved Series.resample performance with dtype=\(\text{datetime64[ns]}\) (GH7754)
- Increase performance of \(\text{str.split}\) when \(\text{expand=True}\) (GH10081)

1.9.4 Bug Fixes

- Bug in Series.hist raises an error when a one row Series was given (GH10214)
- Bug where HDFStore.select modifies the passed columns list (GH7212)
- Bug in Categorical repr with display.width of None in Python 3 (GH10087)
- Bug in to_json with certain orients and a CategoricalIndex would segfault (GH10317)
- Bug where some of the nan funcs do not have consistent return dtypes (GH10251)
- Bug in DataFrame.quantile on checking that a valid axis was passed (GH9543)
- Bug in GroupBy.apply aggregation for Categorical not preserving categories (GH10138)
- Bug in to_csv where date_format is ignored if the datetime is fractional (GH10209)
- Bug in DataFrame.to_json with mixed data types (GH10289)
- Bug in cache updating when consolidating (GH10264)
- Bug in mean () where integer dtypes can overflow (GH10172)
- Bug where Panel.from_dict does not set dtype when specified (GH10058)
- Bug in Index.union raises AttributeError when passing array-likes. (GH10149)
- Bug in Timestamp's' \(\text{microsecond, quarter, dayofyear, week and daysinmonth}\) properties return np.int type, not built-in int. (GH10050)
• Bug in NaT raises AttributeError when accessing to daysinmonth, dayofweek properties. (GH10096)
• Bug in Index repr when using the max_seq_items=None setting (GH10182).
• Bug in getting timezone data with dateutil on various platforms (GH9059, GH8639, GH9663, GH10121)
• Bug in displaying datetimes with mixed frequencies; display ‘ms’ datetimes to the proper precision. (GH10170)
• Bug in setitem where type promotion is applied to the entire block (GH10280)
• Bug in Series arithmetic methods may incorrectly hold names (GH10068)
• Bug in GroupBy.get_group when grouping on multiple keys, one of which is categorical. (GH10132)
• Bug in DatetimeIndex and TimedeltaIndex names are lost after timedelta arithmetics (GH9926)
• Bug in DataFrame construction from nested dict with datetime64 (GH10160)
• Bug in Series construction from dict with datetime64 keys (GH9456)
• Bug in Series.plot (label="LABEL") not correctly setting the label (GH10119)
• Bug in plot not defaulting to matplotlib axes.grid setting (GH9792)
• Bug causing strings containing an exponent, but no decimal to be parsed as int instead of float in engine='python' for the read_csv parser (GH9565)
• Bug in Series.align resets name when fill_value is specified (GH10067)
• Bug in read_csv causing index name not to be set on an empty DataFrame (GH10184)
• Bug in SparseSeries.abs resets name (GH10241)
• Bug in TimedeltaIndex slicing may reset freq (GH10292)
• Bug in GroupBy.get_group raises ValueError when group key contains NaT (GH6992)
• Bug in SparseSeries constructor ignores input data name (GH10258)
• Bug in Categorical.remove_categories causing a ValueError when removing the NaN category if underlying dtype is floating-point (GH10156)
• Bug where infer_freq infers timerule (WOM-5XXX) unsupported by to_offset (GH9425)
• Bug in DataFrame.to_hdf() where table format would raise a seemingly unrelated error for invalid (non-string) column names. This is now explicitly forbidden. (GH9057)
• Bug to handle masking empty DataFrame (GH10126).
• Bug where MySQL interface could not handle numeric table/column names (GH10255)
• Bug in read_csv with a date_parser that returned a datetime64 array of other time resolution than [ns] (GH10245)
• Bug in Panel.apply when the result has ndim=0 (GH10332)
• Bug in read_hdf where auto_close could not be passed (GH9327).
• Bug in read_hdf where open stores could not be used (GH10330).
• Bug in adding empty DataFrame``s, now results in a ``DataFrame that .equals an empty DataFrame (GH10181).
• Bug in to_hdf and HDFStore which did not check that complib choices were valid (GH4582, GH8874).
1.10 v0.16.1 (May 11, 2015)

This is a minor bug-fix release from 0.16.0 and includes a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

- Support for a CategoricalIndex, a category based index, see here
- New section on how-to-contribute to pandas, see here
- Revised “Merge, join, and concatenate” documentation, including graphical examples to make it easier to understand each operations, see here
- New method sample for drawing random samples from Series, DataFrames and Panels. See here
- The default Index printing has changed to a more uniform format, see here
- BusinessHour datetime-offset is now supported, see here
- Further enhancement to the .str accessor to make string operations easier, see here

What’s new in v0.16.1

- Enhancements
 - CategoricalIndex
 - Sample
 - String Methods Enhancements
 - Other Enhancements
- API changes
 - Deprecations
- Index Representation
- Performance Improvements
- Bug Fixes

Warning: In pandas 0.17.0, the sub-package pandas.io.data will be removed in favor of a separately installable package. See here for details (GH8961)

1.10.1 Enhancements

1.10.1.1 CategoricalIndex

We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series with a category dtype would convert this to regular object-based Index.
In [1]: df = DataFrame({'A': np.arange(6),
...: 'B': Series(list('aabbca')).astype('category',
...: categories=list('cab'))
...: })

In [2]: df
Out[2]:
 A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 a

In [3]: df.dtypes
Out[3]:
A int64
B category
dtype: object

In [4]: df.B.cat.categories
Out[4]:
Index(['c', 'a', 'b'], dtype='object')

setting the index, will create create a CategoricalIndex

In [5]: df2 = df.set_index('B')

In [6]: df2.index
Out[6]:
CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'],
ordered=False, name='B', dtype='category')

indexing with __getitem__/.iloc/.loc/.ix works similarly to an Index with duplicates. The indexers MUST be in the category or the operation will raise.

In [7]: df2.loc['a']
Out[7]:
 A
B a
 0 a
 1 a
 5 a

and preserves the CategoricalIndex

In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False,
name='B', dtype='category')

sorting will order by the order of the categories

In [9]: df2.sort_index()
Out[9]:
 A
B 1
 c 4
groupby operations on the index will preserve the index nature as well

In [10]: df2.groupby(level=0).sum()
Out[10]:
A
B
c 4
a 6
b 5

In [11]: df2.groupby(level=0).sum().index

reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the PASSED Categorical dtype. This allows one to arbitrarly index these even with values NOT in the categories, similarly to how you can reindex ANY pandas index.

In [12]: df2.reindex(['a','e'])
Out[12]:
A
B
a 0.0
a 1.0
a 5.0
e NaN

In [13]: df2.reindex(['a','e']).index

In [14]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))

See the documentation for more. (GH7629, GH10038, GH10039)
1.10.1.2 Sample

Series, DataFrames, and Panels now have a new method: `sample()`. The method accepts a specific number of rows or columns to return, or a fraction of the total number of rows or columns. It also has options for sampling with or without replacement, for passing in a column for weights for non-uniform sampling, and for setting seed values to facilitate replication. (GH2419)

```python
In [16]: example_series = Series([0, 1, 2, 3, 4, 5])

# When no arguments are passed, returns 1
In [17]: example_series.sample()
Out[17]:
3
3
dtype: int64

# One may specify either a number of rows:
In [18]: example_series.sample(n=3)
Out[18]:
5
5
1
1
4
4
dtype: int64

# Or a fraction of the rows:
In [19]: example_series.sample(frac=0.5)
Out[19]:
4
4
1
1
0
0
dtype: int64

# weights are accepted.
In [20]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]

In [21]: example_series.sample(n=3, weights=example_weights)
Out[21]:
2
2
3
3
5
5
dtype: int64

# weights will also be normalized if they do not sum to one, 
# and missing values will be treated as zeros.
In [22]: example_weights2 = [0.5, 0, 0, 0, None, np.nan]

In [23]: example_series.sample(n=1, weights=example_weights2)
Out[23]:
0
0
dtype: int64
```

When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from rows.

```python
In [24]: df = DataFrame({'col1': [9, 8, 7, 6], 'weight_column': [0.5, 0.4, 0.1, 0]})

In [25]: df.sample(n=3, weights='weight_column')
Out[25]:
   col1  weight_column
0     0             0.0
1     8             0.4
2     7             0.1
```
1.10.1.3 String Methods Enhancements

Continuing from v0.16.0, the following enhancements make string operations easier and more consistent with standard python string operations.

- **Added** `StringMethods (.str accessor) to Index** (GH9068)

 The `.str accessor is now available for both Series and Index.

  ```
  In [26]: idx = Index([' jack', 'jill ', ' jesse ', 'frank'])
  In [27]: idx.str.strip()
  Out[27]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
  ```

 One special case for the `.str accessor on Index is that if a string method returns bool, the `.str accessor will return a np.array instead of a boolean Index (GH8875). This enables the following expression to work naturally:

  ```
  In [28]: idx = Index(['a1', 'a2', 'b1', 'b2'])
  In [29]: s = Series(range(4), index=idx)
  In [30]: s
  Out[30]:
  a1 0
  a2 1
  b1 2
  b2 3
  dtype: int64
  ```

  ```
  In [31]: idx.str.startswith('a')
  Out[31]: array([ True, ˓→True, False, False], dtype=bool)
  ```

  ```
  In [32]: s[s.index.str.startswith('a')]
  Out[32]:
  a1 0
  a2 1
  dtype: int64
  ```

- **The following new methods are accesible via .str accessor to apply the function to each values. (GH9766, GH9773, GH10031, GH10045, GH10052)**

<table>
<thead>
<tr>
<th>Methods</th>
<th>capitalize()</th>
<th>swapcase()</th>
<th>normalize()</th>
<th>partition()</th>
<th>rpartition()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>index()</td>
<td>rindex()</td>
<td>translate()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **split now takes expand keyword to specify whether to expand dimensionality. return_type is deprecated. (GH9847)**

  ```
  In [33]: s = Series(['a,b', 'a,c', 'b,c'])
  ```
```python
# return Series
In [34]: s.str.split(',', ')
Out[34]:
0  [a, b]
1  [a, c]
2  [b, c]
dtype: object

# return DataFrame
In [35]: s.str.split(',', expand=True)
Out[35]:
0 1
0 a b
1 a c
2 b c

In [36]: idx = Index(['a,b', 'a,c', 'b,c'])

# return Index
In [37]: idx.str.split(')', )
Out[37]: Index([['a', 'b'], ['a', 'c'], ['b', 'c']], dtype='object')

# return MultiIndex
In [38]: idx.str.split(')', expand=True)
Out[38]: MultiIndex(levels=[[['a', 'b'], ['b', 'c']]], labels=[[0, 0, 1], [0, 1, 1]])
```

- Improved `extract` and `get_dummies` methods for `Index.str` (GH9980)

1.10.1.4 Other Enhancements

- `BusinessHour` offset is now supported, which represents business hours starting from 09:00 - 17:00 on `BusinessDay` by default. See [Here](#) for details. (GH7905)

```python
In [39]: from pandas.tseries.offsets import BusinessHour

In [40]: Timestamp('2014-08-01 09:00') + BusinessHour()
Out[40]: Timestamp('2014-08-01 10:00:00')

In [41]: Timestamp('2014-08-01 07:00') + BusinessHour()
Out[41]: Timestamp('2014-08-01 10:00:00')

In [42]: Timestamp('2014-08-01 16:30') + BusinessHour()
Out[42]: Timestamp('2014-08-04 09:30:00')
```

- `DataFrame.diff` now takes an `axis` parameter that determines the direction of differencing (GH9727)

- Allow `clip`, `clip_lower`, and `clip_upper` to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have an `axis` parameter which determines how the Series or DataFrame will be aligned with the threshold(s). (GH6966)

- `DataFrame.mask()` and `Series.mask()` now support same keywords as `where` (GH8801)

- `drop` function can now accept `errors` keyword to suppress `ValueError` raised when any of label does not exist in the target data. (GH6736)
In [43]: df = DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])
In [44]: df.drop(['A', 'X'], axis=1, errors='ignore')
Out[44]:
 B C
0 1.058969 -0.397840
1 1.047579 1.045938
2 -0.122092 0.124713

• Add support for separating years and quarters using dashes, for example 2014-Q1. (GH9688)
• Allow conversion of values with dtype datetime64 or timedelta64 to strings using astype(str) (GH9757)
• get_dummies function now accepts sparse keyword. If set to True, the return DataFrame is sparse, e.g. SparseDataFrame. (GH8823)
• Period now accepts datetime64 as value input. (GH9054)
• Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00. (GH9570)
• Allow Panel.shift with axis='items' (GH9890)
• Trying to write an excel file now raises NotImplementedError if the DataFrame has a MultiIndex instead of writing a broken Excel file. (GH9794)
• Allow Categorical.add_categories to accept Series or np.array. (GH9927)
• Add/delete str/dt/cat accessors dynamically from __dir__. (GH9910)
• Add normalize as a dt accessor method. (GH10047)
• DataFrame and Series now have _constructor_expanddim property as overridable constructor for one higher dimensionality data. This should be used only when it is really needed, see here
• pd.lib.infer_dtypes now returns 'bytes' in Python 3 where appropriate. (GH10032)

1.10.2 API changes

• When passing in an ax to df.plot(..., ax=ax), the sharex kwarg will now default to False. The result is that the visibility of xlabels and xticklabels will not anymore be changed. You have to do that by yourself for the right axes in your figure or set sharex=True explicitly (but this changes the visible for all axes in the figure, not only the one which is passed in!). If pandas creates the subplots itself (e.g. no passed in ax kwarg), then the default is still sharex=True and the visibility changes are applied.
• assign() now inserts new columns in alphabetical order. Previously the order was arbitrary. (GH9777)
• By default, read_csv and read_table will now try to infer the compression type based on the file extension. Set compression=None to restore the previous behavior (no decompression). (GH9770)

1.10.2.1 Deprecations

• Series.str.split's return_type keyword was removed in favor of expand (GH9847)
1.10.3 Index Representation

The string representation of Index and its sub-classes have now been unified. These will show a single-line display if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items; if lots of items (> display.max_seq_items) will show a truncated display (the head and tail of the data). The formatting for MultiIndex is unchanged (a multi-line wrapped display). The display width responds to the option display.max_seq_items, which is defaulted to 100. (GH6482)

Previous Behavior

```
In [2]: pd.Index(range(4), name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')

In [3]: pd.Index(range(104), name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,...]

In [4]: pd.date_range('20130101', periods=4, name='foo', tz='US/Eastern')
Out[4]: <class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern

In [5]: pd.date_range('20130101', periods=104, name='foo', tz='US/Eastern')
Out[5]: <class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern
```

New Behavior

```
In [45]: pd.set_option('display.width', 80)

In [46]: pd.Index(range(4), name='foo')
Out[46]: RangeIndex(start=0, stop=4, step=1, name='foo')

In [47]: pd.Index(range(30), name='foo')

In [48]: pd.Index(range(104), name='foo')

In [49]: pd.CategoricalIndex(['a', 'bb', 'ccc', 'dddd'], ordered=True, name='foobar')

In [50]: pd.CategoricalIndex(['a', 'bb', 'ccc', 'dddd'] * 10, ordered=True, name='foobar')
```

1.10.4 Performance Improvements

- Improved csv write performance with mixed dtypes, including datetimes by up to 5x (GH9940)
- Improved csv write performance generally by 2x (GH9940)
• Improved the performance of `pd.lib.max_len_string_array` by 5-7x (GH10024)

1.10.5 Bug Fixes

• Bug where labels did not appear properly in the legend of `DataFrame.plot()`, passing `label=` arguments works, and Series indices are no longer mutated. (GH9542)
• Bug in json serialization causing a segfault when a frame had zero length. (GH9805)
• Bug in `read_csv` where missing trailing delimiters would cause segfault. (GH5664)
• Bug in retaining index name on appending (GH9862)
• Bug in `scatter_matrix` draws unexpected axis ticklabels (GH5662)
• Fixed bug in `StataWriter` resulting in changes to input `DataFrame` upon save (GH9795).
• Bug in `transform` causing length mismatch when null entries were present and a fast aggregator was being used (GH9697)
• Bug in `equals` causing false negatives when block order differed (GH9330)
• Bug in grouping with multiple `pd.Grouper` where one is non-time based (GH10063)
• Bug in `read_sql_table` error when reading postgres table with timezone (GH7139)
• Bug in `DataFrame` slicing may not retain metadata (GH9776)
• Bug where `TimedeltaIndex` were not properly serialized in fixed `HDFStore` (GH9635)
• Bug with `TimedeltaIndex` constructor ignoring name when given another `TimedeltaIndex` as data (GH10025).
• Bug in `DataFrameFormatter._get_formatted_index` with not applying `max_colwidth` to the `DataFrame` index (GH7856)
• Bug in `.loc` with a read-only ndarray data source (GH10043)
• Bug in `groupby.apply()` that would raise if a passed user defined function either returned only `None` (for all input). (GH9685)
• Always use temporary files in pytables tests (GH9992)
• Bug in plotting continuously using `secondary_y` may not show legend properly. (GH9610, GH9779)
• Bug in `DataFrame.plot(kind="hist")` results in `TypeError` when `DataFrame` contains non-numeric columns (GH9853)
• Bug where repeated plotting of `DataFrame` with a `DatetimeIndex` may raise `TypeError` (GH9852)
• Bug in `setup.py` that would allow an incompat cython version to build (GH9827)
• Bug in plotting `secondary_y` incorrectly attaches `right_ax` property to secondary axes specifying itself recursively. (GH9861)
• Bug in `Series.quantile` on empty `Series` of type `Datetime` or `Timedelta` (GH9675)
• Bug in `where` causing incorrect results when upcasting was required (GH9731)
• Bug in `FloatArrayFormatter` where decision boundary for displaying “small” floats in decimal format is off by one order of magnitude for a given display.precision (GH9764)
• Fixed bug where `DataFrame.plot()` raised an error when both `color` and `style` keywords were passed and there was no color symbol in the style strings (GH9671)
• Not showing a `DeprecationWarning` on combining list-likes with an `Index` (GH10083)
• Bug in read_csv and read_table when using skip_rows parameter if blank lines are present. (GH9832)
• Bug in read_csv() interprets index_col=True as 1 (GH9798)
• Bug in index equality comparisons using == failing on Index/MultiIndex type incompatibility (GH9785)
• Bug in which SparseDataFrame could not take nan as a column name (GH8822)
• Bug in to_msgpack and read_msgpack zlib and blosc compression support (GH9783)
• Bug GroupBy.size doesn’t attach index name properly if grouped by TimeGrouper (GH9925)
• Bug causing an exception in slice assignments because length_of_indexer returns wrong results (GH9995)
• Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. (GH9710)
• Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. (GH10022)
• Bug causing elements with a null group to spill into the final group when grouping by a Categorical (GH9603)
• Bug where .iloc and .loc behavior is not consistent on empty dataframes (GH9964)
• Bug in invalid attribute access on a TimedeltaIndex incorrectly raised ValueError instead of AttributeError (GH9680)
• Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g. Series(Categorical(list("abc"), ordered=True)) > "d". This returned False for all elements, but now raises a TypeError. Equality comparisons also now return False for == and True for !=. (GH9848)
• Bug in DataFrame __setitem__ when right hand side is a dictionary (GH9874)
• Bug in where when dtype is datetime64/timedelta64, but dtype of other is not (GH9804)
• Bug in MultiIndex.sortlevel() results in unicode level name breaks (GH9856)
• Bug in which groupby.transform incorrectly enforced output dtypes to match input dtypes. (GH9807)
• Bug in DataFrame constructor when columns parameter is set, and data is an empty list (GH9939)
• Bug in bar plot with log=True raises TypeError if all values are less than 1 (GH9905)
• Bug in horizontal bar plot ignores log=True (GH9905)
• Bug in PyTables queries that did not return proper results using the index (GH8265, GH9676)
• Bug where dividing a dataframe containing values of type Decimal by another Decimal would raise. (GH9787)
• Bug where using DataFrames asfreq would remove the name of the index. (GH9885)
• Bug causing extra index point when resample BM/BQ (GH9756)
• Changed caching in AbstractHolidayCalendar to be at the instance level rather than at the class level as the latter can result in unexpected behaviour. (GH9552)
• Fixed latex output for multi-indexed dataframes (GH9778)
• Bug causing an exception when setting an empty range using DataFrame.loc (GH9596)
• Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes (GH9158)
• Bug in transform and filter when grouping on a categorical variable (GH9921)
• Bug in transform when groups are equal in number and dtype to the input index (GH9700)
• Google BigQuery connector now imports dependencies on a per-method basis (GH9713)
• Updated BigQuery connector to no longer use deprecated oauth2client.tools.run() (GH8327)
• Bug in subclassed DataFrame. It may not return the correct class, when slicing or subsetting it. (GH9632)
• Bug in .median() where non-float null values are not handled correctly (GH10040)
• Bug in Series.fillna() where it raises if a numerically convertible string is given (GH10092)

1.11 v0.16.0 (March 22, 2015)

This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• DataFrame.assign method, see here
• Series.to_coo/from_coo methods to interact with scipy.sparse, see here
• Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta, see here
• Changes to the .loc slicing API to conform with the behavior of .ix see here
• Changes to the default for ordering in the Categorical constructor, see here
• Enhancement to the .str accessor to make string operations easier, see here
• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here

Check the API Changes and deprecations before updating.

What’s new in v0.16.0

• New features
 – DataFrame Assign
 – Interaction with scipy.sparse
 – String Methods Enhancements
 – Other enhancements
• Backwards incompatible API changes
 – Changes in Timedelta
 – Indexing Changes
 – Categorical Changes
 – Other API Changes
 – Deprecations
 – Removal of prior version deprecations/changes
1.11.1 New features

1.11.1.1 DataFrame Assign

Inspired by dplyr's `mutate` verb, DataFrame has a new `assign()` method. The function signature for `assign` is simply `**kwargs`. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a `Series` or NumPy array), or a function of one argument to be called on the DataFrame. The new values are inserted, and the entire DataFrame (with all original and new columns) is returned.

```
In [1]: iris = read_csv('data/iris.data')
In [2]: iris.head()
Out[2]:
   SepalLength  SepalWidth  PetalLength  PetalWidth     Name
 0      5.1        3.5         1.4       0.2  Iris-setosa
 1      4.9        3.0         1.4       0.2  Iris-setosa
 2      4.7        3.2         1.3       0.2  Iris-setosa
 3      4.6        3.1         1.5       0.2  Iris-setosa
 4      5.0        3.6         1.4       0.2  Iris-setosa
```

In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength']).head()

```
   SepalLength  SepalWidth  PetalLength  PetalWidth     Name  sepal_ratio
 0      5.1        3.5         1.4       0.2  Iris-setosa  0.686275
 1      4.9        3.0         1.4       0.2  Iris-setosa  0.612245
 2      4.7        3.2         1.3       0.2  Iris-setosa  0.680851
 3      4.6        3.1         1.5       0.2  Iris-setosa  0.673913
 4      5.0        3.6         1.4       0.2  Iris-setosa  0.720000
```

Above was an example of inserting a precomputed value. We can also pass in a function to be evaluated.

```
In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] / x['SepalLength'])).head()
```

```
   SepalLength  SepalWidth  PetalLength  PetalWidth     Name  sepal_ratio
 0      5.1        3.5         1.4       0.2  Iris-setosa  0.686275
 1      4.9        3.0         1.4       0.2  Iris-setosa  0.612245
 2      4.7        3.2         1.3       0.2  Iris-setosa  0.680851
 3      4.6        3.1         1.5       0.2  Iris-setosa  0.673913
 4      5.0        3.6         1.4       0.2  Iris-setosa  0.720000
```

The power of `assign` comes when used in chains of operations. For example, we can limit the DataFrame to just those with a Sepal Length greater than 5, calculate the ratio, and plot.

```
In [5]: (iris.query('SepalLength > 5')
   ...: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
   ...:           PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
   ...: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
   ...:
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x136b031d0>
```
1.11.1.2 Interaction with scipy.sparse

Added SparseSeries.to_coo() and SparseSeries.from_coo() methods (GH8048) for converting to and from scipy.sparse.coo_matrix instances (see here). For example, given a SparseSeries with MultiIndex we can convert to a scipy.sparse.coo_matrix by specifying the row and column labels as index levels:

In [6]: from numpy import nan

In [7]: s = Series([3.0, nan, 1.0, 3.0, nan, nan])

In [8]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
 ...:
 ...:
 ...:
 ...:
 ...:
 ...:
 ...:
 ...:
 names=['A', 'B', 'C', 'D'])

In [9]: s

Out[9]:
A B C D
1 2 a 0 3.0
 1 NaN
1 b 0 1.0
 1 3.0
2 1 b 0 NaN
 1 NaN
dtype: float64

SparseSeries
In [10]: ss = s.to_sparse()

In [11]: ss

Out[11]:
A B C D
1 2 a 0 3.0
The from_coo method is a convenience method for creating a SparseSeries from a scipy.sparse.coo_matrix:
1.11.3 String Methods Enhancements

- Following new methods are accessible via `.str` accessor to apply the function to each values. This is intended to make it more consistent with standard methods on strings. (GH9282, GH9352, GH936, GH9387, GH9439)

<table>
<thead>
<tr>
<th>Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>isalnum()</td>
<td>isalpha()</td>
</tr>
<tr>
<td>isdigit()</td>
<td>isdigit()</td>
</tr>
<tr>
<td>isspace()</td>
<td></td>
</tr>
<tr>
<td>islower()</td>
<td>isupper()</td>
</tr>
<tr>
<td>istitle()</td>
<td>isnumeric()</td>
</tr>
<tr>
<td>isdecimal()</td>
<td></td>
</tr>
<tr>
<td>find()</td>
<td>rfind()</td>
</tr>
<tr>
<td>ljust()</td>
<td>rjust()</td>
</tr>
<tr>
<td>zfill()</td>
<td></td>
</tr>
</tbody>
</table>

```
In [23]: s = Series(['abcd', '3456', 'EFGH'])
In [24]: s.str.isalpha()
Out[24]:
0    True
1   False
2    True
Name: s, dtype: bool
```

```
In [25]: s.str.find('ab')
Out[25]:
0    0
1   -1
2   -1
Name: s, dtype: int64
```

- Series.str.pad() and Series.str.center() now accept fillchar option to specify filling character (GH9352)

```
In [26]: s = Series(['12', '300', '25'])
In [27]: s.str.pad(5, fillchar='_')
Out[27]:
0    ____12
1    ___300
2    ___25
Name: s, dtype: object
```

- Added Series.str.slice_replace(), which previously raised `NotImplementedError` (GH8888)

```
In [28]: s = Series(['ABCD', 'EFGH', 'IJK'])
In [29]: s.str.slice_replace(1, 3, 'X')
Out[29]:
0     AXD
1     EXH
Name: s, dtype: object
```
1.11.1.4 Other enhancements

- Reindex now supports method='nearest' for frames or series with a monotonic increasing or decreasing index (GH9258):

```python
In [31]: df = pd.DataFrame({'x': range(5)})
In [32]: df.reindex([0.2, 1.8, 3.5], method='nearest')
Out[32]:
   x
0.2  0
1.8  2
3.5  4
```

This method is also exposed by the lower level Index.get_indexer and Index.get_loc methods.

- The read_excel() function’s sheetname argument now accepts a list and None, to get multiple or all sheets respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)

```
# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
pd.read_excel('path_to_file.xls',sheetname=['Sheet1', 3])
```

- Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs here (GH9493).

- Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)

- Added time interval selection in get_data_yahoo (GH9071)

- Added Timestamp.to_datetime64() to complement Timedelta.to_timedelta64() (GH9255)

- tseries.frequencies.to_offset() now accepts Timedelta as input (GH9064)

- Lag parameter was added to the autocorrelation method of Series, defaults to lag-1 autocorrelation (GH9192)

- Timedelta will now accept nanoseconds keyword in constructor (GH9273)

- SQL code now safely escapes table and column names (GH8986)

- Added auto-complete for Series.str.<tab>, Series.dt.<tab> and Series.cat.<tab> (GH9322)

- Index.get_indexer now supports method='pad' and method='backfill' even for any target array, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic increasing indexes (GH9258).

- Index.asof now works on all index types (GH9258).
• A verbose argument has been augmented in `io.read_excel()`, defaults to False. Set to True to print sheet names as they are parsed. (GH9450)

• Added `days_in_month` (compatibility alias `daysinmonth`) property to `Timestamp`, `DatetimeIndex`, `Period`, `PeriodIndex`, and `Series.dt` (GH9572)

• Added `decimal` option in `to_csv` to provide formatting for non-`.` decimal separators (GH781)

• Added `normalize` option for `Timestamp` to normalized to midnight (GH8794)

• Added example for `DataFrame` import to R using HDF5 file and `rhdf5` library. See the documentation for more (GH9636).

1.11.2 Backwards incompatible API changes

1.11.2.1 Changes in Timedelta

In v0.15.0 a new scalar type `Timedelta` was introduced, that is a sub-class of `datetime.timedelta`. Mentioned here was a notice of an API change w.r.t. the `.seconds` accessor. The intent was to provide a user-friendly set of accessors that give the 'natural' value for that unit, e.g. if you had a `Timedelta('1 day, 10:11:12')`, then `.seconds` would return 12. However, this is at odds with the definition of `datetime.timedelta`, which defines `.seconds` as $10 \times 3600 + 11 \times 60 + 12 = 36672$.

So in v0.16.0, we are restoring the API to match that of `datetime.timedelta`. Further, the component values are still available through the `.components` accessor. This affects the `.seconds` and `.microseconds` accessors, and removes the `.hours`, `.minutes`, `.milliseconds` accessors. These changes affect `TimedeltaIndex` and the `Series.dt` accessor as well. (GH9185, GH9139)

Previous Behavior

```python
In [2]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [3]: t.days
Out[3]: 1
In [4]: t.seconds
Out[4]: 12
In [5]: t.microseconds
Out[5]: 123
```

New Behavior

```python
In [33]: t = pd.Timedelta('1 day, 10:11:12.100123')
In [34]: t.days
Out[34]: 1
In [35]: t.seconds
Out[35]: 36672
In [36]: t.microseconds
Out[36]: 100123
```

Using `.components` allows the full component access

```python
In [37]: t.components
Out[37]: Components(days=1, hours=10, minutes=11, seconds=12, milliseconds=100, microseconds=123, nanoseconds=0)
```
1.11.2.2 Indexing Changes

The behavior of a small sub-set of edge cases for using `.loc` have changed (GH8613). Furthermore we have improved the content of the error messages that are raised:

- Slicing with `.loc` where the start and/or stop bound is not found in the index is now allowed; this previously would raise a `KeyError`. This makes the behavior the same as `.ix` in this case. This change is only for slicing, not when indexing with a single label.

```python
In [39]: df = DataFrame(np.random.randn(5,4),
             ....:    columns=list('ABCD'),
             ....:    index=date_range('20130101',periods=5))
In [40]: df
Out[40]:
          A          B          C          D
2013-01-01 -0.322795  0.841675  2.390961  0.076200
2013-01-02 -0.566446  0.036142 -2.074978  0.247792
2013-01-03 -0.897157 -0.136795  0.018289  0.755414
2013-01-04  0.215269  0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620  0.354020
```

```python
In [41]: s = Series(range(5),[-2,-1,1,2,3])
In [42]: s
Out[42]:
-2  0
-1  1
  1  2
  2  3
  3  4
dtype: int64
```

Previous Behavior

```python
In [4]: df.loc['2013-01-02':'2013-01-10']
KeyError: 'stop bound [2013-01-10] is not in the [index]'

In [6]: s.loc[-10:3]
KeyError: 'start bound [-10] is not the [index]'
```

New Behavior

```python
In [43]: df.loc['2013-01-02':'2013-01-10']
Out[43]:
          A          B          C          D
2013-01-02 -0.566446  0.036142 -2.074978  0.247792
2013-01-03 -0.897157 -0.136795  0.018289  0.755414
2013-01-04  0.215269  0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620  0.354020
```

188 Chapter 1. What's New
• Allow slicing with float-like values on an integer index for `.ix`. Previously this was only enabled for `.loc`:

Previous Behavior

```
In [8]: s.ix[-1.0:2]
TypeError: the slice start value [-1.0] is not a proper indexer for this index
```

New Behavior

```
In [2]: s.ix[-1.0:2]
Out[2]:
-1  1
 1  2
 2  3
dtype: int64
```

• Provide a useful exception for indexing with an invalid type for that index when using `.loc`. For example trying to use `.loc` on an index of type `DatetimeIndex` or `PeriodIndex` or `TimedeltaIndex`, with an integer (or a float).

Previous Behavior

```
In [4]: df.loc[2:3]
KeyError: 'start bound [2] is not the [index]'
```

New Behavior

```
In [4]: df.loc[2:3]
TypeError: Cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with <type 'int'> keys
```

1.11.2.3 Categorical Changes

In prior versions, `Categoricals` that had an unspecified ordering (meaning no `ordered` keyword was passed) were defaulted as `ordered` `Categoricals`. Going forward, the `ordered` keyword in the `Categorical` constructor will default to `False`. Ordering must now be explicit.

Furthermore, previously you could change the `ordered` attribute of a `Categorical` by just setting the attribute, e.g. `cat.ordered=True`. This is now deprecated and you should use `cat.as_ordered()` or `cat.as_unordered()`. These will by default return a `new` object and not modify the existing object. (GH9347, GH9190)

Previous Behavior

```

```

1.11. v0.16.0 (March 22, 2015)
In [3]: s = Series([0,1,2], dtype='category')

In [4]: s
Out[4]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [5]: s.cat.ordered
Out[5]: True

In [6]: s.cat.ordered = False

In [7]: s
Out[7]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

New Behavior

In [45]: s = Series([0,1,2], dtype='category')

In [46]: s
Out[46]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

In [47]: s.cat.ordered
Out[47]: False

In [48]: s = s.cat.as_ordered()

In [49]: s
Out[49]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [50]: s.cat.ordered
Out[50]: True

you can set in the constructor of the Categorical
In [51]: s = Series(Categorical([0,1,2], ordered=True))

In [52]: s
Out[52]:
For ease of creation of series of categorical data, we have added the ability to pass keywords when calling
.astype(). These are passed directly to the constructor.

```python
In [54]: s = Series(['a','b','c','a']).astype('category',ordered=True)
In [55]: s
Out[55]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a < b < c]
```

```python
In [56]: s = Series(['a','b','c','a']).astype('category',categories=list('abcdef'),
ordered=False)
In [57]: s
Out[57]:
0 a
1 b
2 c
3 a
dtype: category
Categories (6, object): [a, b, c, d, e, f]
```

1.11.2.4 Other API Changes

- `Index.duplicated` now returns `np.array(dtype=bool)` rather than `Index(dtype=object)`
 containing `bool` values. (GH8875)

- `DataFrame.to_json` now returns accurate type serialisation for each column for frames of mixed dtype
 (GH9037)

 Previously data was coerced to a common dtype before serialisation, which for example resulted in integers
 being serialised to floats:

  ```python
  In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
  Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1.0,"1":2.0}}'
  ```

 Now each column is serialised using its correct dtype:

  ```python
  In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
  Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1,"1":2}}'
  ```

- `DatetimeIndex`, `PeriodIndex` and `TimedeltaIndex.summary` now output the same format. (GH9116)
• TimedeltaIndex.freqstr now output the same string format as DatetimeIndex. (GH9116)

• Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved with matplotlib's axhline or axvline methods (GH9088).

• Series accessors .dt, .cat and .str now raise AttributeError instead of TypeError if the series does not contain the appropriate type of data (GH9617). This follows Python's built-in exception hierarchy more closely and ensures that tests like hasattr(s, 'cat') are consistent on both Python 2 and 3.

• Series now supports bitwise operation for integral types (GH9016). Previously even if the input dtypes were integral, the output dtype was coerced to bool.

 Previous Behavior

| In [2]: pd.Series([0, 1, 2, 3], list('abcd')) | pd.Series([4, 4, 4, 4], list('abcd')) |
| Out [2]:
| a True |
| b True |
| c True |
| d True |
| dtype: bool |

 New Behavior. If the input dtypes are integral, the output dtype is also integral and the output values are the result of the bitwise operation.

| In [2]: pd.Series([0, 1, 2, 3], list('abcd')) | pd.Series([4, 4, 4, 4], list('abcd')) |
| Out [2]:
| a 4 |
| b 5 |
| c 6 |
| d 7 |
| dtype: int64 |

• During division involving a Series or DataFrame, 0/0 and 0/0 now give np.nan instead of np.inf. (GH9144, GH8445)

 Previous Behavior

| In [2]: p = pd.Series([0, 1]) |
| In [3]: p / 0 |
| Out [3]:
| 0 inf |
| 1 inf |
| dtype: float64 |

| In [4]: p // 0 |
| Out [4]:
| 0 inf |
| 1 inf |
| dtype: float64 |

 New Behavior

| In [58]: p = pd.Series([0, 1]) |
| In [59]: p / 0 |
| Out [59]:
| 0 NaN |
| 1 inf |
• Series.values_counts and Series.describe for categorical data will now put NaN entries at the end. (GH9443)

• Series.describe for categorical data will now give counts and frequencies of 0, not NaN, for unused categories (GH9443)

• Due to a bug fix, looking up a partial string label with DatetimeIndex.asof now includes values that match the string, even if they are after the start of the partial string label (GH9258).

Old behavior:

In [4]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[4]: Timestamp('2000-01-31 00:00:00')

Fixed behavior:

In [61]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[61]: Timestamp('2000-02-28 00:00:00')

To reproduce the old behavior, simply add more precision to the label (e.g., use 2000-02-01 instead of 2000-02).

1.11.2.5 Deprecations

• The rplot trellis plotting interface is deprecated and will be removed in a future version. We refer to external packages like seaborn for similar but more refined functionality (GH3445). The documentation includes some examples how to convert your existing code using rplot to seaborn: rplot docs.

• The pandas.sandbox.qtpandas interface is deprecated and will be removed in a future version. We refer users to the external package pandas-qt. (GH9615)

• The pandas.rpy interface is deprecated and will be removed in a future version. Similar functionality can be accessed thru the rpy2 project (GH9602)

• Adding DatetimeIndex/PeriodIndex to another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to a TypeError in a future version. .union() should be used for the union set operation. (GH9094)

• Subtracting DatetimeIndex/PeriodIndex from another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding a TimeDeltaIndex in a future version. .difference() should be used for the differencing set operation. (GH9094)

1.11.2.6 Removal of prior version deprecations/changes

• DataFrame.pivot_table and crosstab's rows and cols keyword arguments were removed in favor of index and columns (GH6581)
• DataFrame.to_excel and DataFrame.to_csv cols keyword argument was removed in favor of columns (GH6581)
• Removed convert_dummies in favor of get_dummies (GH6581)
• Removed value_range in favor of describe (GH6581)

1.11.3 Performance Improvements

• Fixed a performance regression for .loc indexing with an array or list-like (GH9126).
• DataFrame.to_json 30x performance improvement for mixed dtype frames. (GH9037)
• Performance improvements in MultiIndex.duplicated by working with labels instead of values (GH9125)
• Improved the speed of nunique by calling unique instead of value_counts (GH9129, GH7771)
• Performance improvement of up to 10x in DataFrame.count and DataFrame.dropna by taking advantage of homogeneous/heterogeneous dtypes appropriately (GH9136)
• Performance improvement of up to 20x in DataFrame.count when using a MultiIndex and the level keyword argument (GH9163)
• Performance and memory usage improvements in merge when key space exceeds int64 bounds (GH9151)
• Performance improvements in multi-key groupby (GH9429)
• Performance improvements in MultiIndex.sortlevel (GH9445)
• Performance and memory usage improvements in DataFrame.duplicated (GH9398)
• Cythonized Period (GH9440)
• Decreased memory usage on to_hdf (GH9648)

1.11.4 Bug Fixes

• Changed .to_html to remove leading/trailing spaces in table body (GH4987)
• Fixed issue using read_csv on s3 with Python 3 (GH9452)
• Fixed compatibility issue in DatetimeIndex affecting architectures where numpy.int_ defaults to numpy.int32 (GH8943)
• Bug in Panel indexing with an object-like (GH9140)
• Bug in the returned Series.dt.components index was reset to the default index (GH9247)
• Bug in Categorical.__getitem__/__setitem__ with listlike input getting incorrect results from indexer coercion (GH9469)
• Bug in partial setting with a DatetimeIndex (GH9478)
• Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be changed when the number was sufficiently large (GH9311, GH6620)
• Fixed bug in to_sql when mapping a Timestamp object column (datetime column with timezone info) to the appropriate sqlalchemy type (GH9085).
• Fixed bug in to_sql dtype argument not accepting an instantiated SQLAlchemy type (GH9083).
• Bug in .loc partial setting with a np.datetime64 (GH9516)
• Incorrect dtypes inferred on datetimelike looking Series & on `.xs` slices (GH9477)

• Items in `Categorical.unique()` (and `s.unique()` if `s` is of dtype `category`) now appear in the order in which they are originally found, not in sorted order (GH9331). This is now consistent with the behavior for other dtypes in pandas.

• Fixed bug on big endian platforms which produced incorrect results in StataReader (GH8688).

• Bug in `MultiIndex.has_duplicates` when having many levels causes an indexer overflow (GH9075, GH5873)

• Bug in `pivot` and `unstack` where `nan` values would break index alignment (GH4862, GH7401, GH7403, GH7405, GH7466, GH9497)

• Bug in left join on multi-index with `sort=True` or null values (GH9210).

• Bug in `MultiIndex` where inserting new keys would fail (GH9250).

• Bug in `groupby` when key space exceeds int64 bounds (GH9096).

• Bug in `unstack` with `TimedeltaIndex` or `DatetimeIndex` and nulls (GH9491).

• Bug in `rank` where comparing floats with tolerance will cause inconsistent behaviour (GH8365).

• Fixed character encoding bug in `read_stata` and `StataReader` when loading data from a URL (GH9231).

• Bug in adding offsets.Nano to other offsets raises `TypeError` (GH9284)

• Bug in `DatetimeIndex` iteration, related to (GH8890), fixed in (GH9100)

• Bugs in `resample` around DST transitions. This required fixing offset classes so they behave correctly on DST transitions. (GH5172, GH8744, GH8653, GH9173, GH9468).

• Bug in binary operator method (eg `.mul()`) alignment with integer levels (GH9463).

• Bug in boxplot, scatter and hexbin plot may show an unnecessary warning (GH8877)

• Bug in subplot with `layout` kw may show unnecessary warning (GH9464)

• Bug in using grouper functions that need passed thru arguments (e.g. `axis`), when using wrapped function (e.g. `fillna`), (GH9221)

• `DataFrame` now properly supports simultaneous `copy` and `dtype` arguments in constructor (GH9099)

• Bug in `read_csv` when using skiprows on a file with CR line endings with the `c` engine. (GH9079)

• `isnull` now detects `NaT` in `PeriodIndex` (GH9129)

• Bug in `groupby` `.nth()` with a multiple column groupby (GH8979)

• Bug in `DataFrame.where` and `Series.where` coerce numerics to string incorrectly (GH9280)

• Bug in `DataFrame.where` and `Series.where` raise `ValueError` when string list-like is passed. (GH9280)

• Accessing `Series.str` methods on with non-string values now raises `TypeError` instead of producing incorrect results (GH9184)

• Bug in `DatetimeIndex.__contains__` when index has duplicates and is not monotonic increasing (GH9512)

• Fixed division by zero error for `Series.kurt()` when all values are equal (GH9197)

• Fixed issue in the `xlsxwriter` engine where it added a default ‘General’ format to cells if no other format was applied. This prevented other row or column formatting being applied. (GH9167)

• Fixes issue with `index_col=False` when `usecols` is also specified in `read_csv`. (GH9082)
• Bug where `wide_to_long` would modify the input stubnames list (GH9204)
• Bug in `to_sql` not storing float64 values using double precision. (GH9009)
• SparseSeries and SparsePanel now accept zero argument constructors (same as their non-sparse counterparts) (GH9272).
• Regression in merging Categorical and object dtypes (GH9426)
• Bug in `read_csv` with buffer overflows with certain malformed input files (GH9205)
• Bug in groupby MultiIndex with missing pair (GH9049, GH9344)
• Fixed bug in `Series.groupby` where grouping on MultiIndex levels would ignore the sort argument (GH9444)
• Fix bug in `DataFrame.Groupby` where `sort=False` is ignored in the case of Categorical columns. (GH8868)
• Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError (GH9452)
• Bug in the Google BigQuery reader where the ‘jobComplete’ key may be present but False in the query results (GH8728)
• Bug in `Series.values_counts` with excluding NaN for categorical type `Series` with `dropna=True` (GH9443)
• Fixed missing numeric_only option for `DataFrame.std/var/sem` (GH9201)
• Support constructing `Panel` or `Panel4D` with scalar data (GH8285)
• Series text representation disconnected from `max_rows/max_columns` (GH7508).
• Series number formatting inconsistent when truncated (GH8532).

Previous Behavior

```python
In [2]: pd.options.display.max_rows = 10
In [3]: s = pd.Series([1,1,1,1,1,1,1,1,1,1,0.9999,1,1]*10)
In [4]: s
Out[4]:
0    1
1    1
2    1
...  
127  0.9999
128  1.0000
129  1.0000
Length: 130, dtype: float64
```

New Behavior

```python
0    1.0000
1    1.0000
2    1.0000
3    1.0000
...  
125  1.0000
126  1.0000
127  0.9999
128  1.0000
129  1.0000
dtype: float64
```
• A Spurious SettingWithCopy Warning was generated when setting a new item in a frame in some cases (GH8730)

The following would previously report a SettingWithCopy Warning.

```
In [1]: df1 = DataFrame({'x': Series(['a', 'b', 'c']), 'y': Series(['d', 'e', 'f'])})
In [2]: df2 = df1['x']
In [3]: df2['y'] = ['g', 'h', 'i']
```

1.12 v0.15.2 (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs. We recommend that all users upgrade to this version.

• Enhancements
• API Changes
• Performance Improvements
• Bug Fixes

1.12.1 API changes

• Indexing in MultiIndex beyond lex-sort depth is now supported, though a lexically sorted index will have a better performance. (GH2646)

```
In [1]: df = pd.DataFrame({'jim':[0, 0, 1, 1], ...:'joe':['x', 'x', 'z', 'y'], ...:'jolie':np.random.rand(4))).set_index(['jim', 'joe'])
...:
In [2]: df
Out[2]:
   jolie
   jim  joe
  0  x  0.123943  x  0.119381
  1  z  0.738523  y  0.587304
In [3]: df.index.lexsort_depth
   → 1
# in prior versions this would raise a KeyError
# will now show a PerformanceWarning
In [4]: df.loc[(1, 'z')]
   → jolie
```
jim joe
1 z 0.738523

lexically sorting
In [5]: df2 = df.sort_index()

In [6]: df2
Out[6]:
 jim joe
 0 x 0.123943
 x 0.119381
 1 y 0.587304
 z 0.738523

In [7]: df2.index.lexsort_depth
 →2

In [8]: df2.loc[[1,'z']]
 →
 jim joe
 1 z 0.738523

• Bug in unique of Series with category dtype, which returned all categories regardless whether they were “used” or not (see GH8559 for the discussion). Previous behaviour was to return all categories:

In [3]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])

In [4]: cat
Out[4]:
[3] Categories (3, object): [a < b < c]
In [5]: cat.unique()
Out[5]: array(['a', 'b', 'c'], dtype=object)

Now, only the categories that do effectively occur in the array are returned:

In [9]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])

In [10]: cat.unique()
Out[10]:
[2] Categories (2, object): [a, b]

• Series.all and Series.any now support the level and skipna parameters. Series.all, Series.any, Index.all, and Index.any no longer support the out and keepdims parameters, which existed for compatibility with ndarray. Various index types no longer support the all and any aggregation functions and will now raise TypeError. (GH8302).

• Allow equality comparisons of Series with a categorical dtype and object dtype; previously these would raise TypeError (GH8938)

• Bug in NDFrame: conflicting attribute/column names now behave consistently between getting and setting. Previously, when both a column and attribute named y existed, data.y would return the attribute, while
data.y = z would update the column (GH8994)

```python
In [11]: data = pd.DataFrame({'x':[1, 2, 3]})
In [12]: data.y = 2
In [13]: data['y'] = [2, 4, 6]
In [14]: data
Out[14]:
   x  y
0  1  2
1  2  4
2  3  6
# this assignment was inconsistent
In [15]: data.y = 5
```

Old behavior:

```python
In [6]: data.y
Out[6]: 2
In [7]: data['y'].values
Out[7]: array([5, 5, 5])
```

New behavior:

```python
In [16]: data.y
Out[16]: 5
In [17]: data['y'].values
```

• Timestamp('now') is now equivalent to Timestamp.now() in that it returns the local time rather than UTC. Also, Timestamp('today') is now equivalent to Timestamp.today() and both have tz as a possible argument. (GH9000)

• Fix negative step support for label-based slices (GH8753)

Old behavior:

```python
In [1]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])
Out[1]:
   a  0
   b  1
   c  2
dtype: int64
In [2]: s.loc['c':'a':-1]
Out[2]:
c  2
dtype: int64
```

New behavior:

```python
In [18]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])
In [19]: s.loc['c':'a':-1]
```
1.12.2 Enhancements

Categorical enhancements:

- Added ability to export Categorical data to Stata (GH8633). See here for limitations of categorical variables exported to Stata data files.

- Added flag order_categoricals to StataReader and read_stata to select whether to order imported categorical data (GH8836). See here for more information on importing categorical variables from Stata data files.

- Added ability to export Categorical data to/to from HDF5 (GH7621). Queries work the same as if it was an object array. However, the category dtype data is stored in a more efficient manner. See here for an example and caveats w.r.t. prior versions of pandas.

- Added support for searchsorted() on Categorical class (GH8420).

Other enhancements:

- Added the ability to specify the SQL type of columns when writing a DataFrame to a database (GH8778). For example, specifying to use the sqlalchemy String type instead of the default Text type for string columns:

```python
from sqlalchemy.types import String
data.to_sql('data_dtype', engine, dtype={'Col_1': String})
```

- Series.all and Series.any now support the level and skipna parameters (GH8302):

```python
In [20]: s = pd.Series([False, True, False], index=[0, 0, 1])
In [21]: s.any(level=0)
Out [21]:
0   True
1    False
dtype: bool
```

- Panel now supports the all and any aggregation functions. (GH8302):

```python
In [22]: p = pd.Panel(np.random.rand(2, 5, 4) > 0.1)
In [23]: p.all()
Out [23]:
      0    1
0  True  True
1  True  False
2 False  True
3  True  True
```

- Added support for utcfromtimestamp(), fromtimestamp(), and combine() on Timestamp class (GH5351).

- Added Google Analytics (pandas.io.ga) basic documentation (GH8835). See here<http://pandas.pydata.org/pandas-docs/version/0.15.2/remote_data.html#remote-data-ga>.
• Timedelta arithmetic returns `NotImplemented` in unknown cases, allowing extensions by custom classes (GH8813).

• Timedelta now supports arithmetic with `numpy.ndarray` objects of the appropriate dtype (numpy 1.8 or newer only) (GH8884).

• Added `Timedelta.to_timedelta64()` method to the public API (GH8884).

• Added `gbq.generate_bq_schema()` function to the `gbq` module (GH8325).

• Series now works with map objects the same way as generators (GH8909).

• Added context manager to `HDFStore` for automatic closing (GH8791).

• `to_datetime` gains an `exact` keyword to allow for a format to not require an exact match for a provided format string (if its `False`). `exact` defaults to `True` (meaning that exact matching is still the default) (GH8904)

• Added `axvlines` boolean option to `parallel_coordinates` plot function, determines whether vertical lines will be printed, default is True.

• Added ability to read table footers to `read_html` (GH8552)

• `to_sql` now infers datatypes of non-NA values for columns that contain NA values and have dtype `object` (GH8778).

1.12.3 Performance

• Reduce memory usage when `skiprows` is an integer in `read_csv` (GH8681)

• Performance boost for `to_datetime` conversions with a passed `format=`, and the `exact=False` (GH8904)

1.12.4 Bug Fixes

• Bug in concat of `Series` with `category` dtype which were coercing to `object` (GH8641)

• Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones (GH8865)

• Made consistent a timezone mismatch exception (either `tz` operated with `None` or incompatible timezone), will now return `TypeError` rather than `ValueError` (a couple of edge cases only), (GH8865)

• Bug in using a `pd.Grouper(key=...)` with no level/axis or level only (GH8795, GH8866)

• Report a `TypeError` when invalid/no parameters are passed in a groupby (GH8015)

• Bug in packaging pandas with `py2app/cx_Freeze` (GH8602, GH8831)

• Bug in `groupby` signatures that didn’t include `*args` or `**kwargs` (GH8733).

• `io.data.Options` now raises `RemoteDataError` when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).

• Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type (GH8833)

• Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781)

• `io.data.Options` now raises `RemoteDataError` when no expiry dates are available from Yahoo (GH8761).

• `Timedelta` kwargs may now be `numpy` ints and floats (GH8757).
• Fixed several outstanding bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436).
• `sql_schema` now generates dialect appropriate CREATE TABLE statements (GH8697)
• `slice` string method now takes step into account (GH8754)
• Bug in `BlockManager` where setting values with different type would break block integrity (GH8850)
• Bug in `DatetimeIndex` when using `time` object as key (GH8667)
• Bug in `merge` where how='left' and sort=False would not preserve left frame order (GH7331)
• Bug in `MultiIndex.reindex` where reindexing at level would not reorder labels (GH4088)
• Regression in `DatetimeIndex` iteration with a Fixed/Local offset timezone (GH8890)
• Bug in `to_datetime` when parsing a nanoseconds using the `%f` format (GH8989)
• `io.data.Options` now raises `RemoteDataError` when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).
• Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765)
• Fixed division by 0 when reading big csv files in python 3 (GH8621)
• Bug in outputting a Multindex with `to_html`, index=False which would add an extra column (GH8452)
• Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836).
• Defined `.size` attribute across `NDFrame` objects to provide compat with numpy >= 1.9.1; buggy with np. `array_split` (GH8846)
• Skip testing of histogram plots for matplotlib <= 1.2 (GH8648).
• Bug where `get_data_google` returned object dtypes (GH3995)
• Bug in `DataFrame.stack(..., dropna=False)` when the `DataFrame`’s columns is a `MultiIndex` whose labels do not reference all its levels. (GH8844)
• Bug in that Option context applied on `__enter__` (GH8514)
• Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calculated from the start of the range (GH8683)
• Bug where `DataFrame.plot(kind='scatter')` fails when checking if an np.array is in the DataFrame (GH8852)
• Bug in `pd.infer_freq/DataFrame.inferred_freq` that prevented proper sub-daily frequency inference when the index contained DST days (GH8772).
• Bug where index name was still used when plotting a series with `use_index=False` (GH8558).
• Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584).
• Bug in `MultiIndex` where `__contains__` returns wrong result if index is not lexically sorted or unique (GH7724)
• BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983)
• Regression in Timestamp does not parse ‘Z’ zone designator for UTC (GH8771)
• Bug in `StataWriter` the produces writes strings with 244 characters irrespective of actual size (GH8969)
• Fixed ValueError raised by `cummin/cummax` when datetime64 Series contains NaT. (GH8965)
• Bug in `DataReader` returns object dtype if there are missing values (GH8980)
• Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964).
• Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice. (GH9011).
• Bug in plotting of a period-like array (GH9012)

1.13 v0.15.1 (November 9, 2014)

This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Enhancements
• API Changes
• Bug Fixes

1.13.1 API changes

• s.dt.hour and other .dt accessors will now return np.nan for missing values (rather than previously -1), (GH8689)

```python
In [1]: s = Series(date_range('20130101',periods=5,freq='D'))

In [2]: s.iloc[2] = np.nan

In [3]: s
Out [3]:
0 2013-01-01
1 2013-01-02
2 NaT
3 2013-01-04
4 2013-01-05
dtype: datetime64[ns]
```

previous behavior:

```python
In [6]: s.dt.hour
Out [6]:
0 0
1 0
2 -1
3 0
4 0
dtype: int64
```

current behavior:

```python
In [4]: s.dt.hour
Out [4]:
0 0.0
1 0.0
2 NaN
3 0.0
```
pandas: powerful Python data analysis toolkit, Release 0.20.1

• **groupby with as_index=False** will not add erroneous extra columns to result (GH8582):

```python
In [5]: np.random.seed(2718281)
In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)),
                      columns=['jim', 'joe'])
In [7]: df.head()
Out[7]:
   jim  joe
0    61   81
1    96   49
2    55   65
3    72   51
4    77   12
In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))
previous behavior:
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
   NaN  jim  joe
0    0    72   83
1    5    77   84
2   10    96   65
current behavior:
In [9]: df.groupby(ts, as_index=False).max()
Out[9]:
   jim  joe
0    72   83
1    77   84
2    96   65
```

• **groupby** will not erroneously exclude columns if the column name conflicts with the grouper name (GH8112):

```python
In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)})
In [11]: df
Out[11]:
   jim  joe
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9
In [12]: gr = df.groupby(df['jim'] < 2)
previous behavior (excludes 1st column from output):
In [13]: gr.max()  # GH8112
Out[13]:
   NaN  jim  joe
0  NaN    5    5
1  NaN    6    6
2  NaN    7    7
3  NaN    8    8
4  NaN    9    9
```
In [4]: gr.apply(sum)
Out[4]:
 joe
 jim
False 24
True 11

current behavior:

In [13]: gr.apply(sum)
Out[13]:
 jim joe
 jim
False 9 24
True 1 11

• Support for slicing with monotonic decreasing indexes, even if start or stop is not found in the index (GH7860):

In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1])
In [15]: s
Out[15]:
 4 a
 3 b
 2 c
 1 d
dtype: object

previous behavior:

In [8]: s.loc[3.5:1.5]
KeyError: 3.5

current behavior:

In [16]: s.loc[3.5:1.5]
Out[16]:
 3 b
 2 c
dtype: object

• io.data.Options has been fixed for a change in the format of the Yahoo Options page (GH8612), (GH8741)

Note: As a result of a change in Yahoo’s option page layout, when an expiry date is given, Options methods now return data for a single expiry date. Previously, methods returned all data for the selected month.

The month and year parameters have been undeprecated and can be used to get all options data for a given month.

If an expiry date that is not valid is given, data for the next expiry after the given date is returned.

Option data frames are now saved on the instance as callsYYMMDD or putsYYMMDD. Previously they were saved as callsMMYY and putsMMYY. The next expiry is saved as calls and puts.

New features:
– The expiry parameter can now be a single date or a list-like object containing dates.
– A new property `expiry_dates` was added, which returns all available expiry dates.

Current behavior:

```python
In [17]: from pandas.io.data import Options
In [18]: aapl = Options('aapl','yahoo')
In [19]: aapl.get_call_data().iloc[0:5,0:1]
Out[19]:
<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00080000</td>
<td>29.05</td>
</tr>
<tr>
<td>84</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00084000</td>
<td>24.80</td>
</tr>
<tr>
<td>85</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00085000</td>
<td>24.05</td>
</tr>
<tr>
<td>86</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00086000</td>
<td>22.76</td>
</tr>
<tr>
<td>87</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00087000</td>
<td>21.74</td>
</tr>
</tbody>
</table>
```

```python
In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2014, 11, 14),
 datetime.date(2014, 11, 22),
 datetime.date(2014, 11, 28),
 datetime.date(2014, 12, 5 ),
 datetime.date(2014, 12, 12),
 datetime.date(2014, 12, 20),
 datetime.date(2015, 1 , 17 ),
 datetime.date(2015, 2 , 20),
 datetime.date(2015, 4 , 17 ),
 datetime.date(2015, 7 , 17 ),
 datetime.date(2016, 1 , 15 ),
 datetime.date(2017, 1 , 20)]
```

```python
In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1]
Out[21]:
<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141112C00109000</td>
<td>1.48</td>
</tr>
<tr>
<td>109</td>
<td>2014-11-28</td>
<td>call</td>
<td>AAPL141128C00109000</td>
<td>1.79</td>
</tr>
<tr>
<td>110</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00110000</td>
<td>0.55</td>
</tr>
<tr>
<td>110</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141112C00110000</td>
<td>1.02</td>
</tr>
<tr>
<td>110</td>
<td>2014-11-28</td>
<td>call</td>
<td>AAPL141128C00110000</td>
<td>1.32</td>
</tr>
</tbody>
</table>
```

• pandas now also registers the `datetime64` dtype in matplotlib’s units registry to plot such values as datetimes. This is activated once pandas is imported. In previous versions, plotting an array of `datetime64` values will have resulted in plotted integer values. To keep the previous behaviour, you can do `del matplotlib.units.registry[np.datetime64]` (GH8614).

1.13.2 Enhancements

• `concat` permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):

```python
In [17]: from collections import deque
In [18]: df1 = pd.DataFrame([[1, 2, 3]])
```
In [19]: df2 = pd.DataFrame([4, 5, 6])

previous behavior:

In [7]: pd.concat(deque((df1, df2)))
TypeError: first argument must be a list-like of pandas objects, you passed an object of type "deque"

current behavior:

In [20]: pd.concat(deque((df1, df2)))
Out[20]:
 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6

• Represent MultiIndex labels with a dtype that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the reported memory usage was incorrect as it didn’t show the usage for the memory occupied by the underlying data array. (GH8456)

In [21]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([['a'],range(1000)]), columns=['A'])

previous behavior:

this was underreported in prior versions
In [1]: dfi.memory_usage(index=True)
Out[1]:
 Index 8000 # took about 24008 bytes in < 0.15.1
 A 8000
dtype: int64

current behavior:

In [22]: dfi.memory_usage(index=True)
Out[22]:
 Index 11040
 A 8000
 dtype: int64

• Added Index properties is_monotonic_increasing and is_monotonic_decreasing (GH8680).

• Added option to select columns when importing Stata files (GH7935)

• Qualify memory usage in DataFrame.info() by adding + if it is a lower bound (GH8578)

• Raise errors in certain aggregation cases where an argument such as numeric_only is not handled (GH8592).

• Added support for 3-character ISO and non-standard country codes in io.wb.download() (GH8482)

• World Bank data requests now will warn/raise based on an errors argument, as well as a list of hard-coded country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was
that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad
countries will raise exceptions because some edge cases break the entire response. (GH8482)

- Added option to Series.str.split() to return a DataFrame rather than a Series (GH8428)
- Added option to df.info(null_counts=None|True|False) to override the default display options
 and force showing of the null-counts (GH8701)

1.13.3 Bug Fixes

- Bug in unpickling of a CustomBusinessDay object (GH8591)
- Bug in coercing Categorical to a records array, e.g. df.to_records() (GH8626)
- Bug in Categorical not created properly with Series.to_frame() (GH8626)
- Bug in coercing in astype of a Categorical of a passed pd.Categorical (this now raises TypeError
 correctly), (GH8626)
- Bug in cut/qcut when using Series and retbins=True (GH8589)
- Bug in writing Categorical columns to an SQL database with to_sql (GH8624).
- Bug in comparing Categorical of datetime raising when being compared to a scalar datetime (GH8687)
- Bug in selecting from a Categorical with .iloc (GH8623)
- Bug in groupby-transform with a Categorical (GH8623)
- Bug in duplicated/drop_duplicates with a Categorical (GH8623)
- Bug in Categorical reflected comparison operator raising if the first argument was a numpy array scalar
 (e.g. np.int64) (GH8658)
- Bug in Panel indexing with a list-like (GH8710)
- Compat issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722)
- Bug in read_csv, dialect parameter would not take a string (issue: 8703)
- Bug in slicing a multi-index level with an empty-list (GH8737)
- Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)
- Bug in setitem with empty indexer and unwanted coercion of dtypes (GH8669)
- Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (GH8607)
- Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes
 (GH8680).
- Bug when indexing a Float64Index with np.nan on numpy 1.7 (GH8980).
- Fix shape attribute for MultiIndex (GH8609)
- Bug in GroupBy where a name conflict between the grouper and columns would break groupby operations
 (GH7115, GH8112)
- Fixed a bug where plotting a column y and specifying a label would mutate the index name of the original
 DataFrame (GH8494)
- Fix regression in plotting of a DatetimeIndex directly with matplotlib (GH8614).
- Bug in date_range where partially-specified dates would incorporate current date (GH6961)
- Bug in Setting by indexer to a scalar value with a mixed-dtype Panel4d was failing (GH8702)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- Bug where DataFrame's would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (GH8494)
- Bug in get_quote_yahoo that wouldn’t allow non-float return values (GH5229).

1.14 v0.15.0 (October 18, 2014)

This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)

- Highlights include:
 - The Categorical type was integrated as a first-class pandas type, see here
 - New scalar type Timedelta, and a new index type TimedeltaIndex, see here
 - New datetimelike properties accessor .dt for Series, see Datetimelike Properties
 - New DataFrame default display for df.info() to include memory usage, see Memory Usage
 - read_csv will now by default ignore blank lines when parsing, see here
 - API change in using Indexes in set operations, see here
 - Enhancements in the handling of timezones, see here
 - A lot of improvements to the rolling and expanding moment funtions, see here
 - Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring
 - dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)
 - Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
 - Split out string methods documentation into Working with Text Data

- Check the API Changes and deprecations before updating
- Other Enhancements
- Performance Improvements
- Bug Fixes

Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

Warning: The refactorings in Categorical changed the two argument constructor from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit your code before updating to this pandas version and change it to use the from_codes() constructor. See more on Categorical here

1.14. v0.15.0 (October 18, 2014)
1.14.1 New features

1.14.1.1 Categoricals in Series/DataFrame

Categorical can now be included in Series and DataFrames and gained new methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (GH3943, GH5313, GH5314, GH7444, GH7839, GH7848, GH7864, GH7914, GH7768, GH8006, GH3678, GH8075, GH8076, GH8143, GH8453, GH8518).

For full docs, see the categorical introduction and the API documentation.

```
In [1]: df = DataFrame({"id": [1,2,3,4,5,6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e'])

In [2]: df["grade"] = df["raw_grade"].astype("category")

In [3]: df["grade"]
Out[3]:
  0  a
  1  b
  2  b
  3  a
  4  a
  5  e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

# Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]

# Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [6]: df["grade"]
Out[6]:
  0  very good
  1   good
  2   good
  3  very good
  4  very good
  5  very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

In [7]: df.sort_values("grade")
```

```
  id  raw_grade  grade
  5   e  very bad
  1   b    good
  2   b    good
  0   a  very good
  3   a  very good
  4   a  very good
In [8]: df.groupby("grade").size()
```

```
```
• pandas.core.group_agg and pandas.core.factor_agg were removed. As an alternative, construct a dataframe and use df.groupby(<group>).agg(<func>).

• Supplying “codes/labels and levels” to the Categorical constructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use the from_codes() constructor.

• The Categorical.labels attribute was renamed to Categorical.codes and is read only. If you want to manipulate codes, please use one of the API methods on Categoricals.

• The Categorical.levels attribute is renamed to Categorical.categories.

1.14.1.2 TimedeltaIndex/Scalar

We introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation, parsing, and attributes. This type is very similar to how Timestamp works for datetimes. It is a nice-API box for the type. See the docs. (GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)

Warning: Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.

```python
# Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')

In [10]: tds.minutes
Out[10]: 5L

In [11]: tds.seconds
Out[11]: 3L

# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303
```

Note: this is no longer true starting from v0.16.0, where full compatibility with datetime.timedelta is introduced. See the 0.16.0 whatsnew entry

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.
The arguments to pd.to_timedelta are now (arg, unit='ns', box=True, coerce=False), previously were (arg, box=True, unit='ns') as these are more logical.

Construct a scalar

```python
In [9]: Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')
```

```python
In [10]: Timedelta('15.5us')
Out[10]: Timedelta('0 days 00:00:00.000015')
```

```python
In [11]: Timedelta('1 hour 15.5us')
Out[11]: Timedelta('0 days 01:00:00.000015')
```

```python
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [12]: Timedelta('-1us')
Out[12]: Timedelta('-1 days +23:59:59.999999')
```

```python
# a NaT
In [13]: Timedelta('nan')
Out[13]: NaT
```

Access fields for a Timedelta

```python
In [14]: td = Timedelta('1 hour 3m 15.5us')
In [15]: td.seconds
Out[15]: 3780
```

```python
In [16]: td.microseconds
Out[16]: 15
```

```python
In [17]: td.nanoseconds
Out[17]: 500
```

Construct a TimedeltaIndex

```python
In [18]: TimedeltaIndex(['1 days','1 days, 00:00:05',
                      ....: np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
Out[18]: TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
                      '2 days 00:00:02'], dtype='timedelta64[ns]', freq=None)
```

Constructing a TimedeltaIndex with a regular range

```python
In [19]: timedelta_range('1 days',periods=5,freq='D')
Out[19]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype=
                      ->'timedelta64[ns]', freq='D')
```

```python
In [20]: timedelta_range(start='1 days',end='2 days',freq='30T')
```
You can now use a `TimedeltaIndex` as the index of a pandas object

```python
In [21]: s = Series(np.arange(5),
       index=timedelta_range('1 days', periods=5, freq='s'))
...

In [22]: s
Out[22]:
   1 days 00:00:00    0
   1 days 00:00:01    1
   1 days 00:00:02    2
   1 days 00:00:03    3
   1 days 00:00:04    4
Freq: S, dtype: int64
```

You can select with partial string selections

```python
In [23]: s['1 day 00:00:02']
Out[23]: 2
```

Finally, the combination of `TimedeltaIndex` with `DatetimeIndex` allow certain combination operations that are `NaT` preserving:

```python
In [25]: tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'])

In [26]: tdi.tolist()
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]

In [27]: dti = date_range('20130101', periods=3)
```
In [28]: dti.tolist()
Out[28]:
[Timestamp('2013-01-01 00:00:00', freq='D'),
 Timestamp('2013-01-02 00:00:00', freq='D'),
 Timestamp('2013-01-03 00:00:00', freq='D')]

In [29]: (dti + tdi).tolist()
→[Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]

In [30]: (dti - tdi).tolist()
→[Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

- iteration of a Series e.g. list(Series(...)) of timedelta64[ns] would prior to v0.15.0 return np.timedelta64 for each element. These will now be wrapped in Timedelta.

1.14.1.3 Memory Usage

Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).

A new display option display.memory_usage (see Options and Settings) sets the default behavior of the memory_usage argument in the df.info() method. By default display.memory_usage is True.

In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
: 'complex128', 'object', 'bool']
:
:
In [32]: n = 5000
In [33]: data = dict((t, np.random.randint(100, size=n).astype(t))
: for t in dtypes)
:
In [34]: df = DataFrame(data)
In [35]: df['categorical'] = df['object'].astype('category')
In [36]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
: object(1), timedelta64[ns](1)
memory usage: 289.1+ KB

Additionally memory_usage() is an available method for a dataframe object which returns the memory usage of each column.
In [37]: df.memory_usage(index=True)
Out[37]:
Index 80
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 10920
dtype: int64

1.14.1.4 .dt accessor

Series has gained an accessor to succinctly return datetime like properties for the values of the Series, if it’s a datetime/period like Series. (GH7207) This will return a Series, indexed like the existing Series. See the docs

datetime
In [38]: s = Series(date_range('20130101 09:10:12', periods=4))

In [39]: s
Out[39]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [40]: s.dt.hour
 →
0 9
1 9
2 9
3 9
dtype: int64

In [41]: s.dt.second
 →
0 12
1 12
2 12
3 12
dtype: int64

In [42]: s.dt.day
 →
0 1
1 2
2 3
3 4
dtype: int64
This enables nice expressions like this:

```python
In [44]: s[s.dt.day==2]
```

Out[44]:
```
1 2013-01-02 09:10:12
```
dtype: datetime64[ns]

You can easily produce tz aware transformations:

```python
In [45]: stz = s.dt.tz_localize('US/Eastern')
```

```
In [46]: stz
```

Out[46]:
```
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]
```

You can also chain these types of operations:

```python
In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
```

Out[48]:
```
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
```

The .dt accessor works for period and timedelta dtypes.

```python
# period
In [49]: s = Series(period_range('20130101', periods=4, freq='D'))
```

```
In [50]: s
```

Out[50]:
```
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object
```

```
In [51]: s.dt.year
```

Out[51]:
```
0 2013
1 2013
2 2013
3 2013
dtype: int64
```
In [52]: s.dt.day

 →
 0 1
 1 2
 2 3
 3 4
 dtype: int64

timedelta
In [53]: s = Series(timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [54]: s

Out[54]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]

In [55]: s.dt.days

 →
 0 1
 1 1
 2 1
 3 1
dtype: int64

In [56]: s.dt.seconds

 →
 0 5
 1 6
 2 7
 3 8
dtype: int64

In [57]: s.dt.components

 →
 days hours minutes seconds milliseconds microseconds nanoseconds
 0 1 0 0 5 0 0 0
 1 1 0 0 6 0 0 0
 2 1 0 0 7 0 0 0
 3 1 0 0 8 0 0 0

1.14.1.5 Timezone handling improvements

- `tz_localize(None)` for tz-aware `Timestamp` and `DatetimeIndex` now removes timezone holding local time, previously this resulted in `Exception` or `TypeError` (GH7812)

In [58]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')

In [59]: ts
tz_localize now accepts the ambiguous keyword which allows for passing an array of bools indicating whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-DST, and ‘raise’ (default) for an AmbiguousTimeError to be raised. See the docs for more details (GH7943)

Dataframe.tz_localize and Dataframe.tz_convert now accepts an optional level argument for localizing a specific level of a MultiIndex (GH7846)

Timestamp.tz_localize and Timestamp.tz_convert now raise TypeError in error cases, rather than Exception (GH8025)

a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive datetime64[ns]) as object dtype (GH8411)

Timestamp.__repr__ displays dateutil.tz.tzoffset info (GH7907)

1.14.1.6 Rolling/Expanding Moments improvements

rolling_min(), rolling_max(), rolling_cov(), and rolling_corr() now return objects with all NaN when len(arg) < min_periods <= window rather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)
In [4]: pd.rolling_min(s, window=10, min_periods=5)
Out[4]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64

rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(),
rolling_std(), rolling_var(), rolling_skew(), rolling_kurt(),
rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise(),
rolling_window(), and rolling_apply() with center=True previously would return a result of
the same structure as the input arg with NaN in the final (window-1)/2 entries.

Now the final (window-1)/2 entries of the result are calculated as if the input arg were followed by
(window-1)/2 NaN values (or with shrinking windows, in the case of rolling_apply()). (GH7925,
GH8269)

Prior behavior (note final value is NaN):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 NaN
dtype: float64

New behavior (note final value is $5 = \text{sum}([2, 3, \text{NaN}])$):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 5
dtype: float64

rolling_window() now normalizes the weights properly in rolling mean mode (mean=True) so that the
calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated
without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)

Behavior prior to 0.15.0:

In [39]: rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0 NaN
1 6.583333
2 6.883333
3 6.683333
4 NaN
dtype: float64

New behavior
- Removed `center` argument from all `expanding_*()` functions (see list), as the results produced when `center=True` did not make much sense. (GH7925)

- Added optional `ddof` argument to `expanding_cov()` and `rolling_cov()`. The default value of `1` is backwards-compatible. (GH8279)

- Documented the `ddof` argument to `expanding_var()`, `expanding_std()`, `rolling_var()`, and `rolling_std()`. These functions’ support of a `ddof` argument (with a default value of `1`) was previously undocumented. (GH8064)

- `ewma()`, `ewmstd()`, `ewmvol()`, `ewmvar()`, `ewmcov()`, and `ewmcorr()` now interpret `min_periods` in the same manner that the `rolling_*()` and `expanding_*()` functions do: a given result entry will be NaN if the (expanding, in this case) window does not contain at least `min_periods` values. The previous behavior was to set to NaN the `min_periods` entries starting with the first non-empty value. (GH7977)

 Prior behavior (note values start at index 2, which is `min_periods` after index 0 (the index of the first non-empty value)):

  ```python
  In [66]: s = Series([1, None, None, None, 2, 3])
  In [51]: ewma(s, com=3., min_periods=2)
  Out[51]:
  0       NaN
  1       NaN
  2   1.000000
  3   1.000000
  4  1.571429
  5  2.189189
  dtype: float64
  ```

 New behavior (note values start at index 4, the location of the 2nd (since `min_periods=2`) non-empty value):

  ```python
  In [2]: pd.ewma(s, com=3., min_periods=2)
  Out[2]:
  0       NaN
  1       NaN
  2       NaN
  3       NaN
  4  1.759644
  5  2.383784
  dtype: float64
  ```

- `ewmstd()`, `ewmvol()`, `ewmvar()`, `ewmcov()`, and `ewmcorr()` now have an optional `adjust` argument, just like `ewma()` does, affecting how the weights are calculated. The default value of `adjust` is `True`, which is backwards-compatible. See *Exponentially weighted moment functions* for details. (GH7911)

- `ewma()`, `ewmstd()`, `ewmvol()`, `ewmvar()`, `ewmcov()`, and `ewmcorr()` now have an optional `ignore_na` argument. When `ignore_na=False` (the default), missing values are taken into account in
the weights calculation. When `ignore_na=True` (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation. (GH7543)

```python
In [7]: pd.ewma(Series([None, 1., 8.]), com=2.)
Out[7]:
0 NaN
1 1.0
2 5.2
dtype: float64

In [8]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=True) # pre-0.15.0 behavior
Out[8]:
0 1.0
1 1.0
2 5.2
dtype: float64

In [9]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=False) # new default
Out[9]:
0 1.000000
1 1.000000
2 5.846154
dtype: float64
```

Warning: By default (`ignore_na=False`) the `ewm*()` functions’ weights calculation in the presence of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights in the presence of missing values one must specify explicitly `ignore_na=True`.

- Bug in `expanding_cov()`, `expanding_corr()`, `rolling_cov()`, `rolling_cor()`, `ewmcov()`, and `ewmcorr()` returning results with columns sorted by name and producing an error for non-unique columns; now handles non-unique columns and returns columns in original order (except for the case of two DataFrames with `pairwise=False`, where behavior is unchanged) (GH7542)
- Bug in `rolling_count()` and `expanding_*()` functions unnecessarily producing error message for zero-length data (GH8056)
- Bug in `rolling_apply()` and `expanding_apply()` interpreting `min_periods=0` as `min_periods=1` (GH8080)
- Bug in `expanding_std()` and `expanding_var()` for a single value producing a confusing error message (GH7900)
- Bug in `rolling_std()` and `rolling_var()` for a single value producing 0 rather than `NaN` (GH7900)
- Bug in `ewmstd()`, `ewmvol()`, `ewmvar()`, and `ewmcov()` calculation of de-biasing factors when `bias=False` (the default). Previously an incorrect constant factor was used, based on `adjust=True`, `ignore_na=True`, and an infinite number of observations. Now a different factor is used for each entry, based on the actual weights (analogous to the usual $N/(N-1)$ factor). In particular, for a single point a value of `NaN` is returned when `bias=False`, whereas previously a value of (approximately) 0 was returned.

For example, consider the following pre-0.15.0 results for `ewmvar(..., bias=False)`, and the corresponding debiasing factors:

```python
In [67]: s = Series([1., 2., 0., 4.])
```
Note that entry 0 is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following 0.15.0 results have a NaN for entry 0, and the debiasing factors are decreasing (towards 1.25):

```
In [14]: pd.ewmvar(s, com=2., bias=False)
Out[14]:
          0      NaN  
         1  0.500000
         2  1.210526
         3  4.089069
    dtype: float64

In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
Out[15]:
     0     NaN     
     1  2.083333  
     2  1.583333 
     3  1.425439  
    dtype: float64
```

See *Exponentially weighted moment functions* for details. (GH7912)

1.14.1.7 Improvements in the sql io module

- Added support for a chunksize parameter to `to_sql` function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (GH8062).
- Added support for a chunksize parameter to `read_sql` function. Specifying this argument will return an iterator through chunks of the query result (GH2908).
- Added support for writing `datetime.date` and `datetime.time` object columns with `to_sql` (GH6932).
- Added support for specifying a schema to read from/write to with `read_sql_table` and `to_sql` (GH7441, GH7952). For example:

  ```python
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')
```

- Added support for writing NaN values with `to_sql` (GH2754).
- Added support for writing datetime64 columns with `to_sql` for all database flavors (GH7103).
1.14.2 Backwards incompatible API changes

1.14.2.1 Breaking changes

API changes related to Categorical (see here for more details):

- The Categorical constructor with two arguments changed from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit your code by changing it to use the from_codes() constructor.

An old function call like (prior to 0.15.0):

```python
pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])
```

will have to adapted to the following to keep the same behaviour:

```python
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]
```

API changes related to the introduction of the Timedelta scalar (see above for more details):

- Prior to 0.15.0 to_timedelta() would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.

For API changes related to the rolling and expanding functions, see detailed overview above.

Other notable API changes:

- Consistency when indexing with .loc and a list-like indexer when no values are found.

```python
In [68]: df = DataFrame([['a'], ['b']],index=[1,2])
In [69]: df
Out[69]:
   0
0  a
1  b
```

In prior versions there was a difference in these two constructs:

- df.loc[[3]] would return a frame reindexed by 3 (with all np.nan values)
- df.loc[[3],:] would raise KeyError.

Both will now raise a KeyError. The rule is that at least 1 indexer must be found when using a list-like and .loc (GH7999)

Furthermore in prior versions these were also different:

- df.loc[[1,3]] would return a frame reindexed by [1,3]
- df.loc[[1,3],:] would raise KeyError.

Both will now return a frame reindex by [1,3]. E.g.

```python
In [70]: df.loc[[1,3]]
Out[70]:
   0  a
1  b
```
This can also be seen in multi-axis indexing with a `Panel`.

```python
In [72]: p = Panel(np.arange(2*3*4).reshape(2,3,4),
               items=['ItemA','ItemB'],
               major_axis=[1,2,3],
               minor_axis=['A','B','C','D'])

In [73]: p
```

```
Out[73]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D
```

The following would raise `KeyError` prior to 0.15.0:

```python
In [74]: p.loc[['ItemA','ItemD'],:,'D']
```

```
ItemA ItemD
1 3 NaN
2 7 NaN
3 11 NaN
```

Furthermore, `.loc` will raise If no values are found in a multi-index with a list-like indexer:

```python
In [75]: s = Series(np.arange(3,dtype='int64'),
               index=MultiIndex.from_product(([['A']],['foo','bar','baz']),
               names=['one','two'])).sort_index()

In [76]: s
```

```
one two
A bar 1
baz 2
foo 0
dtype: int64
```

```python
In [77]: try:
   ....:   s.loc['D']
   ....: except KeyError as e:
   ....:   print("KeyError: " + str(e))
   ....:
```

```
KeyError: 'D' not in index
```

- Assigning values to `None` now considers the dtype when choosing an ‘empty’ value (GH7941).
Previously, assigning to `None` in numeric containers changed the dtype to object (or errored, depending on the call). It now uses `NaN`:

```
In [78]: s = Series([1, 2, 3])
In [79]: s.loc[0] = None
In [80]: s
Out[80]:
0    NaN
1     2.0
2     3.0
dtype: float64
```

`NaT` is now used similarly for datetime containers.

For object containers, we now preserve `None` values (previously these were converted to `NaN` values).

```
In [81]: s = Series(["a", "b", "c"])
In [82]: s.loc[0] = None
In [83]: s
Out[83]:
0   None
1     b
2     c
dtype: object
```

To insert a `NaN`, you must explicitly use `np.nan`. See the docs.

- In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (GH8511, GH5104)

```
In [84]: s = Series([1, 2, 3])
In [85]: s2 = s
In [86]: s += 1.5

Behavior prior to v0.15.0

```
```
This is now the correct behavior

```python
the original object
In [87]: s
Out[87]:
0 2.5
1 3.5
2 4.5
dtype: float64

a reference to the original object
In [88]: s2
Out[88]:
0 2.5
1 3.5
2 4.5
dtype: float64
```

- Made both the C-based and Python engines for `read_csv` and `read_table` ignore empty lines in input as well as whitespace-filled lines, as long as `sep` is not whitespace. This is an API change that can be controlled by the keyword parameter `skip_blank_lines`. See the docs (GH4466)

- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone and inserted as `object` dtype rather than being converted to a naive `datetime64[ns]` (GH8411).

- Bug in passing a `DatetimeIndex` with a timezone that was not being retained in DataFrame construction from a dict (GH7822)

  In prior versions this would drop the timezone, now it retains the timezone, but gives a column of `object` dtype:

  ```python
 In [89]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')
 In [90]: i
 Out[90]: DatetimeIndex(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00', '2011-01-01 00:00:20-05:00'], dtype='datetime64[ns, US/Eastern]', freq='10S')
 In [91]: df = DataFrame({'a' : i })
 In [92]: df
 Out[92]:
 a
 0 2011-01-01 00:00:00-05:00
 1 2011-01-01 00:00:10-05:00
 2 2011-01-01 00:00:20-05:00
 In [93]: df.dtypes
 →
 a datetime64[ns, US/Eastern]
 dtype: object
  ```

  Previously this would have yielded a column of `datetime64` dtype, but without timezone info.

  The behaviour of assigning a column to an existing dataframe as `df['a'] = i` remains unchanged (this already returned an `object` column with a timezone).

  - When passing multiple levels to `stack()`, it will now raise a `ValueError` when the levels aren’t all level
names or all level numbers (GH7660). See Reshaping by stacking and unstacking.

- **Raise a `ValueError` in `df.to_hdf` with ‘fixed’ format, if df has non-unique columns as the resulting file will be broken (GH7761)**

- **`SettingWithCopy` raise/warnings (according to the option `mode.chained_assignment`) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)**

```python
In [1]: df = DataFrame(np.arange(0,9), columns=['count'])
In [2]: df['group'] = 'b'
In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/
˓→stable/indexing.html#indexing-view-versus-copy
```

- **`merge`, `DataFrame.merge`, and `ordered_merge` now return the same type as the left argument (GH7737).**

- **Previously an enlargement with a mixed-dtype frame would act unlike `.append` which will preserve dtypes (related GH2578, GH8176):**

```python
In [94]: df = DataFrame([[True, 1],[False, 2]],
 : columns=['female','fitness'])
 :
In [95]: df
Out[95]:
 female fitness
0 True 1
1 False 2
In [96]: df.dtypes
Out[96]:
 female fitness
dtype: object
dtypes are now preserved
In [98]: df
Out[98]:
 female fitness
0 True 1
1 False 2
2 False 2
In [99]: df.dtypes
˓→
 female fitness
dtype: object
```

1.14. v0.15.0 (October 18, 2014)
- Series.to_csv() now returns a string when path=None, matching the behaviour of DataFrame.to_csv() (GH8215).
- read_hdf now raises IOError when a file that doesn’t exist is passed in. Previously, a new, empty file was created, and a KeyError raised (GH7715).
- DataFrame.info() now ends its output with a newline character (GH8114)
- Concatenating no objects will now raise a ValueError rather than a bare Exception.
- Merge errors will now be sub-classes of ValueError rather than raw Exception (GH8501)
- DataFrame.plot and Series.plot keywords are now have consistent orders (GH8037)

### 1.14.2.2 Internal Refactoring

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (GH5080, GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):

- you may need to unpickle pandas version < 0.15.0 pickles using pd.read_pickle rather than pickle.load. See pickle docs
- when plotting with a PeriodIndex, the matplotlib internal axes will now be arrays of Period rather than a PeriodIndex (this is similar to how a DatetimeIndex passes arrays of datetimes now)
- MultiIndexes will now raise similary to other pandas objects w.r.t. truth testing, see here (GH7897).
- When plotting a DatetimeIndex directly with matplotlib’s plot function, the axis labels will no longer be formatted as dates but as integers (the internal representation of a datetime64). UPDATE This is fixed in 0.15.1, see here.

### 1.14.2.3 Deprecations

- The attributes Categorical labels and levels attributes are deprecated and renamed to codes and categories.
- The outtype argument to pd.DataFrame.to_dict has been deprecated in favor of orient. (GH7840)
- The convert_dummies method has been deprecated in favor of get_dummies (GH8140)
- The infer_dst argument in tz_localize will be deprecated in favor of ambiguous to allow for more flexibility in dealing with DST transitions. Replace infer_dst=True with ambiguous='infer' for the same behavior (GH7943). See the docs for more details.
- The top-level pd.value_range has been deprecated and can be replaced by .describe() (GH8481)
- The Index set operations + and - were deprecated in order to provide these for numeric type operations on certain index types. + can be replaced by .union() or |, and - by .difference(). Further the method name Index.diff() is deprecated and can be replaced by Index.difference() (GH8226)

```python
+
Index(['a', 'b', 'c']) + Index(['b', 'c', 'd'])

should be replaced by
Index(['a', 'b', 'c']).union(Index(['b', 'c', 'd']))
```
# -
Index(['a','b','c']) - Index(['b','c','d'])

# should be replaced by
Index(['a','b','c']).difference(Index(['b','c','d']))

- The infer_types argument to `read_html()` now has no effect and is deprecated (GH7762, GH7032).

### 1.14.2.4 Removal of prior version deprecations/changes

- Remove DataFrame.delevel method in favor of DataFrame.reset_index

### 1.14.3 Enhancements

Enhancements in the importing/exporting of Stata files:

- Added support for bool, uint8, uint16 and uint32 datatypes in `to_stata` (GH7097, GH7365)
- Added conversion option when importing Stata files (GH8527)
- `DataFrame.to_stata` and `StataWriter` check string length for compatibility with limitations imposed in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files with strings longer than 244 characters raises a `ValueError`. (GH7858)
- `read_stata` and `StataReader` can import missing data information into a DataFrame by setting the argument `convert_missing` to True. When using this options, missing values are returned as `StataMissingValue` objects and columns containing missing values have object data type. (GH8045)

Enhancements in the plotting functions:

- Added layout keyword to `DataFrame.plot`. You can pass a tuple of (rows, columns), one of which can be -1 to automatically infer (GH6667, GH8071).
- Allow to pass multiple axes to `DataFrame.plot`, `hist` and `boxplot` (GH5353, GH6970, GH7069)
- Added support for c, colormap and colorbar arguments for `DataFrame.plot` with `kind='scatter'` (GH7780)
- Histogram from `DataFrame.plot` with `kind='hist'` (GH7809), See the docs.
- Boxplot from `DataFrame.plot` with `kind='box'` (GH7998), See the docs.

Other:

- `read_csv` now has a keyword parameter `float_precision` which specifies which floating-point converter the `C` engine should use during parsing, see here (GH8002, GH8044)
- Added searchsorted method to `Series` objects (GH7447)
- `describe()` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the include/exclude arguments. See the docs (GH8164).

```python
In [100]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
.....: 'catB': ['a', 'b', 'c', 'd'] * 6,
.....: 'numC': np.arange(24),
.....: 'numD': np.arange(24.) + .5})

In [101]: df.describe(include=['object'])
Out[101]:
```

1.14. v0.15.0 (October 18, 2014)
pandas: powerful Python data analysis toolkit, Release 0.20.1

In [102]: df.describe(include="number", "object"), exclude="float")

In [103]: df.describe(include='all')

Requesting all columns is possible with the shorthand ‘all’

Without those arguments, ‘describe’ will behave as before, including only numerical columns or, if none are, only categorical columns. See also the docs

• Added split as an option to the orient argument in pd.DataFrame.to_dict.(GH7840)

• The get_dummies method can now be used on DataFrames. By default only catagorical columns are encoded as 0’s and 1’s, while other columns are left untouched.

• PeriodIndex supports resolution as the same as DatetimeIndex(GH7708)
• pandas.tseries.holiday has added support for additional holidays and ways to observe holidays (GH7070)
• pandas.tseries.holiday.Holiday now supports a list of offsets in Python3 (GH7070)
• pandas.tseries.holiday.Holiday now supports a days_of_week parameter (GH7070)
• GroupBy.nth() now supports selecting multiple nth values (GH7910)

```
In [106]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [107]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])

get the first, 4th, and last date index for each month
In [108]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[108]:
 a b
2014 4 1 1
 4 1 1
 4 1 1
 5 1 1
 5 1 1
 6 1 1
 6 1 1
 6 1 1
```

• Period and PeriodIndex supports addition/subtraction with timedelta-likes (GH7966)

If Period freq is D, H, T, S, L, U, N, Timedelta-like can be added if the result can have same freq. Otherwise, only the same offsets can be added.

```
In [109]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
In [110]: idx
Out[110]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
 '2014-07-01 12:00', '2014-07-01 13:00'],
 dtype='period[H]', freq='H')

In [111]: idx + pd.offsets.Hour(2)
Out[111]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
 '2014-07-01 14:00', '2014-07-01 15:00'],
 dtype='period[H]', freq='H')

In [112]: idx + Timedelta('120m')
Out[112]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
 '2014-07-01 14:00', '2014-07-01 15:00'],
 dtype='period[H]', freq='H')

In [113]: idx = pd.period_range('2014-07', periods=5, freq='M')
In [114]: idx
Out[114]:
 dtype='period[M]', freq='M')
```
• Added experimental compatibility with openpyxl for versions $\geq 2.0$. The DataFrame.to_excel method engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. The openpyxl engine is now a meta-engine that automatically uses whichever version of openpyxl is installed. (GH7177)

• DataFrame.fillna can now accept a DataFrame as a fill value (GH8377)

• Passing multiple levels to stack() will now work when multiple level numbers are passed (GH7660). See Reshaping by stacking and unstacking.

• set_names(), set_labels(), and set_levels() methods now take an optional level keyword argument to all modification of specific level(s) of a MultiIndex. Additionally set_names() now accepts a scalar string value when operating on an Index or on a specific level of a MultiIndex (GH7792)

• Index.isin now supports a level argument to specify which index level to use for membership tests (GH7892, GH7890)
In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')],
          dtype=object)

In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([ True, False, True, True, False, True], dtype=bool)

• Index now supports duplicated and drop_duplicates. (GH4060)

In [121]: idx = Index([1, 2, 3, 4, 1, 2])

In [122]: idx
Out[122]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64')

In [123]: idx.duplicated()

In [124]: idx.drop_duplicates()

• add copy=True argument to pd.concat to enable pass thru of complete blocks (GH8252)

• Added support for numpy 1.8+ data types (bool_, int_, float_, string_) for conversion to R dataframe (GH8400)

1.14.4 Performance

• Performance improvements in DatetimeIndex.__iter__ to allow faster iteration (GH7683)
• Performance improvements in Period creation (and PeriodIndex setitem) (GH5155)
• Improvements in Series.transform for significant performance gains (revised) (GH6496)
• Performance improvements in StataReader when reading large files (GH8040, GH8073)
• Performance improvements in StataWriter when writing large files (GH8079)
• Performance and memory usage improvements in multi-key groupby (GH8128)
• Performance improvements in groupby .agg and .apply where builtins max/min were not mapped to numpy/ctythonized versions (GH7722)
• Performance improvement in writing to sql (to_sql) of up to 50% (GH8208).
• Performance benchmarking of groupby for large value of ngroups (GH6787)
• Performance improvement in CustomBusinessDay, CustomBusinessMonth (GH8236)
• Performance improvement for MultiIndex.values for multi-level indexes containing datetimes (GH8543)

1.14.5 Bug Fixes

• Bug in pivot_table, when using margins and a dict aggfunc (GH8349)
• Bug in read_csv where squeeze=True would return a view (GH8217)
• Bug in checking of table name in read_sql in certain cases (GH7826).
pandas: powerful Python data analysis toolkit, Release 0.20.1

- Bug in DataFrame.groupby where Grouper does not recognize level when frequency is specified (GH7885)
- Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021)
- Bug in Series 0-division with a float and integer operand dtypes (GH7785)
- Bug in Series.astype("unicode") not calling unicode on the values correctly (GH7758)
- Bug in DataFrame.as_matrix() with mixed datetime64[ns] and timedelta64[ns] dtypes (GH7778)
- Bug in HDFStore.select_column() not preserving UTC timezone info when selecting a DatetimeIndex (GH7777)
- Bug in to_datetime when format='%Y%m%d' and coerce=True are specified, where previously an object array was returned (rather than a coerced time-series with NaT), (GH7930)
- Bug in DatetimeIndex and PeriodIndex in-place addition and subtraction cause different result from normal one (GH6527)
- Bug in adding and subtracting PeriodIndex with PeriodIndex raise TypeError (GH7741)
- Bug in combine_first with PeriodIndex data raises TypeError (GH3367)
- Bug in multi-index slicing with missing indexers (GH7866)
- Bug in multi-index slicing with various edge cases (GH8132)
- Regression in multi-index indexing with a non-scalar type object (GH7914)
- Bug in Timestamp comparisons with == and int64 dtype (GH8058)
- Bug in pickles contains DateOffset may raise AttributeError when normalize attribute is referred internally (GH7748)
- Bug in Panel when using major_xs and copy=False is passed (deprecation warning fails because of missing warnings) (GH8152).
- Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)
- Bug in putting a PeriodIndex into a Series would convert to int64 dtype, rather than object of Periods (GH7932)
- Bug in HDFStore iteration when passing a where (GH8014)
- Bug in DataFrameGroupby.transform when transforming with a passed non-sorted key (GH8046, GH8430)
- Bug in repeated timeseries line and area plot may result in ValueError or incorrect kind (GH7733)
- Bug in inference in a MultiIndex with datetime.date inputs (GH7888)
- Bug in get where an IndexError would not cause the default value to be returned (GH7725)
- Bug in offsets.apply, rollforward and rollback may reset nanosecond (GH7697)
- Bug in offsets.apply, rollforward and rollback may raise AttributeError if Timestamp has dateutil.tzinfo (GH7697)
- Bug in sorting a multi-index frame with a Float64Index (GH8017)
- Bug in inconsistent panel setitem with a rhs of a DataFrame for alignment (GH7763)
- Bug in is_superperiod and is_subperiod cannot handle higher frequencies than S (GH7760, GH7772, GH7803)
- Bug in 32-bit platforms with `Series.shift` (GH8129)
- Bug in `PeriodIndex.unique` returns int64 np.ndarray (GH7540)
- Bug in `groupby.apply` with a non-affecting mutation in the function (GH8467)
- Bug in `DataFrame.reset_index` which has MultiIndex contains PeriodIndex or DatetimeIndex with tz raises ValueError (GH7746, GH7793)
- Bug in `DataFrame.plot` with subplots=True may draw unnecessary minor xticks and yticks (GH7801)
- Bug in `StataReader` which did not read variable labels in 117 files due to difference between Stata documentation and implementation (GH7816)
- Bug in `StataReader` where strings were always converted to 244 characters-fixed width irrespective of underlying string size (GH7858)
- Bug in `DataFrame.plot` and `Series.plot` may ignore rot and fontsize keywords (GH7844)
- Bug in `Datet imeIndex.value_counts` doesn’t preserve tz (GH7735)
- Bug in `PeriodIndex.value_counts` results in Int64Index (GH7735)
- Bug in `DataFrame.join` when doing left join on index and there are multiple matches (GH5391)
- Bug in `GroupBy.transform()` where int groups with a transform that didn’t preserve the index were incorrectly truncated (GH7972).
- Bug in `groupby` where callable objects without name attributes would take the wrong path, and produce a DataFrame instead of a Series (GH7929)
- Bug in `groupby` error message when a DataFrame grouping column is duplicated (GH7511)
- Bug in `read_html` where the infer_types argument forced coercion of date-likes incorrectly (GH7762, GH7032).
- Bug in `Series.str.cat` with an index which was filtered as to not include the first item (GH7857)
- Bug in `Timestamp` cannot parse nanosecond from string (GH7878)
- Bug in `Timestamp` with string offset and tz results incorrect (GH7833)
- Bug in `tslib.tz_convert` and `tslib.tz_convert_single` may return different results (GH7798)
- Bug in `DatetimeIndex.intersection` of non-overlapping timestamps with tz raises IndexError (GH7880)
- Bug in alignment with TimeOps and non-unique indexes (GH8363)
- Bug in `GroupBy.filter()` where fast path vs. slow path made the filter return a non scalar value that appeared valid but wasn’t (GH7870).
- Bug in `date_range()`/`DatetimeIndex()` when the timezone was inferred from input dates yet incorrect times were returned when crossing DST boundaries (GH7835, GH7901).
- Bug in `to_excel()` where a negative sign was being prepended to positive infinity and was absent for negative infinity (GH7949)
- Bug in area plot draws legend with incorrect alpha when stacked=True (GH8027)
- Period and PeriodIndex addition/subtraction with np.timedelta64 results in incorrect internal representations (GH7740)
- Bug in `Holiday` with no offset or observance (GH7987)
- Bug in `DataFrame.to_latex` formatting when columns or index is a MultiIndex (GH7982).
- Bug in `DateOffset` around Daylight Savings Time produces unexpected results (GH5175).
• Bug in `DataFrame.shift` where empty columns would throw `ZeroDivisionError` on numpy 1.7 (GH8019)
• Bug in installation where `html_encoding/*.html` wasn’t installed and therefore some tests were not running correctly (GH7927).
• Bug in `read_html` where bytes objects were not tested for in `_read` (GH7927).
• Bug in `DataFrame.stack()` when one of the column levels was a datelike (GH8039)
• Bug in broadcasting numpy scalars with `DataFrame` (GH8116)
• Bug in `pivot_table` performed with nameless index and columns raises `KeyError` (GH8103)
• Bug in `DataFrame.plot(kind='scatter')` draws points and errorbars with different colors when the color is specified by `c` keyword (GH8081)
• Bug in `Float64Index` where `iat` and `at` were not testing and were failing (GH8092).
• Bug in `DataFrame.boxplot()` where y-limits were not set correctly when producing multiple axes (GH7528, GH5517).
• Bug in `read_csv` where line comments were not handled correctly given a custom line terminator or `delim_whitespace=True` (GH8122).
• Bug in `read_html` where empty tables caused a `StopIteration` (GH7575)
• Bug in casting when setting a column in a same-dtype block (GH7704)
• Bug in accessing groups from a `GroupBy` when the original grouper was a tuple (GH8121).
• Bug in `.at` that would accept integer indexers on a non-integer index and do fallback (GH7814)
• Bug with kde plot and NaNs (GH8182)
• Bug in `GroupBy.count` with float32 data type were nan values were not excluded (GH8169).
• Bug with stacked barplots and NaNs (GH8175).
• Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when `header=False` (GH8230).
• Bug with `DatetimeIndex.asof` incorrectly matching partial strings and returning the wrong date (GH8245).
• Bug in plotting methods modifying the global matplotlib rcParams (GH8242).
• Bug in `DataFrame.__setitem__` that caused errors when setting a dataframe column to a sparse array (GH8131)
• Bug where `DataFrame.boxplot()` failed when entire column was empty (GH8181).
• Bug with messed variables in `radviz` visualization (GH8199).
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when `header=False` (GH8230).
• Bug in `to_clipboard` that would clip long column data (GH8305)
• Bug in `DataFrame` terminal display: Setting `max_column/max_rows` to zero did not trigger auto-resizing of dfs to fit terminal width/height (GH7180).
• Bug in `OLS` where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884).
• Bug in DataFrame.dropna that interpreted non-existent columns in the subset argument as the ‘last column’ (GH8303)
• Bug in Index.intersection on non-monotonic non-unique indexes (GH8362).
• Bug in masked series assignment where mismatching types would break alignment (GH8387)
• Bug in NDFrame.equals gives false negatives with dtype=object (GH8437)
• Bug in assignment with indexer where type diversity would break alignment (GH8258)
• Bug in NDFrame.loc indexing when row/column names were lost when target was a list/ndarray (GH6552)
• Regression in NDFrame.loc indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (GH7774)
• Bug in Series that allows it to be indexed by a DataFrame which has unexpected results. Such indexing is no longer permitted (GH8444)
• Bug in item assignment of a DataFrame with multi-index columns where right-hand-side columns were not aligned (GH7655)
• Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (GH7065)
• Bug in DataFrame.eval() where the dtype of the not operator (~) was not correctly inferred as bool.

1.15 v0.14.1 (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
  – New methods select_dtypes() to select columns based on the dtype and sem() to calculate the standard error of the mean.
  – Support for dateutil timezones (see docs).
  – Support for ignoring full line comments in the read_csv() text parser.
  – New documentation section on Options and Settings.
  – Lots of bug fixes.

• Enhancements
• API Changes
• Performance Improvements
• Experimental Changes
• Bug Fixes

1.15.1 API changes

• Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import (GH7284).
• For `StringMethods.extract`, when no match is found, the result - only containing NaN values - now also has dtype=object instead of float (GH7242)

• Period objects no longer raise a TypeError when compared using == with another object that isn’t a Period. Instead when comparing a Period with another object using == if the other object isn’t a Period False is returned. (GH7376)

• Previously, the behaviour on resetting the time or not in `offsets.apply`, `rollforward` and `rollback` operations differed between offsets. With the support of the `normalize` keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth, FY5253Quarter, LastWeekOfMonth, Easter):

```python
In [6]: from pandas.tseries import offsets
In [7]: d = pd.Timestamp('2014-01-01 09:00')
old behaviour < 0.14.1
In [8]: d + offsets.MonthEnd()
Out[8]: Timestamp('2014-01-31 00:00:00')
```

Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with `normalize=True`

```python
new behaviour
In [1]: d + offsets.MonthEnd()
Out[1]: Timestamp('2014-01-31 09:00:00')

In [2]: d + offsets.MonthEnd(normalize=True)
Out[2]: Timestamp('2014-01-31 00:00:00')
```

Note that for the other offsets the default behaviour did not change.

• Add back #N/A N/A as a default NA value in text parsing, (regresion from 0.12) (GH5521)

• Raise a TypeError on inplace-setting with a .where and a non np.nan value as this is inconsistent with a set-item expression like df[mask] = None (GH7656)

### 1.15.2 Enhancements

• Add `dropna` argument to `value_counts` and `nunique` (GH5569).

• Add `select_dtypes()` method to allow selection of columns based on dtype (GH7316). See the docs.

• All offsets supports the `normalize` keyword to specify whether `offsets.apply`, `rollforward` and `rollback` resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):

```python
In [3]: import pandas.tseries.offsets as offsets
In [4]: day = offsets.Day()
In [5]: day.apply(Timestamp('2014-01-01 09:00'))
Out[5]: Timestamp('2014-01-02 09:00:00')

In [6]: day = offsets.Day(normalize=True)
In [7]: day.apply(Timestamp('2014-01-01 09:00'))
Out[7]: Timestamp('2014-01-02 00:00:00')
```
• PeriodIndex is represented as the same format as DatetimeIndex (GH7601)
• StringMethods now work on empty Series (GH7242)
• The file parsers read_csv and read_table now ignore line comments provided by the parameter comment, which accepts only a single character for the C reader. In particular, they allow for comments before file data begins (GH2685)
• Add NotImplementedError for simultaneous use of chunksize and nrows for read_csv() (GH6774).
• Tests for basic reading of public S3 buckets now exist (GH7281).
• read_html now sports an encoding argument that is passed to the underlying parser library. You can use this to read non-ascii encoded web pages (GH7323).
• read_excel now supports reading from URLs in the same way that read_csv does. (GH6809)
• Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas. (GH4688)

    In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D',
                        tz='dateutil/Europe/London')
    ...:
    In [9]: rng.tz
    Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')

See the docs.
• Implemented sem (standard error of the mean) operation for Series, DataFrame, Panel, and Groupby (GH6897)
• Add nlargest and nsmallest to the Series groupby whitelist, which means you can now use these methods on a SeriesGroupBy object (GH7053).
• All offsets apply, rollforward and rollback can now handle np.datetime64, previously results in ApplyTypeError (GH7452)
• Period and PeriodIndex can contain NaT in its values (GH7485)
• Support pickling Series, DataFrame and Panel objects with non-unique labels along item axis (index, columns and items respectively) (GH7370).
• Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of an object Index with all null elements (GH7431)

1.15.3 Performance

• Improvements in dtype inference for numeric operations involving yielding performance gains for dtypes: int64, timedelta64, datetime64 (GH7223)
• Improvements in Series.transform for significant performance gains (GH6496)
• Improvements in DataFrame.transform with ufuncs and built-in grouper functions for significant performance gains (GH7383)
• Regression in groupby aggregation of datetime64 dtypes (GH7555)
• Improvements in MultiIndex.from_product for large iterables (GH7627)
1.15.4 Experimental

- pandas.io.data.Options has a new method, `get_all_data` method, and now consistently returns a multi-indexed DataFrame (GH5602)

- `io.gbq.read_gbq` and `io.gbq.to_gbq` were refactored to remove the dependency on the Google bq.py command line client. This submodule now uses `httplib2` and the Google apiclient and oauth2client API client libraries which should be more stable and, therefore, reliable than bq.py. See the docs. (GH6937).

1.15.5 Bug Fixes

- Bug in DataFrame.where with a symmetric shaped frame and a passed other of a DataFrame (GH7506)
- Bug in Panel indexing with a multi-index axis (GH7516)
- Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)
- Bug in setitem with list-of-lists and single vs mixed types (GH7551)
- Bug in timeops with non-aligned Series (GH7500)
- Bug in timedelta inference when assigning an incomplete Series (GH7592)
- Bug in groupby .nth with a Series and integer-like column name (GH7559)
- Bug in Series.get with a boolean accessor (GH7407)
- Bug in value_counts where NaT did not qualify as missing (NaN) (GH7423)
- Bug in to_timedelta that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423)
- Bug in line plot doesn’t set correct xlim if secondary_y=True (GH7459)
- Bug in grouped hist and scatter plots use old figsize default (GH7394)
- Bug in plotting subplots with DataFrame.plot, hist clears passed ax even if the number of subplots is one (GH7391).
- Bug in plotting subplots with DataFrame.boxplot with by kw raises ValueError if the number of subplots exceeds 1 (GH7391).
- Bug in subplots displays ticklabels and labels in different rule (GH5897)
- Bug in Panel.apply with a multi-index as an axis (GH7469)
- Bug in DatetimeIndex.insert doesn’t preserve name and tz (GH7299)
- Bug in DatetimeIndex.asobject doesn’t preserve name (GH7299)
- Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
- Bug in Index.min and max doesn’t handle nan and NaT properly (GH7261)
- Bug in PeriodIndex.min/max results in int (GH7609)
- Bug in resample where fill_method was ignored if you passed how (GH2073)
- Bug in TimeGrouper doesn’t exclude column specified by key (GH7227)
- Bug in DataFrame and Series bar and barh plot raises TypeError when bottom and left keyword is specified (GH7226)
- Bug in DataFrame.hist raises TypeError when it contains non numeric column (GH7277)
- Bug in Index.delete does not preserve name and freq attributes (GH7302)
• Bug in DataFrame.query() / eval where local string variables with the @ sign were being treated as temporaries attempting to be deleted (GH7300).
• Bug in Float64Index which didn’t allow duplicates (GH7149).
• Bug in DataFrame.replace() where truthy values were being replaced (GH7140).
• Bug in StringMethods.extract() where a single match group Series would use the matcher’s name instead of the group name (GH7131).
• Bug in isnull() when mode.use_inf_as_null == True where isnull wouldn’t test True when it encountered an inf/-inf (GH7315).
• Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)
• Bug in Easter returns incorrect date when offset is negative (GH7195)
• Bug in broadcasting with .div, integer dtypes and divide-by-zero (GH7325)
• Bug in CustomBusinessDay.apply raises NameError when np.datetime64 object is passed (GH7196)
• Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606)
• Bug in .loc with a list of indexers on a single-multi index level (that is not nested) (GH7349)
• Bug in Series.map when mapping a dict with tuple keys of different lengths (GH7333)
• Bug all StringMethods now work on empty Series (GH7242)
• Fix delegation of read_sql to read_sql_query when query does not contain ‘select’ (GH7324).
• Bug where a string column name assignment to a DataFrame with a Float64Index raised a TypeError during a call to np.isnan (GH7366).
• Bug where NDFrame.replace() didn’t correctly replace objects with Period values (GH7379).
• Bug in .ixgetitem should always return a Series (GH7150)
• Bug in multi-index slicing with incomplete indexers (GH7399)
• Bug in multi-index slicing with a step in a sliced level (GH7400)
• Bug where negative indexers in DatetimeIndex were not correctly sliced (GH7408)
• Bug where NaT wasn’t repr’d correctly in a MultiIndex (GH7406, GH7409).
• Bug where bool objects were converted to nan in convert_objects (GH7416).
• Bug in quantile ignoring the axis keyword argument (:issue’7306’)
• Bug where nanops._maybe_null_out doesn’t work with complex numbers (GH7353)
• Bug in several nanops functions when axis==0 for 1-dimensional nan arrays (GH7354)
• Bug where nanops.nanmedian doesn’t work when axis==None (GH7352)
• Bug where nanops._has_infs doesn’t work with many dtypes (GH7357)
• Bug in StataReader.data where reading a 0-observation dta failed (GH7369)
• Bug in StataReader when reading Stata 13 (117) files containing fixed width strings (GH7360)
• Bug in StataWriter where encoding was ignored (GH7286)
• Bug in DatetimeIndex comparison doesn’t handle NaT properly (GH7529)
• Bug in passing input with tzinfo to some offsets apply, rollforward or rollback resets tzinfo or raises ValueError (GH7465)
• Bug in `DatetimeIndex.to_period`, `PeriodIndex.asobject`, `PeriodIndex.to_timestamp` doesn’t preserve name (GH7485)
• Bug in `DatetimeIndex.to_period` and `PeriodIndex.to_timestamp` handle NaT incorrectly (GH7228)
• Bug in `offsets.apply`, `rollforward` and `rollback` may return normal datetime (GH7502)
• Bug in `resample` raises `ValueError` when target contains NaT (GH7227)
• Bug in `Timestamp.tz_localize` resets nanosecond info (GH7534)
• Bug in `DatetimeIndex.asobject` raises `ValueError` when it contains NaT (GH7539)
• Bug in `Timestamp.__new__` doesn’t preserve nanosecond properly (GH7610)
• Bug in `Index.astype(float)` where it would return an object dtype Index (GH7464).
• Bug in `DataFrame.reset_index` loses tz (GH3950)
• Bug in `DatetimeIndex.freqstr` raises `AttributeError` when freq is None (GH7606)
• Bug in `GroupBy.size` created by `TimeGrouper` raises `AttributeError` (GH7453)
• Bug in single column bar plot is misaligned (GH7498).
• Bug in area plot with tz-aware time series raises `ValueError` (GH7471)
• Bug in non-monotonic `Index.union` may preserve name incorrectly (GH7458)
• Bug in `DatetimeIndex.intersection` doesn’t preserve timezone (GH4690)
• Bug in `rolling_var` where a window larger than the array would raise an error (GH7297)
• Bug with last plotted timeseries dictating xlim (GH2960)
• Bug with `secondary_y` axis not being considered for timeseries xlim (GH3490)
• Bug in `Float64Index` assignment with a non scalar indexer (GH7586)
• Bug in `pandas.core.strings.str_contains` does not properly match in a case insensitive fashion when `regex=False` and `case=False` (GH7505)
• Bug in `expanding_cov`, `expanding_corr`, `rolling_cov`, and `rolling_corr` for two arguments with mismatched index (GH7512)
• Bug in `to_sql` taking the boolean column as text column (GH7678)
• Bug in grouped `hist` doesn’t handle `rot` kw and `sharex` kw properly (GH7234)
• Bug in `.loc` performing fallback integer indexing with object dtype indices (GH7496)
• Bug (regression) in `PeriodIndex` constructor when passed `Series` objects (GH7701).

1.16 v0.14.0 (May 31, 2014)

This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
  - Officially support Python 3.4
  - SQL interfaces updated to use sqlalchemy, See [Here](#).
– Display interface changes, See Here
– MultiIndexing Using Slicers, See Here.
– Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see Here
– More consistency in groupby results and more flexible groupby specifications, See Here
– Holiday calendars are now supported in CustomBusinessDay, see Here
– Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.
– Performance doc section on I/O operations, See Here

• Other Enhancements
• API Changes
  • Text Parsing API Changes
  • Groupby API Changes
  • Performance Improvements
• Prior Deprecations
• Deprecations
• Known Issues
• Bug Fixes

**Warning:** In 0.14.0 all NDFrame based containers have undergone significant internal refactoring. Before that each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the parent container’s labels. This should not have any visible user/API behavior changes (GH6745)

### 1.16.1 API changes

• `read_excel` uses 0 as the default sheet (GH6573)
• `iloc` will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raise `IndexError` (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)

```
In [1]: df1 = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [2]: df1
Out[2]:
 A B
0 1.583584 -0.438313
1 -0.402537 -0.780572
2 -0.141685 0.542241
3 0.370966 -0.251642
4 0.787484 1.666563
In [3]: df1.iloc[:,2:3]

```

Empty DataFrame
In [4]: df1.iloc[:,1:3]

→ B
0 -0.438313
1 -0.780572
2  0.542241
3 -0.251642
4  1.666563

In [5]: df1.iloc[4:6]

→ A B
4  0.787484  1.666563

These are out-of-bounds selections

```
df1.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds

df1.iloc[:,4]
IndexError: single positional indexer is out-of-bounds
```

- Slicing with negative start, stop & step values handles corner cases better (GH6531):
  - `df.iloc[:,-len(df)]` is now empty
  - `df.iloc[len(df)::1]` now enumerates all elements in reverse
- The `DataFrame.interpolate()` keyword downcast default has been changed from `infer` to `None`. This is to preserve the original dtype unless explicitly requested otherwise (GH6290).
- When converting a dataframe to HTML it used to return `Empty DataFrame`. This special case has been removed, instead a header with the column names is returned (GH6062).
- `Series` and `Index` now internally share more common operations, e.g. `factorize()`, `nunique()`, `value_counts()` are now supported on `Index` types as well. The `Series.weekday` property from is removed from `Series` for API consistency. Using a `DatetimeIndex/PeriodIndex` method on a `Series` will now raise a `TypeError`. (GH4551, GH4056, GH5519, GH6380, GH7206).
- Add `is_month_start`, `is_month_end`, `is_quarter_start`, `is_quarter_end`, `is_year_start`, `is_year_end` accessors for `DateTimeIndex / Timestamp` which return a boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of the `DateTimeIndex / Timestamp` (GH4565, GH6998)
- Local variable usage has changed in `pandas.eval()` / `DataFrame.eval()` / `DataFrame.query()` (GH5987). For the `DataFrame` methods, two things have changed
  - Column names are now given precedence over locals
  - Local variables must be referred to explicitly. This means that even if you have a local variable that is not a column you must still refer to it with the `@` prefix.
  - You can have an expression like `df.query('@a < a')` with no complaints from `pandas` about ambiguity of the name `a`.  

244 Chapter 1. What's New
The top-level `pandas.eval()` function does not allow you use the '@' prefix and provides you with an error message telling you so.

`NameResolutionError` was removed because it isn’t necessary anymore.

- Define and document the order of column vs index names in query/eval (GH6676)
- `concat` will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docs
- Slicing and advanced/boolean indexing operations on Index classes as well as `Index.delete()` and `Index.drop()` methods will no longer change the type of the resulting index (GH6440, GH7040)

```python
In [6]: i = pd.Index([1, 2, 3, 'a', 'b', 'c'])
In [7]: i[[0,1,2]]
Out[7]: Index([1, 2, 3], dtype='object')
In [8]: i.drop(['a', 'b', 'c'])
Out[8]: Index([1, 2, 3], dtype='object')
```

Previously, the above operation would return `Int64Index`. If you’d like to do this manually, use `Index.astype()`

```python
In [9]: i[[0,1,2]].astype(np.int_
Out[9]: Int64Index([1, 2, 3], dtype='int64')
```

- `set_index` no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):

```python
Old behavior, casted MultiIndex to an Index
In [10]: tuple_ind
Out[10]: Index([('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')], dtype='object')
In [11]: df_multi.set_index(tuple_ind)
Out[11]:
 0 1
(a, c) 0.471435 -1.190976
(a, d) 1.432707 -0.312652
(b, c) -0.720589 0.887163
(b, d) 0.859588 -0.636524
```

# New behavior
```python
In [12]: mi
In [13]: df_multi.set_index(mi)
```

This also applies when passing multiple indices to `set_index:`

```
 0 1
a c 0.471435 -1.190976
 d 1.432707 -0.312652
b c-0.720589 0.887163
 d 0.859588 -0.636524
```
pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr, ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.

Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior prior to 0.14. (GH6760)

Added nunique and value_counts functions to Index for counting unique elements. (GH6734)

stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the Index (previously raised a KeyError). (GH6738)

drop unused order argument from Series.sort; args now are in the same order as Series.order; add na_position arg to conform to Series.order (GH6847)

default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and numpy defaults)

add inplace keyword to Series.order/sort to make them inverses (GH6859)

DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position parameter. (GH3917)

accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1

Added factorize functions to Index and Series to get indexer and unique values (GH7090)
• **describe** on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088). Previously the index was unintentionally sorted.

• Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)

```python
x = pd.Series(np.random.rand(10) > 0.5)
y = True
x + y # warning generated: should do x | y instead
x / y # this raises because it doesn't make sense
```

```
NotImplementedError: operator '/' not implemented for bool dtypes
```

• In HDFStore, `select_as_multiple` will always raise a `KeyError`, when a key or the selector is not found (GH6177)

• `df['col'] = value` and `df.loc[:, 'col'] = value` are now completely equivalent; previously the `.loc` would not necessarily coerce the dtype of the resultant series (GH6149)

• `dtypes` and `ftypes` now return a series with `dtype=object` on empty containers (GH5740)

• `df.to_csv` will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)

• `pd.infer_freq()` will now raise a `TypeError` if given an invalid `Series/Index` type (GH6407, GH6463)

• A tuple passed to `DataFrame.sort_index` will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)

• All offset operations now return Timestamp types (rather than datetime), Business/Week frequencies were incorrect (GH4069)

• `to_excel` now converts `np.inf` into a string representation, customizable by the `inf_rep` keyword argument (Excel has no native inf representation) (GH6782)

• Replace `pandas.compat.scipy.scoreatpercentile` with `numpy.percentile`(GH6810)

• `.quantile` on a `datetime[ns]` series now returns `Timestamp` instead of `np.datetime64` objects (GH6810)

• Change `AssertionError` to `TypeError` for invalid types passed to `concat` (GH6583)

• Raise a `TypeError` when `DataFrame` is passed an iterator as the `data` argument (GH5357)

### 1.16.2 Display Changes

• The default way of printing large DataFrames has changed. DataFrames exceeding `max_rows` and/or `max_columns` are now displayed in a centrally truncated view, consistent with the printing of a `pandas.Series` (GH5603).

In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (...) signaled that part of the data was cut off.
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: pd.options.display.max_rows = 6
In [4]: pd.options.display.max_columns = 6
In [5]: index = pd.DatetimeIndex(start='2001-01-01', freq='D', periods=10)
In [6]: pd.DataFrame(np.arange(10*10).reshape((10,10)), index=index)
Out[6]:
   0  1  2  3  4  5
2001-01-01 0  1  2  3  4  5 ...
2001-01-02 10 11 12 13 14 15 ...
2001-01-03 20 21 22 23 24 25 ...
2001-01-04 30 31 32 33 34 35 ...
2001-01-05 40 41 42 43 44 45 ...
2001-01-06 50 51 52 53 54 55 ...
   ... ... ... ... ...
[10 rows x 10 columns]
In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.

In [24]: pd.DataFrame(np.arange(10*10).reshape((10,10)), index=index)
Out[24]:
   0  1  2  ...  7  8  9
2001-01-01 0  1  2  ...  7  8  9
2001-01-02 10 11 12  ... 17 18 19
2001-01-03 20 21 22  ... 27 28 29
   ...         ...        ... ...
2001-01-08 70 71 72  ... 77 78 79
2001-01-09 80 81 82  ... 87 88 89
2001-01-10 90 91 92  ... 97 98 99
[10 rows x 10 columns]

- allow option 'truncate' for display.show_dimensions to only show the dimensions if the frame is truncated (GH6547).

The default for display.show_dimensions will now be truncate. This is consistent with how Series display length.

In [16]: dfd = pd.DataFrame(np.arange(25).reshape(-1,5), index=[0,1,2,3,4],
                     columns=[0,1,2,3,4])
   # show dimensions since this is truncated
In [17]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2,
                          'display.show_dimensions', 'truncate'):
    ...:    print(dfd)
    ...:
      0  ...  4
Regression in the display of a MultiIndexed Series with \texttt{display.max_rows} is less than the length of the series (GH7101)

Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the \texttt{large_repr} set to ‘info’ (GH7105)

The \texttt{verbose} keyword in \texttt{DataFrame.info()}, which controls whether to shorten the info representation, is now \texttt{None} by default. This will follow the global setting in \texttt{display.max_info_columns}. The global setting can be overridden with \texttt{verbose=True} or \texttt{verbose=False}.

Fixed a bug with the \texttt{info} repr not honoring the \texttt{display.max_info_columns} setting (GH6939)

Offset/freq info now in Timestamp \texttt{__repr__} (GH4553)

### 1.16.3 Text Parsing API Changes

\texttt{read_csv()}/\texttt{read_table()} will now be noiser w.r.t invalid options rather than falling back to the PythonParser.

- Raise \texttt{ValueError} when \texttt{sep} specified with \texttt{delim_whitespace=True} in \texttt{read_csv()}/\texttt{read_table()} (GH6607)
- Raise \texttt{ValueError} when \texttt{engine='c'} specified with unsupported options in \texttt{read_csv()}/\texttt{read_table()} (GH6607)
- Raise \texttt{ValueError} when fallback to python parser causes options to be ignored (GH6607)
- Produce \texttt{ParserWarning} on fallback to python parser when no options are ignored (GH6607)
- Translate \texttt{sep='\s+'} to \texttt{delim_whitespace=True} in \texttt{read_csv()}/\texttt{read_table()} if no other C-unsupported options specified (GH6607)

### 1.16.4 Groupby API Changes

More consistent behaviour for some groupby methods:

- \texttt{groupby head} and \texttt{tail} now act more like \texttt{filter} rather than an aggregation:
In [19]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [20]: g = df.groupby('A')

In [21]: g.head(1)  # filters DataFrame
Out[21]:
   A  B
0 1  2
2 5  6

In [22]: g.apply(lambda x: x.head(1))  # used to simply fall-through

Out[22]:
   A  B
A
0 1  2
2 5  6

• groupby head and tail respect column selection:

   In [23]: g[['B']].head(1)
Out[23]:
    B
   0 2
   2 6

• groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an optional dropna argument to ignore NaN. See the docs.

Reducing

In [24]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [25]: g = df.groupby('A')

In [26]: g.nth(0)
Out[26]:
   A  B
A
1 NaN
5  6.0

# this is equivalent to g.first()
In [27]: g.nth(0, dropna='any')

Out[27]:
   A  B
A
1  4.0
5  6.0

# this is equivalent to g.last()
In [28]: g.nth(-1, dropna='any')

Out[28]:
   A  B
A
1  4.0
5  6.0
Filtering

In [29]: gf = df.groupby('A', as_index=False)

In [30]: gf.nth(0)
Out[30]:
   A  B
0  1  NaN
2  5  6.0

In [31]: gf.nth(0, dropna='any')
Out[31]:
   A  B
A  1  4.0
   5  6.0

• groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index

In [32]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [33]: g = df.groupby('A')

In [34]: g.count()
Out[34]:
   B
A  
1  1
5  2

In [35]: g.describe()
Out[35]:
   B  
   count  mean   std  min  25%  50%  75%  max
A  
1   2.0  1.0   0.0  1.0  1.0  1.0  1.0  NaN
5   2.0  7.0  1.414214  6.0  6.5  7.0  7.5  8.0

• passing as_index will leave the grouped column in-place (this is not change in 0.14.0)

In [36]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [37]: g = df.groupby('A', as_index=False)

In [38]: g.count()
Out[38]:
   A  B
0  1  1
1  5  2

In [39]: g.describe()
Out[39]:
   A  B  
   count  mean   std  min  25%  50%  75%  max   count  mean   std  min  25%
0  2.0  1.0   0.0  1.0  1.0  1.0  1.0  NaN
1  2.0  5.0   0.0  5.0  5.0  5.0  5.0  5.0

1.16. v0.14.0 (May 31, 2014)
• Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string field simultaneously. See the docs. (GH3794)

• Better propagation/preservation of Series names when performing groupby operations:
  – SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the result (GH6265).
  – If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates DataFrame.stack operations where the name of the column index is used as the name of the inserted column containing the pivoted data.

1.16.5 SQL

The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).

The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The 'mysql' flavor is deprecated.

The new functions read_sql_query() and read_sql_table() are introduced. The function read_sql() is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query).

In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database:

```python
In [40]: from sqlalchemy import create_engine
 # Create your connection.
In [41]: engine = create_engine('sqlite:///:memory:)
```

This engine can then be used to write or read data to/from this database:

```python
In [42]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})
In [43]: df.to_sql('db_table', engine, index=False)
```

You can read data from a database by specifying the table name:

```python
In [44]: pd.read_sql_table('db_table', engine)
Out[44]:
 A B
0 1 a
1 2 b
2 3 c
```

or by specifying a sql query:
Some other enhancements to the sql functions include:

- support for writing the index. This can be controlled with the index keyword (default is True).
- specify the column label to use when writing the index with index_label.
- specify string columns to parse as datetimes with the parse_dates keyword in read_sql_query() and read_sql_table().

Warning: Some of the existing functions or function aliases have been deprecated and will be removed in future versions. This includes: tquery, uquery, read_frame, frame_query, write_frame.

Warning: The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

1.16.6 MultiIndexing Using Slicers

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:

```python
df.loc[(slice('A1','A3'),.....),:]
```

rather than this:

```python
df.loc[(slice('A1','A3'),.....)]
```

Warning: You will need to make sure that the selection axes are fully lexsorted!
In [46]: def mklbl(prefix,n):
       ....:     return ["%s%s" % (prefix,i) for i in range(n)]

In [47]: index = MultiIndex.from_product([mklbl('A',4), mklbl('B',2), mklbl('C',4), mklbl('D',2)])

In [48]: columns = MultiIndex.from_tuples((('a','foo'),('a','bar'), ('b','foo'), ('b','bah')), names=['lvl0', 'lvl1'])

In [49]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index), len(columns))), index=index, columns=columns).sort_index().sort_index(axis=1)

Basic multi-index slicing using slices, lists, and labels.

In [51]: df.loc[(slice('A1','A3'),slice(None), ['C1','C3']),:]
Out[51]:
   a     b
1lv0  1     2
1lv1  3     4
A0 B0 C0 D0  5     6
     7     8
D1  9     10
     11    12
C1 D0 13    14
     15    16
D1 17    18
     19    20
C2 D0 21    22
     23    24
D1 25    26
     27    28
C3 D0 ...
     ...
... ...
A3 B1 C1 D1 ...
     ...
... ...
A3 B0 C1 D1
     ...
... ...
[64 rows x 4 columns]
You can use a `pd.IndexSlice` to shortcut the creation of these slices

```
In [52]: idx = pd.IndexSlice
```

```
In [53]: df.loc[idx[:,:,,['C1','C3']],idx[:,'foo']]
Out[53]:

<table>
<thead>
<tr>
<th>lvl0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>C1</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>C3</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A3</td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td>C0</td>
<td>216</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>222</td>
</tr>
<tr>
<td>C1</td>
<td>232</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>238</td>
</tr>
<tr>
<td>C3</td>
<td>248</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>254</td>
</tr>
</tbody>
</table>

[32 rows x 2 columns]
```

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

```
In [54]: df.loc['A1',(slice(None),'foo')]
Out[54]:

<table>
<thead>
<tr>
<th>lvl0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>C1</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>C2</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>86</td>
</tr>
<tr>
<td>C3</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>B1</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>C0</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>110</td>
</tr>
<tr>
<td>C1</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>118</td>
</tr>
<tr>
<td>C3</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>126</td>
</tr>
</tbody>
</table>

[16 rows x 2 columns]
Using a boolean indexer you can provide selection related to the values.

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.
Furthermore you can set the values using these methods:

```python
In [59]: df2 = df.copy()

In [60]: df2.loc(axis=0)[:,:,['C1','C3']] = -10

In [61]: df2
```

```
Out[61]:
     a   b
lev0
A0  1   0
    3   2
    4   7
    5   6
C1 -10 -10 -10 -10
    -10 -10 -10 -10
    10   10
    10   10
D1 10   10
    10
    10
    10
C2 10   10
    10
    10
    10
    10
D1 10   10
    10
    10
    10
C3 10   10
    10
    10
    10
    10
```

```
[64 rows x 4 columns]
```

You can use a right-hand-side of an alignable object as well.

```python
In [62]: df2 = df.copy()

In [63]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000

In [64]: df2
```

```
Out[64]:
     a   b
lev0
A0  1000 8000
    3000 2000
    4000 27000
    5000 23000
    6000 24000
    7000 26000
    8000 28000
    9000 30000
```

```
[64 rows x 4 columns]
```
1.16.7 Plotting

- Hexagonal bin plots from DataFrame.plot with kind='hexbin' (GH5478), See the docs.
- DataFrame.plot and Series.plot now supports area plot with specifying kind='area' (GH6656), See the docs
- Pie plots from Series.plot and DataFrame.plot with kind='pie' (GH6976), See the docs.
- Plotting with Error Bars is now supported in the .plot method of DataFrame and Series objects (GH3796, GH6834), See the docs.
- DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table, See the docs. The table keyword can receive the following values.
 - False: Do nothing (default).
 - True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to meet matplotlib’s default layout.
 - DataFrame or Series: Draw matplotlib.table using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper function pandas.tools.plotting.table is added to create a table from DataFrame and Series, and add it to an matplotlib.Axes.
- plot(legend='reverse') will now reverse the order of legend labels for most plot kinds. (GH6014)
- Line plot and area plot can be stacked by stacked=True (GH6656)
- Following keywords are now acceptable for DataFrame.plot() with kind='bar' and kind='barh':
 - width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot be overwritten. (GH6604)
 - align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions, pandas passes align='edge' to matplotlib and adjust the location to center by itself, and it results align keyword is not applied as expected. (GH4525)
 - position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end). Default is 0.5 (center). (GH6604)

Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 ...). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim, set_ylim, etc. In this cases, please modify your script to meet with new coordinates.

- The parallel_coordinates() function now takes argument color instead of colors. A FutureWarning is raised to alert that the old colors argument will not be supported in a future release. (GH6956)
- The parallel_coordinates() and andrews_curves() functions now take positional argument frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)
- DataFrame.boxplot() now supports layout keyword (GH6769)
- DataFrame.boxplot() has a new keyword argument, return_type. It accepts 'dict', 'axes', or 'both', in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.
1.16.8 Prior Version Deprecations/Changes

There are prior version deprecations that are taking effect as of 0.14.0.

- Remove `DateRange` in favor of `DatetimeIndex` (GH6816)
- Remove `column` keyword from `DataFrame.sort` (GH4370)
- Remove `precision` keyword from `set_eng_float_format()` (GH395)
- Remove `force_unicode` keyword from `DataFrame.to_string()`, `DataFrame.to_latex()`, and `DataFrame.to_html()`; these function encode in unicode by default (GH2224, GH2225)
- Remove `nanRep` keyword from `DataFrame.to_csv()` and `DataFrame.to_string()` (GH275)
- Remove `unique` keyword from `HDFStore.select_column()` (GH3256)
- Remove `inferTimeRule` keyword from `Timestamp.offset()` (GH391)
- Remove `name` keyword from `get_data_yahoo()` and `get_data_google()` (commit b921d1a)
- Remove `offset` keyword from `DatetimeIndex` constructor (commit 3136390)
- Remove `time_rule` from several rolling-moment statistical functions, such as `rolling_sum()` (GH1042)
- Removed `neg` – boolean operations on numpy arrays in favor of `inv ~`, as this is going to be deprecated in numpy 1.9 (GH6960)

1.16.9 Deprecations

- The `pivot_table()`/`DataFrame.pivot_table()` and `crosstab()` functions now take arguments `index` and `columns` instead of `rows` and `cols`. A `FutureWarning` is raised to alert that the old `rows` and `cols` arguments will not be supported in a future release (GH5505)
- The `DataFrame.drop_duplicates()` and `DataFrame.duplicated()` methods now take argument `subset` instead of `cols` to better align with `DataFrame.dropna()`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6680)
- The `DataFrame.to_csv()` and `DataFrame.to_excel()` functions now takes argument `columns` instead of `cols`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6645)
- Indexers will warn `FutureWarning` when used with a scalar indexer and a non-floating point Index (GH4892, GH6960)

```
# non-floating point indexes can only be indexed by integers / labels
In [1]: Series([1,np.arange(5)][3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
   →Int64Index should be integers and not floating point
Out[1]: 1

In [2]: Series([1,np.arange(5)].iloc[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
   →Int64Index should be integers and not floating point
Out[2]: 1

In [3]: Series([1,np.arange(5)].iloc[3.0:4]
pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers and not floating point
   →should be integers and not floating point
Out[3]: 3 1
```
• Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)

• Panel.shift() now has a function signature that matches DataFrame.shift(). The old positional argument lags has been changed to a keyword argument periods with a default value of 1. A FutureWarning is raised if the old argument lags is used by name. (GH6910)

• The order keyword argument of factorize() will be removed. (GH6926).

• Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A view will be returned if possible, otherwise a copy will be made. Previously the user could think that copy=False would ALWAYS return a view. (GH6894)

• The parallel_coordinates() function now takes argument color instead of colors. A FutureWarning is raised to alert that the old colors argument will not be supported in a future release. (GH6956)

• The parallel_coordinates() and andrews_curves() functions now take positional argument frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)

• The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

• The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query, write_frame.

• The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword instead, which takes a list of percentiles to display. The default output is unchanged.

• The default return type of boxplot() will change from a dict to a matplotlib Axes in a future release. You can use the future behavior now by passing return_type='axes' to boxplot.

1.16.10 Known Issues

• OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

1.16.11 Enhancements

• DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)
In [66]: DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
 : ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
 : ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
 : ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
 : ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})

Out[66]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a b c</td>
<td>a b</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>C</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

- Added the sym_diff method to Index (GH5543)
- DataFrame.to_latex now takes a longtable keyword, which if True will return a table in a longtable environment. (GH6617)
- Add option to turn off escaping in DataFrame.to_latex (GH6472)
- pd.read_clipboard will, if the keyword sep is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)

- Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)

See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.

In [67]: household = DataFrame(dict(household_id = [1,2,3],

 male = [0,1,0],
 wealth = [196087.3,316478.7,294750]),

 columns = ['household_id','male','wealth'])

In [68]: household

Out[68]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>male</th>
<th>wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>196087.3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>316478.7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>294750.0</td>
</tr>
</tbody>
</table>

In [69]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],

 asset_id = ["nl0000301109","nl0000289783", "gb00b03mlx29", "gb00b03mlx29", "1u0197800237", "n10000289965", np.nan],

 name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell","AAB Eastern Europe Equity Fund","Postbank BioTech Fonds",np.nan],

 share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),

In [70]: portfolio

Out[70]:

1.16. v0.14.0 (May 31, 2014)
```
In [71]: household.join(portfolio, how='inner')
```

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>male</th>
<th>wealth</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n10000301109</td>
<td>0</td>
<td>196087.3</td>
<td>ABN Amro</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>n10000289783</td>
<td>1</td>
<td>316478.7</td>
<td>Robeco</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>1</td>
<td>316478.7</td>
<td>Royal Dutch Shell</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>0</td>
<td>294750.0</td>
<td>Royal Dutch Shell</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>lu0197800237</td>
<td>0</td>
<td>294750.0</td>
<td>AAB Eastern Europe Equity Fund</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>n10000289965</td>
<td>0</td>
<td>294750.0</td>
<td>Postbank BioTech Fonds</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- `quotechar`, `doublequote`, and `escapechar` can now be specified when using `DataFrame.to_csv` (GH5414, GH4528)
- Partially sort by only the specified levels of a MultiIndex with the `sort_remaining` boolean kwarg. (GH3984)
- Added `to_julian_date` to `TimeStamp` and `DatetimeIndex`. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)
- `DataFrame.to_stata` will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)
- `DataFrame.to_stata` and `StataWriter` will accept keyword arguments `time_stamp` and `data_label` which allow the time stamp and dataset label to be set when creating a file. (GH6545)
- `pandas.io.gbq` now handles reading unicode strings properly. (GH5940)
- `Holidays Calendars` are now available and can be used with the `CustomBusinessDay` offset (GH6719)
- `Float64Index` is now backed by a `float64` dtype ndarray instead of an `object` dtype array (GH6471).
- Implemented `Panel.pct_change` (GH6904)
- Added how option to rolling-moment functions to dictate how to handle resampling: `rolling_max()` defaults to max, `rolling_min()` defaults to min, and all others default to mean (GH6297)
- `CustomBusinessMonthBegin` and `CustomBusinessMonthEnd` are now available (GH6866)
- `Series.quantile()` and `DataFrame.quantile()` now accept an array of quantiles.
• **describe()** now accepts an array of percentiles to include in the summary statistics (GH4196)

• **pivot_table** can now accept **Grouper** by index and columns keywords (GH6913)

```python
In [72]: import datetime

In [73]: df = DataFrame({
    ....:     'Branch' : 'A A A A A B'.split(),
    ....:     'Buyer' : 'Carl Mark Carl Carl Joe Joe'.split(),
    ....:     'Quantity' : [1, 3, 5, 1, 8, 1],
    ....:     'Date' : [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,
    ....:                      1,13,5),
    ....:                      datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,
    ....:                      2,10,0),
    ....:                      datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,
    ....:                      2,10,0)],
    ....:     'PayDay' : [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,
    ....:                      10,15,13,5),
    ....:                      datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,
    ....:                      11,2,10,0),
    ....:                      datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,
    ....:                      9,5,10,0)])
    ....:     })

In [74]: df
Out[74]:
    Branch Buyer Date PayDay Quantity
0    A    Carl 2013-11-01 13:00:00 2013-10-04 00:00:00 1
1    A   Mark 2013-09-01 13:05:00 2013-10-15 13:05:00 3
2    A   Carl 2013-10-01 20:00:00 2013-09-05 20:00:00 5
3    A   Carl 2013-10-02 10:00:00 2013-11-02 10:00:00 1
4    A   Joe 2013-11-01 20:00:00 2013-10-07 20:00:00 8
5    B   Joe 2013-10-02 10:00:00 2013-09-05 10:00:00 1

In [75]: pivot_table(df, index=Grouper(freq='M', key='Date'),
    ....:         columns=Grouper(freq='M', key='PayDay'),
    ....:         values='Quantity', aggfunc=np.sum)

Out[75]:
Date
2013-09-30   NaN            3.0        NaN
2013-10-31    6.0          NaN            1.0
2013-11-30  NaN           NaN        NaN

• Arrays of strings can be wrapped to a specified width (**str.wrap**) (GH6999)

• Add **nsmallest()** and **Series.nlargest()** methods to Series, See the docs (GH3960)

• **PeriodIndex** fully supports partial string indexing like **DatetimeIndex** (GH7043)

```python
In [76]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')

In [77]: ps = Series(np.random.randn(len(prng)), index=prng)

In [78]: ps
Out[78]:
2013-01-01 09:00 0.015696
2013-01-01 10:00 -2.242685
```

1.16. v0.14.0 (May 31, 2014)
pandas: powerful Python data analysis toolkit, Release 0.20.1

```
2013-01-01 11:00 1.150036
2013-01-01 12:00 0.991946
2013-01-01 13:00 0.953324
2013-01-01 14:00 -2.021255
2013-01-01 15:00 -0.334077
...
2013-01-05 06:00 0.566534
2013-01-05 07:00 0.503592
2013-01-05 08:00 0.285296
2013-01-05 09:00 0.484288
2013-01-05 10:00 1.363482
2013-01-05 11:00 -0.781105
2013-01-05 12:00 -0.468018
Freq: H, Length: 100, dtype: float64

In [79]: ps['2013-01-02']
 ...

→ 2013-01-02 00:00 0.553439
2013-01-02 01:00 1.318152
2013-01-02 02:00 -0.469305
2013-01-02 03:00 0.675554
2013-01-02 04:00 -1.817027
2013-01-02 05:00 -0.183109
2013-01-02 06:00 1.058969
...
2013-01-02 17:00 0.076200
2013-01-02 18:00 -0.566446
2013-01-02 19:00 0.036142
2013-01-02 20:00 -2.074978
2013-01-02 21:00 0.247792
2013-01-02 22:00 -0.897157
2013-01-02 23:00 -0.136795
Freq: H, Length: 24, dtype: float64
```

- `read_excel` can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)
- `pd.stats.moments.rolling_var` now uses Welford’s method for increased numerical stability (GH6817)
- `pd.expanding_apply` and `pd.rolling_apply` now take args and kwargs that are passed on to the func (GH6289)
- `DataFrame.rank()` now has a percentage rank option (GH5971)
- `Series.rank()` now has a percentage rank option (GH5971)
- `Series.rank()` and `DataFrame.rank()` now accept method='dense' for ranks without gaps (GH6514)
- Support passing `encoding` with `xlwt` (GH3710)
- Refactor Block classes removing `Block.items` attributes to avoid duplication in item handling (GH6745, GH6988).
- Testing statements updated to use specialized asserts (GH6175)
1.16.12 Performance

- Performance improvement when converting `DatetimeIndex` to floating ordinals using `DatetimeConverter` (GH6636)
- Performance improvement for `DataFrame.shift` (GH5609)
- Performance improvement in indexing into a multi-indexed Series (GH5567)
- Performance improvements in single-dtyped indexing (GH6484)
- Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. `MonthEnd`, `BusinessMonthEnd`) (GH6479)
- Improve performance of `CustomBusinessDay` (GH6584)
- Improve performance of slice indexing on Series with string keys (GH6341, GH6372)
- Performance improvement for `DataFrame.from_records` when reading a specified number of rows from an iterable (GH6700)
- Performance improvements in timedelta conversions for integer dtypes (GH6754)
- Improved performance of compatible pickles (GH6899)
- Improve performance in certain reindexing operations by optimizing `take_2d` (GH6749)
- `GroupBy.count()` is now implemented in Cython and is much faster for large numbers of groups (GH7016).

1.16.13 Experimental

There are no experimental changes in 0.14.0

1.16.14 Bug Fixes

- Bug in `Series` ValueError when index doesn’t match data (GH6532)
- Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
- Bug in `pd.DataFrame.sort_index` where mergesort wasn’t stable when `ascending=False` (GH6399)
- Bug in `pd.tseries.frequencies.to_offset` when argument has leading zeroes (GH6391)
- Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
- Inconsistent tz parsing `Timestamp/to_datetime` for current year (GH5958)
- Indexing bugs with reordered indexes (GH6252, GH6254)
- Bug in `.xs` with a Series multiindex (GH6258, GH5684)
- Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
- Bug in `eval` where type-promotion failed for large expressions (GH6205)
- Bug in `interpolate` with `inplace=True` (GH6281)
- `HDFStore.remove` now handles start and stop (GH6177)
- `HDFStore.select_as_multiple` handles start and stop the same way as `select` (GH6177)
- `HDFStore.select_as_coordinates` and `select_column` works with a `where` clause that results in filters (GH6177)
• Regression in join of non_unique_indexes (GH6329)
• Issue with groupby `agg` with a single function and a mixed-type frame (GH6337)
• Bug in `DataFrame.replace()` when passing a non-bool `to_replace` argument (GH6332)
• Raise when trying to align on different levels of a multi-index assignment (GH3738)
• Bug in setting complex dtypes via boolean indexing (GH6345)
• Bug in `TimeGrouper/resample` when presented with a non-monotonic `DatetimeIndex` that would return invalid results. (GH4161)
• Bug in index name propagation in `TimeGrouper/resample` (GH4161)
• `TimeGrouper` has a more compatible API to the rest of the groupers (e.g. `groups` was missing) (GH3881)
• Bug in multiple grouping with a `TimeGrouper` depending on target column order (GH6764)
• Bug in `pd.eval` when parsing strings with possible tokens like `&` (GH6351)
• Bug correctly handle placements of `-inf` in Panels when dividing by integer 0 (GH6178)
• `DataFrame.shift` with `axis=1` was raising (GH6371)
• Disabled clipboard tests until release time (run locally with `nositests -A disabled`) (GH6048).
• Bug in `DataFrame.replace()` when passing a nested dict that contained keys not in the values to be replaced (GH6342)
• `str.match` ignored the na flag (GH6609).
• Bug in `take` with duplicate columns that were not consolidated (GH6240)
• Bug in interpolate changing dtypes (GH6290)
• Bug in `Series.get` was using a buggy access method (GH6383)
• Bug in `hdfstore` queries of the form `where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))]` (GH6313)
• Bug in `DataFrame.dropna` with duplicate indices (GH6355)
• Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
• `Float64Index` with nans not comparing correctly (GH6401)
• `eval/query` expressions with strings containing the `@` character will now work (GH6366).
• Bug in `Series.reindex` when specifying a method with some nan values was inconsistent (noted on a resample) (GH6418)
• Bug in `DataFrame.replace()` where nested dicts were erroneously depending on the order of dictionary keys and values (GH5338).
• Perf issue in concatting with empty objects (GH3259)
• Clarify sorting of `sym_diff` on `Index` objects with NaN values (GH6444)
• Regression in `MultiIndex.from_product` with a `DatetimeIndex` as input (GH6439)
• Bug in `str.extract` when passed a non-default index (GH6348)
• Bug in `str.split` when passed `pat=None` and `n=1` (GH6466)
• Bug in `io.data.DataReader` when passed "F-F_Momentum_Factor" and `data_source="famafrench"` (GH6460)
• Bug in `sum` of a `timedelta64[ns]` series (GH6462)
• Bug in `resample` with a timezone and certain offsets (GH6397)
• Bug in `iat/iloc` with duplicate indices on a Series (GH6493)
• Bug in `read_html` where `nan`'s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129).
• Bug in `read_html` tests where redirected invalid URLs would make one test fail (GH6445).
• Bug in multi-axis indexing using `.loc` on non-unique indices (GH6504)
• Bug that caused `_ref_locs` corruption when slice indexing across columns axis of a DataFrame (GH6525)
• Regression from 0.13 in the treatment of numpy `datetime64` non-ns dtypes in Series creation (GH6529)
• `.names` attribute of MultiIndexes passed to `set_index` are now preserved (GH6459).
• Bug in `setitem` with a duplicate index and an alignable rhs (GH6541)
• Bug in `setitem` with `.loc` on mixed integer Indexes (GH6546)
• Bug in `pd.read_stata` which would use the wrong data types and missing values (GH6327)
• Bug in `DataFrame.to_stata` that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335)
• `StataWriter` replaces missing values in string columns by empty string (GH6802)
• Inconsistent types in `Timestamp` addition/subtraction (GH6543)
• Bug in preserving frequency across `Timestamp` addition/subtraction (GH4547)
• Bug in empty list lookup caused `IndexError` exceptions (GH6536, GH6551)
• `Series.quantile` raising on an object dtype (GH6555)
• Bug in `.xs` with a `nan` in level when dropped (GH6574)
• Bug in `fillna` with `method='bfill/ffill'` and `datetime64[ns]` dtype (GH6587)
• Bug in sql writing with mixed dtypes possibly leading to data loss (GH6509)
• Bug in `Series.pop` (GH6600)
• Bug in `iloc` indexing when positional indexer matched `Int64Index` of the corresponding axis and no re-ordering happened (GH6612)
• Bug in `fillna` with `limit` and `value` specified
• Bug in `DataFrame.to_stata` when columns have non-string names (GH4558)
• Bug in `compat` with `np.compress`, surfaced in (GH6658)
• Bug in binary operations with a rhs of a Series not aligning (GH6681)
• Bug in `DataFrame.to_stata` which incorrectly handles `nan` values and ignores `with_index` keyword argument (GH6685)
• Bug in `resample` with extra bins when using an evenly divisible frequency (GH4076)
• Bug in consistency of `groupby` aggregation when passing a custom function (GH6715)
• Bug in `resample` when `how=None` resample freq is the same as the axis frequency (GH5955)
• Bug in downcasting inference with empty arrays (GH6733)
• Bug in `obj.blocks` on sparse containers dropping all but the last items of same for dtype (GH6748)
• Bug in unpickling `NaT` (NaTType) (GH4606)
- Bug in `DataFrame.replace()` where regex metacharacters were being treated as regexes even when `regex=False` (GH6777).
- Bug in `timedelta` ops on 32-bit platforms (GH6808)
- Bug in setting a tz-aware index directly via `.index` (GH6785)
- Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
- Bug in Makefile where it didn’t remove Cython generated C files with `make clean` (GH6768)
- Bug with numpy < 1.7.2 when reading long strings from `HDFStore` (GH6166)
- Bug in `DataFrame._reduce` where non bool-like (0/1) integers were being coverted into bools. (GH6806)
- Regression from 0.13 with `fillna` and a Series on datetime-like (GH6344)
- Bug in adding `np.timedelta64` to `DatetimeIndex` with timezone outputs incorrect results (GH6818)
- Bug in `DataFrame.replace()` where changing a dtype through replacement would only replace the first occurrence of a value (GH6689)
- Better error message when passing a frequency of ‘MS’ in `Period` construction (GH5332)
- Bug in `Series._unicode__` when `max_rows=None` and the Series has more than 1000 rows. (GH6863)
- Bug in `groupby.get_group` where a datetlike wasn’t always accepted (GH5267)
- Bug in `groupBy.get_group` created by `TimeGrouper` raises `AttributeError` (GH6914)
- Bug in `DatetimeIndex.tz_localize` and `DatetimeIndex.tz_convert` converting NaT incorrectly (GH5546)
- Bug in arithmetic operations affecting NaT (GH6873)
- Bug in `DataFrame.to_csv` where the resulting Series from a single group match wasn’t renamed to the group name
- Bug in `DataFrame.plot` and `Series.plot`, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6951)
- Internal tests for patching `__finalize__` / bug in merge not finalizing (GH6923, GH6927)
- accept `TextFileReader` in `concat`, which was affecting a common user idiom (GH6583)
- Bug in C parser with leading whitespace (GH3374)
- Bug in C parser with `delim_whitespace=True` and \r-delimited lines
- Bug in python parser with explicit multi-index in row following column header (GH6893)
- Bug in `Series.rank` and `DataFrame.rank` that caused small floats (<1e-13) to all receive the same rank (GH6886)
- Bug in `DataFrame.apply` with functions that used `*args` or `**kwargs` and returned an empty result (GH6952)
- Bug in `sum/mean` on 32-bit platforms on overflows (GH6915)
- Moved `Panel.shift` to `NDFrame.slice_shift` and fixed to respect multiple dtypes. (GH6959)
- Bug in enabling `subplots=True` in `DataFrame.plot` only has single column raises `TypeError`, and `Series.plot` raises `AttributeError` (GH6951)
- Bug in `DataFrame.plot` draws unnecessary axes when enabling `subplots` and `kind=scatter` (GH6951)
- Bug in `read_csv` from a filesystem with non-utf-8 encoding (GH6807)
- Bug in `iloc` when setting / aligning (GH6766)
- Bug causing UnicodeEncodeError when `get_dummies` called with unicode values and a prefix (GH6885)
- Bug in timeseries-with-frequency plot cursor display (GH5453)
- Bug surfaced in `groupby.plot` when using a `Float64Index` (GH7025)
- Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
- Bug in `parallel_coordinates` and `radviz` where reordering of class column caused possible color/class mismatch (GH6956)
- Bug in `radviz` and `andrews_curves` where multiple values of ‘color’ were being passed to plotting method (GH6956)
- Bug in `Float64Index.isin()` where containing `nans` would make indices claim that they contained all the things (GH7066).
- Bug in `DataFrame.boxplot` where it failed to use the axis passed as the `ax` argument (GH3578)
- Bug in the `XlsxWriter` and `XlwtWriter` implementations that resulted in datetime columns being formatted without the time (GH7075) being passed to plotting method
- `read_fwf()` treats `None` in `colspec` like regular python slices. It now reads from the beginning or until the end of the line when `colspec` contains a `None` (previously raised a `TypeError`)
- Bug in cache coherence with chained indexing and slicing; add `_is_view` property to `NDFrame` to correctly predict views; mark `is_copy` on `xs` only if its an actual copy (and not a view) (GH7084)
- Bug in `DatetimeIndex` creation from string ndarray with `dayfirst=True` (GH5917)
- Bug in `MultiIndex.from_arrays` created from `DatetimeIndex` doesn’t preserve freq and tz (GH7090)
- Bug in `unstack` raises `ValueError` when `MultiIndex` contains `PeriodIndex` (GH4342)
- Bug in `boxplot` and `hist` draws unnecessary axes (GH6769)
- Regression in `groupby.nth()` for out-of-bounds indexers (GH6621)
- Bug in `quantile` with datetime values (GH6965)
- Bug in `DataFrame.set_index, reindex and pivot` don’t preserve `DatetimeIndex` and `PeriodIndex` attributes (GH3950, GH5878, GH6631)
- Bug in `MultiIndex.get_level_values` doesn’t preserve `DatetimeIndex` and `PeriodIndex` attributes (GH7092)
- Bug in `Groupby` doesn’t preserve tz (GH3950)
- Bug in `PeriodIndex` partial string slicing (GH6716)
- Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the `large_repr` set to ‘info’ (GH7105)
- Bug in `DatetimeIndex` specifying freq raises `ValueError` when passed value is too short (GH7098)
- Fixed a bug with the `info` repr not honoring the `display.max_info_columns` setting (GH6939)
- Bug `PeriodIndex` string slicing with out of bounds values (GH5407)
- Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
- Bug in `isnull` when applied to 0-dimensional object arrays (GH7176)
• Bug in `query/eval` where global constants were not looked up correctly (GH7178)
• Bug in recognizing out-of-bounds positional list indexers with `iloc` and a multi-axis tuple indexer (GH7189)
• Bug in `setitem` with a single value, multi-index and integer indices (GH7190, GH7218)
• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)
• Fix a bug where invalid `eval/query` operations would blow the stack (GH5198)

1.17 v0.13.1 (February 3, 2014)

This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• Added `infer_datetime_format` keyword to `read_csv/to_datetime` to allow speedups for homogeneously formatted datetimes.
• Will intelligently limit display precision for datetime/timedelta formats.
• Enhanced Panel `apply()` method.
• Suggested tutorials in new `Tutorials` section.
• Our pandas ecosystem is growing. We now feature related projects in a new `Pandas Ecosystem` section.
• Much work has been taking place on improving the docs, and a new `Contributing` section has been added.
• Even though it may only be of interest to devs, we <3 our new CI status page: `ScatterCI`.

Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.

This would previously segfault:

```
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [2]: df['A'].iloc[0] = np.nan

In [3]: df
```

```
Out[3]:
 A
0 NaN
1 bar
2 bah
3 foo
4 bar
```

The recommended way to do this type of assignment is:
```python
In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [5]: df.loc[0,'A'] = np.nan

In [6]: df
Out[6]:
 A
0 NaN
1 bar
2 bah
3 foo
4 bar
```

### 1.17.1 Output Formatting Enhancements

- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors the option `max_info_rows`, to disable null counts for large frames (GH5974)

```python
In [7]: max_info_rows = pd.get_option('max_info_rows')

In [8]: df = DataFrame(dict(A = np.random.randn(10),
 B = np.random.randn(10),
 C = date_range('20130101',periods=10)))

In [9]: df.iloc[3:6,[0,2]] = np.nan

set to not display the null counts
In [10]: pd.set_option('max_info_rows',0)

In [11]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
A 7 non-null float64
B 10 non-null float64
C 7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes
```

```
this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows',max_info_rows)

In [13]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
A 7 non-null float64
B 10 non-null float64
C 7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes
```

- Add `show_dimensions` display option for the new DataFrame repr to control whether the dimensions print.
pandas: powerful Python data analysis toolkit, Release 0.20.1

In [14]: df = DataFrame([[1, 2], [3, 4]])

In [15]: pd.set_option('show_dimensions', False)

In [16]: df

Out[16]:
   0  1
0  1  2
1  3  4

In [17]: pd.set_option('show_dimensions', True)

In [18]: df

Out[18]:
   0  1
  0  1  2
  1  3  4

[2 rows x 2 columns]

• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the values in the array (GH3401)

Previously output might look like:

<table>
<thead>
<tr>
<th>age</th>
<th>today</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2001-01-01</td>
<td>2013-04-19 00:00:00 4491 days, 00:00:00</td>
</tr>
<tr>
<td>1</td>
<td>2004-06-01</td>
<td>2013-04-19 00:00:00 3244 days, 00:00:00</td>
</tr>
</tbody>
</table>

Now the output looks like:

In [19]: df = DataFrame([ Timestamp('20010101'),
                      ...,:
                      Timestamp('20040601') ], columns=['age'])

In [20]: df['today'] = Timestamp('20130419')

In [21]: df['diff'] = df['today']-df['age']

In [22]: df

Out[22]:
   age       today       diff
0 2001-01-01 2013-04-19 4491 days
1 2004-06-01 2013-04-19 3244 days

[2 rows x 3 columns]

1.17.2 API changes

• Add -NaN and -nan to the default set of NA values (GH5952). See NA Values.

• Added Series.str.get_dummies vectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:

In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])

In [24]: s.str.get_dummies(sep='|')
### Added the `NDFrame.equals()` method to compare if two NDFrames are equal have equal axes, dtypes, and values. Added the `array_equivalent` function to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also the docs for a motivating example.

```python
In [25]: df = DataFrame({'col': ['foo', 0, np.nan]})
In [26]: df2 = DataFrame({'col': [np.nan, 0, 'foo']}, index=[2, 1, 0])
In [27]: df.equals(df2)
Out[27]: False
In [28]: df.equals(df2.sort_index())
Out[28]: True
```

### `DataFrame.apply` will use the `reduce` argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007).

Previously, calling `DataFrame.apply` an empty DataFrame would return either a DataFrame if there were no columns, or the function being applied would be called with an empty Series to guess whether a Series or DataFrame should be returned:

```python
In [32]: def applied_func(col):
....: print("Apply function being called with: ", col)
....: return col.sum()
....:

In [33]: empty = DataFrame(columns=['a', 'b'])
In [34]: empty.apply(applied_func)
Apply function being called with: Series([], Length: 0, dtype: float64)
Out[34]:
 a NaN
 b NaN
Length: 2, dtype: float64
```

Now, when `apply` is called on an empty DataFrame: if the `reduce` argument is `True` a Series will returned, if it is `False` a DataFrame will be returned, and if it is `None` (the default) the function being applied will be called with an empty series to try and guess the return type.

```python
In [35]: empty.apply(applied_func, reduce=True)
```
In [36]: empty.apply(applied_func, reduce=False)

Out[36]:
Empty DataFrame
Columns: [a, b]
Index: []
[0 rows x 2 columns]

1.17.3 Prior Version Deprecations/Changes

There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1

1.17.4 Deprecations

There are no deprecations of prior behavior in 0.13.1

1.17.5 Enhancements

- pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly improves parsing perf in many cases. Thanks to @lexical for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)

  If parse_dates is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

  # Try to infer the format for the index column
  df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
                   infer_datetime_format=True)

- date_format and datetime_format keywords can now be specified when writing to excel files (GH4133)

- MultiIndex.from_product convenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):

  In [37]: shades = ['light', 'dark']

  In [38]: colors = ['red', 'green', 'blue']

  In [39]: MultiIndex.from_product([shades, colors], names=['shade', 'color'])

Out[39]:
MultiIndex(levels=['dark', 'light', 'blue', 'green', 'red'],
labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
names=['shade', 'color'])

- Panel apply() will work on non-ufuncs. See the docs.
In [40]: import pandas.util.testing as tm

In [41]: panel = tm.makePanel(5)

In [42]: panel
Out[42]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis: A to D

In [43]: panel['ItemA']

→
A   B   C   D
2000-01-03  0.694103  1.893534 -1.735349 -0.850346
2000-01-04  0.678630  0.639633  1.210384  1.176812
2000-01-05  0.239556  0.962029  0.797435 -0.524336
2000-01-06 -0.151227 -2.085266 -0.379811  0.700908
2000-01-07  0.816127  1.930247  0.702562  0.984188
[5 rows x 4 columns]

Specifying an apply that operates on a Series (to return a single element)

In [44]: panel.apply(lambda x: x.dtype, axis='items')
Out[44]:
A   B   C   D
2000-01-03  float64 float64 float64 float64
2000-01-04  float64 float64 float64 float64
2000-01-05  float64 float64 float64 float64
2000-01-06  float64 float64 float64 float64
2000-01-07  float64 float64 float64 float64
[5 rows x 4 columns]

A similar reduction type operation

In [45]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[45]:
ItemA  ItemB  ItemC
A  2.579643  3.062757  0.379252
B  1.416120 -1.960855  0.923558
C  0.595222 -1.079772 -3.118269
D  1.487226 -0.734611 -1.979310
[4 rows x 3 columns]

This is equivalent to

In [46]: panel.sum('major_axis')
Out[46]:
ItemA  ItemB  ItemC
A  2.579643  3.062757  0.379252
B  1.416120 -1.960855  0.923558
C  0.595222 -1.079772 -3.118269
D  1.487226 -0.734611 -1.979310
A transformation operation that returns a Panel, but is computing the z-score across the major_axis

```
In [47]: result = panel.apply(
 : lambda x: (x-x.mean())/x.std(),
 : axis='major_axis')
....:
In [48]: result
Out[48]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [49]: result['ItemA']

 A B C D
2000-01-03 0.595800 0.907552 -1.556260 -1.244875
2000-01-04 0.544058 0.200868 0.915883 0.953747
2000-01-05-0.924165-0.701810 0.569325 -0.891290
2000-01-06-1.219530-1.334852 -0.418654 0.437589
2000-01-07 1.003837 0.928242 0.489705 0.744830
```

• Panel `apply()` operating on cross-sectional slabs. (GH1148)

```
In [50]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
In [51]: result = panel.apply(f, axis = ['items','major_axis'])
In [52]: result
Out[52]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [53]: result.loc[:, :, 'ItemA']

 A B C D
2000-01-03 0.331409 1.071034 -0.914540 -0.510587
2000-01-04-0.741017-0.118794 0.383277 0.537212
2000-01-05 0.924165-0.701810 0.569325 -0.891290
2000-01-06 1.219530-1.334852 -0.418654 0.437589
2000-01-07 1.003837 0.928242 0.489705 0.744830
```

This is equivalent to the following
In [54]: result = Panel(dict([ (ax,f(panel.loc[:, :, ax]))
    ....: for ax in panel.minor_axis ]))
    ....:

In [55]: result
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [56]: result.loc[:, :, 'ItemA']

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-03</td>
<td>0.331409</td>
<td>1.071034</td>
<td>-0.914540</td>
<td>-0.510587</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.741017</td>
<td>-0.118794</td>
<td>0.383277</td>
<td>0.537212</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.065042</td>
<td>-0.767353</td>
<td>0.655436</td>
<td>0.069467</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.027932</td>
<td>-0.569477</td>
<td>0.908202</td>
<td>0.610585</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.116434</td>
<td>1.133591</td>
<td>0.871287</td>
<td>1.004064</td>
</tr>
</tbody>
</table>

[5 rows x 4 columns]

1.17.6 Performance

Performance improvements for 0.13.1

- Series datetime/timedelta binary operations (GH5801)
- DataFrame `count/dropna` for axis=1
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- Series.str.extract (GH5944)
- dtyes/ftypes methods (GH5968)
- indexing with object dtypes (GH5968)
- DataFrame.apply (GH6013)
- Regression in JSON IO (GH5765)
- Index construction from Series (GH6150)

1.17.7 Experimental

There are no experimental changes in 0.13.1

1.17.8 Bug Fixes

See `V0.13.1 Bug Fixes` for an extensive list of bugs that have been fixed in 0.13.1.

See the `full release notes` or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.
1.18 v0.13.0 (January 3, 2014)

This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements along with a large number of bug fixes.

Highlights include:

- support for a new index type Float64Index, and other Indexing enhancements
- HDFStore has a new string based syntax for query specification
- support for new methods of interpolation
- updated timedelta operations
- a new string manipulation method extract
- Nanosecond support for Offsets
- isin for DataFrames

Several experimental features are added, including:

- new eval/query methods for expression evaluation
- support for msgpack serialization
- an i/o interface to Google’s BigQuery

There are several new or updated docs sections including:

- Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.
- Comparison with R, idiom translations from R to pandas.
- Enhancing Performance, ways to enhance pandas performance with eval/query.

Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, similar to the rest of the pandas containers. This should be a transparent change with only very limited API implications. See Internal Refactoring

1.18.1 API changes

- read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in (GH4301).
- Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) as infinity. (GH4220, GH4219), affecting read_table, read_csv, etc.
- pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)
- pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat.
  pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors.(GH4384, GH4375, GH4372)
- Series.get with negative indexers now returns the same as [] (GH4390)
• Changes to how Index and MultiIndex handle metadata (levels, labels, and names) (GH4039):

```
previously, you would have set levels or labels directly
index.levels = [[[1, 2, 3, 4], [1, 2, 4, 4]]

now, you use the set_levels or set_labels methods
index = index.set_levels([[[1, 2, 3, 4], [1, 2, 4, 4]]])

similarly, for names, you can rename the object
but setting names is not deprecated
index = index.set_names(["bob", "cranberry"])

and all methods take an inplace kwarg - but return None
index.set_names(["bob", "cranberry"], inplace=True)
```

• All division with NDFrame objects is now true division, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use // and floordiv to do integer division.

Integer division

```
In [3]: arr = np.array([1, 2, 3, 4])
In [4]: arr2 = np.array([5, 3, 2, 1])
In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])
In [6]: Series(arr) // Series(arr2)
Out[6]:
0 0
1 0
2 1
3 4
dtype: int64
```

True Division

```
In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[7]:
0 0.200000
1 0.666667
2 1.500000
3 4.000000
dtype: float64
```

• Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)

• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. See gotchas for a more detailed discussion.

This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all will raise a ValueError.

```
if df:

df1 and df2
s1 and s2
```
Added the `.bool()` method to `NDFrame` objects to facilitate evaluating of single-element boolean Series:

```python
In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
Out[2]: False

In [3]: DataFrame([[True]]).bool()
Out[3]: True

In [4]: DataFrame([[False]]).bool()
Out[4]: False
```

- All non-Index `NDFrames` (`Series`, `DataFrame`, `Panel`, `Panel4D`, `SparsePanel`, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (`add`, `sub`, `mul`, etc.). `SparsePanel` does not support `pow` or `mod` with non-scalars. (GH3765)

- `Series` and `DataFrame` now have a `mode()` method to calculate the statistical mode(s) by axis/Series. (GH5367)

- Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the option `mode.chained_assignment`, allowed options are `raise/warn/None`. See the docs.

```python
In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})
In [6]: pd.set_option('chained_assignment','warn')

The following warning / exception will show if this is attempted.

```python
In [7]: dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
  ... SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame. 
    Try using .loc[row_index,col_indexer] = value instead
```

Here is the correct method of assignment.

```python
In [8]: dfc.loc[0,'A'] = 11
In [9]: dfc
Out[9]:
   A  B
0  11 1
1  bbb 2
2  ccc 3
[3 rows x 2 columns]
```

- `Panel.reindex` has the following call signature `Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)` to conform with other `NDFrame` objects. See Internal Refactoring for more information.

- `Series.argmin` and `Series.argmax` are now aliased to `Series.idxmin` and `Series.idxmax`. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (GH6214)
1.18.2 Prior Version Deprecations/Changes

These were announced changes in 0.12 or prior that are taking effect as of 0.13.0

- Remove deprecated Factor (GH3650)
- Remove deprecated set_printoptions/reset_printoptions (GH3046)
- Remove deprecated verbose_info (GH3215)
- Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g. pd.read_clipboard)
- default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)
- default for display.max_seq_len is now 100 rather then None. This activates truncated display ("...") of long sequences in various places. (GH3391)

1.18.3 Deprecations

Deprecated in 0.13.0

- deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass 2to3's changes). (GH4384, GH4375, GH4372)
- deprecated the string method match, whose role is now performed more idiomatically by extract. In a future release, the default behavior of match will change to become analogous to contains, which returns a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through the keyword argument as_indexer=True.

1.18.4 Indexing API Changes

Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index of a particular axis. (GH2578). See the docs

In the Series case this is effectively an appending operation

```python
In [10]: s = Series([1,2,3])
In [11]: s
Out[11]:
  0  1
  1  2
  2  3
Length: 3, dtype: int64
In [13]: s
Out[13]:
  0  1.0
  1  2.0
  2  3.0
  5  5.0
Length: 4, dtype: float64
```
In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
 columns=['A','B'])

In [15]: dfi
Out[15]:
 A B
0 0 1
1 2 3
2 4 5

[3 rows x 2 columns]

This would previously KeyError

In [16]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [17]: dfi
Out[17]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4

[3 rows x 3 columns]

This is like an append operation.

In [18]: dfi.loc[3] = 5

In [19]: dfi
Out[19]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5

[4 rows x 3 columns]

A Panel setting operation on an arbitrary axis aligns the input to the Panel

In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
 items=['Item1','Item2'],
 major_axis=pd.date_range('2001/1/12',periods=4),
 minor_axis=['A','B'],dtype='float64')

In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B

In [22]: p.loc[:,:,,'C'] = Series([30,32],index=p.items)
In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C

In [24]: p.loc[:,:,'C']

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-12</td>
<td>30.0</td>
<td>32.0</td>
</tr>
<tr>
<td>2001-01-13</td>
<td>30.0</td>
<td>32.0</td>
</tr>
<tr>
<td>2001-01-14</td>
<td>30.0</td>
<td>32.0</td>
</tr>
<tr>
<td>2001-01-15</td>
<td>30.0</td>
<td>32.0</td>
</tr>
</tbody>
</table>

[4 rows x 2 columns]

1.18.5 Float64Index API Change

- Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [], ix, loc for scalar indexing and slicing work exactly the same. See the docs, (GH263)

Construction is by default for floating type values.

In [25]: index = Index([1.5, 2, 3, 4.5, 5])
In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [27]: s = Series(range(5),index=index)
In [28]: s
Out[28]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
Length: 5, dtype: int64

Scalar selection for [], ix, loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

In [29]: s[3]
Out[29]: 2

In [30]: s.loc[3]
Out[30]: 2

The only positional indexing is via iloc

In [31]: s.iloc[3]
Out[31]: 3
A scalar index that is not found will raise `KeyError`.

Slicing is **ALWAYS** on the values of the index, for `[], ix, loc` and **ALWAYS** positional with `iloc`.

```
In [32]: s[2:4]
Out[32]:
2.0  1
3.0  2
Length: 2, dtype: int64
```

```
In [33]: s.loc[2:4]
Out[33]:
2.0  1
3.0  2
Length: 2, dtype: int64
```

```
In [34]: s.iloc[2:4]
→
3.0  2
4.5  3
Length: 2, dtype: int64
```

In float indexes, slicing using floats are allowed.

```
In [35]: s[2.1:4.6]
Out[35]:
3.0  2
4.5  3
Length: 2, dtype: int64
```

```
In [36]: s.loc[2.1:4.6]
Out[36]:
3.0  2
4.5  3
Length: 2, dtype: int64
```

- Indexing on other index types are preserved (and positional fallback for `[], ix), with the exception, that floating point slicing on indexes on non `Float64Index` will now raise a `TypeError`.

```
In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type
→(Int64Index)
```

```
In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type
→(Int64Index)
```

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

```
In [3]: Series(range(5))[3.0]
Out[3]: 3
```

1.18.6 HDFStore API Changes

- Query Format Changes. A much more string-like query format is now supported. See the docs.
In [37]: path = 'test.h5'

In [38]: dfq = DataFrame(randn(10,4),
 columns=list('ABCD'),
 index=date_range('20130101',periods=10))

In [39]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [40]: read_hdf(path,'dfq',
 where="index>Timestamp('20130104') & columns=['A', 'B']")

Out[40]:
 A B
2013-01-05 1.057633 -0.791489
2013-01-06 1.910759 0.787965
2013-01-07 1.043945 2.107785
2013-01-08 0.749185 -0.675521
2013-01-09 -0.276646 1.924533
2013-01-10 0.226363 -2.078618

[6 rows x 2 columns]

Use an in-line column reference

In [41]: read_hdf(path,'dfq',
 where="A>0 or C>0")

Out[41]:
 A B C D
2013-01-01 -0.414505 -1.425795 0.209395 -0.592886
2013-01-02 -1.473116 -0.896581 1.104352 -0.431550
2013-01-03 -0.161137 0.889157 0.288377 -1.051539
2013-01-04 -0.319561 -0.619993 0.156998 -0.571455
2013-01-05 1.057633 -0.791489 -0.524627 0.071878
2013-01-06 1.910759 0.787965 0.513082 1.015405
2013-01-07 1.043945 2.107785 1.459927 1.015405
2013-01-08 0.749185 -0.675521 0.440266 0.688972
2013-01-09 -0.276646 1.924533 0.411204 0.890765
2013-01-10 0.226363 -2.078618 -0.387886 -0.087107

[10 rows x 4 columns]

- the format keyword now replaces the table keyword; allowed values are fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format.
In [47]: with pd.HDFStore(path) as store:
 : print(store)
 :
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df_fixed frame (shape->[10,2])
 →/df_table frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df_table2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

• Significant table writing performance improvements
• handle a passed Series in table format (GH4330)
• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.
• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t the file is 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError

In [48]: path = 'test.h5'
In [49]: df = DataFrame(randn(10,2))
In [50]: store1 = HDFStore(path)
In [51]: store2 = HDFStore(path)
In [52]: store1.append('df',df)
In [53]: store2.append('df2',df)
In [54]: store1
Out[54]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [55]: store2
Out[55]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [56]: store1.close()
In [57]: store2
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [58]: store2.close()

In [59]: store2
Out[59]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
File is CLOSED

• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)
• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.
• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
• pass thru store creation arguments; can be used to support in-memory stores

1.18.7 DataFrame repr Changes

The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more consistent as small DataFrames get larger.

771 rows x 6 columns

To get the info view, call DataFrame.info(). If you prefer the info view as the repr for large DataFrames, you can set this by running set_option('display.large_repr', 'info').

1.18.8 Enhancements

• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).
• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)

1.18. v0.13.0 (January 3, 2014)
• Added a test for `read_clipboard()` and `to_clipboard()` (GH4282)
• Clipboard functionality now works with PySide (GH4282)
• Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)
• `to_dict` now takes `records` as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
• NaN handing in `get_dummies` (GH4446) with `dummy_na`

```python
# previously, nan was erroneously counted as 2 here
# now it is not counted at all
In [60]: get_dummies([1, 2, np.nan])
Out[60]:
   1.0  2.0
   0   1   0
   1   0   1
   2   0   0
[3 rows x 2 columns]
# unless requested
In [61]: get_dummies([1, 2, np.nan], dummy_na=True)
Out[61]:
   1.0  2.0  NaN
   0   1   0   0
   1   0   1   0
   2   0   0   1
[3 rows x 3 columns]
```

• `timedelta64[ns]` operations. See the docs.

Warning: Most of these operations require `numpy >= 1.7`

Using the new top-level `to_timedelta`, you can convert a scalar or array from the standard timedelta format (produced by `to_csv`) into a timedelta type (`np.timedelta64` in nanoseconds).

```python
In [62]: to_timedelta('1 days 06:05:01.00003')
Out[62]: Timedelta('1 days 06:05:01.000030')

In [63]: to_timedelta('15.5us')
Out[63]: Timedelta('0 days 00:00:00.000015')

In [64]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[64]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None)

In [65]: to_timedelta(np.arange(5),unit='s')
Out[65]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None)
```
A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object, or astyped to yield a `float64` dtyped Series. This is frequency conversion. See the docs for the docs.
Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series

In [76]: td * -1
Out [76]:
0 -31 days +00:00:00
1 -31 days +00:00:00
2 -32 days +23:54:57
3 NaN
Length: 4, dtype: timedelta64[ns]

In [77]: td * Series([1,2,3,4])
→
0 31 days 00:00:00
1 62 days 00:00:00
2 93 days 00:15:09
3 NaN
Length: 4, dtype: timedelta64[ns]

Absolute `DateOffset` objects can act equivalently to `timedeltas`

In [78]: from pandas import offsets

In [79]: td + offsets.Minute(5) + offsets.Milli(5)
Out [79]:
0 31 days 00:05:00.005000
1 31 days 00:05:00.005000
2 31 days 00:10:03.005000
3 NaN
Length: 4, dtype: timedelta64[ns]

Fillna is now supported for timedeltas

In [80]: td.fillna(0)
Out [80]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 0 days 00:00:00
Length: 4, dtype: timedelta64[ns]

In [81]: td.fillna(timedelta(days=1,seconds=5))
→
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 1 days 00:00:05
Length: 4, dtype: timedelta64[ns]

You can do numeric reduction operations on timedeltas.
In [82]: td.mean()
Out[82]: Timedelta('31 days 00:01:41')
In [83]: td.quantile(.1)
Out[83]: Timedelta('31 days 00:00:00')

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)

• DataFrame constructor now accepts a numpy masked record array (GH3478)

• The new vectorized string method extract return regular expression matches more conveniently.

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples or re.match objects.

Named groups like

and optional groups can also be used.
pandas: powerful Python data analysis toolkit, Release 0.20.1

1 b 2
2 NaN 3
[3 rows x 2 columns]

- `read_stata` now accepts Stata 13 format (GH4291)
- `read_fwf` now infers the column specifications from the first 100 rows of the file if the data has correctly separated and properly aligned columns using the delimiter provided to the function (GH4488).
- Support for nanosecond times as an offset

Warning: These operations require `numpy >= 1.7`

Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods in the nanosecond range are now available.

```python
In [88]: date_range('2013-01-01', periods=5, freq='5N')
Out[88]:
dtype='datetime64[ns]', freq='5N')
```

or with frequency as offset

```python
In [89]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[89]:
dtype='datetime64[ns]', freq='5N')
```

Timestamps can be modified in the nanosecond range

```python
In [90]: t = Timestamp('20130101 09:01:02')
In [91]: t + pd.tseries.offsets.Nano(123)
Out[91]: Timestamp('2013-01-01 09:01:02.000000123')
```

- A new method, `isin` for DataFrames, which plays nicely with boolean indexing. The argument to `isin`, what we're comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.

To get the rows where any of the conditions are met:

```python
In [92]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})
In [93]: dfi
Out [93]:
   A B
0  1 a
1  2 b
2  3 f
3  4 n
[4 rows x 2 columns]
In [94]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})
```
Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)

All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into Pandas objects

note that pandas.rpy was deprecated in v0.16.0
import pandas.rpy.common as com
com.load_data('Titanic')

tz_localize can infer a fall daylight savings transition based on the structure of the unlocalized data (GH4230), see the docs

DatetimeIndex is now in the API documentation, see the docs

json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

Added PySide support for the qtPandas DataFrameModel and DataFrameWidget.

Python csv parser now supports usecols (GH4335)

Frequencies gained several new offsets:
- LastWeekOfMonth (GH4637)
- FY5253, and FY5253Quarter (GH4511)

DataFrame has a new interpolate method, similar to Series (GH4434, GH1892)
Additionally, the method argument to `interpolate` has been expanded to include 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'piecewise_polynomial', 'pchip', 'polynomial', 'spline' The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs.

Interpolate now also accepts a `limit` keyword argument. This works similar to `fillna`'s limit:

```python
In [100]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])
In [101]: ser.interpolate(limit=2)
Out[101]:
   0   1.0
   1   3.0
   2   5.0
   3   7.0
   4   NaN
   5  11.0
Length: 6, dtype: float64
```

- Added `wide_to_long` panel data convenience function. See the docs.

```python
In [102]: np.random.seed(123)
In [103]: df = pd.DataFrame({'A1970' : {0 : 'a', 1 : 'b', 2 : 'c'},
                        'A1980' : {0 : 'd', 1 : 'e', 2 : 'f'},
                        'B1970' : {0 : 2.5, 1 : 1.2, 2 : 0.7},
                        'B1980' : {0 : 3.2, 1 : 1.3, 2 : 0.1},
                        'X' : dict(zip(range(3), np.random.randn(3))})
In [104]: df['id'] = df.index
In [105]: df
Out[105]:
0      a     d      2.5  2.5 3.2 -1.085631  0
1      b     e      1.2  1.2 1.3  0.997345  1
2      c     f      0.7  0.7 0.1  0.282978  2

In [106]: wide_to_long(df, ['A', 'B'], i='id', j='year')
```

```python
\[\rightarrow\]
```
2 1980 0.282978 f 0.1
[6 rows x 3 columns]

- **to_csv** now takes a `date_format` keyword argument that specifies how output datetime objects should be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied. (GH4313)
- **DataFrame.plot** will scatter plot x versus y by passing `kind='scatter'` (GH2215)
- Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

1.18.9 Experimental

- The new `eval()` function implements expression evaluation using `numexpr` behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. For example,

```
In [107]: nrows, ncols = 20000, 100
In [108]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))  
                     ....: for _ in range(4)]

# eval with NumExpr backend
In [109]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 6.93 ms per loop

# pure Python evaluation
In [110]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 10.3 ms per loop
```

For more details, see the [the docs](https://pandas.pydata.org/docs/).

- Similar to `pandas.eval`, **DataFrame** has a new `DataFrame.eval` method that evaluates an expression in the context of the DataFrame. For example,

```
In [111]: df = DataFrame(randn(10, 2), columns=['a', 'b'])
In [112]: df.eval('a + b')
Out[112]:
      a         b
0 -0.685204    1.589745
1  0.325441    1.784153
2 -1.784153   -0.432893
3  0.171850    1.895919
4  1.895919    3.065587
5  0.092759    1.391365
6  1.391365  -0.092759
7  1.391365    0.325441
8  1.391365    0.325441
9  1.391365    0.325441
Length: 10, dtype: float64
```

- **query()** method has been added that allows you to select elements of a **DataFrame** using a natural query syntax nearly identical to Python syntax. For example,
In [113]: n = 20

In [114]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])

In [115]: df.query('a < b < c')
Out[115]:
 a b c
11 1 5 8
15 8 16 19
[2 rows x 3 columns]

selects all the rows of df where \(a < b < c\) evaluates to True. For more details see the docs.

• pd.read_msgpack() and pd.to_msgpack() are now a supported method of serialization of arbitrary pandas (and python objects) in a lightweight portable binary format. See the docs

Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.
You can pass `iterator=True` to iterator over the unpacked results

```python
In [122]: for o in pd.read_msgpack('foo.msg', iterator=True):
.....: print o
.....:
File "<ipython-input-122-59af9f4d3a62>", line 2
  print o ^
SyntaxError: Missing parentheses in call to 'print'
```

- `pandas.io.gbq` provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by way of `pandas` DataFrames. BigQuery is a high performance SQL-like database service, useful for performing ad-hoc queries against extremely large datasets. *See the docs*

```python
from pandas.io import gbq

# A query to select the average monthly temperatures in the
# in the year 2000 across the USA. The dataset,
# publicdata:samples.gsod, is available on all BigQuery accounts,
# and is based on NOAA gsd data.

query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""

# Fetch the result set for this query
# Your Google BigQuery Project ID
# To find this, see your dashboard:
# https://console.developers.google.com/iam-admin/projects?authuser=0
projectid = xxxxxxxxx;

df = gbq.read_gbq(query, project_id = projectid)

# Use pandas to process and reshape the dataset

df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],
                   axis=1, keys=['Min Tem', 'Mean Temp', 'Max Temp'])
```

The resulting DataFrame is:

```plaintext
> df3

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Min Tem</th>
<th>Mean Temp</th>
<th>Max Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-53.336667</td>
<td>39.827892</td>
<td>89.770968</td>
</tr>
<tr>
<td>2</td>
<td>-49.837500</td>
<td>43.685219</td>
<td>93.437932</td>
</tr>
<tr>
<td>3</td>
<td>-77.926087</td>
<td>48.708355</td>
<td>96.099998</td>
</tr>
<tr>
<td>4</td>
<td>-82.892858</td>
<td>55.070087</td>
<td>97.317240</td>
</tr>
<tr>
<td>5</td>
<td>-92.378261</td>
<td>61.428117</td>
<td>102.042856</td>
</tr>
<tr>
<td>6</td>
<td>-77.703334</td>
<td>65.858888</td>
<td>102.900000</td>
</tr>
<tr>
<td>7</td>
<td>-87.821428</td>
<td>68.169663</td>
<td>106.510714</td>
</tr>
<tr>
<td>8</td>
<td>-89.431999</td>
<td>68.614215</td>
<td>105.500000</td>
</tr>
<tr>
<td>9</td>
<td>-86.611112</td>
<td>63.436935</td>
<td>107.142856</td>
</tr>
<tr>
<td>10</td>
<td>-78.209677</td>
<td>56.880838</td>
<td>92.103333</td>
</tr>
</tbody>
</table>
```
Warning: To use this module, you will need a BigQuery account. See <https://cloud.google.com/products/big-query> for details.
As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows.
A patch is scheduled for the week of 10/14/13.

1.18.10 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816)

Warning: There are two potential incompatibilities from < 0.13.0

- Using certain numpy functions would previously return a Series if passed a Series as an argument. This seems only to affect np.ones_like, np.empty_like, np.diff and np.where. These now return ndarrays.

```
In [123]: s = Series([1,2,3,4])
```

Numpy Usage

```
In [124]: np.ones_like(s)
Out[124]: array([1, 1, 1, 1])
```

```
In [125]: np.diff(s)
Out[125]: array([1, 1, 1])
```

```
In [126]: np.where(s>1,s,np.nan)
Out[126]: array([ nan, 2., 3., 4.])
```

Pandonic Usage

```
In [127]: Series(1,index=s.index)
Out[127]:
0   1
1   1
2   1
3   1
Length: 4, dtype: int64
```

```
In [128]: s.diff()
Out[128]:
0   NaN
1   1.0
2   1.0
3   1.0
Length: 4, dtype: float64
```

```
In [129]: s.where(s>1)
```

```
0   NaN
1   2.0
2   3.0
3   4.0
Length: 4, dtype: float64
```

• Passing a `Series` directly to a cython function expecting an `ndarray` type will no longer work directly, you must pass `Series.values`. See *Enhancing Performance*

• `Series(0.5)` would previously return the scalar 0.5, instead this will return a 1-element `Series`

• This change breaks `rpy2<=2.3.8`. An issue has been opened against `rpy2` and a workaround is detailed in GH5698. Thanks @JanSchulz.

• Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with `pd.read_pickle`, see *Pickling*.

• Refactor of `series.py/frame.py/panel.py` to move common code to `generic.py`
 - added `_setup_axes` to create generic NDFrame structures
 - moved methods
 * `from_axes`, `_wrap_array`, `axes`, `ix`, `loc`, `iloc`, `shape`, `empty`, `swapaxes`, `transpose`, `pop`
 * `__iter__`, `keys`, `__contains__`, `__len__`, `__neg__`, `__invert__`
 * `convert_objects`, `as_blocks`, `as_matrix`, `values`
 * `__getstate__`, `__setstate__` (compat remains in frame/panel)
 * `__getattr__`, `__setattr__`
 * `indexed_same`, `reindex_like`, `align`, `where`, `mask`
 * `fillna`, `replace` (Series `replace` is now consistent with Dataframe)
 * `filter` (also added axis argument to selectively filter on a different axis)
 * `reindex`, `reindex_axis`, `take`
 * `truncate` (moved to become part of NDFrame)

• These are API changes which make Panel more consistent with DataFrame
 - `swapaxes` on a Panel with the same axes specified now return a copy
 - support attribute access for setting
 - filter supports the same API as the original DataFrame filter

• Reindex called with no arguments will now return a copy of the input object

• `TimeSeries` is now an alias for `Series`. The property `is_time_series` can be used to distinguish (if desired)

• Refactor of Sparse objects to use BlockManager
 - Created a new block type in internals, `SparseBlock`, which can hold multi-dtypes and is non-consolidatable. `SparseSeries` and `SparseDataFrame` now inherit more methods from there hierarchy (`Series/DataFrame`), and no longer inherit from `SparseArray` (which instead is the object of the `SparseBlock`)
 - Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
 - Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
 - enable `setitem` on `SparseSeries` for boolean/integer/slices
 - `SparsePanels` implementation is unchanged (e.g. not using BlockManager, needs work)
• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)

• All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects from an existing one (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass) without having to directly import the klass, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality

• Series (for index) / Panel (for items) now allow attribute access to its elements (GH1903)

```python
In [130]: s = Series([1,2,3],index=list('abc'))
In [131]: s.b
Out [131]: 2
In [132]: s.a = 5
In [133]: s
Out [133]:
   a  5
   b  2
   c  3
Length: 3, dtype: int64
```

1.18.11 Bug Fixes

See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

1.19 v0.12.0 (July 24, 2013)

This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.

Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read & write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby expressions via filter, and a revamped replace routine that accepts regular expressions.
1.19.1 API changes

- The I/O API is now much more consistent with a set of top level reader functions accessed like pd.read_csv() that generally return a pandas object.

- read_csv
- read_excel
- read_hdf
- read_sql
- read_json
- read_html
- read_stata
- read_clipboard

The corresponding writer functions are object methods that are accessed like df.to_csv()

- to_csv
- to_excel
- to_hdf
- to_sql
- to_json
- to_html
- to_stata
- to_clipboard

- Fix modulo and integer division on Series,DataFrames to act similarly to float dtypes to return np.nan or np.inf as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes differently.

```
In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] })

In [2]: p % 0
Out[2]:
       first  second
0       NaN      NaN
1       NaN      NaN
2       NaN      NaN
[3 rows x 2 columns]

In [3]: p % p
       first  second
0       0.0  NaN
1       0.0  NaN
2       0.0   0.0
[3 rows x 2 columns]
```

1.19. v0.12.0 (July 24, 2013)
• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. This is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).

```python
In [6]: df2 = DataFrame([["val1": 1, "val2" : 20], ["val1":1, "val2": 19],
...:                  ["val1":1, "val2": 27], ["val1":1, "val2": 12]])

In [7]: def func(dataf):
...: return dataf["val2"] - dataf["val2"].mean()

# squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby("val1", squeeze=True).apply(func)
Out[8]:
     0    1    2    3
0  0.5  0.5  0.5  0.5
1 -0.5 -0.5 -0.5 -0.5
2  7.5  7.5  7.5  7.5
3 -7.5 -7.5 -7.5 -7.5
Name: 1, Length: 4, dtype: float64
```

• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631) This case is rarely used, and there are plenty of alternatives. This preserves the iloc API to be purely positional based.

```python
In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a'])
```
In [11]: mask = (df.a%2 == 0)

In [12]: mask
Out[12]:
 A True
 B False
 C True
 D False
 E True
Name: a, Length: 5, dtype: bool

this is what you should use
In [13]: df.loc[mask]

 →
 a
 A 0
 C 2
 E 4
[3 rows x 1 columns]

this will work as well
In [14]: df.iloc[mask.values]

 →
 a
 A 0
 C 2
 E 4
[3 rows x 1 columns]

df.iloc[mask] will raise a ValueError

- The raise_on_error argument to plotting functions is removed. Instead, plotting functions raise a TypeError when the dtype of the object is object to remind you to avoid object arrays whenever possible and thus you should cast to an appropriate numeric dtype if you need to plot something.

- Add colormap keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie, matplotlib.cm.jet) or a string name of such an object (ie, ‘jet’). The colormap is sampled to select the color for each column. Please see Colormaps for more information. (GH3860)

- DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead. (GH3582, GH3675, GH3676)

- The method and axis arguments of DataFrame.replace() are deprecated

- DataFrame.replace’s infer_types parameter is removed and now performs conversion by default. (GH3907)

- Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679)

- Implement __nonzero__ for NDFrame objects (GH3691, GH3696)

- IO api
 - added top-level function read_excel to replace the following. The original API is deprecated and will be removed in a future version
from pandas.io.parsers import ExcelFile
xls = ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])

With

import pandas as pd
pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

- added top-level function read_sql that is equivalent to the following

from pandas.io.sql import read_frame
read_frame(....)

• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)
• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects:
 - sum, prod, mean, std, var, skew, kurt, corr, and cov
• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid
• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)
• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

1.19.2 I/O Enhancements

• pd.read_html() can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See the docs

You can use pd.read_html() to read the output from DataFrame.to_html() like so

In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})
In [16]: print(df)
 a b
 0 a
 1 b
 2 c
[3 rows x 2 columns]
In [17]: html = df.to_html()
In [18]: alist = pd.read_html(html, index_col=0)

In [19]: print(df == alist[0])
 a b
0 True True
1 True True
2 True True

[3 rows x 2 columns]

Note that \texttt{alist} here is a Python \texttt{list} so \texttt{pd.read_html()} and \texttt{DataFrame.to_html()} are not inverses.

- \texttt{pd.read_html()} no longer performs hard conversion of date strings (GH3656).

Warning: You may have to install an older version of BeautifulSoup4. See the installation docs.

- Added module for reading and writing Stata files: \texttt{pandas.io.stata} (GH1512) accessible via \texttt{read_stata} top-level function for reading, and \texttt{to_stata} DataFrame method for writing. See the docs
- Added module for reading and writing json format files: \texttt{pandas.io.json} accessible via \texttt{read_json} top-level function for reading, and \texttt{to_json} DataFrame method for writing. See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
- MultiIndex column support for reading and writing csv format files
 - The header option in \texttt{read_csv} now accepts a list of the rows from which to read the index.
 - The option, \texttt{tupleize_cols} can now be specified in both \texttt{to_csv} and \texttt{read_csv}, to provide compatibility for the pre 0.12 behavior of writing and reading MultiIndex columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a MultiIndex column.

 Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read MultiIndex columns will be in the new format. (GH3571, GH1651, GH3141)
 - If an \texttt{index_col} is not specified (e.g. you don’t have an index, or wrote it with \texttt{df.to_csv(..., index=False)}, then any names on the columns index will be lost.
• Support for HDFStore (via PyTables 3.0.0) on Python3
• Iterator support via `read_hdf` that automatically opens and closes the store when iteration is finished. This is only for `tables`

```python
In [25]: path = 'store_iterator.h5'
In [26]: DataFrame(randn(10,2)).to_hdf(path,'df',table=True)
In [27]: for df in read_hdf(path,'df', chunksize=3):
   ....:     print df
   ....:
   0   1
   0  0.713216 -0.778461
   1 -0.661062  0.862877
   2  0.344342  0.149565
   0   1
   3 -0.626968 -0.875772
   4 -0.930687 -0.218983
   5  0.949965 -0.442354
   0   1
   6 -0.402985  1.111358
   7 -0.241527 -0.670477
   8  0.049355  0.632633
   0   1
   9 -1.502767 -1.225492
```

• `read_csv` will now throw a more informative error message when a file contains no columns, e.g., all newline characters

1.19.3 Other Enhancements

• DataFrame.replace() now allows regular expressions on contained Series with object dtype. See the examples section in the regular docs `Replacing via String Expression`

For example you can do

```python
In [25]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]})
In [26]: df.replace(regex=r'\s*\.', value=np.nan)
Out[26]:
   a  b
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  NaN  NaN
```
to replace all occurrences of the string '.' with zero or more instances of surrounding whitespace with NaN. Regular string replacement still works as expected. For example, you can do

In [27]:	df.replace('.', np.nan)
Out[27]:	a b
0	a 1
1	b 2
2	NaN 3
3	NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string '.' with NaN.

- `pd.melt()` now accepts the optional parameters `var_name` and `value_name` to specify custom column names of the returned DataFrame.

- `pd.set_option()` now allows N option, value pairs (GH3667).

 Let’s say that we had an option 'a.b' and another option 'b.c'. We can set them at the same time:

 | In [28]: | pd.get_option('a.b') |
 | Out[28]: | 2 |

 | In [29]: | pd.get_option('b.c') |
 | \\\\\\\\\Out[29]: | 3 |

 | In [30]: | pd.set_option('a.b', 1, 'b.c', 4) |

 | In [31]: | pd.get_option('a.b') |
 | Out[31]: | 1 |

 | In [32]: | pd.get_option('b.c') |
 | \\\\\\\\\Out[32]: | 4 |

- The `filter` method for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

 | In [33]: | sf = Series([1, 1, 2, 3, 3, 3]) |

 | In [34]: | sf.groupby(sf).filter(lambda x: x.sum() > 2) |
 | Out[34]: | 3 3 |
 | 4 3 |
 | 5 3 |

Length: 3, dtype: int64

The argument of `filter` must a function that, applied to the group as a whole, returns `True` or `False`. Another useful operation is filtering out elements that belong to groups with only a couple members.
In [35]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc'))

In [36]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[36]: A B
0 2 b
1 3 b
2 4 b
3 5 b
[4 rows x 2 columns]

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

In [37]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[37]: A B
0 NaN NaN
1 NaN NaN
2 2.0 b
3 3.0 b
4 4.0 b
5 5.0 b
6 NaN NaN
7 NaN NaN
[8 rows x 2 columns]

- Series and DataFrame hist methods now take a figsize argument (GH3834)
- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
- Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-time.min and datetime.max (respectively), thanks @SleepingPills
- read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

1.19.4 Experimental Features

- Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301)

Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.
add that for a couple of years

In [41]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01 →')]

In [42]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_ →egypt)

In [43]: dt = datetime(2013, 4, 30)

In [44]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00

In [45]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [46]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'. →split())))
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, Length: 5, dtype: object

1.19.5 Bug Fixes

- Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

- fillna methods now raise a TypeError if the value parameter is a list or tuple.

- Series.str now supports iteration (GH3638). You can iterate over the individual elements of each string in the Series. Each iteration yields a Series with either a single character at each index of the original Series or NaN. For example,

In [47]: strs = 'go', 'bow', 'joe', 'slow'

In [48]: ds = Series(strs)

In [49]: for s in ds.str:
 : print(s)
 :
0 g
1 b
2 j
3 s
Length: 4, dtype: object
0 o
1 o
2 o
3 l
Length: 4, dtype: object
0 NaN
1 w
2 e
3 o
The last element yielded by the iterator will be a Series containing the last element of the longest string in the Series with all other elements being NaN. Here since 'slow' is the longest string and there are no other strings with the same length 'w' is the only non-null string in the yielded Series.

- **HDFStore**
 - will retain index attributes (freq, tz, name) on recreation (GH3499)
 - will warn with an AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing
 - support datelike columns with a timezone as data_columns (GH2852)

- **Non-unique index support clarified** (GH3468).
 - Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
 - Fix construction of a DataFrame with a duplicate index
 - ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
 - applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
 - Fix to_csv to handle non-unique columns (GH3495)
 - Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
 - Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
 - Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
 - Allow insert/delete to non-unique columns (GH3679)
 - Non-unique indexing with a slice via loc and friends fixed (GH3659)
 - Allow insert/delete to non-unique columns (GH3679)
 - Extend reindex to correctly deal with non-unique indices (GH3679)
 - DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
– Bug in non-unique indexing via iLoc (GH4017); added takeable argument to reindex for location-based taking
– Allow non-unique indexing in series via .ix/.loc and _getitem_ (GH4246)
– Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

• DataFrame.from_records did not accept empty recarrays (GH3682)
• read_html now correctly skips tests (GH3741)
• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)

• Improved network test decorator to catch IOError (and therefore URLError as well). Added with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)
• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
• Series.hist will now take the figure from the current environment if one is not passed
• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)

• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MilliSecondLocator (GH3990)
• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot (kind='kde') (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
• Fixed bug where html5lib wasn’t being properly skipped (GH4265)
• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

See the full release notes or issue tracker on GitHub for a complete list.

1.20 v0.11.0 (April 22, 2013)

This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.

There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.
There is a new section in the documentation, *Cookbook*, a collection of useful recipes in pandas (and that we want contributions!).

There are several libraries that are now *Recommended Dependencies*

1.20.1 Selection Choices

Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

- **.loc** is strictly label based, will raise `KeyError` when the items are not found, allowed inputs are:
 - A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is **not** an integer position along the index)
 - A list or array of labels ['a', 'b', 'c']
 - A slice object with labels 'a': 'f', (note that contrary to usual python slices, **both** the start and the stop are included!)
 - A boolean array

See more at *Selection by Label*

- **.iloc** is strictly integer position based (from 0 to length-1 of the axis), will raise `IndexError` when the requested indices are out of bounds. Allowed inputs are:
 - An integer e.g. 5
 - A list or array of integers [4, 3, 0]
 - A slice object with ints 1:7
 - A boolean array

See more at *Selection by Position*

- **.ix** supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. **.ix** is the most general and will support any of the inputs to **.loc** and **.iloc**, as well as support for floating point label schemes. **.ix** is especially useful when dealing with mixed positional and label based hierarchial indexes.

As using integer slices with **.ix** have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use **.iloc** or **.loc**.

See more at *Advanced Indexing* and *Advanced Hierarchical*.

1.20.2 Selection Deprecations

Starting in version 0.11.0, these methods *may* be deprecated in future versions.

- **irow**
- **icol**
- **iget_value**

See the section *Selection by Position* for substitutes.
1.20.3 Dtypes

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.

```python
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [2]: df1
Out[2]:
     A
0  1.392665
1 -0.123497
2 -0.402761
3 -0.246604
4 -0.288433
5 -0.763434
6  2.069526
7 -1.203569
[8 rows x 1 columns]
In [3]: df1.dtypes
   →
     A float32
Length: 1, dtype: object
```

```python
In [4]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'), B = Series(randn(8)), C = Series(randn(8),dtype='uint8'))) 
In [5]: df2
Out[5]:
     A      B      C
0  0.591797 -0.038605  0
1  0.841309 -0.460478  1
2 -0.500977 -0.310458  0
3 -0.816406  0.866493 254
4 -0.207031  0.245972  0
5 -0.664062  0.319442  1
6  0.580566  1.378512  1
7 -0.965820  0.292502 255
[8 rows x 3 columns]
In [6]: df2.dtypes
   →
     A float16
     B float64
     C uint8
Length: 3, dtype: object
```

here you get some upcasting
```python
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2
```

```
In [8]: df3
Out[8]:
   A     B      C
0  1.984462 -0.038605  0.0
1  0.717812 -0.460478  1.0
2 -0.903737 -0.310458  0.0
3 -0.495465  0.245972 254.0
4 -1.427497  0.319442  1.0
5  2.650092  1.378512  1.0
6 -2.169390  0.292502 255.0

[8 rows x 3 columns]

In [9]: df3.dtypes

A  float32
B  float64
C  float64

Length: 3, dtype: object

1.20.4 Dtype Conversion

This is lower-common-denominator upcasting, meaning you get the dtype which can accommodate all of the types

In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion

In [11]: df3.astype('float32').dtypes
Out[11]:
   A    B     C
float32 float32 float32

Length: 3, dtype: object

Mixed Conversion

In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'

In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
   A    B    C     D   E
float32 float64 float64 float64 int64

Length: 5, dtype: object

# same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')
Forcing Date coercion (and setting NaT when not datelike)

```python
In [18]: from datetime import datetime
In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
 Timestamp('20010104'), '20010105'],dtype='O')
In [20]: s.convert_objects(convert_dates='coerce')
```

```
Out[20]:
0 2001-01-01
1 NaT
2 NaT
3 NaT
4 2001-01-04
5 2001-01-05
Length: 6, dtype: datetime64[ns]
```

### 1.20.5 Dtype Gotchas

#### Platform Gotchas

Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of `int64` and `float64`, regardless of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be respected, however (GH2837)

The following will all result in `int64` dtypes

```python
In [21]: DataFrame([[1,2]],columns=['a']).dtypes
Out[21]:
a int64
Length: 1, dtype: object

In [22]: DataFrame({'a' : [1,2]}).dtypes
Out[22]:
a int64
Length: 1, dtype: object

In [23]: DataFrame({'a' : 1 }, index=range(2)).dtypes
Out[23]:
a int64
Length: 1, dtype: object
```

Keep in mind that `DataFrame(np.array([1,2]))` WILL result in `int32` on 32-bit platforms!
Upcasting Gotchas

Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be preserved in cases where *nans* are not introduced.

```
In [24]: dfi = df3.astype('int32')
In [25]: dfi['D'] = dfi['D'].astype('int64')
In [26]: dfi
Out[26]:
 A B C D E
0 1 0 0 1 1
1 0 0 1 1 1
2 0 0 0 1 1
3 -1 0 254 1 1
4 0 0 0 1 1
5 -1 0 1 1 1
6 2 1 1 1 1
7 -2 0 255 1 1
[8 rows x 5 columns]
In [27]: dfi.dtypes
Out[27]:
A int32
B int32
C int32
D int64
E int32
Length: 5, dtype: object
In [28]: casted = dfi[dfi>0]
In [29]: casted
Out[29]:
 A B C D E
0 1.0 NaN NaN 1 1
1 NaN NaN 1.0 1 1
2 NaN NaN NaN 1 1
3 NaN NaN 254.0 1 1
4 NaN NaN NaN 1 1
5 NaN NaN 1.0 1 1
6 2.0 1.0 1.0 1 1
7 NaN NaN 255.0 1 1
[8 rows x 5 columns]
In [30]: casted.dtypes
Out[30]:
A float64
B float64
C float64
D int64
E int32
Length: 5, dtype: object
```
While float dtypes are unchanged.

```python
In [31]: df4 = df3.copy()
In [32]: df4['A'] = df4['A'].astype('float32')
In [33]: df4.dtypes
Out[33]:
 A float32
 B float64
 C float64
 D float16
 E int32
Length: 5, dtype: object
In [34]: casted = df4[df4>0]
In [35]: casted
Out[35]:
 A B C D E
0 1.98 NaN NaN 1.0 1.0
1 0.72 NaN NaN 1.0 1.0
2 NaN NaN NaN 1.0 1.0
3 NaN 0.86 254.0 1.0 1.0
4 NaN 0.25 NaN 1.0 1.0
5 NaN 0.32 NaN 1.0 1.0
6 2.65 1.38 NaN 1.0 1.0
7 NaN 0.29 255.0 1.0 1.0
[8 rows x 5 columns]
In [36]: casted.dtypes
```

1.20.6 Datetimes Conversion

Datetime64[ns] columns in a DataFrame (or a Series) allow the use of `np.nan` to indicate a nan value, in addition to the traditional NaT, or not-a-time. This allows convenient nan setting in a generic way. Furthermore `datetime64[ns]` columns are created by default, when passed datetimelike objects (this change was introduced in 0.10.1) (GH2809, GH2810)

```python
In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])
In [38]: df['timestamp'] = Timestamp('20010103')
In [39]: df
Out[39]:
 A B timestamp
2001-01-02 1.023 0.660 2001-01-03
2001-01-03 1.236 -2.171 2001-01-03
```
2001-01-04 -0.270630 -1.685677 2001-01-03
2001-01-05 -0.440747 -0.115070 2001-01-03
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03

[6 rows x 3 columns]

# datetime64[ns] out of the box
In [40]: df.get_dtype_counts()

Out[40]:
        datetime64[ns]  1
datetime64[ns]  1
float64       2
Length: 2, dtype: int64

# use the traditional nan, which is mapped to NaT internally
In [41]: df.loc[df.index[2:4], ['A','timestamp']] = np.nan

In [42]: df

Out[42]:
     A       B  timestamp
2001-01-02  1.023958 0.660103 2001-01-03
2001-01-03  1.236475 -2.170629 2001-01-03
2001-01-04  NaN -1.685677   NaT
2001-01-05  NaN -0.115070   NaT
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03

[6 rows x 3 columns]

Astype conversion on datetime64[ns] to object, implicity converts NaT to np.nan

In [43]: import datetime

In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])

In [45]: s.dtype

Out[45]: dtype('<M8[ns]')

In [46]: s[1] = np.nan

In [47]: s

Out[47]:
0  2001-01-02
1   NaT
2  2001-01-02
Length: 3, dtype: datetime64[ns]

In [48]: s.dtype

Out[48]: dtype('<M8[ns]')

In [49]: s = s.astype('O')

In [50]: s

Out[50]:
0  2001-01-02 00:00:00
1   NaT

318 Chapter 1. What's New
In [51]: s.dtype
Out[51]: dtype('O')

1.20.7 API changes

- Added to_series() method to indicies, to facilitate the creation of indexers (GH3275)
- HDFStore
  - added the method select_column to select a single column from a table as a Series.
  - deprecated the unique method, can be replicated by select_column(key, column).unique()
  - min_itemsize parameter to append will now automatically create data_columns for passed keys

1.20.8 Enhancements

- Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)
- Numexpr is now a Recommended Dependencies, to accelerate certain types of numerical and boolean operations
- Bottleneck is now a Recommended Dependencies, to accelerate certain types of nan operations
- HDFStore
  - support read_hdf/to_hdf API similar to read_csv/to_csv

In [52]: df = DataFrame(dict(A=lrange(5), B=lrange(5)))
In [53]: df.to_hdf('store.h5', 'table', append=True)
In [54]: read_hdf('store.h5', 'table', where = ['index>2'])
Out[54]:
   A  B
0  3  3
1  4  4
[2 rows x 2 columns]
  - provide dotted attribute access to get from stores, e.g. store.df == store['df']
  - new keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to support iteration on select and select_as_multiple (GH3076)

- You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)
- You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)

In [55]: idx = date_range("2001-10-1", periods=5, freq='M')
In [56]: ts = Series(np.random.rand(len(idx)),index=idx)
In [57]: ts['2001']
Out[57]:
2001-10-31    0.663256
Length: 5, dtype: float64
pandas: powerful Python data analysis toolkit, Release 0.20.1

```
2001-11-30 0.079126
2001-12-31 0.587699
Freq: M, Length: 3, dtype: float64

In [58]: df = DataFrame(dict(A = ts))

In [59]: df['2001']
Out[59]:
 A
2001-10-31 0.663256
2001-11-30 0.079126
2001-12-31 0.587699
[3 rows x 1 columns]

• Squeeze to possibly remove length 1 dimensions from an object.

```
In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
             major_axis=date_range('20010102',periods=4),
             minor_axis=['A','B','C','D'])

In [61]: p.reindex(items=['ItemA']).squeeze()

Out[63]:
  A  B  C  D
2001-01-02 -1.203403 0.425882 -0.436045 -0.982462
2001-01-03  0.348090 -0.969649  0.121731  0.202798
2001-01-04  1.215695 -0.218549 -0.631381 -0.337116
2001-01-05  0.404238  0.907213 -0.865657  0.483186
[4 rows x 4 columns]

In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze()

Out[63]:
  A  B  C  D
2001-01-02  0.425882
2001-01-03 -0.969649
2001-01-04 -0.218549
2001-01-05  0.907213
Freq: D, Name: B, Length: 4, dtype: float64

• In pd.io.data.Options,
  – Fix bug when trying to fetch data for the current month when already past expiry.
  – Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
  – New instance variables for calls and puts are automatically created when a method that creates them is called. This works for current month where the instance variables are simply calls and puts. Also works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where
```
MMYY are, respectively, the month and year of the option’s expiry.

- Options.get_near_stock_price now allows the user to specify the month for which to get relevant options data.

- Options.get_forward_data now has optional kwargs near and above_below. This allows the user to specify if they would like to only return forward looking data for options near the current stock price. This just obtains the data from Options.get_near_stock_price instead of Options.get_xxx_data() (GH2758).

- Cursor coordinate information is now displayed in time-series plots.

- added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979)

- added option display.chop_threshold to control display of small numerical values. (GH2739)

- added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)

- value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).

- DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.

- added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).

- Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

- to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes &, in addition to < and >. (GH2919)

See the full release notes or issue tracker on GitHub for a complete list.

1.21 v0.10.1 (January 22, 2013)

This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is substantial new HDFStore functionality contributed by Jeff Reback.

An undesired API breakage with functions taking the inplace option has been reverted and deprecation warnings added.

1.21.1 API changes

- Functions taking an inplace option return the calling object as before. A deprecation message has been added

- Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)

- Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)

- The file reader will now raise an exception when NA values are found in an explicitly specified integer column instead of converting the column to float (GH2631)

- DatetimeIndex.unique now returns a DatetimeIndex with the same name and timezone instead of an array (GH2563)
1.21.2 New features

- MySQL support for database (contribution from Dan Allan)

1.21.3 HDFStore

You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.

You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list to `data_columns`.

```
In [1]: store = HDFStore('store.h5')
In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
                    columns=['A', 'B', 'C'])
In [3]: df['string'] = 'foo'
In [4]: df.loc[df.index[4:6], 'string'] = np.nan
In [5]: df.loc[df.index[7:9], 'string'] = 'bar'
In [6]: df['string2'] = 'cool'
```

```
In [7]: df
Out[7]:
      A       B       C     string string2
 2000-01-01 1.885136 -0.183873 2.550850   foo       cool
 2000-01-02 0.180759 -1.117089 0.061462   foo       cool
 2000-01-03 -0.294467 -0.591411 -0.876691   foo       cool
 2000-01-04 3.127110 1.451130 0.045152   foo       cool
 2000-01-05 -0.242846 1.195819 1.533294   NaN       cool
 2000-01-06 0.820521 -0.281201 1.651561   NaN       cool
 2000-01-07 -0.034086 0.252394 -0.498772   foo       cool
 2000-01-08 -2.290958 -1.601262 -0.256718   bar       cool
```

on-disk operations

```
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])
In [9]: store.select('df', "B>0 and string=='foo'")
Out[9]:
      A       B       C     string string2
 2000-01-04 3.127110 1.451130 0.045152   foo       cool
 2000-01-07 -0.034086 0.252394 -0.498772   foo       cool
```

```
In [10]: df[(df.B > 0) & (df.string == 'foo')]
```

```
 2000-01-04 3.127110 1.451130 0.045152   foo       cool
 2000-01-07 -0.034086 0.252394 -0.498772   foo       cool
```

Retrieving unique values in an indexable or data column.

```python
store.unique('df','index')
store.unique('df','string')
```

You can now store datetime64 in data columns

```python
In [11]: df_mixed = df.copy()
In [12]: df_mixed['datetime64'] = Timestamp('20010102')
In [13]: df_mixed.loc[df_mixed.index[3:4], ['A','B']] = np.nan
In [14]: store.append('df_mixed', df_mixed)
In [15]: df_mixed1 = store.select('df_mixed')
```

```
A   B   C   string   string2   datetime64
2000-01-01 1.885136 -0.183873 2.550850     foo     cool 2001-01-02
2000-01-02 0.180759 -1.117089 0.061462     foo     cool 2001-01-02
2000-01-03 -0.294467 -0.591411 -0.876691     foo     cool 2001-01-02
2000-01-04 NaN       NaN       0.45152      foo     cool 2001-01-02
2000-01-05 -0.242846 1.195819 1.533294     NaN       cool 2001-01-02
2000-01-06 0.820521 -0.281201 1.651561     NaN       cool 2001-01-02
2000-01-07 -0.034086 0.252394 -0.498772     foo     cool 2001-01-02
2000-01-08 -2.290958 -1.601262 -0.256718     bar       cool 2001-01-02
```

```
In [17]: df_mixed1.get_dtype_counts()
    →
    datetime64[ns]  1
    float64        3
    object         2
    Length: 3, dtype: int64
```

You can pass columns keyword to select to filter a list of the return columns, this is equivalent to passing a Term('columns',list_of_columns_to_filter)

```python
In [18]: store.select('df',columns = ['A','B'])
```

```
A   B
2000-01-01 1.885136 -0.183873
2000-01-02 0.180759 -1.117089
2000-01-03 -0.294467 -0.591411
2000-01-04 3.127110 1.451130
2000-01-05 -0.242846 1.195819
2000-01-06 0.820521 -0.281201
2000-01-07 -0.034086 0.252394
2000-01-08 -2.290958 -1.601262
```

1.21. v0.10.1 (January 22, 2013)
HDFStore now serializes multi-index dataframes when appending tables.

```python
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                           ['one', 'two', 'three'],
                           [0, 1, 2, 0, 1, 2, 0, 1, 2]],
                     labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
                             [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
                     names=['foo', 'bar'])

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
                      columns=['A', 'B', 'C'])

In [21]: df
Out [21]:
   A   B   C
foo bar
foo one  0.239369  0.174122 -1.131794
   two -1.948006  0.980347 -0.674429
   three -0.361633 -0.761218  1.768215
bar one  0.152288 -0.862613 -0.210968
   two -0.859278  1.498195  0.462413
   three -0.647604  1.511487 -0.727189
baz one  0.104020  2.052171 -1.230963
   two -0.019240 -1.713238  0.838912
   three -0.637855  0.215109 -1.515362

[10 rows x 3 columns]

In [22]: store.append('mi', df)

In [23]: store.select('mi')
Out [23]:
   A   B   C
foo bar
foo one  0.239369  0.174122 -1.131794
   two -1.948006  0.980347 -0.674429
   three -0.361633 -0.761218  1.768215
bar one  0.152288 -0.862613 -0.210968
   two -0.859278  1.498195  0.462413
   three -0.647604  1.511487 -0.727189
baz one  0.104020  2.052171 -1.230963
   two -0.019240 -1.713238  0.838912
   three -0.637855  0.215109 -1.515362

[10 rows x 3 columns]

# the levels are automatically included as data columns
In [24]: store.select('mi', "foo='bar'")
```

\----------
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
```
Multi-table creation via `append_to_multiple` and selection via `select_as_multiple` can create/select from multiple tables and return a combined result, by using `where` on a selector table.

```python
In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
 columns=['A', 'B', 'C', 'D', 'E', 'F'])

In [26]: df_mt['foo'] = 'bar'

you can also create the tables individually
In [27]: store.append_to_multiple([{'df1_mt': ['A', 'B']}, 'df2_mt': None], df_mt,
 selector = 'df1_mt')

In [28]: store
Out[28]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
 /df frame_table (typ->appendable,nrows->8,ncols->5,indexers->
 (index),dc->[B,C,string,string2])
 /df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->
 (index),dc->[A,B])
 /df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->
 (index))
 /df_mixed frame_table (typ->appendable,nrows->8,ncols->6,indexers->
 (index),dc->[bar,foo])

individual tables were created
In [29]: store.select('df1_mt')

 A B
2000-01-01 1.586924 -0.447974
2000-01-02 -0.102206 0.870302
2000-01-03 1.249874 1.458210
2000-01-04 -0.616293 0.150468
2000-01-05 -0.431163 0.016640
2000-01-06 0.800353 -0.451572
2000-01-07 1.239198 0.185437
2000-01-08 -0.040863 0.290110

[8 rows x 2 columns]

In [30]: store.select('df2_mt')

 C D E F foo
2000-01-01 -1.573998 0.630925 -0.071659 -1.277640 bar
2000-01-02 1.275280 -1.199212 1.060780 1.673018 bar
2000-01-03 -0.710542 0.825392 1.557329 1.993441 bar
2000-01-04 0.132104 0.580923 -0.128750 1.445964 bar
2000-01-05 0.904578 -1.645852 -0.688741 0.228006 bar
```

1.21. v0.10.1 (January 22, 2013)
Enhancements

- **HDFStore** now can read native PyTables table format tables
- You can pass `nan_rep = 'my_nan_rep'` to append, to change the default nan representation on disk (which converts to/from `np.nan`), this defaults to `nan`.
- You can pass `index` to `append`. This defaults to `True`. This will automagically create indicies on the indexables and data columns of the table
- You can pass `chunksize=an integer` to `append`, to change the writing chunksize (default is 50000). This will significantly lower your memory usage on writing.
- You can pass `expectedrows=an integer` to the first `append`, to set the TOTAL number of expectedrows that PyTables will expected. This will optimize read/write performance.
- **Select** now supports passing `start` and `stop` to provide selection space limiting in selection.
- Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)
- Allow `DataFrame.merge` to handle combinatorial sizes too large for 64-bit integer (GH2690)
- Series now has unary negation (-series) and inversion (~series) operators (GH2686)
- `DataFrame.plot` now includes a `logx` parameter to change the x-axis to log scale (GH2327)
- Series arithmetic operators can now handle constant and ndarray input (GH2574)
- ExcelFile now takes a `kind` argument to specify the file type (GH2613)
- A faster implementation for Series.str methods (GH2602)

Bug Fixes

- **HDFStore** tables can now store `float32` types correctly (cannot be mixed with `float64` however)
- Fixed Google Analytics prefix when specifying request segment (GH2713).
- Function to reset Google Analytics token store so users can recover from improperly setup client secrets (GH2687).
- Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)
- Fixed bug where passing a Series with datetime64 values into `to_datetime` results in bogus output values (GH2699)
- Fixed bug in `pattern` in `HDFStore` expressions when pattern is not a valid regex (GH2694)
• Fixed performance issues while aggregating boolean data (GH2692)
• When given a boolean mask key and a Series of new values, Series __setitem__ will now align the incoming values with the original Series (GH2686)
• Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number of combinatorial values (GH2684)
• Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
• Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a weekend (GH2680)
• Fixed C file parser behavior when the file has more columns than data (GH2668)
• Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified usecols value
• DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
• Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)
• Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)

See the full release notes or issue tracker on GitHub for a complete list.

1.22 v0.10.0 (December 17, 2012)

This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention to.

1.22.1 File parsing new features

The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in some cases much faster).

There are also many new features:

• Much-improved Unicode handling via the encoding option.
• Column filtering (usecols)
• Dtype specification (dtype argument)
• Ability to specify strings to be recognized as True/False
• Ability to yield NumPy record arrays (as_recarray)
• High performance delim_whitespace option
• Decimal format (e.g. European format) specification
• Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.
• More robust handling of many exceptional kinds of files observed in the wild
1.22.2 API changes

Deprecated DataFrame BINOP TimeSeries special case behavior

The default behavior of binary operations between a DataFrame and a Series has always been to align on the DataFrame's columns and broadcast down the rows, except in the special case that the DataFrame contains time series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we are phasing out this special case (Zen of Python: Special cases aren't special enough to break the rules). Here's what I'm talking about:

```
In [1]: import pandas as pd

In [2]: df = pd.DataFrame(np.random.randn(6, 4),
 index=pd.date_range('1/1/2000', periods=6))

In [3]: df
Out[3]:
 0 1 2 3
2000-01-01 -0.134024 -0.205969 1.348944 -1.198246
2000-01-02 -1.626124 0.982041 0.059493 -0.460111
2000-01-03 -1.565401 -0.025706 0.942864 2.502156
2000-01-04 -0.302741 0.261551 -0.066342 0.897097
2000-01-05 0.268766 -1.225092 0.582752 -1.490764
2000-01-06 -0.639757 -0.952750 -0.892402 0.505987

deprecated now
In [4]: df - df[0]
```

```
 2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 2000-01-04 00:00:00 2000-01-05 00:00:00 2000-01-06 00:00:00 NaN
2000-01-01 NaN NaN NaN NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN NaN NaN NaN
2000-01-03 NaN NaN NaN NaN NaN NaN NaN
2000-01-04 NaN NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN NaN

1 2 3
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
```

[6 rows x 10 columns]
You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or later.

**Altered resample default behavior**

The default time series `resample` binning behavior of daily `D` and higher frequencies has been changed to `closed='left', label='left'`. Lower frequencies are unaffected. The prior defaults were causing a great deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with the end of the interval: the next day).

```
In [1]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [2]: series = Series(np.arange(len(dates)), index=dates)
In [3]: series
Out[3]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
2000-01-01 20:00:00 5
2000-01-02 00:00:00 6
2000-01-02 04:00:00 7
2000-01-02 08:00:00 8
2000-01-02 12:00:00 9
2000-01-02 16:00:00 10
2000-01-02 20:00:00 11
2000-01-03 00:00:00 12
2000-01-03 04:00:00 13
2000-01-03 08:00:00 14
2000-01-03 12:00:00 15
2000-01-03 16:00:00 16
2000-01-03 20:00:00 17
2000-01-04 00:00:00 18
2000-01-04 04:00:00 19
2000-01-04 08:00:00 20
2000-01-04 12:00:00 21
2000-01-04 16:00:00 22
2000-01-04 20:00:00 23
2000-01-05 00:00:00 24
Freq: 4H, dtype: int64
```

```
In [4]: series.resample('D', how='sum')
```
Infinity and negative infinity are no longer treated as NA by `isnull` and `notnull`. That they ever were was a relic of early pandas. This behavior can be re-enabled globally by the `mode.use_inf_as_null` option:
• Methods with the `inplace` option now all return `None` instead of the calling object. E.g. code written like
  \[
  \text{df = df.fillna(0, inplace=True)}
  \]
  may stop working. To fix, simply delete the unnecessary variable assignment.

• `pandas.merge` no longer sorts the group keys (`sort=False`) by default. This was done for performance reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnecessary.

• The default column names for a file with no header have been changed to the integers 0 through \( N - 1 \). This is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names X0, X1, ...) can be reproduced by specifying \texttt{prefix='X'}:

```python
In [13]: data= 'a,b,c

 1,Yes,2

 3,No,4'

In [14]: print(data)
a,b,c
1,Yes,2
3,No,4

In [15]: pd.read_csv(StringIO(data), header=None)
Out[15]:
 0 1 2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]

In [16]: pd.read_csv(StringIO(data), header=None, prefix='X')

Out[16]:
 X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]
```

• Values like 'Yes' and 'No' are not interpreted as boolean by default, though this can be controlled by new `true_values` and `false_values` arguments:

```python
In [17]: print(data)
a,b,c
1,Yes,2
3,No,4

In [18]: pd.read_csv(StringIO(data))
Out[18]:
 a b c
0 1 Yes 2
1 3 No 4

[2 rows x 3 columns]

In [19]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])

Out[19]:
 a b c
0 1 True 2
```

1.22. v0.10.0 (December 17, 2012)
• The file parsers will not recognize non-string values arising from a converter function as NA if passed in the `na_values` argument. It’s better to do post-processing using the `replace` function instead.

• Calling `fillna` on Series or DataFrame with no arguments is no longer valid code. You must either specify a fill value or an interpolation method:

```python
In [20]: s = Series([np.nan, 1., 2., np.nan, 4])

In [21]: s
Out[21]:
0 NaN
1 1.0
2 2.0
3 NaN
4 4.0
Length: 5, dtype: float64

In [22]: s.fillna(0)
Out[22]:
0 0.0
1 1.0
2 2.0
3 0.0
4 4.0
Length: 5, dtype: float64

In [23]: s.fillna(method='pad')
Out[23]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
Length: 5, dtype: float64
```

Convenience methods `ffill` and `bfill` have been added:

```python
In [24]: s.ffill()
Out[24]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
Length: 5, dtype: float64
```

• `Series.apply` will now operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

```python
In [25]: def f(x):
 : return Series([x, x**2], index = ['x', 'x^2'])
 :
```
• New API functions for working with pandas options (GH2097):
  - get_option / set_option - get/set the value of an option. Partial names are accepted.
  - reset_option - reset one or more options to their default value. Partial names are accepted.
  - describe_option - print a description of one or more options. When called with no arguments, print all registered options.

Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print options now live under “display.XYZ”. For example:

```
In [29]: get_option("display.max_rows")
Out[29]: 15
```

• to_string() methods now always return unicode strings (GH2224).

### 1.2.2.3 New features

#### 1.2.2.4 Wide DataFrame Printing

Instead of printing the summary information, pandas now splits the string representation across multiple rows by default:

```
In [30]: wide_frame = DataFrame(randn(5, 16))
```

```
In [31]: wide_frame
Out[31]:
 0 1 2 3 4 5 6
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 -0.583599
1 0.441522 -0.316864 -1.570114 0.360875 -0.880096 -0.456449
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071
```
The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:

```python
In [32]: pd.set_option('expand_frame_repr', False)
```

```python
In [33]: wide_frame
```

```
Out[33]:
```

The width of each line can be changed via ‘line_width’ (80 by default):

```python
In [34]: pd.set_option('line_width', 40)
```

```python
In [35]: wide_frame
```

```
Out[35]:
```

334 Chapter 1. What’s New
1.22.5 Updated PyTables Support

Docs for PyTables Table format & several enhancements to the api. Here is a taste of what to expect.

```
In [36]: store = HDFStore('store.h5')

In [37]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
 columns=['A', 'B', 'C'])

In [38]: df
```

```
Out[38]:
 A B C
2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02 0.511936 0.116412 -0.625256
2000-01-03 -0.550627 1.261433 -0.552429
2000-01-04 1.695803 -1.025917 -0.910942
2000-01-05 0.426805 -0.131749 0.432600
2000-01-06 0.044671 -0.341265 1.844536
2000-01-07 -2.036047 0.000830 -0.955697
2000-01-08 -0.898872 -0.725411 0.059904
```

1.22. v0.10.0 (December 17, 2012)
# appending data frames
In [39]: df1 = df[0:4]
In [40]: df2 = df[4:]
In [41]: store.append('df', df1)
In [42]: store.append('df', df2)
In [43]: store
Out[43]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df     frame_table (typ->appendable, nrows->8, ncols->3, indexers->[index])

# selecting the entire store
In [44]: store.select('df')

[8 rows x 3 columns]

2000-01-01  -0.369325  -1.502617  -0.376280
2000-01-02    0.511936  -0.116412  -0.625256
2000-01-03   -0.550627   1.261433  -0.552429
2000-01-04    1.695803  -1.025917  -0.910942
2000-01-05    0.426805  -0.131749   0.432600
2000-01-06   -0.044671  -0.341265   1.844536
2000-01-07   -2.036047   0.000830  -0.955697
2000-01-08   -0.898872  -0.725411   0.059904

[8 rows x 3 columns]

In [45]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
                major_axis=date_range('1/1/2000', periods=5),
                minor_axis=['A', 'B', 'C', 'D'])

In [46]: wp
Out[46]: <class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

# storing a panel
In [47]: store.append('wp', wp)

# selecting via A QUERY
In [48]: store.select('wp', "major_axis>20000102 and minor_axis=['A','B']")
Out[48]: <class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B
# removing data from tables

In [49]: store.remove('wp', "major_axis>20000103")

Out[49]

In [50]: store.select('wp')

Out[50]:

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

# deleting a store

In [51]: del store['df']

In [52]: store

Out[52]:

<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])

Enhancements

- added ability to hierarchical keys

In [53]: store.put('foo/bar/bah', df)

In [54]: store.append('food/orange', df)

In [55]: store.append('food/apple', df)

In [56]: store

Out[56]:

<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])

/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])

# remove all nodes under this level

In [57]: store.remove('food')

In [58]: store

Out[58]:

<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])

/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
- added mixed-dtype support!

```python
In [59]: df['string'] = 'string'
In [60]: df['int'] = 1
In [61]: store.append('df', df)
In [62]: df1 = store.select('df')
In [63]: df1
```

```
Out[63]:
 A B C string int
0 2000-01-01 -0.369325 -0.376280 string 1
1 2000-01-02 0.511936 -0.625256 string 1
2 2000-01-03 -0.550627 1.261433 string 1
3 2000-01-04 1.695803 -0.910942 string 1
4 2000-01-05 0.426805 0.432600 string 1
5 2000-01-06 0.044671 1.844536 string 1
6 2000-01-07 -2.036047 0.000830 string 1
7 2000-01-08 -0.898872 0.059904 string 1
```

```
[8 rows x 5 columns]
```

```
In [64]: df1.get_dtype_counts()
```

```
float64 3
int64 1
object 1
Length: 3, dtype: int64
```

- performance improvements on table writing
- support for arbitrarily indexed dimensions
- SparseSeries now has a density property (GH2384)
- enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary characters (GH2411)
- implement value_vars in melt to limit values to certain columns and add melt to pandas namespace (GH2412)

**Bug Fixes**

- added Term method of specifying where conditions (GH1996).
- del store['df'] now call store.remove('df') for store deletion
- deleting of consecutive rows is much faster than before
- min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns (the previous implementation would set the column size based on the first append)
- indexing support via create_table_index (requires PyTables >= 2.3) (GH698).
- appending on a store would fail if the table was not first created via put
- fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- minor change to select and remove: require a table ONLY if where is also provided (and not None)
Compatibility

0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out using the new format to take advantage of the updates.

1.22.6 N Dimensional Panels (Experimental)

Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for NDim. Here is a taste of what to expect.

```
In [65]: p4d = Panel4D(randn(2, 2, 5, 4),
 labels=['Label1','Label2'],
 items=['Item1', 'Item2'],
 major_axis=date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

In [66]: p4d
```

See the full release notes or issue tracker on GitHub for a complete list.

1.23 v0.9.1 (November 14, 2012)

This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

1.23.1 New features

• Series.sort, DataFrame.sort, and DataFrame.sort_index can now be specified in a per-column manner to support multiple sort orders (GH928)

```
In [2]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])

In [3]: df.sort(['A', 'B'], ascending=[1, 0])
```

1.23. v0.9.1 (November 14, 2012)
• DataFrame.rank now supports additional argument values for the na_option parameter so missing values can be assigned either the largest or the smallest rank (GH1508, GH2159)

```
In [1]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])
In [3]: df.rank()
Out[3]:
 A B C
0 3.0 1.0 3.0
1 2.0 2.0 1.0
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 1.0 3.0 2.0
[6 rows x 3 columns]
In [4]: df.rank(na_option='top')
Out[4]:
 A B C
0 6.0 4.0 6.0
1 5.0 5.0 4.0
2 2.0 2.0 2.0
3 2.0 2.0 2.0
4 2.0 2.0 2.0
5 4.0 6.0 5.0
[6 rows x 3 columns]
In [5]: df.rank(na_option='bottom')
Out[5]:
 A B C
0 3.0 1.0 3.0
1 2.0 2.0 1.0
2 5.0 5.0 5.0
3 5.0 5.0 5.0
4 5.0 5.0 5.0
5 1.0 3.0 2.0
[6 rows x 3 columns]
```

• DataFrame has new where and mask methods to select values according to a given boolean mask (GH2109, GH2151)

DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside the []). The returned DataFrame has the same number of columns as the original, but is sliced on its index.

```
In [6]: df = DataFrame(np.random.randn(5, 3), columns=['A','B','C'])
In [7]: df
Out[7]:
 A B C
0 1.744738 -0.356939 0.092791
1 1.222637 1.909179 0.195946
```

If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with elements that do not meet the boolean condition as NaN. This is accomplished via the new method DataFrame.where. In addition, where takes an optional other argument for replacement.
Furthermore, `where` now aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via `.ix` (but on the contents rather than the axis labels)

```python
In [12]: df2 = df.copy()
In [13]: df2[df2[1:4] > 0] = 3
In [14]: df2
Out[14]:
 A B C
0 1.744738 -0.356939 0.092791
1 3.000000 3.000000 3.000000
2 3.000000 -0.404023 -1.115882
3 3.000000 3.000000 -1.775758
4 1.303175 0.025683 -1.795489
```

`DataFrame.mask` is the inverse boolean operation of `where`.

```python
In [15]: df.mask(df<=0)
Out[15]:
 A B C
0 1.744738 NaN 0.092791
1 1.222637 1.909179 0.195946
2 0.481559 NaN NaN
3 2.093925 0.010808 NaN
4 1.303175 0.025683 NaN
```

- Enable referencing of Excel columns by their column names (GH1936)

```python
In [16]: xl = ExcelFile('data/test.xls')
In [17]: xl.parse('Sheet1', index_col=0, parse_dates=True,
 : parse_cols='A:D')
 :
Out[17]:
 A B C
2000-01-03 0.980269 3.685731 -0.364217
2000-01-04 1.047916 -0.041232 -0.161812
2000-01-05 0.498581 0.731168 -0.537677
2000-01-06 1.120202 1.567621 0.003641
2000-01-07 -0.487094 0.571455 -1.611639
2000-01-10 0.836649 0.246462 0.588543
2000-01-11 -0.157161 1.340307 1.195778
```

- Added option to disable pandas-style tick locators and formatters using `series.plot(x_compat=True)` or `pandas.plot_params['x_compat'] = True` (GH2205)
- Existing TimeSeries methods `at_time` and `between_time` were added to DataFrame (GH2149)
- DataFrame.dot can now accept ndarrays (GH2042)
- DataFrame.drop now supports non-unique indexes (GH2101)
- Panel.shift now supports negative periods (GH2164)
- DataFrame now support unary ~ operator (GH2110)

### 1.23.2 API changes

- Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time window

```
In [1]: prng = period_range('2012Q1', periods=2, freq='Q')
In [2]: s = Series(np.random.randn(len(prng)), prng)
In [4]: s.resample('M')
```

```
Out[4]:
2012-01 -1.471992
2012-02 NaN
2012-03 NaN
2012-04 -0.493593
2012-05 NaN
2012-06 NaN
Freq: M, dtype: float64
```

- Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)

```
In [18]: p = Period('2012')
In [19]: p.end_time
```

```
Out[19]: Timestamp('2012-12-31 23:59:59.999999999')
```

- File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

```
In [20]: data = 'A,B,C
00001,001,5
00002,002,6'
```

```
In [21]: read_csv(StringIO(data), converters={'A': lambda x: x.strip()})
```

```
Out[21]:
 A B C
0 00001 1 5
1 00002 2 6
[2 rows x 3 columns]
```

See the full release notes or issue tracker on GitHub for a complete list.

### 1.24 v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame, more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

#### 1.24.1 New features

- Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)
- Add \texttt{DataFrame.to_latex} method (GH1735)
- Add convenient expanding window equivalents of all rolling\_* ops (GH1785)
- Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
- More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
- Add \texttt{level} parameter to \texttt{Series.reset_index}
- \texttt{TimeSeries.between\_time} can now select times across midnight (GH1871)
- Series constructor can now handle generator as input (GH1679)
- \texttt{DataFrame.dropna} can now take multiple axes (tuple/list) as input (GH924)
- Enable \texttt{skip\_footer} parameter in \texttt{ExcelFile.parse} (GH1843)

### 1.24.2 API changes

- The default column names when \texttt{header=None} and no columns names passed to functions like \texttt{read\_csv} has changed to be more Pythonic and amenable to attribute access:

```
In [1]: data = '0,0,1
 1,1,0
 0,1,0'
In [2]: df = read_csv(StringIO(data), header=None)
In [3]: df
Out[3]:
0 1 2
0 0 0 1
1 1 1 0
2 0 1 0
[3 rows x 3 columns]
```

- Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treating the Series like an ndarray. Technically improper usages like \texttt{Series(df[col1], index=df[col2])} that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:

```
In [4]: s1 = Series([1, 2, 3])
In [5]: s1
Out[5]:
0 1
1 2
2 3
Length: 3, dtype: int64
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
In [7]: s2
Out[7]:
foo NaN
bar NaN
baz NaN
Length: 3, dtype: float64
```

- Deprecated \texttt{day\_of\_year} API removed from PeriodIndex, use \texttt{dayofyear} (GH1723)
• Don’t modify NumPy suppress printoption to True at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer override default NAs unless keep_default_na is set to false explicitly (GH1657)
• DataFrame.dot will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.

1.25 v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features include notably NA friendly string processing functionality and a series of new plot types and options.

1.25.1 New features

• Add vectorized string processing methods accessible via Series.str (GH620)
• Add option to disable adjustment in EWMA (GH1584)
• Radviz plot (GH1566)
• Parallel coordinates plot
• Bootstrap plot
• Per column styles and secondary y-axis plotting (GH1559)
• New datetime converters millisecond plotting (GH1599)
• Add option to disable “sparse” display of hierarchical indexes (GH1538)
• Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569, GH1577)

1.25.2 Performance improvements

• Improved implementation of rolling min and max (thanks to Bottleneck !)
• Add accelerated ‘median’ GroupBy option (GH1358)
• Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or to_datetime (GH1571)
• Improve the performance of GroupBy on single-key aggregations and use with Categorical types
• Significant datetime parsing performance improvements

1.26 v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20 distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on GitHub for a complete list.

1.26.1 Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join semantics (including, if application, index duplication in many-to-many joins)

1.26.2 NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy 1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and only interact with this data using the interface that pandas provides.

See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further development in 0.7.x beyond bug fixes.

1.26.3 Time series changes and improvements

Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note: See documentation for overview of pandas timeseries API.

• New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and improve serialization / deserialization performance significantly over datetime.datetime

• High performance and flexible resample method for converting from high-to-low and low-to-high frequency. Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-Close) have also been implemented.

• Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’

• New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated DateRange class
• New PeriodIndex and Period classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and DatetimeIndex

• New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working with nanosecond-resolution data. Also provides easy time zone conversions.

• Enhanced support for time zones. Add tz_convert and tz_localize methods to TimeSeries and DataFrame. All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only if their UTC timestamps match. Operations between time zone-aware time series with different time zones will result in a UTC-indexed time series.

• Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings

• Enhanced time series plotting: adaptation of scikits.timeseries matplotlib-based plotting code

• New date_range, bdate_range, and period_range factory functions

• Robust frequency inference function infer_freq and inferred_freq property of DatetimeIndex, with option to infer frequency on construction of DatetimeIndex

• to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or list of strings to datetime64

• Optimized support for datetime64-dtype data in Series and DataFrame columns

• New NaT (Not-a-Time) type to represent NA in timestamp arrays

• Optimize Series.asof for looking up “as of” values for arrays of timestamps

• Milli, Micro, Nano date offset objects

• Can index time series with datetime.time objects to select all data at particular time of day (TimeSeries.at_time) or between two times (TimeSeries.between_time)

• Add shift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag using shift

### 1.26.4 Other new features

• New cut and qcut functions (like R’s cut function) for computing a categorical variable from a continuous variable by binning values either into value-based (cut) or quantile-based (qcut) bins

• Rename Factor to Categorical and add a number of usability features

• Add limit argument to fillna/reindex

• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in particular order with given names

• Add flexible replace method for efficiently substituting values

• Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates

• Add comments option to parser functions: read_csv, etc.

• Add :ref:`dayfirst <io.dayfirst>` option to parser functions for parsing international DD/MM/YYYY dates

• Allow the user to specify the CSV reader dialect to control quoting etc.

• Handling thousands separators in read_csv to improve integer parsing.
• Enable unstacking of multiple levels in one shot. Alleviate `pivot_table` bugs (empty columns being introduced)
• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
• Add first, last, min, max, and prod optimized GroupBy functions
• New `ordered_merge` function
• Add flexible `comparison` instance methods `eq`, `ne`, `lt`, `gt`, etc. to DataFrame, Series
• Improve `scatter_matrix` plotting function and add histogram or kernel density estimates to diagonal
• Add ‘`kde`’ plot option for density plots
• Support for converting DataFrame to R data.frame through rpy2
• Improved support for complex numbers in Series and DataFrame
• Add `pct_change` method to all data structures
• Add `max_colwidth` configuration option for DataFrame console output
• `Interpolate` Series values using index values
• Can select multiple columns from GroupBy
• Add `update` methods to Series/DataFrame for updating values in place
• Add `any` and `all` method to DataFrame

1.26.5 New plotting methods

`Series.plot` now supports a `secondary_y` option:

```python
In [1]: plt.figure()
Out[1]: <matplotlib.figure.Figure at 0x12671b550>

In [2]: fx['FR'].plot(style='g')
Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x1267198d0>

In [3]: fx['IT'].plot(style='k--', secondary_y=True)
Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x127060588>

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, ‘`kde`’ is a new option:

```python
In [4]: s = Series(np.concatenate((np.random.randn(1000),
                     ...:                     np.random.randn(1000) * 0.5 + 3)))

In [5]: plt.figure()
Out[5]: <matplotlib.figure.Figure at 0x127083cc0>

In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x12e872eb8>

In [7]: s.plot(kind='kde')
```

...
See the plotting page for much more.

1.26.6 Other API changes

- Deprecation of `offset`, `time_rule`, and `timeRule` arguments names in time series functions. Warnings will be printed until pandas 0.9 or 1.0.

1.26.7 Potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy’s `datetime64` data type instead of `dtype=object` arrays of Python’s built-in `datetime.datetime` objects. `DateRange` has been replaced by `DatetimeIndex` but otherwise behaved identically. But, if you have code that converts `DateRange` or `Index` objects that used to contain `datetime.datetime` values to plain NumPy arrays, you may have bugs lurking with code using scalar values because you are handing control over to NumPy:

```
In [8]: import datetime
In [9]: rng = date_range('1/1/2000', periods=10)
In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', freq='D')
In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True
In [12]: rng_asarray = np.asarray(rng)
In [13]: scalar_val = rng_asarray[5]
In [14]: type(scalar_val)
Out[14]: numpy.datetime64
```

Pandas’s `Timestamp` object is a subclass of `datetime.datetime` that has nanosecond support (the nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that used `datetime.datetime` values before. Thus, I recommend not casting `DatetimeIndex` to regular NumPy arrays.

If you have code that requires an array of `datetime.datetime` objects, you have a couple of options. First, the `asobject` property of `DatetimeIndex` produces an array of `Timestamp` objects:

```
In [15]: stamp_array = rng.asobject
In [16]: stamp_array
Out[16]:
Index(['2000-01-01 00:00:00', '2000-01-02 00:00:00', '2000-01-03 00:00:00', '2000-01-04 00:00:00', '2000-01-05 00:00:00', '2000-01-06 00:00:00', '2000-01-07 00:00:00', '2000-01-08 00:00:00', '2000-01-09 00:00:00', '2000-01-10 00:00:00'],
dtype='object')
```

```
In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', freq='D')
```

To get an array of proper `datetime` objects, use the `to_pydatetime` method:

```python
In [18]: dt_array = rng.to_pydatetime()

In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),
       datetime.datetime(2000, 1, 2, 0, 0),
       datetime.datetime(2000, 1, 3, 0, 0),
       datetime.datetime(2000, 1, 4, 0, 0),
       datetime.datetime(2000, 1, 5, 0, 0),
       datetime.datetime(2000, 1, 6, 0, 0),
       datetime.datetime(2000, 1, 7, 0, 0),
       datetime.datetime(2000, 1, 8, 0, 0),
       datetime.datetime(2000, 1, 9, 0, 0),
       datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)
```

`matplotlib` knows how to handle `datetime` but not `Timestamp` objects. While I recommend that you plot time series using `TimeSeries.plot`, you can either use `to_pydatetime` or register a converter for the `Timestamp` type. See `matplotlib` documentation for more on this.

Warning: There are bugs in the user-facing API with the nanosecond `datetime64` unit in NumPy 1.6. In particular, the string version of the array shows garbage values, and conversion to `dtype=object` is similarly broken.

```python
In [21]: rng = date_range('1/1/2000', periods=10)

In [22]: rng
Out[22]:
             '2000-01-09', '2000-01-10'], dtype='datetime64[ns]', freq='D')

In [23]: np.asarray(rng)

Out[23]:
array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
       '2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
       '2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
       '2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
       '2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'], dtype='datetime64[ns]')

In [24]: converted = np.asarray(rng, dtype=object)

In [25]: converted[5]
Out[25]:
947116800000000000
```

Trust me: don't panic. If you are using NumPy 1.6 and restrict your interaction with `datetime64` values to pandas's API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work directly with `datetime64` arrays in NumPy 1.6 and only use the pandas API.
Support for non-unique indexes: In the latter case, you may have code inside a `try:... catch:` block that failed due to the index not being unique. In many cases it will no longer fail (some method like `append` still check for uniqueness unless disabled). However, all is not lost: you can inspect `index.is_unique` and raise an exception explicitly if it is `False` or go to a different code branch.

1.27 v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a complete list.

1.27.1 New features

- New fixed width file reader, `read_fwf`
- New `scatter_matrix` function for making a scatter plot matrix

```python
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)
```
• Add `stacked` argument to Series and DataFrame’s `plot` method for `stacked bar plots`.

```
df.plot(kind='bar', stacked=True)
```

```
df.plot(kind='barh', stacked=True)
```

• Add log x and y `scaling options` to DataFrame.plot and Series.plot

• Add `kurt` methods to Series and DataFrame for computing kurtosis

1.27.2 NA Boolean Comparison API Change

Reverted some changes to how NA values (represented typically as `NaN` or `None`) are handled in non-numeric Series:

```
In [1]: series = Series(['Steve', np.nan, 'Joe'])
```
In [2]: series == 'Steve'
Out[2]:
0 True
1 False
2 False
Length: 3, dtype: bool

In [3]: series != 'Steve'
Out[3]:
0 False
1 True
2 True
Length: 3, dtype: bool

In comparisons, NA / NaN will always come through as False except with != which is True. Be very careful with boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into boolean array operations if you are worried about this:

In [4]: mask = series == 'Steve'

In [5]: series[mask & series.notnull()]
Out[5]:
0 Steve
Length: 1, dtype: object

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach was taken. This issue may be revisited at some point in the future.

1.27.3 Other API Changes

When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the groupby behavior with DataFrame:

In [6]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
 'foo', 'bar', 'foo', 'foo'],
 'B' : ['one', 'one', 'two', 'three',
 'two', 'two', 'one', 'three'],
 'C' : np.random.randn(8), 'D' : np.random.randn(8))

In [7]: df
Out[7]:
 A B C D
0 foo one 1.075059 -0.449141
1 bar one 0.785676 1.443014
2 foo two 0.958157 0.612324
3 bar three 1.477773 -0.178818
4 foo two -1.006023 0.133072
5 bar two -1.506997 -0.550981
6 foo one 1.218042 -2.043335
7 foo three -0.565878 0.753539

[8 rows x 4 columns]
In [8]: grouped = df.groupby('A')['C']

In [9]: grouped.describe()

Out[9]:

 count mean std min 25% 50% 75%
 A
 bar 3.0 0.252151 1.562274 -1.506997 -0.360661 0.785676 1.131724
 foo 5.0 0.335871 1.039915 -1.006023 -0.565878 0.958157 1.075059

 max
 A
 bar 1.477773
 foo 1.218042

[2 rows x 8 columns]

In [10]: grouped.apply(lambda x: x.sort_values()[-2:]) # top 2 values

→

 A
 bar 1 0.785676
 3 1.477773
 foo 0 1.075059
 6 1.218042

Name: C, Length: 4, dtype: float64

1.28 v0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

1.28.1 New features

- Add additional tie-breaking methods in DataFrame.rank (GH874)
- Add ascending parameter to rank in Series, DataFrame (GH875)
- Add coerce_float option to DataFrame.from_records (GH893)
- Add sort_columns parameter to allow unsorted plots (GH918)
- Enable column access via attributes on GroupBy (GH882)
- Can pass dict of values to DataFrame.fillna (GH661)
- Can select multiple hierarchical groups by passing list of values in .ix (GH134)
- Add axis option to DataFrame.fillna (GH174)
- Add level keyword to drop for dropping values from a level (GH159)

1.28.2 Performance improvements

- Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
- Intercept __builtint__sum in groupby (GH885)
1.29 v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.29.1 New features

- Add \texttt{to_clipboard} function to pandas namespace for writing objects to the system clipboard (GH774)
- Add \texttt{itertuples} method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
- Add ability to pass \texttt{fill_value} and method to DataFrame and Series align method (GH806, GH807)
- Add \texttt{fill_value} option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH877)
- Add \texttt{between} method to Series (GH802)
- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl

1.29.2 Performance improvements

- Improve performance and memory usage of \texttt{fillna} on DataFrame
- Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

1.30 v.0.7.0 (February 9, 2012)

1.30.1 New features

- New unified \texttt{merge function} for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New \texttt{unified concatenation function} for concatenating Series, DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of \texttt{Series.append} and \texttt{DataFrame.append} (GH468, GH479, GH273)
- Can pass multiple DataFrames to \texttt{DataFrame.append} to concatenate (stack) and multiple Series to \texttt{Series.append} too
- Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)
- You can now \texttt{set multiple columns} in a DataFrame via \texttt{_getitem_}, useful for transformation (GH342)
- Handle differently-indexed output values in \texttt{DataFrame.apply} (GH498)

```
In [1]: df = DataFrame(randn(10, 4))
In [2]: df.apply(lambda x: x.describe())
Out[2]:
   0        1        2        3
count 10.000000 10.000000 10.000000 10.000000
mean -0.409608  0.539495  0.163276  0.051646
  std 1.397779  0.968808  0.874489  0.719651
```
Add reorder_levels method to Series and DataFrame (GH534)
Add dict-like get function to DataFrame and Panel (GH521)
Add DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
Add DataFrame.to_panel with code adapted from LongPanel.to_long
Add reindex_axis method added to DataFrame
Add level option to binary arithmetic functions on DataFrame and Series
Add level option to the reindex and align methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
Add attribute-based item access to Panel and add IPython completion (GH563)
Add logy option to Series.plot for log-scaling on the Y axis
Add index and header options to DataFrame.to_string
Can pass multiple DataFrames to DataFrame.join to join on index (GH115)
Can pass multiple Panels to Panel.join (GH115)
Added justify argument to DataFrame.to_string to allow different alignment of column headers
Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
Can pass MaskedArray to Series constructor (GH563)
Add Panel item access via attributes and IPython completion (GH554)
Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
Can call cummin and cummax on Series and DataFrame to get cumulative minimum and maximum, respectively (GH647)
value_range added as utility function to get min and max of a dataframe (GH288)
Added encoding argument to read_csv, read_table, to_csv and from_csv for non-ascii text (GH717)
Added abs method to pandas objects
Added crosstab function for easily computing frequency tables
Added isin method to index objects
Added level argument to xs method of DataFrame.
1.30.2 API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how integer indexes are handled with regard to label-based indexing. Here is an example:

```
In [3]: s = Series(randn(10), index=range(0, 20, 2))

In [4]: s
Out[4]:
0  -0.543429
2   1.425447
4  -0.408795
6  -1.489348
8   -1.166408
10  -0.481205
12  -0.810355
14  -0.985491
16  -0.336246
18  -0.629058
Length: 10, dtype: float64

In [5]: s[0]
_out[5]:
→ -0.543429

In [6]: s[2]
_out[6]:
→ 1.425447

In [7]: s[4]
_out[7]:
→ -0.408795
```

This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a KeyError:

```
In [2]: s[1]
KeyError: 1
```

This change also has the same impact on DataFrame:

```
In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))

In [4]: df
Out[4]:
   0     1     2     3
0 0.88427 0.3363 -0.1787 0.03162
2 0.14451 -0.1415 0.2504 0.58374
4 -1.44779 -0.9186 -1.4996 0.27163
6 -0.26598 -2.4184 -0.2658 0.11503
8 -0.58776 0.3144 -0.8566 0.61941
10 0.10940 -0.7175 -1.0108 0.47990
12 -1.16919 -0.3087 -0.6049 -0.43544
14 -0.07337 0.3410 0.0424 -0.16037

In [5]: df.ix[3]
KeyError: 3
```

In order to support purely integer-based indexing, the following methods have been added:
API tweaks regarding label-based slicing

Label-based slicing using `ix` now requires that the index be sorted (monotonic) unless both the start and endpoint are contained in the index:

```python
In [1]: s = Series(randn(6), index=list('gmkaec'))
In [2]: s
Out[2]:
g -1.182230
m -0.276183
k -0.243550
a  1.628992
e  0.073308
c -0.539890
dtype: float64
```

Then this is OK:

```python
In [3]: s.ix['k':'e']
Out[3]:
k -0.243550
a  1.628992
e  0.073308
dtype: float64
```

But this is not:

```python
In [12]: s.ix['b':'h']
KeyError 'b'
```

If the index had been sorted, the “range selection” would have been possible:

```python
In [4]: s2 = s.sort_index()
In [5]: s2
Out[5]:
a  1.628992
c -0.539890
e  0.073308
g -1.182230
k -0.243550
m -0.276183
dtype: float64
```

```python
In [6]: s2.ix['b':'h']
Out[6]:
c -0.539890
e  0.073308
```
1.30.4 Changes to Series [] operator

As a notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing similar input to ix except in the case of integer indexing:

```python
In [8]: s = Series(randn(6), index=list('acegkm'))
In [9]: s
Out[9]:
a    -0.297788
b    0.499769
c    0.810531
d   -1.551478
e    0.416449
f    1.012459
Length: 6, dtype: float64
In [10]: s[['m', 'a', 'c', 'e']]
Out[10]:
m    1.012459
a    -0.297788
c    0.499769
e    0.810531
Length: 4, dtype: float64
In [11]: s['b':'l']
Out[11]:
c    0.499769
d   -1.551478
e    0.416449
f    1.012459
Length: 4, dtype: float64
In [12]: s['c':'k']
Out[12]:
c    0.499769
d   -1.551478
e    0.416449
f    1.012459
Length: 4, dtype: float64
```

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):

```python
In [13]: s = Series(randn(6), index=range(0, 12, 2))
In [14]: s[[4, 0, 2]]
Out[14]:
4    0.928877
0    1.171752
Length: 2, dtype: float64
```
If you wish to do indexing with sequences and slicing on an integer index with label semantics, use ix.

1.30.5 Other API Changes

- The deprecated LongPanel class has been completely removed
- If Series.sort is called on a column of a DataFrame, an exception will now be raised. Before it was possible to accidentally mutate a DataFrame’s column by doing df[col].sort() instead of the side-effect free method df[col].order() (GH316)
- Miscellaneous renames and deprecations which will (harmlessly) raise FutureWarning
- drop added as an optional parameter to DataFrame.reset_index (GH699)

1.30.6 Performance improvements

- Cythonized GroupBy aggregations no longer presort the data, thus achieving a significant speedup (GH93). GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data type in Cython (GH496).
- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in Series.to_string, add length option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of Series.__getitem__ for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)
• Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374)

1.31 v.0.6.1 (December 13, 2011)

1.31.1 New features

• Can append single rows (as Series) to a DataFrame
• Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)
• Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access (>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an enlarged object.
• Add PyQt table widget to sandbox (GH435)
• DataFrame.align can accept Series arguments and an axis option (GH461)
• Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray (GH463)
• Better console printing options (GH453)
• Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
• Implement DataFrame.from_items alternate constructor (GH444)
• DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
• Add rolling_corr_pairwise method for computing Panel of correlation matrices (GH189)
• Add margins option to pivot_table for computing subgroup aggregates (GH114)
• Add Series.from_csv function (GH482)
• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)
• MultiIndex.get_level_values can accept the level name

1.31.2 Performance improvements

• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.32 v.0.6.0 (November 25, 2011)

1.32.1 New Features

• Added melt function to pandas.core.reshape
• Added level parameter to group by level in Series and DataFrame descriptive statistics (GH313)
• Added head and tail methods to Series, analogous to to DataFrame (GH296)
• Added `Series.isin` function which checks if each value is contained in a passed sequence (GH289)
• Added `float_format` option to `Series.to_string`
• Added `skip_footer` (GH291) and `converters` (GH343) options to `read_csv` and `read_table`
• Added `drop_duplicates` and `duplicated` functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implemented operators `&`, `|`, `^`, `-` on DataFrame (GH347)
• Added `Series.mad`, mean absolute deviation
• Added `QuarterEnd` `DateOffset` (GH321)
• Added `dot` to DataFrame (GH65)
• Added `orient` option to `Panel.from_dict` (GH359, GH301)
• Added `orient` option to `DataFrame.from_dict`
• Added passing list of tuples or list of lists to `DataFrame.from_records` (GH357)
• Added multiple levels to groupby (GH103)
• Allow multiple columns in `by` argument of `DataFrame.sort_index` (GH92, GH362)
• Added `fast` `get_value` and `put_value` methods to DataFrame (GH360)
• Added `cov` instance methods to `Series` and `DataFrame` (GH194, GH362)
• Added `kind='bar'` option to `DataFrame.plot` (GH348)
• Added `idxmin` and `idxmax` to `Series` and `DataFrame` (GH286)
• Added `read_clipboard` function to parse `DataFrame` from clipboard (GH300)
• Added `nunique` function to `Series` for counting unique elements (GH297)
• Made `DataFrame` constructor use `Series` name if no columns passed (GH373)
• Support regular expressions in `read_table/read_csv` (GH364)
• Added `DataFrame.to_html` for writing `DataFrame` to HTML (GH387)
• Added support for `MaskedArray` data in `DataFrame`, masked values converted to NaN (GH396)
• Added `DataFrame.boxplot` function (GH368)
• Can pass extra args, kwds to `DataFrame.apply` (GH376)
• Implement `DataFrame.join` with `vector` on argument (GH312)
• Added `legend` boolean flag to `DataFrame.plot` (GH324)
• Can pass multiple levels to `stack` and `unstack` (GH370)
• Can pass multiple values columns to `pivot_table` (GH381)
• Use `Series` name in `GroupBy` for result index (GH363)
• Added `raw` option to `DataFrame.apply` for performance if only need `ndarray` (GH309)
• Added proper, tested weighted least squares to standard and panel OLS (GH303)
1.32.2 Performance Enhancements

- VBENCH Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase (GH361)
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than `np.apply_along_axis` (GH309)
- VBENCH Improved performance of `MultiIndex.from_tuples`
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations
- VBENCH + DOCUMENT Add `raw` option to `DataFrame.apply` for getting better performance when
- VBENCH Faster cythonized count by level in `Series` and `DataFrame` (GH341)
- VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
- VBENCH New Cython vectorized function `map_infer` speeds up `Series.apply` and `Series.map` significantly when passed elementwise Python function, motivated by (GH355)
- VBENCH Significantly improved performance of `Series.order`, which also makes `np.unique` called on a `Series` faster (GH327)
- VBENCH Vastly improved performance of `GroupBy` on axes with a `MultiIndex` (GH299)

1.33 v.0.5.0 (October 24, 2011)

1.33.1 New Features

- *Added* `DataFrame.align` method with standard join options
- *Added* `parse_dates` option to `read_csv` and `read_table` methods to optionally try to parse dates in the index columns
- *Added* `nrows`, `chunksize`, and `iterator` arguments to `read_csv` and `read_table`. The last two return a new `TextParser` class capable of lazily iterating through chunks of a flat file (GH242)
- *Added* ability to join on multiple columns in `DataFrame.join` (GH214)
- *Added* private `_get_duplicates` function to `Index` for identifying duplicate values more easily (ENH5c)
- *Added* column attribute access to `DataFrame`.
- *Added* Python tab completion hook for `DataFrame` columns. (GH233, GH230)
- *Implemented* `Series.describe` for `Series` containing objects (GH241)
- *Added* inner join option to `DataFrame.join` when joining on key(s) (GH248)
- *Implemented* selecting `DataFrame` columns by passing a list to `__getitem__` (GH253)
- *Implemented* `&` and `|` to intersect / union `Index` objects, respectively (GH261)
- *Added* `pivot_table` convenience function to pandas namespace (GH234)
- *Implemented* `Panel.rename_axis` function (GH243)
- `DataFrame` will show index level names in console output (GH334)
- *Implemented* `Panel.take`
- *Added* `set_eng_float_format` for alternate `DataFrame` floating point string formatting (ENH61)
• **Added** convenience `set_index` function for creating a DataFrame index from its existing columns

• **Implemented** `groupby` hierarchical index level name (GH223)

• **Added** support for different delimiters in `DataFrame.to_csv` (GH244)

• TODO: DOCS ABOUT TAKE METHODS

1.33.2 Performance Enhancements

• **VBENCH** Major performance improvements in file parsing functions `read_csv` and `read_table`

• **VBENCH** Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations

• **VBENCH** Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)

• **VBENCH** Improved speed of `DataFrame.xs` on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)

• **VBENCH** With new `DataFrame.align` method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.

• **VBENCH** Significantly sped up conversion of nested dict into DataFrame (GH212)

• **VBENCH** Significantly speed up DataFrame `__repr__` and `count` on large mixed-type DataFrame objects

1.34 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

1.34.1 New Features

• **Added** Python 3 support using `2to3` (GH200)

• **Added** `name` attribute to `Series`, now prints as part of `Series.__repr__`

• **Added** instance methods `isnull` and `notnull` to `Series` (GH209, GH203)

• **Added** `Series.align` method for aligning two series with choice of join method (ENH56)

• **Added** method `get_level_values` to `MultiIndex` (GH188)

• Set values in mixed-type `DataFrame` objects via `.ix` indexing attribute (GH135)

• **Added** new `DataFrame` methods `get_dtype_counts` and property `dtypes` (ENHdc)

• **Added** `ignore_index` option to `DataFrame.append` to stack `DataFrames` (ENH1b)

• `read_csv` tries to `sniff` delimiters using `csv.Sniffer` (GH146)

• `read_csv` can `read` multiple columns into a `MultiIndex`; `DataFrame`'s `to_csv` method writes out a corresponding `MultiIndex` (GH151)

• `DataFrame.rename` has a new `copy` parameter to `rename` a `DataFrame` in place (ENHed)

• **Enable** unstacking by name (GH142)

• **Enable** `sortlevel` to work by level (GH141)
1.34.2 Performance Enhancements

- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
- Improved performance of `isnull` and `notnull`, a regression from v0.3.0 (GH187)
- Refactored code related to `DataFrame.join` so that intermediate aligned copies of the data in each `DataFrame` argument do not need to be created. Substantial performance increases result (GH176)
- Substantially improved performance of generic `Index.intersection` and `Index.union`
- Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)
- Improved performance of `Series.sort_index`
- Significant groupby performance enhancement: removed unnecessary integrity checks in `DataFrame` internals that were slowing down slicing operations to retrieve groups
- Optimized `_ensure_index` function resulting in performance savings in type-checking `Index` objects
- Wrote fast time series merging / joining methods in Cython. Will be integrated later into `DataFrame.join` and related functions
CHAPTER TWO

INSTALLATION

The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided.

2.1 Python version support

Officially Python 2.7, 3.4, 3.5, and 3.6

2.2 Installing pandas

2.2.1 Installing pandas with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).

2.2.2 Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).
Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here

The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to specify precisely which Python version to install also). Run the following commands from a terminal window:

```
conda create -n name_of_my_env python
```

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

```
source activate name_of_my_env
```

On Windows the command is:

```
activate name_of_my_env
```

The final step required is to install pandas. This can be done with the following command:

```
conda install pandas
```

To install a specific pandas version:

```
conda install pandas=0.13.1
```

To install other packages, IPython for example:

```
conda install ipython
```

To install the full Anaconda distribution:

```
conda install anaconda
```

If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these packages:

```
conda install pip
pip install django
```

2.2.3 Installing from PyPI

pandas can be installed via pip from PyPI.

```
pip install pandas
```

This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to compile required bits of code, and can take a few minutes to complete.

2.2.4 Installing using your Linux distribution’s package manager.

The commands in this table will install pandas for Python 2 from your distribution. To install pandas for Python 3 you may need to use the package python3-pandas.
2.2.5 Installing from source

See the contributing documentation for complete instructions on building from the git source tree. Further, see creating a development environment if you wish to create a pandas development environment.

2.2.6 Running the test suite

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed), make sure you have pytest and run:

```
>>> import pandas as pd
>>> pd.test()
```

Running unit tests for pandas
pandas version 0.18.0
numpy version 1.10.2
pandas is installed in pandas
Python version 2.7.11 [Continuum Analytics, Inc.]
 (default, Dec 6 2015, 18:57:58) [GCC 4.2.1 (Apple Inc. build 5577)]
nose version 1.3.7
...S......
........S..
...

Ran 9252 tests in 368.339s

OK (SKIP=117)
2.3 Dependencies

- setuptools
- NumPy: 1.7.1 or higher
- python-dateutil: 1.5 or higher
- pytz: Needed for time zone support

2.3.1 Recommended Dependencies

- numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunking and caching to achieve large speedups. If installed, must be Version 2.4.6 or higher.
- bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines to achieve large speedups.

Note: You are highly encouraged to install these libraries, as they provide large speedups, especially if working with large data sets.

2.3.2 Optional Dependencies

- Cython: Only necessary to build development version. Version 0.23 or higher.
- SciPy: miscellaneous statistical functions
- xarray: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or higher is recommended.
- PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.1 or higher highly recommended.
- Feather Format: necessary for feather-based storage, version 0.3.1 or higher.
- SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended. Besides SQLAlchemy, you also need a database specific driver. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs. Some common drivers are:
 - psycopg2: for PostgreSQL
 - pymysql: for MySQL.
 - SQLite: for SQLite, this is included in Python’s standard library by default.
- matplotlib: for plotting
- For Excel I/O:
 - xld/xlwt: Excel reading (xld) and writing (xlwt)
 - openpyxl: openpyxl version 1.6.1 or higher (but lower than 2.0.0), or version 2.2 or higher, for writing .xlsx files (xld >= 0.9.0)
 - XlsxWriter: Alternative Excel writer
- Jinja2: Template engine for conditional HTML formatting.
- s3fs: necessary for Amazon S3 access (s3fs >= 0.0.7).
• **blosc**: for msgpack compression using **blosc**

• **One of PyQt4, PySide, pygtk, xsel, or xclip**: necessary to use `read_clipboard()`. Most package managers on Linux distributions will have `xclip` and/or `xsel` immediately available for installation.

• For Google BigQuery I/O - see [here](#)

• **Backports.lzma**: Only for Python 2, for writing to and/or reading from an xz compressed DataFrame in CSV; Python 3 support is built into the standard library.

• One of the following combinations of libraries is needed to use the top-level `read_html()` function:
 - BeautifulSoup4 and html5lib (Any recent version of html5lib is okay.)
 - BeautifulSoup4 and lxml
 - BeautifulSoup4 and html5lib and lxml
 - Only lxml, although see *HTML Table Parsing* for reasons as to why you should probably **not** take this approach.

Warning:

 - if you install BeautifulSoup4 you must install either lxml or html5lib or both. `read_html()` will **not** work with *only* BeautifulSoup4 installed.

 - You are highly encouraged to read *HTML Table Parsing gotchas*. It explains issues surrounding the installation and usage of the above three libraries.

 - You may need to install an older version of BeautifulSoup4: Versions 4.2.1, 4.1.3 and 4.0.2 have been confirmed for 64 and 32-bit Ubuntu/Debian

Note:

 - if you’re on a system with `apt-get` you can do

```bash
sudo apt-get build-dep python-lxml
```

 to get the necessary dependencies for installation of lxml. This will prevent further headaches down the line.

Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that you install these. A packaged distribution like Anaconda, or Enthought Canopy may be worth considering.
Table of contents:

- Where to start?
- Bug reports and enhancement requests
- Working with the code
 - Version control, Git, and GitHub
 - Getting started with Git
 - Forking
 - Creating a branch
 - Creating a development environment
 - Creating a Windows development environment
 - Making changes
- Contributing to the documentation
 - About the pandas documentation
 - How to build the pandas documentation
 - Requirements
 - Building the documentation
 - Building master branch documentation
- Contributing to the code base
 - Code standards
 - C (cpplint)
 - Python (PEP8)
 - Backwards Compatibility
 - Testing With Continuous Integration
 - Test-driven development/code writing
 - Writing tests
 - Transitioning to pytest
3.1 Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub “issues” tab and start looking through interesting issues. There are a number of issues listed under Docs and Difficulty Novice where you could start out.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

3.2 Bug reports and enhancement requests

Bug reports are an important part of making pandas more stable. Having a complete bug report will allow others to reproduce the bug and provide insight into fixing. Because many versions of pandas are supported, knowing version information will also identify improvements made since previous versions. Trying the bug-producing code out on the master branch is often a worthwhile exercise to confirm the bug still exists. It is also worth searching existing bug reports and pull requests to see if the issue has already been reported and/or fixed.

Bug reports must:

1. Include a short, self-contained Python snippet reproducing the problem. You can format the code nicely by using GitHub Flavored Markdown:

```python
>>> from pandas import DataFrame
>>> df = DataFrame(...)  
...
```

2. Include the full version string of pandas and its dependencies. You can use the built in function:

```python
>>> import pandas as pd
>>> pd.show_versions()
```
3. Explain why the current behavior is wrong/not desired and what you expect instead.
The issue will then show up to the pandas community and be open to comments/ideas from others.

3.3 Working with the code

Now that you have an issue you want to fix, enhancement to add, or documentation to improve, you need to learn how to work with GitHub and the pandas code base.

3.3.1 Version control, Git, and GitHub

To the new user, working with Git is one of the more daunting aspects of contributing to pandas. It can very quickly become overwhelming, but sticking to the guidelines below will help keep the process straightforward and mostly trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account. We use Git for version control to allow many people to work together on the project.

Some great resources for learning Git:

- the GitHub help pages.
- the NumPy’s documentation.
- Matthew Brett’s Pydagogue.

3.3.2 Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be completed before you can work seamlessly between your local repository and GitHub.

3.3.3 Forking

You will need your own fork to work on the code. Go to the pandas project page and hit the Fork button. You will want to clone your fork to your machine:

```bash
git clone git@github.com:your-user-name/pandas.git pandas-yourname
cd pandas-yourname
git remote add upstream git://github.com/pandas-dev/pandas.git
```

This creates the directory pandas-yourname and connects your repository to the upstream (main project) pandas repository.

3.3.4 Creating a branch

You want your master branch to reflect only production-ready code, so create a feature branch for making your changes. For example:

```bash
git branch shiny-new-feature
git checkout shiny-new-feature
```

The above can be simplified to:
This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific to one bug or feature so it is clear what the branch brings to pandas. You can have many shiny-new-features and switch in between them using the git checkout command.

To update this branch, you need to retrieve the changes from the master branch:

```shell
git fetch upstream
git rebase upstream/master
```

This will replay your commits on top of the latest pandas git master. If this leads to merge conflicts, you must resolve these before submitting your pull request. If you have uncommitted changes, you will need to `stash` them prior to updating. This will effectively store your changes and they can be reapplied after updating.

3.3.5 Creating a development environment

An easy way to create a pandas development environment is as follows.

- Install either Anaconda or miniconda
- Make sure that you have cloned the repository
- `cd` to the pandas source directory

Tell conda to create a new environment, named `pandas_dev`, or any other name you would like for this environment, by running:

```bash
conda create -n pandas_dev --file ci/requirements_dev.txt
```

For a python 3 environment:

```bash
conda create -n pandas_dev python=3 --file ci/requirements_dev.txt
```

Warning: If you are on Windows, see [here for a fully compliant Windows environment](#).

This will create the new environment, and not touch any of your existing environments, nor any existing python installation. It will install all of the basic dependencies of pandas, as well as the development and testing tools. If you would like to install other dependencies, you can install them as follows:

```bash
conda install -n pandas_dev -c pandas pytables scipy
```

To install all pandas dependencies you can do the following:

```bash
conda install -n pandas_dev -c pandas --file ci/requirements_all.txt
```

To work in this environment, Windows users should activate it as follows:

```bash
activate pandas_dev
```

Mac OSX / Linux users should use:

```bash
source activate pandas_dev
```
You will then see a confirmation message to indicate you are in the new development environment.

To view your environments:

```
conda info -e
```

To return to your home root environment in Windows:

```
deactivate
```

To return to your home root environment in OSX / Linux:

```
source deactivate
```

See the full conda docs [here](https://conda.io/docs/userguide/envs.html).

At this point you can easily do an *in-place* install, as detailed in the next section.

3.3.6 Creating a Windows development environment

To build on Windows, you need to have compilers installed to build the extensions. You will need to install the appropriate Visual Studio compilers, VS 2008 for Python 2.7, VS 2010 for 3.4, and VS 2015 for Python 3.5 and 3.6.

For Python 2.7, you can install the mingw compiler which will work equivalently to VS 2008:

```
conda install -n pandas_dev libpython
```

or use the Microsoft Visual Studio VC++ compiler for Python. Note that you have to check the *x64* box to install the *x64* extension building capability as this is not installed by default.

For Python 3.4, you can download and install the Windows 7.1 SDK. Read the references below as there may be various gotchas during the installation.

For Python 3.5 and 3.6, you can download and install the Visual Studio 2015 Community Edition.

Here are some references and blogs:

- https://cowboyprogrammer.org/building-python-wheels-for-windows/
- https://blog.ionelmc.ro/2014/12/21/compiling-python-extensions-on-windows/

3.3.7 Making changes

Before making your code changes, it is often necessary to build the code that was just checked out. There are two primary methods of doing this.

1. The best way to develop *pandas* is to build the C extensions in-place by running:

   ```bash
   python setup.py build_ext --inplace
   ```

 If you startup the Python interpreter in the *pandas* source directory you will call the built C extensions

2. Another very common option is to do a *develop* install of *pandas*:

3.3. Working with the code

377
python setup.py develop

This makes a symbolic link that tells the Python interpreter to import pandas from your development directory. Thus, you can always be using the development version on your system without being inside the clone directory.

3.4 Contributing to the documentation

If you’re not the developer type, contributing to the documentation is still of huge value. You don’t even have to be an expert on pandas to do so! Something as simple as rewriting small passages for clarity as you reference the docs is a simple but effective way to contribute. The next person to read that passage will be in your debt!

In fact, there are sections of the docs that are worse off after being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a simple way to ensure it will help the next person.

Documentation:

- About the pandas documentation
- How to build the pandas documentation
 - Requirements
 - Building the documentation
 - Building master branch documentation

3.4.1 About the pandas documentation

The documentation is written in reStructuredText, which is almost like writing in plain English, and built using Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more complex changes to the documentation as well.

Some other important things to know about the docs:

- The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder pandas/doc/.

The docstrings provide a clear explanation of the usage of the individual functions, while the documentation in this folder consists of tutorial-like overviews per topic together with some other information (what’s new, installation, etc).

- The docstrings follow the Numpy Docstring Standard, which is used widely in the Scientific Python community. This standard specifies the format of the different sections of the docstring. See this document for a detailed explanation, or look at some of the existing functions to extend it in a similar manner.

- The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the documentation which will be run during the doc build. For example:

  ```python
  x = 2
  x**3
  ```

 will be rendered as:
Almost all code examples in the docs are run (and the output saved) during the doc build. This approach means that code examples will always be up to date, but it does make the doc building a bit more complex.

Note: The .rst files are used to automatically generate Markdown and HTML versions of the docs. For this reason, please do not edit CONTRIBUTING.md directly, but instead make any changes to doc/source/contributing.rst. Then, to generate CONTRIBUTING.md, use pandoc with the following command:

```
pandoc doc/source/contributing.rst -t markdown_github > CONTRIBUTING.md
```

The utility script scripts/api_rst_coverage.py can be used to compare the list of methods documented in doc/source/api.rst (which is used to generate the API Reference page) and the actual public methods. This will identify methods documented in in doc/source/api.rst that are not actually class methods, and existing methods that are not documented in doc/source/api.rst.

3.4.2 How to build the pandas documentation

3.4.2.1 Requirements

First, you need to have a development environment to be able to build pandas (see the docs on creating a development environment above). Further, to build the docs, there are some extra requirements: you will need to have sphinx and ipython installed. numpydoc is used to parse the docstrings that follow the Numpy Docstring Standard (see above), but you don’t need to install this because a local copy of numpydoc is included in the pandas source code. nbsphinx is required to build the Jupyter notebooks included in the documentation.

If you have a conda environment named pandas_dev, you can install the extra requirements with:

```
conda install -n pandas_dev sphinx ipython nbconvert nbformat
conda install -n pandas_dev -c conda-forge nbsphinx
```

Furthermore, it is recommended to have all optional dependencies installed. This is not strictly necessary, but be aware that you will see some error messages when building the docs. This happens because all the code in the documentation is executed during the doc build, and so code examples using optional dependencies will generate errors. Run `pd.show_versions()` to get an overview of the installed version of all dependencies.

Warning: You need to have sphinx version >= 1.3.2.

3.4.2.2 Building the documentation

So how do you build the docs? Navigate to your local pandas/doc/ directory in the console and run:

```
python make.py html
```

Then you can find the HTML output in the folder pandas/doc/build/html/.

The first time you build the docs, it will take quite a while because it has to run all the code examples and build all the generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.
If you want to do a full clean build, do:

```bash
python make.py clean
python make.py html
```

Starting with pandas 0.13.1 you can tell `make.py` to compile only a single section of the docs, greatly reducing the turn-around time for checking your changes. You will be prompted to delete `.rst` files that aren’t required. This is okay because the prior versions of these files can be checked out from git. However, you must make sure not to commit the file deletions to your Git repository!

```bash
# omit autosummary and API section
python make.py clean
python make.py --no-api

# compile the docs with only a single section, that which is in indexing.rst
python make.py clean
python make.py --single indexing
```

For comparison, a full documentation build may take 10 minutes, a `--no-api` build may take 3 minutes and a single section may take 15 seconds. Subsequent builds, which only process portions you have changed, will be faster. Open the following file in a web browser to see the full documentation you just built:

```
pandas/docs/build/html/index.html
```

And you’ll have the satisfaction of seeing your new and improved documentation!

3.4.2.3 Building master branch documentation

When pull requests are merged into the `pandas` master branch, the main parts of the documentation are also built by Travis-CI. These docs are then hosted here, see also the Continuous Integration section.

3.5 Contributing to the code base

<table>
<thead>
<tr>
<th>Code Base:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Code standards</td>
</tr>
<tr>
<td>- C (cpplint)</td>
</tr>
<tr>
<td>- Python (PEP8)</td>
</tr>
<tr>
<td>- Backwards Compatibility</td>
</tr>
<tr>
<td>- Testing With Continuous Integration</td>
</tr>
<tr>
<td>- Test-driven development/code writing</td>
</tr>
<tr>
<td>- Writing tests</td>
</tr>
<tr>
<td>- Transitioning to pytest</td>
</tr>
<tr>
<td>- Using pytest</td>
</tr>
<tr>
<td>- Running the test suite</td>
</tr>
</tbody>
</table>
3.5.1 Code standards

Writing good code is not just about what you write. It is also about how you write it. During Continuous Integration testing, several tools will be run to check your code for stylistic errors. Generating any warnings will cause the test to fail. Thus, good style is a requirement for submitting code to pandas.

In addition, because a lot of people use our library, it is important that we do not make sudden changes to the code that could have the potential to break a lot of user code as a result, that is, we need it to be as backwards compatible as possible to avoid mass breakages.

Additional standards are outlined on the code style wiki page.

3.5.1.1 C (cpplint)

pandas uses the Google standard. Google provides an open source style checker called cpplint, but we use a fork of it that can be found here. Here are some of the more common cpplint issues:

- we restrict line-length to 80 characters to promote readability
- every header file must include a header guard to avoid name collisions if re-included

Continuous Integration will run the cpplint tool and report any stylistic errors in your code. Therefore, it is helpful before submitting code to run the check yourself:

```bash
cpplint --extensions=c,h --headers=h --filter=-readability/casting,-runtime/int,--build/include_subdir modified-c-file
```

You can also run this command on an entire directory if necessary:

```bash
cpplint --extensions=c,h --headers=h --filter=-readability/casting,-runtime/int,--build/include_subdir --recursive modified-c-directory
```

To make your commits compliant with this standard, you can install the ClangFormat tool, which can be downloaded here. To configure, in your home directory, run the following command:

```bash
clang-format style=google -dump-config > .clang-format
```

Then modify the file to ensure that any indentation width parameters are at least four. Once configured, you can run the tool as follows:

```bash
clang-format modified-c-file
```

This will output what your file will look like if the changes are made, and to apply them, just run the following command:

```bash
clang-format -i modified-c-file
```

To run the tool on an entire directory, you can run the following analogous commands:

```bash
clang-format modified-c-directory/*.c modified-c-directory/*.h
clang-format -i modified-c-directory/*.c modified-c-directory/*.h
```
Do note that this tool is best-effort, meaning that it will try to correct as many errors as possible, but it may not correct all of them. Thus, it is recommended that you run `cpplint` to double check and make any other style fixes manually.

3.5.1.2 Python (PEP8)

`pandas` uses the PEP8 standard. There are several tools to ensure you abide by this standard. Here are some of the more common PEP8 issues:

- we restrict line-length to 79 characters to promote readability
- passing arguments should have spaces after commas, e.g. `foo(arg1, arg2, kw1='bar')`

Continuous Integration will run the `flake8` tool and report any stylistic errors in your code. Therefore, it is helpful before submitting code to run the check yourself on the diff:

```bash
git diff master --name-only -- '*.py' | flake8 --diff
```

This command will catch any stylistic errors in your changes specifically, but beware it may not catch all of them. For example, if you delete the only usage of an imported function, it is stylistically incorrect to import an unused function. However, style-checking the diff will not catch this because the actual import is not part of the diff. Thus, for completeness, you should run this command, though it will take longer:

```bash
git diff master --name-only -- '*.py' | grep 'pandas/' | xargs -r flake8
```

Note that on OSX, the `-r` flag is not available, so you have to omit it and run this slightly modified command:

```bash
git diff master --name-only -- '*.py' | grep 'pandas/' | xargs flake8
```

3.5.1.3 Backwards Compatibility

Please try to maintain backward compatibility. `pandas` has lots of users with lots of existing code, so don’t break it if at all possible. If you think breakage is required, clearly state why as part of the pull request. Also, be careful when changing method signatures and add deprecation warnings where needed.

3.5.2 Testing With Continuous Integration

The `pandas` test suite will run automatically on Travis-CI, Appveyor, and Circle CI continuous integration services, once your pull request is submitted. However, if you wish to run the test suite on a branch prior to submitting the pull request, then the continuous integration services need to be hooked to your GitHub repository. Instructions are here for Travis-CI, Appveyor, and CircleCI.

A pull-request will be considered for merging when you have an all ‘green’ build. If any tests are failing, then you will get a red ‘X’, where you can click through to see the individual failed tests. This is an example of a green build.
3.5.3 Test-driven development/code writing

pandas is serious about testing and strongly encourages contributors to embrace test-driven development (TDD). This development process “relies on the repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new function, then produces the minimum amount of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can be taken from the original GitHub issue. However, it is always worth considering additional use cases and writing corresponding tests.

Adding tests is one of the most common requests after code is pushed to *pandas*. Therefore, it is worth getting in the habit of writing tests ahead of time so this is never an issue.

Like many packages, *pandas* uses *pytest* and the convenient extensions in *numpy.testing*.

3.5.3.1 Writing tests

All tests should go into the `tests` subdirectory of the specific package. This folder contains many current examples of tests, and we suggest looking to these for inspiration. If your test requires working with files or network connectivity, there is more information on the testing page of the wiki.

The *pandas.util.testing* module has many special *assert* functions that make it easier to make statements about whether Series or DataFrame objects are equivalent. The easiest way to verify that your code is correct is to explicitly construct the result you expect, then compare the actual result to the expected correct result:

```python
def test_pivot(self):
    data = {
```
3.5.3.2 Transitioning to pytest

pandas existing test structure is mostly classed based, meaning that you will typically find tests wrapped in a class.

```python
class TestReallyCoolFeature(object):
    ....
```

Going forward, we are moving to a more functional style using the *pytest* framework, which offers a richer testing framework that will facilitate testing and developing. Thus, instead of writing test classes, we will write test functions like this:

```python
def test_really_cool_feature():
    ....
```

3.5.3.3 Using pytest

Here is an example of a self-contained set of tests that illustrate multiple features that we like to use.

- functional style: tests are like `test_*` and only take arguments that are either fixtures or parameters
- using `parametrize`: allow testing of multiple cases
- fixture, code for object construction, on a per-test basis
- using bare `assert` for scalars and truth-testing
- `tm.assert_series_equal` (and its counter part `tm.assert_frame_equal`), for pandas object comparisons.
- the typical pattern of constructing an expected and comparing versus the result

We would name this file `test_cool_feature.py` and put it in an appropriate place in the `pandas/tests/` structure.

```python
import pytest
import numpy as np
import pandas as pd
from pandas.util import testing as tm

@pytest.mark.parametrize('dtype', ['int8', 'int16', 'int32', 'int64'])
def test_dtypes(dtype):
    assert str(np.dtype(dtype)) == dtype
```
@pytest.fixture
def series():
 return pd.Series([1, 2, 3])

@ pytest.fixture(params=['int8', 'int16', 'int32', 'int64'])
def dtype(request):
 return request.param

def test_series(series, dtype):
 result = series.astype(dtype)
 assert result.dtype == dtype
 expected = pd.Series([1, 2, 3], dtype=dtype)
 tm.assert_series_equal(result, expected)

A test run of this yields

((pandas) bash-3.2$ pytest test_cool_feature.py -v
================================== test session starts ==================================
platform darwin -- Python 3.5.2, pytest-3.0.5, py-1.4.31, pluggy-0.4.0
collected 8 items
tester.py::test_dtypes[int8] PASSED
tester.py::test_dtypes[int16] PASSED
tester.py::test_dtypes[int32] PASSED
tester.py::test_dtypes[int64] PASSED
tester.py::test_series[int8] PASSED
tester.py::test_series[int16] PASSED
tester.py::test_series[int32] PASSED
tester.py::test_series[int64] PASSED

Tests that we have parametrized are now accessible via the test name, for example we could run these with -k int8 to sub-select only those tests which match int8.

((pandas) bash-3.2$ pytest test_cool_feature.py -v -k int8
================================== test session starts ==================================
platform darwin -- Python 3.5.2, pytest-3.0.5, py-1.4.31, pluggy-0.4.0
collected 8 items
test_cool_feature.py::test_dtypes[int8] PASSED
test_cool_feature.py::test_series[int8] PASSED

3.5.4 Running the test suite

The tests can then be run directly inside your Git clone (without having to install pandas) by typing:

pytest pandas

The tests suite is exhaustive and takes around 20 minutes to run. Often it is worth running only a subset of tests first around your changes before running the entire suite.

The easiest way to do this is with:

pytest pandas/path/to/test.py -k regex_matching_test_name

3.5. Contributing to the code base
Or with one of the following constructs:

```bash
pytest pandas/tests/[test-module].py
pytest pandas/tests/[test-module].py::[TestClass]
pytest pandas/tests/[test-module].py::[TestClass]::[test_method]
```

Using `pytest-xdist`, one can speed up local testing on multicore machines. To use this feature, you will need to install `pytest-xdist` via:

```
pip install pytest-xdist
```

Two scripts are provided to assist with this. These scripts distribute testing across 4 threads.

On Unix variants, one can type:

```
test_fast.sh
```

On Windows, one can type:

```
test_fast.bat
```

This can significantly reduce the time it takes to locally run tests before submitting a pull request.

For more, see the `pytest` documentation.

New in version 0.20.0.

Furthermore one can run

```
pd.test()
```

with an imported pandas to run tests similarly.

3.5.5 Running the performance test suite

Performance matters and it is worth considering whether your code has introduced performance regressions. `pandas` is in the process of migrating to `asv benchmarks` to enable easy monitoring of the performance of critical `pandas` operations. These benchmarks are all found in the `pandas/asv_bench` directory. `asv` supports both python2 and python3.

To use all features of `asv`, you will need either `conda` or `virtualenv`. For more details please check the `asv` installation webpage.

To install `asv`:

```
pip install git+https://github.com/spacetelescope/asv
```

If you need to run a benchmark, change your directory to `asv_bench/` and run:

```
asv continuous -f 1.1 upstream/master HEAD
```

You can replace `HEAD` with the name of the branch you are working on, and report benchmarks that changed by more than 10%. The command uses `conda` by default for creating the benchmark environments. If you want to use `virtualenv` instead, write:

```
asv continuous -f 1.1 -E virtualenv upstream/master HEAD
```
The `-E virtualenv` option should be added to all `asv` commands that run benchmarks. The default value is defined in `asv.conf.json`.

Running the full test suite can take up to one hour and use up to 3GB of RAM. Usually it is sufficient to paste only a subset of the results into the pull request to show that the committed changes do not cause unexpected performance regressions. You can run specific benchmarks using the `-b` flag, which takes a regular expression. For example, this will only run tests from a `pandas/asv_bench/benchmarks/groupby.py` file:

```
asv continuous -f 1.1 upstream/master HEAD -b ^groupby
```

If you want to only run a specific group of tests from a file, you can do it using `,` as a separator. For example:

```
asv continuous -f 1.1 upstream/master HEAD -b groupby.groupby_agg_builtins
```

will only run the `groupby_agg_builtins` benchmark defined in `groupby.py`.

You can also run the benchmark suite using the version of `pandas` already installed in your current Python environment. This can be useful if you do not have virtualenv or conda, or are using the `setup.py develop` approach discussed above; for the in-place build you need to set `PYTHONPATH`, e.g. `PYTHONPATH=$PWD/../`.

```
asv [remaining arguments]
```

This will display stderr from the benchmarks, and use your local `python` that comes from your `$PATH`.

Information on how to write a benchmark and how to use `asv` can be found in the `asv` documentation.

3.5.6 Documenting your code

Changes should be reflected in the release notes located in `doc/source/whatsnew/vx.y.z.txt`. This file contains an ongoing change log for each release. Add an entry to this file to document your fix, enhancement or (unavoidable) breaking change. Make sure to include the GitHub issue number when adding your entry (using `"GH1234"` where `1234` is the issue/pull request number).

If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. This can be done following the section regarding documentation above. Further, to let users know when this feature was added, the `versionadded` directive is used. The sphinx syntax for that is:

```
.. versionadded:: 0.17.0
```

This will put the text `New in version 0.17.0` wherever you put the sphinx directive. This should also be put in the docstring when adding a new function or method (example) or a new keyword argument (example).

3.6 Contributing your changes to `pandas`

3.6.1 Committing your code

Keep style fixes to a separate commit to make your pull request more readable.

Once you’ve made changes, you can see them by typing:
If you have created a new file, it is not being tracked by git. Add it by typing:

```
git add path/to/file-to-be-added.py
```

Doing `git status` again should give something like:

```
# On branch shiny-new-feature
#
# modified: /relative/path/to/file-you-added.py
#
```

Finally, commit your changes to your local repository with an explanatory message. Pandas uses a convention for commit message prefixes and layout. Here are some common prefixes along with general guidelines for when to use them:

- **ENH**: Enhancement, new functionality
- **BUG**: Bug fix
- **DOC**: Additions/updates to documentation
- **TST**: Additions/updates to tests
- **BLD**: Updates to the build process/scripts
- **PERF**: Performance improvement
- **CLN**: Code cleanup

The following defines how a commit message should be structured. Please reference the relevant GitHub issues in your commit message using GH1234 or #1234. Either style is fine, but the former is generally preferred:

- a subject line with < 80 chars.
- One blank line.
- Optionally, a commit message body.

Now you can commit your changes in your local repository:

```
git commit -m
```

3.6.2 Combining commits

If you have multiple commits, you may want to combine them into one commit, often referred to as “squashing” or “rebasing”. This is a common request by package maintainers when submitting a pull request as it maintains a more compact commit history. To rebase your commits:

```
git rebase -i HEAD~#
```

Where # is the number of commits you want to combine. Then you can pick the relevant commit message and discard others.

To squash to the master branch do:

```
git rebase -i master
```
Use the \texttt{s} option on a commit to \texttt{squash}, meaning to keep the commit messages, or \texttt{f} to \texttt{fixup}, meaning to merge the commit messages.

Then you will need to push the branch (see below) forcefully to replace the current commits with the new ones:

\begin{verbatim}
git push origin shiny-new-feature -f
\end{verbatim}

3.6.3 Pushing your changes

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

\begin{verbatim}
git push origin shiny-new-feature
\end{verbatim}

Here \texttt{origin} is the default name given to your remote repository on GitHub. You can see the remote repositories:

\begin{verbatim}
git remote -v
\end{verbatim}

If you added the upstream repository as described above you will see something like:

\begin{verbatim}
origin git@github.com:yourname/pandas.git (fetch)
origin git@github.com:yourname/pandas.git (push)
upstream git://github.com/pandas-dev/pandas.git (fetch)
upstream git://github.com/pandas-dev/pandas.git (push)
\end{verbatim}

Now your code is on GitHub, but it is not yet a part of the \textit{pandas} project. For that to happen, a pull request needs to be submitted on GitHub.

3.6.4 Review your code

When you’re ready to ask for a code review, file a pull request. Before you do, once again make sure that you have followed all the guidelines outlined in this document regarding code style, tests, performance tests, and documentation. You should also double check your branch changes against the branch it was based on:

1. Navigate to your repository on GitHub – \url{https://github.com/your-user-name/pandas}
2. Click on Branches
3. Click on the Compare button for your feature branch
4. Select the base and compare branches, if necessary. This will be \texttt{master} and \texttt{shiny-new-feature}, respectively.

3.6.5 Finally, make the pull request

If everything looks good, you are ready to make a pull request. A pull request is how code from a local repository becomes available to the GitHub community and can be looked at and eventually merged into the master version. This pull request and its associated changes will eventually be committed to the master branch and available in the next release. To submit a pull request:

1. Navigate to your repository on GitHub
2. Click on the Pull Request button
3. You can then click on Commits and Files Changed to make sure everything looks okay one last time
4. Write a description of your changes in the Preview Discussion tab
5. Click Send Pull Request.

This request then goes to the repository maintainers, and they will review the code. If you need to make more changes, you can make them in your branch, push them to GitHub, and the pull request will be automatically updated. Pushing them to GitHub again is done by:

```
git push -f origin shiny-new-feature
```

This will automatically update your pull request with the latest code and restart the Continuous Integration tests.

3.6.6 Delete your merged branch (optional)

Once your feature branch is accepted into upstream, you’ll probably want to get rid of the branch. First, merge upstream master into your branch so git knows it is safe to delete your branch:

```
git fetch upstream
git checkout master
git merge upstream/master
```

Then you can just do:

```
git branch -d shiny-new-feature
```

Make sure you use a lower-case `-d`, or else git won’t warn you if your feature branch has not actually been merged. The branch will still exist on GitHub, so to delete it there do:

```
git push origin --delete shiny-new-feature
```
pandas consists of the following things

- A set of labeled array data structures, the primary of which are Series and DataFrame
- Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
- An integrated group by engine for aggregating and transforming data sets
- Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies
- Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading pandas objects from the fast and efficient PyTables/HDF5 format.
- Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or mostly constant (some fixed value)
- Moving window statistics (rolling mean, rolling standard deviation, etc.)
- Static and moving window linear and panel regression

4.1 Data structures at a glance

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Series</td>
<td>1D labeled homogeneously-typed array</td>
</tr>
<tr>
<td>2</td>
<td>DataFrame</td>
<td>General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed columns</td>
</tr>
<tr>
<td>3</td>
<td>Panel</td>
<td>General 3D labeled, also size-mutable array</td>
</tr>
</tbody>
</table>

4.1.1 Why more than 1 data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in downstream functions.
For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more readable code:

```
for col in df.columns:
    series = df[col]
    # do something with series
```

4.2 Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor immutability where sensible.

4.3 Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community experts can answer through Stack Overflow.

Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should be sent to: support@lambdafoundry.com

4.4 Credits

pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR continued to provide resources for development through the end of 2011, and continues to contribute bug reports today.

Since January 2012, Lambda Foundry has been providing development resources, as well as commercial support, training, and consulting for pandas.

pandas is only made possible by a group of people around the world like you who have contributed new code, bug reports, fixes, comments and ideas. A complete list can be found on Github.

4.5 Development Team

pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re interested in contributing, please visit the project website.

4.6 License

```
=======
License
=======
pandas is distributed under a 3-clause ("Simplified" or "New") BSD
```
license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have BSD-compatible licenses, are included. Their licenses follow the pandas license.

pandas license ============

Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.

Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Copyright Holders
==========================

AQR Capital Management began pandas development in 2008. Development was led by Wes McKinney. AQR released the source under this license in 2009. Wes is now an employee of Lambda Foundry, and remains the pandas project lead.

The PyData Development Team is the collection of developers of the PyData project. This includes all of the PyData sub-projects, including pandas. The core team that coordinates development on GitHub can be found here: http://github.com/pydata.

Full credits for pandas contributors can be found in the documentation.

Our Copyright Policy
====================

4.6. License 393
PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important to note that these contributions are typically only changes to the repositories. Thus, the PyData source code, in its entirety, is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire PyData Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change when they commit the change to one of the PyData repositories.

With this in mind, the following banner should be used in any source code file to indicate the copyright and license terms:

```
#----------------------------------------------------------------------
# Copyright (c) 2012, PyData Development Team
# All rights reserved.
#
# Distributed under the terms of the BSD Simplified License.
#
# The full license is in the LICENSE file, distributed with this software.
#----------------------------------------------------------------------
```

Other licenses can be found in the LICENSES directory.
10 MINUTES TO PANDAS

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the *Cookbook*. Customarily, we import as follows:

```
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
```

5.1 Object Creation

See the *Data Structure Intro section*.

Creating a *Series* by passing a list of values, letting pandas create a default integer index:

```
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
```

```
In [5]: s
Out[5]:
0   1.0
1   3.0
2   5.0
3   NaN
4   6.0
5   8.0
dtype: float64
```

Creating a *DataFrame* by passing a numpy array, with a datetime index and labeled columns:

```
In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
```

```
In [8]: df
Out[8]:
     A         B         C         D
0  0.7530   -0.0458   -0.3217     0.1425
1  0.6577   -0.4868   -0.8138   -0.3879
2 -0.3587   -0.4903   -0.7521   -0.6083
3  0.6268   -0.6032    0.4752   -0.7936
4 -0.5133    0.1002   -0.1864    0.0637
5 -0.8856   -0.9189    0.4701    0.4260
```
Creating a DataFrame by passing a dict of objects that can be converted to series-like.

```
In [10]: df2 = pd.DataFrame({'A': 1.,
                       'B': pd.Timestamp('20130102'),
                       'C': pd.Series(1, index=list(range(4)), dtype='float32'),
                       'D': np.array([3] * 4, dtype='int32'),
                       'E': pd.Categorical(['test', 'train', 'test', 'train']),
                       'F': 'foo'})
```

```
In [11]: df2
Out[11]:
   A         B        C     D     E     F
0  1.0 2013-01-02  1.0  3.0 test  foo
1  1.0 2013-01-02  1.0  3.0 train foo
2  1.0 2013-01-02  1.0  3.0 test  foo
3  1.0 2013-01-02  1.0  3.0 train foo
```

Having specific dtypes

```
In [12]: df2.dtypes
Out[12]:
     A    B      C    D     E    F
dtypes: float64, datetime64[ns],    
        float32, int32, category, object
```

If you're using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here's a subset of the attributes that will be completed:

```
In [13]: df2.<TAB>
df2.A    df2.bool
df2.abs  df2.boxplot
df2.add  df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all  df2.columns
df2.any  df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.as_blocks df2.convert_objects
df2.asfreq df2.copy
df2.as_matrix df2.corr
df2.astype df2.corrwith
df2.at    df2.count
df2.at_time df2.cov
```
As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes have been truncated for brevity.

5.2 Viewing Data

See the Basics section

See the top & bottom rows of the frame

```
In [14]: df.head()
Out[14]:
        A         B         C         D
2013-01-01  0.4691  -0.2829  -1.5091  -1.1356
2013-01-02  1.2121  -0.1732   0.1192  -1.0442
2013-01-03  0.8618  -2.1046  -0.4949   1.0718
2013-01-04  0.7215   -2.1046  -0.4949   1.0718
2013-01-05  0.4249   0.5670   0.2762  -1.0874
```

```
In [15]: df.tail(3)
Out[15]:
   A         B         C         D
2013-01-04  0.7215  -0.7068  -1.0396   0.2718
2013-01-05  0.4249   0.5670   0.2762  -1.0874
2013-01-06  0.6737   0.1136  -1.4784   0.5249
```

Display the index, columns, and the underlying numpy data

```
In [16]: df.index
Out[16]:
                '2013-01-05', '2013-01-06'],
                dtype='datetime64[ns]', freq='D')
```

```
In [17]: df.columns
Out[17]:
Index(['A', 'B', 'C', 'D'], dtype='object')
```

```
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [ 0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7215, -0.7068, -1.0396,  0.2719],
       [ 0.4249,  0.5670,  0.2762, -1.0874],
       [ 0.6737,  0.1136, -1.4784,  0.5249]])
```

Describe shows a quick statistic summary of your data
In [19]: df.describe()
Out[19]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>6.0000</td>
<td>6.0000</td>
<td>6.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>mean</td>
<td>0.0737</td>
<td>-0.4311</td>
<td>-0.6878</td>
<td>-0.2331</td>
</tr>
<tr>
<td>std</td>
<td>0.8432</td>
<td>0.9228</td>
<td>0.7799</td>
<td>0.9731</td>
</tr>
<tr>
<td>min</td>
<td>-0.8618</td>
<td>-2.1046</td>
<td>-1.5091</td>
<td>-1.1356</td>
</tr>
<tr>
<td>25%</td>
<td>-0.6115</td>
<td>-0.6008</td>
<td>-1.3687</td>
<td>-1.0766</td>
</tr>
<tr>
<td>50%</td>
<td>0.0220</td>
<td>-0.2280</td>
<td>-0.7672</td>
<td>-0.3861</td>
</tr>
<tr>
<td>75%</td>
<td>0.6584</td>
<td>0.0419</td>
<td>0.2762</td>
<td>0.4617</td>
</tr>
<tr>
<td>max</td>
<td>1.2121</td>
<td>0.5670</td>
<td>0.2762</td>
<td>1.0718</td>
</tr>
</tbody>
</table>

Transposing your data

In [20]: df.T
Out[20]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.4691</td>
<td>1.2121</td>
<td>-0.8618</td>
<td>0.7215</td>
<td>-0.4249</td>
<td>-0.6737</td>
</tr>
<tr>
<td>B</td>
<td>-0.2829</td>
<td>-0.1732</td>
<td>-2.1046</td>
<td>-0.7067</td>
<td>0.5670</td>
<td>0.1136</td>
</tr>
<tr>
<td>C</td>
<td>-1.5091</td>
<td>0.1192</td>
<td>-0.4949</td>
<td>-1.0396</td>
<td>0.2762</td>
<td>-1.4784</td>
</tr>
<tr>
<td>D</td>
<td>-1.1356</td>
<td>-1.0442</td>
<td>1.0718</td>
<td>0.2719</td>
<td>-1.0874</td>
<td>0.5249</td>
</tr>
</tbody>
</table>

Sorting by an axis

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-1.1356</td>
<td>-1.5091</td>
<td>-0.2829</td>
<td>0.4691</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>-1.0442</td>
<td>-0.1732</td>
<td>-2.1046</td>
<td>1.2121</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>1.0718</td>
<td>-0.4949</td>
<td>-1.0396</td>
<td>0.2719</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.2719</td>
<td>-1.0396</td>
<td>-0.7067</td>
<td>0.7215</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-1.0874</td>
<td>0.2762</td>
<td>0.5670</td>
<td>-0.4249</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>0.5249</td>
<td>-1.4784</td>
<td>0.1136</td>
<td>-0.6737</td>
</tr>
</tbody>
</table>

Sorting by values

In [22]: df.sort_values(by='B')
Out[22]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-03</td>
<td>-0.8618</td>
<td>-2.1046</td>
<td>-0.4949</td>
<td>1.0718</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.7215</td>
<td>-0.7067</td>
<td>-1.0396</td>
<td>0.2719</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>0.4691</td>
<td>-0.2829</td>
<td>-1.5091</td>
<td>0.7215</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.2121</td>
<td>-0.1732</td>
<td>-2.1046</td>
<td>1.0718</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.6737</td>
<td>0.1136</td>
<td>-1.4784</td>
<td>0.5249</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.4249</td>
<td>0.5670</td>
<td>0.2762</td>
<td>-1.0874</td>
</tr>
</tbody>
</table>

5.3 Selection

Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing
5.3.1 Getting

Selecting a single column, which yields a `Series`, equivalent to `df['A']`

```
In [23]: df['A']
Out[23]:
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64
```

Selecting via `[]`, which slices the rows.

```
In [24]: df[0:3]
Out[24]:
      A      B      C      D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
```

```
In [25]: df['20130102':'20130104']
Out[25]:
      A      B      C      D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
```

5.3.2 Selection by Label

See more in `Selection by Label`

For getting a cross section using a label

```
In [26]: df.loc[dates[0]]
Out[26]:
      A      B      C      D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
```

```
In [27]: df.loc[:,['A','B']]
Out[27]:
      A      B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
```

5.3. Selection
Showing label slicing, both endpoints are *included*

```python
In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
   A    B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
```

Reduction in the dimensions of the returned object

```python
In [29]: df.loc['20130102', ['A','B']]
Out[29]:
    A    B
Name: 2013-01-02 00:00:00, dtype: float64
```

For getting a scalar value

```python
In [30]: df.loc[dates[0], 'A']
Out[30]:
0.46911229990718628
```

For getting fast access to a scalar (equiv to the prior method)

```python
In [31]: df.at[dates[0], 'A']
Out[31]:
0.46911229990718628
```

5.3.3 Selection by Position

See more in *Selection by Position*

Select via the position of the passed integers

```python
In [32]: df.iloc[3]
Out[32]:
   A    C    D
2013-01-04  0.721555 -1.039575  0.271860
```

By integer slices, acting similar to numpy/python

```python
In [33]: df.iloc[3:5,0:2]
Out[33]:
   A    B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
```

By lists of integer position locations, similar to the numpy/python style

```python
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
   A    C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232
```
For slicing rows explicitly

<table>
<thead>
<tr>
<th>In [35]: df.iloc[1:3,:]</th>
<th>Out [35]:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1.212112</td>
</tr>
<tr>
<td></td>
<td>-0.861849</td>
</tr>
</tbody>
</table>

For slicing columns explicitly

<table>
<thead>
<tr>
<th>In [36]: df.iloc[:,1:3]</th>
<th>Out [36]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>2013-01-01 -0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>2013-01-02 -0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2013-01-03 -2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2013-01-04 -0.706771</td>
<td>-1.039575</td>
</tr>
<tr>
<td>2013-01-05 0.567020</td>
<td>0.276232</td>
</tr>
<tr>
<td>2013-01-06 0.113648</td>
<td>-1.478427</td>
</tr>
</tbody>
</table>

For getting a value explicitly

<table>
<thead>
<tr>
<th>In [37]: df.iloc[1,1]</th>
<th>Out [37]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.17321464905330858</td>
<td></td>
</tr>
</tbody>
</table>

For getting fast access to a scalar (equiv to the prior method)

<table>
<thead>
<tr>
<th>In [38]: df.iat[1,1]</th>
<th>Out [38]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.17321464905330858</td>
<td></td>
</tr>
</tbody>
</table>

5.3.4 Boolean Indexing

Using a single column’s values to select data.

<table>
<thead>
<tr>
<th>In [39]: df[df.A > 0]</th>
<th>Out [39]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2013-01-01 0.469112</td>
<td>-0.282863</td>
</tr>
<tr>
<td>2013-01-02 1.212112</td>
<td>-0.173215</td>
</tr>
<tr>
<td>2013-01-04 0.721555</td>
<td>-0.706771</td>
</tr>
</tbody>
</table>

Selecting values from a DataFrame where a boolean condition is met.

<table>
<thead>
<tr>
<th>In [40]: df[df > 0]</th>
<th>Out [40]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2013-01-01 0.469112</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-02 1.212112</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-03 NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-04 0.721555</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-05 NaN</td>
<td>0.567020</td>
</tr>
<tr>
<td>2013-01-06 NaN</td>
<td>0.113648</td>
</tr>
</tbody>
</table>

Using the isin() method for filtering:

| In [41]: df2 = df.copy() |
In [42]: df2['E'] = ['one', 'one','two','three','four','three']
In [43]: df2
Out[43]:
 A B C D E
0 2013-01-01 0.469112 -0.282863 -1.509059 one
1 2013-01-02 1.212112 -0.173215 0.119209 one
2 2013-01-03 -0.861849 -2.104569 -0.494929 two
3 2013-01-04 0.721555 -0.706771 -1.039575 three
4 2013-01-05 -0.424972 0.567020 -1.087401 three
5 2013-01-06 -0.673690 0.113648 -1.478427 three

In [44]: df2[df2['E'].isin(['two','four'])]
 →
 A B C D E
0 2013-01-03 -0.861849 -2.104569 -0.494929 two
1 2013-01-05 -0.424972 0.567020 -1.087401 four

5.3.5 Setting

Setting a new column automatically aligns the data by the indexes

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

Setting values by label

In [48]: df.at[dates[0],'A'] = 0

Setting values by position

In [49]: df.iat[0,1] = 0

Setting by assigning with a numpy array

In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

The result of the prior setting operations
A `where` operation with setting.

```python
In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
```

<table>
<thead>
<tr>
<th>Date</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>-1.212112</td>
<td>-0.173215</td>
<td>-0.119209</td>
<td>-5</td>
<td>-1.0</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>-5</td>
<td>-2.0</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>-0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>-5</td>
<td>-3.0</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.424972</td>
<td>-0.567020</td>
<td>-0.276232</td>
<td>-5</td>
<td>-4.0</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.673690</td>
<td>-0.113648</td>
<td>-1.478427</td>
<td>-5</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

5.4 Missing Data

Pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the [Missing Data section](#).

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

```python
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1
In [57]: df1
```

<table>
<thead>
<tr>
<th>Date</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5</td>
<td>NaN</td>
<td>1.0</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>5</td>
<td>2.0</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>5</td>
<td>3.0</td>
<td>NaN</td>
</tr>
</tbody>
</table>

To drop any rows that have missing data.

```python
In [58]: df1.dropna(how='any')
```

<table>
<thead>
<tr>
<th>Date</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Filling missing data

```python
In [59]: df1.fillna(value=5)
```

<table>
<thead>
<tr>
<th>Date</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

5.4. Missing Data
To get the boolean mask where values are `nan`

```python
In [60]: pd.isnull(df1)
Out[60]:
   2013-01-01    2013-01-02    2013-01-03    2013-01-04
A B C D F E
False False False False True False
False False False False False False
False False False False False True
False False False False False True
```

5.5 Operations

See the *Basic section on Binary Ops*

5.5.1 Stats

Operations in general *exclude* missing data.

Performing a descriptive statistic

```python
In [61]: df.mean()
Out[61]:
   A    -0.004474
   B     -0.383981
   C    -0.687758
   D      5.000000
   F      3.000000
dtype: float64
```

Same operation on the other axis

```python
In [62]: df.mean(1)
Out[62]:
  2013-01-01  0.872735
  2013-01-02  1.431621
  2013-01-03  0.707731
  2013-01-04  1.395042
  2013-01-05  1.883656
  2013-01-06  1.592306
Freq: D, dtype: float64
```

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

```python
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
```

```python
In [64]: s
Out[64]:
  2013-01-01    NaN
  2013-01-02    NaN
  2013-01-03   1.0
  2013-01-04   3.0
  2013-01-05   5.0
```
5.5.2 Apply

Applying functions to the data

```
In [66]: df.apply(np.cumsum)
Out[66]:
   A   B   C   D   F
2013-01-01 0.0 0.0 -1.5 5.0 NaN
2013-01-02 1.2 1.2 -1.3 10.0 1.0
2013-01-03 0.3 0.3 -1.9 15.0 3.0
2013-01-04 1.1 1.1 -2.9 20.0 6.0
2013-01-05 0.6 0.6 -2.6 25.0 10.0
2013-01-06 0.2 0.2 -3.3 30.0 15.0
```

```
In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
   A 2.07396
   B 2.67159
   C 1.78529
   D 0.00000
   F 4.00000
dtype: float64
```

5.5.3 Histogramming

See more at Histogramming and Discretization

```
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
```
5.5.4 String Methods

Series is equipped with a set of string processing methods in the \texttt{str} attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in \texttt{str} generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

```python
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
```

```python
In [72]: s.str.lower()
Out[72]:
0   a
1   b
2   c
3  aaba
4  baca
5   NaN
6   caba
7    dog
8    cat
dtype: object
```

5.6 Merge

5.6.1 Concat

\textit{pandas} provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the
\textit{Merging section}

Concatenating pandas objects together with \texttt{concat ():}

```python
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
```

```python
Out[73]:
   0       1       2       3
0 0.548702 1.467327 -1.015962 -0.483075
1 0.637550 -1.217659 -0.691519 -1.745505
2 0.263952 0.991460 -0.919069 0.266046
3 0.709661 1.669052 1.037882 -1.705775
4 0.919854 -0.042379 1.247642 -0.009920
```
5.6.2 Join

SQL style merges. See the Database style joining.

```
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [79]: left
Out[79]:
   key lval
0  foo   1
1  foo   2
In [80]: right
   key rval
0  foo   4
1  foo   5
In [81]: pd.merge(left, right, on='key')
   key lval rval
0  foo   1    4
1  foo   1    5
2  foo   2    4
3  foo   2    5

Another example that can be given is:
```

```
in [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
```
5.6.3 Append

Append rows to a dataframe. See the Appendix.

```python
In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df
Out[88]:
     A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]:
     A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610
```
5.7 Grouping

By “group by” we are referring to a process involving one or more of the following steps

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

See the *Grouping section*

```python
In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
'B': ['one', 'one', 'two', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})

In [92]: df
Out[92]:
A  B  C  D
0  foo one -1.202872 -0.055224
1  bar one -1.814470  2.395985
2  foo two  1.018601  1.552825
3  bar three -0.595447  0.166599
4  foo two  1.395433  0.047609
5  bar two -0.392670 -0.136473
6  foo one  0.007207 -0.561757
7  foo three  1.928123 -1.623033
```

Grouping and then applying a function `sum` to the resulting groups.

```python
In [93]: df.groupby('A').sum()
Out[93]:
     C     D
A
bar -2.802588  2.42611
foo  3.146492 -0.63958
```

Grouping by multiple columns forms a hierarchical index, which we then apply the function.

```python
In [94]: df.groupby(['A', 'B']).sum()
Out[94]:
     C     D
A B
bar one -1.814470  2.395985
  three -0.595447  0.166599
  two -0.392670 -0.136473
foo one -1.195665 -0.616981
  three  1.928123 -1.623033
  two  2.414034  1.600434
```

5.8 Reshaping

See the sections on *Hierarchical Indexing* and *Reshaping*.
5.8.1 Stack

```python
In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....:                    'foo', 'foo', 'qux', 'qux'],
....:                    ['one', 'two', 'one', 'two',
....:                     'one', 'two', 'one', 'two']]))

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [98]: df2 = df[:4]

In [99]: df2
```

```
Out[99]:
   A     B
first second
bar one  0.029399  0.282696
  two  0.282696 -0.087302
baz one  1.575170  1.771208
  two  0.816482  1.100230
```

The `stack()` method “compresses” a level in the DataFrame’s columns.

```python
In [100]: stacked = df2.stack()

In [101]: stacked
```

```
Out[101]:
   first second
bar one  A  0.029399 -0.542108
        B  0.282696 -0.087302
baz one  A -1.575170  1.771208
        B  0.816482  1.100230
```

With a “stacked” DataFrame or Series (having a `MultiIndex` as the index), the inverse operation of `stack()` is `unstack()`, which by default unstacks the last level:

```python
In [102]: stacked.unstack()
```

```
Out[102]:
   A     B
first second
bar one  0.029399 -0.542108
        0.282696 -0.087302
baz one  -1.575170  1.771208
        0.816482  1.100230
```

```python
In [103]: stacked.unstack(1)
```

```
  →
second first
bar one  0.029399  0.282696
```
5.8.2 Pivot Tables

See the section on Pivot Tables.

```python
In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
                      'B' : ['A', 'B', 'C'] * 4,
                      'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                      'D' : np.random.randn(12),
                      'E' : np.random.randn(12)})

In [106]: df
Out[106]:
          A  B    C     D          E
0      one  A  foo  1.418757 -0.179666
1      one  B  foo  1.879024  1.291836
2      two  C  foo  0.536826 -0.009614
3    three  A  bar  1.006160  0.392149
4      one  B  bar -0.029716  0.264599
5      one  C  bar -1.146178  0.057409
6      two  A  foo  0.100900 -1.425638
7    three  B  foo -1.035018  1.024098
8      one  C  foo  0.314665 -0.106062
9      one  A  bar -0.773723  1.824375
10     two  B  bar -1.170653  0.595974
11     three  C  bar  0.648740  1.167115
```

We can produce pivot tables from this data very easily:

```python
In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
          C     bar     foo
    A  B
one  A -0.773723  1.418757
    B -0.029716 -1.879024
    C -1.146178  0.314665
three A  1.006160  NaN
        B  NaN  1.035018
        C  0.648740  NaN
two  A  NaN  0.100900
     B -1.170653  NaN
     C  NaN  0.536826
```

5.8. Reshaping
5.9 Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section.

```python
In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64
```

Time zone representation

```python
In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [113]: ts
Out[113]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
```

```python
In [114]: ts_utc = ts.tz_localize('UTC')
In [115]: ts_utc
Out[115]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
```

Convert to another time zone

```python
In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
```

Converting between time span representations

```python
In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
```
Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

```python
In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00  0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
```

5.10 Categoricals

Since version 0.15, pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.
Convert the raw grades to a categorical data type.

```python
In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]:
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
```

Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)

```python
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
```

Reorder the categories and simultaneously add the missing categories (methods under Series.cat return a new Series per default).

```python
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [132]: df["grade"]
Out[132]:
0  very good
1    good
2    good
3  very good
4  very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
```

Sorting is per order in the categories, not lexical order.

```python
In [133]: df.sort_values(by="grade")
Out[133]:
     id raw_grade grade
5      6          e  very bad
1      2          b    good
2      3          b    good
0      1          a  very good
3      4          a  very good
4      5          a  very good
```

Grouping by a categorical column shows also empty categories.

```python
In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad    1
bad          0
5.11 Plotting

Plotting docs.

```python
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()
```

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```python
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D'])

In [139]: df = df.cumsum()

In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
```
5.12 Getting Data In/Out

5.12.1 CSV

Writing to a csv file

```
In [141]: df.to_csv('foo.csv')
```

Reading from a csv file

```
In [142]: pd.read_csv('foo.csv')
Out[142]:
 Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409

994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
```
5.12.2 HDF5

Reading and writing to *HDFStores*

Writing to a HDF5 Store

```python
In [143]: df.to_hdf('foo.h5', 'df')
```

Reading from a HDF5 Store

```python
In [144]: pd.read_hdf('foo.h5', 'df')
```

Out[144]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
<td>1.186860</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
<td>-0.282953</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
<td>-0.515536</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
<td>-1.156896</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
<td>-2.428202</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.478344</td>
<td>0.449933</td>
<td>-0.741620</td>
<td>-1.962409</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.235339</td>
<td>-0.091757</td>
<td>-1.543861</td>
<td>-1.084753</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>-10.390377</td>
<td>-8.727491</td>
<td>-6.399645</td>
<td>30.914107</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
<td>29.369368</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]

5.12.3 Excel

Reading and writing to *MS Excel*

Writing to an excel file

```python
In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
```

Reading from an excel file

```python
In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
```

Out[146]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
<td>1.186860</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
<td>-0.282953</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
<td>-0.515536</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
<td>-1.156896</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
<td>-2.428202</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.478344</td>
<td>0.449933</td>
<td>-0.741620</td>
<td>-1.962409</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.235339</td>
<td>-0.091757</td>
<td>-1.543861</td>
<td>-1.084753</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>-10.390377</td>
<td>-8.727491</td>
<td>-6.399645</td>
<td>30.914107</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
<td>29.369368</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]
2000-01-05  0.578117  0.511371  0.103552  -2.428202
2000-01-06  0.478344  0.449933  -0.741620  -1.962409
2000-01-07  1.235339  -0.091757  -1.543861  -1.084753
...          ...        ...        ...        ...
2002-09-21  -10.390377  -8.727491  -6.399645  30.914107
2002-09-26  -11.856774  -10.671012  -3.216025  29.369368
[1000 rows x 4 columns]

### 5.13 Gotchas

If you are trying an operation and you see an exception like:

```python
>>> if pd.Series([False, True, False]):
 print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See *Comparisons* for an explanation and what to do.

See *Gotchas* as well.
This is a guide to many pandas tutorials, geared mainly for new users.

## 6.1 Internal Guides

pandas own *10 Minutes to pandas*

More complex recipes are in the *Cookbook*

## 6.2 pandas Cookbook

The goal of this cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas. These are examples with real-world data, and all the bugs and weirdness that that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the [pandas-cookbook GitHub repository](https://github.com/pandas-dev/pandas-cookbook). To run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See [How to use this cookbook](https).

- **A quick tour of the IPython Notebook**: Shows off IPython’s awesome tab completion and magic functions.
- **Chapter 1**: Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!
- **Chapter 2**: It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how to take slices and get columns)
- **Chapter 3**: Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways, really fast.
- **Chapter 4**: Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should probably read this.
- **Chapter 5**: Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- **Chapter 6**: Strings with pandas are great. It has all these vectorized string operations and they’re the best. We will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.
- **Chapter 7**: Cleaning up messy data is never a joy, but with pandas it’s easier.
- **Chapter 8**: Parsing Unix timestamps is confusing at first but it turns out to be really easy.
6.3 Lessons for New pandas Users

For more resources, please visit the main repository.

- **01 - Lesson:** Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting to CSV - Finding maximums - Plotting data
- **02 - Lesson:** Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics - Grouping/sorting data
- **03 - Lesson:** Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions - Slice and dice data
- **04 - Lesson:** Adding/deleting columns - Index operations
- **05 - Lesson:** Stack/Unstack/Transpose functions
- **06 - Lesson:** GroupBy function
- **07 - Lesson:** Ways to calculate outliers
- **08 - Lesson:** Read from Microsoft SQL databases
- **09 - Lesson:** Export to CSV/EXCEL/TXT
- **10 - Lesson:** Converting between different kinds of formats
- **11 - Lesson:** Combining data from various sources

6.4 Practical data analysis with Python

This guide is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset. There are four sections covering selected topics as follows:

- Munging Data
- Aggregating Data
- Visualizing Data
- Time Series

6.5 Exercises for New Users

Practice your skills with real data sets and exercises. For more resources, please visit the main repository.

- **01 - Getting & Knowing Your Data**
- **02 - Filtering & Sorting**
- **03 - Grouping**
- **04 - Apply**
- **05 - Merge**
- **06 - Stats**
- **07 - Visualization**
- **08 - Creating Series and DataFrames**
6.6 Modern Pandas

• Modern Pandas
• Method Chaining
• Indexes
• Performance
• Tidy Data
• Visualization

6.7 Excel charts with pandas, vincent and xlsxwriter

• Using Pandas and XlsxWriter to create Excel charts

6.8 Various Tutorials

• Wes McKinney’s (pandas BDFL) blog
• Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson
• Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013
• Financial analysis in python, by Thomas Wiecki
• Intro to pandas data structures, by Greg Reda
• Pandas and Python: Top 10, by Manish Amde
• Pandas Tutorial, by Mikhail Semeniuk
• Pandas DataFrames Tutorial, by Karlijn Willems
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.

Adding interesting links and/or inline examples to this section is a great First Pull Request.

Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.

Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.

These examples are written for python 3.4. Minor tweaks might be necessary for earlier python versions.

### 7.1 Idioms

These are some neat pandas idioms

if-then/if-then-else on one column, and assignment to another one or more columns:

```
In [1]: df = pd.DataFrame(
 ...: {'AAA' : [4, 5, 6, 7], 'BBB' : [10, 20, 30, 40], 'CCC' : [100, 50, -30, -50]}); df

Out[1]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
```

#### 7.1.1 if-then...

An if-then on one column

```
In [2]: df.loc[df.AAA >= 5, 'BBB'] = -1; df

Out[2]:
 AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
```

An if-then with assignment to 2 columns:
In [3]: df.loc[df.AAA >= 5,['BBB','CCC']] = 555; df
Out[3]:
   AAA  BBB  CCC
0   4   10  100
1   5  555  555
2   6  555  555
3   7  555  555

Add another line with different logic, to do the -else

In [4]: df.loc[df.AAA < 5,['BBB','CCC']] = 2000; df
Out[4]:
   AAA  BBB  CCC
0   4  2000  2000
1   5  555  555
2   6  555  555
3   7  555  555

Or use pandas where after you’ve set up a mask

In [6]: df.where(df_mask,-1000)
Out[6]:
   AAA  BBB  CCC
0   4  -1000  2000
1   5  -1000  -1000
2   6  -1000   555
3   7  -1000  -1000

if-then-else using numpy’s where()

In [7]: df = pd.DataFrame(
   ...:     {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}); df
   ...:
Out[7]:
   AAA  BBB  CCC
0   4   10  100
1   5   20   50
2   6   30  -30
3   7   40  -50

In [8]: df['logic'] = np.where(df['AAA'] > 5,'high','low'); df
Out[8]:
   AAA  BBB  CCC  logic
0   4   10  100  low
1   5   20   50  low
2   6   30  -30  high
3   7   40  -50  high

### 7.1.2 Splitting

Split a frame with a boolean criterion
7.1.3 Building Criteria

Select with multi-column criteria

```python
In [12]: df = pd.DataFrame(
 ...: {'AAA': [4, 5, 6, 7], 'BBB': [10, 20, 30, 40], 'CCC': [100, 50, -30, -50]}); df
 ...:
Out[12]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [13]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[13]:
0 4
1 5
Name: AAA, dtype: int64
```

...and (without assignment returns a Series)

```python
In [13]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[13]:
0 4
1 5
Name: AAA, dtype: int64
```

...or (without assignment returns a Series)

```python
In [14]: newseries = df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']; newseries;
```

...or (with assignment modifies the DataFrame.)

```python
In [15]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1; df
Out[15]:
 AAA BBB CCC
0 0.1 10 100
```

7.1. Idioms
Select rows with data closest to certain value using argsort

```python
In [16]: df = pd.DataFrame(
 : {'AAA': [4, 5, 6, 7], 'BBB': [10, 20, 30, 40], 'CCC': [100, 50, -30, -50]}); df
 :
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [17]: aValue = 43.0

In [18]: df.loc[(df.CCC-aValue).abs().argsort()]
Out[18]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
```

Dynamically reduce a list of criteria using a binary operators

```python
In [19]: df = pd.DataFrame(
 : {'AAA': [4, 5, 6, 7], 'BBB': [10, 20, 30, 40], 'CCC': [100, 50, -30, -50]}); df
 :
Out[19]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [20]: Crit1 = df.AAA <= 5.5
In [21]: Crit2 = df.BBB == 10.0
In [22]: Crit3 = df.CCC > -40.0

One could hard code:

```python
In [23]: AllCrit = Crit1 & Crit2 & Crit3
```

...Or it can be done with a list of dynamically built criteria

```python
In [24]: CritList = [Crit1, Crit2, Crit3]
In [25]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)
In [26]: df[AllCrit]
Out[26]:
AAA  BBB  CCC
0   4    10   100
```
7.2 Selection

7.2.1 DataFrames

The `indexing` docs.

Using both row labels and value conditionals

```python
In [27]: df = pd.DataFrame(
    ....:     {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]});
    df
Out[27]:
     AAA  BBB  CCC
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50

In [28]: df[(df.AAA <= 6) & (df.index.isin([0,2,4]))]
Out[28]:
     AAA  BBB  CCC
0    4   10  100
2    6   30  -30

Use loc for label-oriented slicing and iloc positional slicing

```python
In [29]: data = {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}
In [30]: df = pd.DataFrame(data=data,index=['foo','bar','boo','kar']); df
Out[30]:
 AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
```

There are 2 explicit slicing methods, with a third general case

1. Positional-oriented (Python slicing style: exclusive of end)
2. Label-oriented (Non-Python slicing style: inclusive of end)
3. General (Either slicing style: depends on if the slice contains labels or positions)

```python
In [31]: df.loc['bar':'kar'] #Label
Out[31]:
 AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

Generic
In [32]: df.iloc[0:3]
Out[32]:
 AAA BBB CCC
foo 4 10 100
bar 5 20 50
```
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.

Using inverse operator (~) to take the complement of a mask

7.2.2 Panels

Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions
In [42]: df1, df2, df3 = pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols)

In [43]: pf = pd.Panel({'df1':df1,'df2':df2,'df3':df3});pf
Out[43]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 4 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to D

#Assignment using Transpose (pandas < 0.15)
In [44]: pf = pf.transpose(2,0,1)

In [45]: pf['E'] = pd.DataFrame(data, rng, cols)
In [46]: pf = pf.transpose(1,2,0);pf
Out[46]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 5 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to E

#Direct assignment (pandas > 0.15)
In [47]: pf.loc[:,:,'F'] = pd.DataFrame(data, rng, cols);pf

<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 6 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to F

7.2.3 New Columns

Efficiently and dynamically creating new columns using applymap

In [48]: df = pd.DataFrame(
    ....:     {'AAA': [1,2,1,3], 'BBB': [1,1,2,2], 'CCC': [2,1,3,1]});

In [49]: source_cols = df.columns

In [50]: new_cols = [str(x) + "_cat" for x in source_cols]

In [51]: categories = {1 : 'Alpha', 2 : 'Beta', 3 : 'Charlie'}
In [52]: df[new_cols] = df[source_cols].applymap(categories.get);df
Out[52]:
<table>
<thead>
<tr>
<th></th>
<th>AAA</th>
<th>BBB</th>
<th>CCC</th>
<th>AAA_cat</th>
<th>BBB_cat</th>
<th>CCC_cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Alpha</td>
<td>Alpha</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Beta</td>
<td>Alpha</td>
<td>Alpha</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Alpha</td>
<td>Beta</td>
<td>Charlie</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Charlie</td>
<td>Beta</td>
<td>Alpha</td>
</tr>
</tbody>
</table>

Keep other columns when using min() with groupby

In [53]: df = pd.DataFrame(
       ....:     {'AAA' : [1,1,1,2,2,2,3,3], 'BBB' : [2,1,3,4,5,1,2,3]}; df
       ....:  
       Out[53]:
<table>
<thead>
<tr>
<th>AAA</th>
<th>BBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Method 1 : idxmin() to get the index of the mins

In [54]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[54]:
<table>
<thead>
<tr>
<th>AAA</th>
<th>BBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Method 2 : sort then take first of each

In [55]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[55]:
<table>
<thead>
<tr>
<th>AAA</th>
<th>BBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Notice the same results, with the exception of the index.

### 7.3 MultIndexing

The multindexing docs.

Creating a multi-index from a labeled frame

In [56]: df = pd.DataFrame({'row' : [0,1,2],
       ....:     'One_X' : [1.1,1.1,1.1],
       ....:     'One_Y' : [1.2,1.2,1.2],
       ....:     'Two_X' : [1.11,1.11,1.11],
       ....:     'Two_Y' : [1.22,1.22,1.22]}; df
### 7.3. MultIndexing

```python
def = df.set_index('row');df

With Hierarchical Columns
In [58]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns]);df

Now stack & Reset
In [59]: df = df.stack(0).reset_index(1);df

And fix the labels (Notice the label 'level_1' got added automatically)
In [60]: df.columns = ['Sample', 'All_X', 'All_Y'];df
```
7.3.1 Arithmetic

Performing arithmetic with a multi-index that needs broadcasting

```python
In [61]: cols = pd.MultiIndex.from_tuples([(x,y) for x in ['A','B','C'] for y in ['O \rightarrow', 'I'])

In [62]: df = pd.DataFrame(np.random.randn(2,6),index=['n','m'],columns=cols); df
Out[62]:
 A B C
n 1.920906 -0.388231 0.665508 0.402562 0.399555
m -1.765956 0.850423 0.388054 0.992312 -0.739776

In [63]: df = df.div(df['C'],level=1); df
 A B C
n 4.771702 -0.971660 -5.749162 1.665625 1.0 1.0
m -2.373321 -1.149568 0.521518 -1.341367 1.0 1.0
```

7.3.2 Slicing

Slicing a multi-index with `xs`

```python
In [64]: coords = [('AA','one'), ('AA','six'), ('BB','one'), ('BB','two'), ('BB','six')]

In [65]: index = pd.MultiIndex.from_tuples(coords)

In [66]: df = pd.DataFrame([11,22,33,44,55],index,['MyData']); df
Out[66]:
 MyData
AA one 11
 six 22
BB one 33
 two 44
 six 55

To take the cross section of the 1st level and 1st axis the index:

```python
In [67]: df.xs('BB',level=0,axis=0)  #Note : level and axis are optional, and default to zero
Out[67]:
   MyData
one   33
two   44
six   55

...and now the 2nd level of the 1st axis.

In [68]: df.xs('six',level=1,axis=0)
Out[68]:
   MyData
AA   22
BB   55
```
Slicing a multi-index with xs, method #2

```
In [69]: index = list(itertools.product(['Ada','Quinn','Violet'],['Comp','Math','Sci']))
In [70]: headr = list(itertools.product(['Exams','Labs'],['I','II']))
In [71]: indx = pd.MultiIndex.from_tuples(index,names=['Student','Course'])
In [72]: cols = pd.MultiIndex.from_tuples(headr) #Notice these are un-named
In [73]: data = [[70+x+y+(x*y)%3 for x in range(4)] for y in range(9)]
In [74]: df = pd.DataFrame(data,indx,cols); df
Out[74]:      Exams Labs
          I  II I  II
Student Course
Ada Comp  70  71  72  73
    Math  71  73  75  74
    Sci   72  75  75  75
Quinn Comp  73  74  75  76
    Math  74  76  78  77
    Sci   75  78  78  78
Violet Comp  76  77  78  79
    Math  77  79  81  80
    Sci   78  81  81  81
```

```
In [75]: All = slice(None)
In [76]: df.loc['Violet']
Out[76]:      Exams Labs
          I  II I  II
Course
Comp  76  77  78  79
Math  77  79  81  80
Sci   78  81  81  81
```

```
In [77]: df.loc[(slice('Ada','Quinn'),'Math'),All]
```

```
In [78]: df.loc[(All,'Math'),('Exams')]
```

7.3. MultiIndexing
Setting portions of a multi-index with `xs`

7.3.3 Sorting

Sort by specific column or an ordered list of columns, with a multi-index

```python
In [81]: df.sort_values(by=('Labs', 'II'), ascending=False)
```

```
Exams Labs
  I   II I   II
Student Course
Violet Sci  78 81 81 81
  Math  77 79 81 80
  Comp  76 77 78 79
Quinn Sci  75 78 78 78
  Math  74 76 78 77
  Comp  73 74 75 76
Ada  Sci  72 75 75 75
  Math  71 73 75 74
  Comp  70 71 72 73
```

Partial Selection, the need for sortedness;

7.3.4 Levels

Prepending a level to a multiindex

Flatten Hierarchical columns

7.3.5 panelNd

The `panelNd` docs.

Construct a 5D panelNd
7.4 Missing Data

The *missing data* docs.

Fill forward a reversed timeseries

```
In [82]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01', periods=6, freq='B'), columns=list('A'))
In [83]: df.loc[df.index[3], 'A'] = np.nan
In [84]: df
Out[84]:
     A
2013-08-01 -1.054874
2013-08-02 -0.179642
2013-08-05  0.639589
2013-08-06  NaN
2013-08-07  1.906684
2013-08-08  0.104050

In [85]: df.reindex(df.index[::-1]).ffill()
     A
2013-08-08  0.104050
2013-08-07  1.906684
2013-08-06  1.906684
2013-08-05  0.639589
2013-08-02 -0.179642
2013-08-01 -1.054874
```

cumsum reset at NaN values

7.4.1 Replace

Using replace with backrefs

7.5 Grouping

The *grouping* docs.

Basic grouping with apply

Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns

```
In [86]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
          'size': list('SSMMMLL'),
          'weight': [8, 10, 11, 1, 20, 12, 12],
          'adult' : [False]*5 + [True]*2}); df
Out[86]:
   adult  animal  size  weight
0   False     cat   S      8
1   False     dog   S     10
```
#List the size of the animals with the highest weight.

```python
In [87]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
```

```text
animal
  cat   L
  dog   M
  fish  M
dtype: object
```

Using `get_group`

```python
In [88]: gb = df.groupby(['animal'])

In [89]: gb.get_group('cat')
Out[89]:
  adult animal size weight
0   False  cat   S     8
2   False  cat   M    11
5     True  cat   L    12
6     True  cat   L    12
```

Apply to different items in a group

```python
In [90]: def GrowUp(x):
    ....:    avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
    ....:    avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
    ....:    avg_weight += sum(x[x['size'] == 'L'].weight)
    ....:    avg_weight /= len(x)
    ....:    return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])

In [91]: expected_df = gb.apply(GrowUp)

In [92]: expected_df
Out[92]:
   size  weight  adult
animal
  cat     L 12.4375    True
  dog     L 20.0000    True
  fish    L  1.2500    True
```

Expanding Apply

```python
In [93]: S = pd.Series([i / 100.0 for i in range(1,11)])

In [94]: def CumRet(x,y):
    ....:    return x * (1 + y)
    ....:

In [95]: def Red(x):
```
In [96]: S.expanding().apply(Red)
Out[96]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64

Replacing some values with mean of the rest of a group

In [97]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
In [98]: gb = df.groupby('A')
In [99]: def replace(g):
 : mask = g < 0
 : g.loc[mask] = g[~mask].mean()
 : return g
 :
In [100]: gb.transform(replace)
Out[100]:
 B
0 1.0
1 1.0
2 1.0
3 2.0

Sort groups by aggregated data

In [101]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2, 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62], 'flag': [False, True] * 3})
In [102]: code_groups = df.groupby('code')
In [103]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data')
In [104]: sorted_df = df.loc[agg_n_sort_order.index]
In [105]: sorted_df
Out[105]:
 code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
Create multiple aggregated columns

```python
In [106]: rng = pd.date_range(start="2014-10-07",periods=10,freq='2min')

In [107]: ts = pd.Series(data = list(range(10)), index = rng)

In [108]: def MyCust(x):
    ....:     if len(x) > 2:
    ....:         return
    ....:     return pd.NaT
    ....:

In [109]: mhc = {'Mean' : np.mean, 'Max' : np.max, 'Custom' : MyCust}

In [110]: ts.resample("5min").apply(mhc)
Out[110]:
     Custom 2014-10-07 00:00:00 1.234
                2014-10-07 00:05:00 NaT
                2014-10-07 00:10:00 7.404
                2014-10-07 00:15:00 NaT
          Max 2014-10-07 00:00:00 2
                2014-10-07 00:05:00 4
                2014-10-07 00:10:00 7
                2014-10-07 00:15:00 9
       Mean 2014-10-07 00:00:00 1
                2014-10-07 00:05:00 3.5
                2014-10-07 00:10:00 6
                2014-10-07 00:15:00 8.5
dtype: object

In [111]: ts
```

Create a value counts column and reassign back to the DataFrame

```python
In [112]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
    ....:         'Value': [100, 150, 50, 50]}); df

Out[112]:
     Color Value
0     Red    100
1     Red    150
2     Red     50
3     Blue     50
```
In [113]: df['Counts'] = df.groupby(['Color']).transform(len)

In [114]: df
Out[114]:
 Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1

Shift groups of the values in a column based on the index

In [115]: df = pd.DataFrame(
 : {u'line_race': [10, 10, 8, 10, 10, 8],
 : u'beyer': [99, 102, 103, 103, 88, 100]},
 : index=[u'Last Gunfighter', u'Last Gunfighter', u'Last Gunfighter',
 : u'Paynter', u'Paynter', u'Paynter']); df

Out[115]:
 beyer line_race
 Last Gunfighter 99 10
 Last Gunfighter 102 10
 Last Gunfighter 103 8
 Paynter 103 10
 Paynter 88 10
 Paynter 100 8

In [116]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)

In [117]: df
Out[117]:
 beyer line_race beyer_shifted
 Last Gunfighter 99 10 NaN
 Last Gunfighter 102 10 99.0
 Last Gunfighter 103 8 102.0
 Paynter 103 10 NaN
 Paynter 88 10 103.0
 Paynter 100 8 88.0

Select row with maximum value from each group

In [118]: df = pd.DataFrame({'host': ['other', 'other', 'that', 'this', 'this'],
 : 'service': ['mail', 'web', 'mail', 'mail', 'web'],
 : 'no': [1, 2, 1, 2, 1]}).set_index(['host', 'service'])

In [119]: mask = df.groupby(level=0).agg('idxmax')

In [120]: df_count = df.loc[mask['no']].reset_index()

In [121]: df_count
Out[121]:
 host service no
0 other web 2
1 that mail 1
2 this mail 2
Grouping like Python’s `itertools.groupby`

```python
In [122]: df = pd.DataFrame([0, 1, 0, 1, 1, 0, 1, 1], columns=['A'])
```

```python
In [123]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[123]:
{1: Int64Index([0], dtype='int64'),
  2: Int64Index([1], dtype='int64'),
  3: Int64Index([2], dtype='int64'),
  4: Int64Index([3, 4, 5], dtype='int64'),
  5: Int64Index([6], dtype='int64'),
  6: Int64Index([7, 8], dtype='int64')}
```

```python
In [124]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
```

```text
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64
```

7.5.1 Expanding Data

Alignment and to-date

Rolling Computation window based on values instead of counts

Rolling Mean by Time Interval

7.5.2 Splitting

Splitting a frame

Create a list of dataframes, split using a delineation based on logic included in rows.

```python
In [125]: df = pd.DataFrame(data={'Case': ['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A', 'A'],
                           'Data': np.random.randn(9)})
```

```python
In [126]: dfs = list(zip(*df.groupby((1*(df['Case']=='B')).cumsum().rolling(window=3,
                                           min_periods=1).median())))[-1]
```

```python
In [127]: dfs[0]
Out[127]:
<table>
<thead>
<tr>
<th>Case</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.174068</td>
</tr>
<tr>
<td>1</td>
<td>-0.439461</td>
</tr>
<tr>
<td>2</td>
<td>-0.741343</td>
</tr>
<tr>
<td>3</td>
<td>-0.079673</td>
</tr>
</tbody>
</table>
```

```python
In [128]: dfs[1]
```

```text

Chapter 7. Cookbook
```
7.5.3 Pivot

The Pivot docs.

Partial sums and subtotals

```python
In [130]: df = pd.DataFrame(data={'Province' : ['ON','QC','BC','AL','AL','MN','ON'],
                                'City' : ['Toronto','Montreal','Vancouver','Calgary','Edmonton','Winnipeg','Windsor'],
                                'Sales' : [13,6,16,8,4,3,1]})

In [131]: table = pd.pivot_table(df,values=['Sales'],index=['Province'],columns=['City'],aggfunc=np.sum,margins=True)
```

```text
Out[132]:

<table>
<thead>
<tr>
<th>Province</th>
<th>City</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>All</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>Calgary</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4.0</td>
</tr>
<tr>
<td>BC</td>
<td>All</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16.0</td>
</tr>
<tr>
<td>MN</td>
<td>All</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Calgary</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Montreal</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Toronto</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Windsor</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3.0</td>
</tr>
</tbody>
</table>

[20 rows x 1 columns]
```

Frequency table like plyr in R

```python
In [133]: grades = [48,99,75,80,42,80,72,68,36,78]
In [134]: df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)],
                            'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],
                            'Value' : grades })
```

7.5. Grouping
pandas: powerful Python data analysis toolkit, Release 0.20.1

```python
˓→ '2008', '2009', '2009', '2009'],
......: 'Class': ['algebra', 'stats', 'bio', 'algebra', 'algebra'
˓→, 'stats', 'stats', 'algebra', 'bio', 'bio'],
......: 'Participated': ['yes', 'yes', 'yes', 'yes', 'no', 'yes', 'yes'
˓→, 'yes', 'yes', 'yes'],
......: 'Passed': ['yes' if x > 50 else 'no' for x in grades],
......: 'Employed': [True, True, True, False, False, False, False,
˓→ True, True, False],
......: 'Grade': grades})
......:
In [135]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'
˓→'],
......: 'Passed': lambda x: sum(x == 'yes'),
......: 'Employed': lambda x: sum(x),
......: 'Grade': lambda x: sum(x) / len(x)})
......:
Out[135]:
<table>
<thead>
<tr>
<th>ExamYear</th>
<th>Participated</th>
<th>Passed</th>
<th>Employed</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>74.000000</td>
</tr>
<tr>
<td>2008</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>68.500000</td>
</tr>
<tr>
<td>2009</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>60.666667</td>
</tr>
</tbody>
</table>
```

Plot pandas DataFrame with year over year data

To create year and month crosstabulation:

```python
In [136]: df = pd.DataFrame({'value': np.random.randn(36)},
˓→ index=pd.date_range('2011-01-01', freq='M', periods=36))
...
In [137]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
˓→ values='value', aggfunc='sum')
......:
Out[137]:
<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.560859</td>
<td>0.120930</td>
<td>0.516870</td>
</tr>
<tr>
<td>2</td>
<td>-0.589005</td>
<td>-0.210518</td>
<td>0.343125</td>
</tr>
<tr>
<td>3</td>
<td>-1.070678</td>
<td>-0.931184</td>
<td>2.137827</td>
</tr>
<tr>
<td>4</td>
<td>-1.681101</td>
<td>0.240647</td>
<td>0.452429</td>
</tr>
<tr>
<td>5</td>
<td>0.403776</td>
<td>-0.027462</td>
<td>0.483103</td>
</tr>
<tr>
<td>6</td>
<td>0.609862</td>
<td>0.033113</td>
<td>0.061495</td>
</tr>
<tr>
<td>7</td>
<td>0.387936</td>
<td>-0.658418</td>
<td>0.240767</td>
</tr>
<tr>
<td>8</td>
<td>1.815066</td>
<td>0.324102</td>
<td>0.782413</td>
</tr>
<tr>
<td>9</td>
<td>0.705200</td>
<td>-1.403048</td>
<td>0.628462</td>
</tr>
<tr>
<td>10</td>
<td>-0.668049</td>
<td>-0.581967</td>
<td>-0.880627</td>
</tr>
<tr>
<td>11</td>
<td>0.242501</td>
<td>-1.233862</td>
<td>0.777575</td>
</tr>
<tr>
<td>12</td>
<td>0.313421</td>
<td>-3.520876</td>
<td>-0.779367</td>
</tr>
</tbody>
</table>
```

7.5.4 Apply

Rolling Apply to Organize - Turning embedded lists into a multi-index frame
In [138]: df = pd.DataFrame(data={'A' : [[2,4,8,16],[100,200],[10,20,30]], 'B' : [['a →','b','c'],['jj','kk'],['ccc']]}), index=['I','II','III'])

In [139]: def SeriesFromSubList(aList):
 : return pd.Series(aList)
 :

In [140]: df_orgz = pd.concat(dict((ind,row.apply(SeriesFromSubList)) for ind, row in df.iterrows()))

Rolling Apply with a DataFrame returning a Series
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

In [141]: df = pd.DataFrame(data=np.random.randn(2000,2)/10000, index=pd.date_range('2001-01-01',periods=2000), columns=['A','B']); df

Out[141]:
 A B
2001-01-01 0.000032 -0.000004
2001-01-02 -0.000001 0.000207
2001-01-03 0.000120 -0.000220
2001-01-04 -0.000083 -0.000220
2001-01-05 -0.000047 0.000156
2001-01-06 0.000027 0.000104
2001-01-07 0.000041 -0.000101
...
2006-06-17 -0.000034 0.000034
2006-06-18 0.000002 0.000166
2006-06-19 0.000023 -0.000081
2006-06-20 -0.000061 0.000012
2006-06-21 -0.000111 0.000027
2006-06-22 -0.000061 -0.00009
2006-06-23 0.000074 -0.000138

[2000 rows x 2 columns]

In [142]: def gm(aDF,Const):
 : v = ((((aDF.A+aDF.B)+1).cumprod())-1)*Const
 : return (aDF.index[0],v.iloc[-1])
 :

In [143]: S = pd.Series(dict((gm(df.iloc[i:min(i+51,len(df)-1)],5) for i in range(len(df)-50)))

Out[143]:
 2001-01-01 -0.001373
 2001-01-02 -0.001705
 2001-01-03 -0.002285
 2001-01-04 -0.002987
 2001-01-05 -0.002384
 2001-01-06 -0.004700
 2001-01-07 -0.005500

 2006-04-28 -0.002682
 2006-04-29 -0.002436
 2006-04-30 -0.002602
 2006-05-01 -0.001785

7.5. Grouping
Rolling apply with a DataFrame returning a Scalar

Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)

```
In [144]: rng = pd.date_range(start = '2014-01-01',periods = 100)

In [145]: def vwap(bars):

In [146]: df = pd.DataFrame({'Open' : np.random.randn(len(rng)),
                    'Close' : np.random.randn(len(rng)),
                    'Volume' : np.random.randint(100,2000,len(rng))},
                   index=rng); df

Out[145]:
     Close  Open  Volume
2014-01-01 -0.653039  0.011174   1581
2014-01-02  1.314205  0.214258   1707
2014-01-03 -0.341915 -1.046922   1768
2014-01-04 -1.303586  0.752902    836
2014-01-05  0.396288 -0.410793   694
2014-01-06 -0.548006  0.648401   265
2014-01-07  0.481380  0.737320   265
           ...     ...     ...
2014-04-04 -2.548128  0.120378    564
2014-04-05  0.223346  0.231661   1908
2014-04-06  1.228841  0.952664   1090
2014-04-07  0.552784 -0.176090   1813
2014-04-08 -0.795389  1.781318   1103
2014-04-09 -0.018815 -0.753493   1456
2014-04-10  1.138197 -1.047997   1193

[100 rows x 3 columns]
```

```
In [146]: df = pd.DataFrame({'Open' : np.random.randn(len(rng)),
                    'Close' : np.random.randn(len(rng)),
                    'Volume' : np.random.randint(100,2000,len(rng))},
                   index=rng); df

Out[145]:
     Close  Open  Volume
2014-01-01 -0.653039  0.011174   1581
2014-01-02  1.314205  0.214258   1707
2014-01-03 -0.341915 -1.046922   1768
2014-01-04 -1.303586  0.752902    836
2014-01-05  0.396288 -0.410793   694
2014-01-06 -0.548006  0.648401   265
2014-01-07  0.481380  0.737320   265
           ...     ...     ...
2014-04-04 -2.548128  0.120378    564
2014-04-05  0.223346  0.231661   1908
2014-04-06  1.228841  0.952664   1090
2014-04-07  0.552784 -0.176090   1813
2014-04-08 -0.795389  1.781318   1103
2014-04-09 -0.018815 -0.753493   1456
2014-04-10  1.138197 -1.047997   1193

[100 rows x 3 columns]
```

```
In [146]: def vwap(bars):

In [147]: window = 5

In [148]: s = pd.concat([pd.Series(vwap(df.iloc[i:i+window]), index=df.index[i+window])
                                  for i in range(len(df)-window)]);

In [149]: s.round(2)
```

```
Out[149]:
2014-01-06  -0.03
2014-01-07  -0.07
2014-01-08  -0.40
2014-01-09  -0.81
2014-01-10  -0.63
2014-01-11  -0.86
2014-01-12  -0.36
           ...
2014-04-04  -1.27
2014-04-05  -1.36
2014-04-06  -0.73
2014-04-07   0.04
2014-04-08   0.21
```

```
```

```
```

```
```

```
```

```
```

```
```
7.6 Timeseries

Between times
Using indexer between time
Constructing a datetime range that excludes weekends and includes only certain times
Vectorized Lookup
Aggregation and plotting time series
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series. How to rearrange a python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex

```python
In [150]: dates = pd.date_range('2000-01-01', periods=5)
In [151]: dates.to_period(freq='M').to_timestamp()
Out[151]:
              '2000-01-01'],
             dtype='datetime64[ns]', freq=None)
```

7.6.1 Resampling

The Resample docs.
TimeGrouping of values grouped across time
TimeGrouping #2
Using TimeGrouper and another grouping to create subgroups, then apply a custom function
Resampling with custom periods
Resample intraday frame without adding new days
Resample minute data
Resample with groupby

7.7 Merge

The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind)
In [152]: rng = pd.date_range('2000-01-01', periods=6)

In [153]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])

In [154]: df2 = df1.copy()

ignore_index is needed in pandas < v0.13, and depending on df construction

In [155]: df = df1.append(df2, ignore_index=True); df

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.4807</td>
<td>-1.3053</td>
<td>-0.2128</td>
</tr>
<tr>
<td>1</td>
<td>1.9799</td>
<td>0.3631</td>
<td>-0.2757</td>
</tr>
<tr>
<td>2</td>
<td>-1.4338</td>
<td>0.5802</td>
<td>-0.0137</td>
</tr>
<tr>
<td>3</td>
<td>1.7766</td>
<td>-0.8035</td>
<td>0.5215</td>
</tr>
<tr>
<td>4</td>
<td>-0.3025</td>
<td>-0.4429</td>
<td>-0.3957</td>
</tr>
<tr>
<td>5</td>
<td>-0.2490</td>
<td>-0.0315</td>
<td>2.4137</td>
</tr>
<tr>
<td>6</td>
<td>-0.4807</td>
<td>-1.3053</td>
<td>-0.2128</td>
</tr>
<tr>
<td>7</td>
<td>1.9799</td>
<td>0.3631</td>
<td>-0.2757</td>
</tr>
<tr>
<td>8</td>
<td>-1.4338</td>
<td>0.5802</td>
<td>-0.0137</td>
</tr>
<tr>
<td>9</td>
<td>1.7766</td>
<td>-0.8035</td>
<td>0.5215</td>
</tr>
<tr>
<td>10</td>
<td>-0.3025</td>
<td>-0.4429</td>
<td>-0.3957</td>
</tr>
<tr>
<td>11</td>
<td>-0.2490</td>
<td>-0.0315</td>
<td>2.4137</td>
</tr>
</tbody>
</table>

Self Join of a DataFrame

In [156]: df = pd.DataFrame(data={'Area': ['A'] * 5 + ['C'] * 2, 'Bins': [110] * 2 + [160] * 3 + [40] * 2, 'Test_0': [0, 1, 0, 1, 2, 0, 1], 'Data': np.random.randn(7)}); df

<table>
<thead>
<tr>
<th>Area</th>
<th>Bins</th>
<th>Data</th>
<th>Test_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>-0.3789</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1.0325</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>-1.4028</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>0.7153</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>-0.0914</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1.6084</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>0.7532</td>
<td>1</td>
</tr>
</tbody>
</table>

In [157]: df['Test_1'] = df['Test_0'] - 1

In [158]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'], right_on=['Bins', 'Area', 'Test_1'], suffixes=('L', '_R'))

<table>
<thead>
<tr>
<th>Area</th>
<th>Bins</th>
<th>Data_L</th>
<th>Test_0_L</th>
<th>Test_1_L</th>
<th>Data_R</th>
<th>Test_0_R</th>
<th>Test_1_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>0.3789</td>
<td>-1</td>
<td>1.0325</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>1.4028</td>
<td>0</td>
<td>0.7153</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>0.0914</td>
<td>0</td>
<td>0.7153</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1.6084</td>
<td>0</td>
<td>0.7532</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

How to set the index and join

KDB like asof join

Join with a criteria based on the values
Using searchsorted to merge based on values inside a range

7.8 Plotting

The *Plotting* docs.

- Make Matplotlib look like R
- Setting x-axis major and minor labels
- Plotting multiple charts in an ipython notebook
- Creating a multi-line plot
- Plotting a heatmap
- Annotate a time-series plot
- Annotate a time-series plot #2
- Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

Boxplot for each quartile of a stratifying variable

```python
In [159]: df = pd.DataFrame(
    .....:     {u'stratifying_var': np.random.uniform(0, 100, 20),
    .....:      u'price': np.random.normal(100, 5, 20)})
    .....:
In [160]: df[u'quartiles'] = pd.qcut(
    .....:     df[u'stratifying_var'],
    .....:     4,
    .....:     labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])
    .....:
In [161]: df.boxplot(column=u'price', by=u'quartiles')
Out[161]: <matplotlib.axes._subplots.AxesSubplot at 0x11ff4a8d0>
```
7.9 Data In/Out

Performance comparison of SQL vs HDF5

7.9.1 CSV

The CSV docs
read_csv in action
appending to a csv
Reading a csv chunk-by-chunk
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame

Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context manager and using that handle to read. See here

Inferring dtypes from a file
Dealing with bad lines
Dealing with bad lines II
Reading CSV with Unix timestamps and converting to local timezone

Write a multi-row index CSV without writing duplicates

7.9.1.1 Reading multiple files to create a single DataFrame

The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put all of the individual frames into a list, and then combine the frames in the list using `pd.concat()`:

```python
In [162]: for i in range(3):
    ....:     data = pd.DataFrame(np.random.randn(10, 4))
    ....:     data.to_csv('file_{}.csv'.format(i))
    ....:

In [163]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']
In [164]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
```

You can use the same approach to read all files matching a pattern. Here is an example using `glob`:

```python
In [165]: import glob
In [166]: files = glob.glob('file_*\.csv')
In [167]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
```

Finally, this strategy will work with the other `pd.read_*(*)` functions described in the *io docs*.

7.9.1.2 Parsing date components in multi-columns

Parsing date components in multi-columns is faster with a format

```python
In [30]: i = pd.date_range('20000101', periods=10000)
In [31]: df = pd.DataFrame(dict(year=i.year, month=i.month, day=i.day))

In [32]: df.head()
Out[32]:
   day  month  year
0    1      1  2000
1    2      1  2000
2    3      1  2000
3    4      1  2000
4    5      1  2000

In [33]: %timeit pd.to_datetime(df.year*10000+df.month*100+df.day, format='%Y%m%d')
100 loops, best of 3: 7.08 ms per loop

# simulate combining into a string, then parsing
In [34]: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'], x['month'], x['day']), axis=1)

In [35]: ds.head()
Out[35]:
0  20000101
1  20000102
2  20000103
```
```python
In [36]: %timeit pd.to_datetime(ds)
1 loops, best of 3: 488 ms per loop
```

7.9.1.3 Skip row between header and data

```python
In [168]: data = ";;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: ;;;
.....: date;Param1;Param2;Param4;Param5
.....: °C;m°C;m°C;m
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: ""
.....:
```

Option 1: pass rows explicitly to skiprows

```python
In [169]: pd.read_csv(StringIO(data), sep=';', skiprows=[11,12],
.....: index_col=0, parse_dates=True, header=10)
```

Out[169]:

```
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
```

Option 2: read column names and then data

```python
In [170]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[170]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'],
.....: dtype='object')
```

```python
In [171]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
```

450 Chapter 7. Cookbook
```python
In [172]: pd.read_csv(StringIO(data), sep=';', index_col=0,
......:         header=12, parse_dates=True, names=columns)
......:
Out[172]:
<table>
<thead>
<tr>
<th>date</th>
<th>Param1</th>
<th>Param2</th>
<th>Param4</th>
<th>Param5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990-01-01 00:00:00</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1990-01-01 01:00:00</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1990-01-01 02:00:00</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1990-01-01 03:00:00</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1990-01-01 04:00:00</td>
<td>17</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1990-01-01 05:00:00</td>
<td>21</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
```

7.9.2 SQL

The [SQL docs](#) Reading from databases with SQL.

7.9.3 Excel

The [Excel docs](#) Reading from a filelike handle
Modifying formatting in XlsxWriter output

7.9.4 HTML

Reading HTML tables from a server that cannot handle the default request header

7.9.5 HDFStore

The [HDFStores docs](#) Simple Queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
Avoiding inconsistencies when writing to a store from multiple processes/threads
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Large Data work flows
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density

7.9. Data In/Out
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Counting with a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node

```
In [173]: df = pd.DataFrame(np.random.randn(8,3))
In [174]: store = pd.HDFStore('test.h5')
In [175]: store.put('df',df)
# you can store an arbitrary python object via pickle
In [176]: store.get_storer('df').attrs.my_attribute = dict(A = 10)
In [177]: store.get_storer('df').attrs.my_attribute
Out[177]: {'A': 10}
```

7.9.6 Binary Files

pandas readily accepts numpy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called main.c compiled with gcc main.c -std=gnu99 on a 64-bit machine,

```c
#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
    int32_t count;
    double avg;
    float scale;
} Data;

int main(int argc, const char *argv[])
{
    size_t n = 10;
    Data d[n];

    for (int i = 0; i < n; ++i)
    {
        d[i].count = i;
        d[i].avg = i + 1.0;
        d[i].scale = (float) i + 2.0f;
    }

    FILE *file = fopen("binary.dat", "wb");
    fwrite(&d, sizeof(Data), n, file);
    fclose(file);
```
the following Python code will read the binary file ’binary.dat’ into a pandas DataFrame, where each element of the struct corresponds to a column in the frame:

```python
return 0;
}
```

```python
def = pd.DataFrame(np.fromfile('binary.dat', dt))
```

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

7.10 Computation

Numerical integration (sample-based) of a time series

7.11 Timedeltas

The Timedeltas docs.

Using timedeltas

```python
In [178]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
In [179]: s - s.max()
Out[179]:
0   -2 days
1   -1 days
2    0 days
dtype: timedelta64[ns]

In [180]: s.max() - s
Out[180]:
0   2 days
1    1 days
2    0 days
dtype: timedelta64[ns]

In [181]: s - datetime.datetime(2011,1,1,3,5)
```

7.10. Computation
Adding and subtracting deltas and dates

```
In [182]: s + datetime.timedelta(minutes=5)
\nOut[182]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [183]: datetime.datetime(2011,1,1,3,5) - s
\nOut[183]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [184]: datetime.timedelta(minutes=5) + s
\nOut[184]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
```

Another example
Values can be set to NaT using `np.nan`, similar to `datetime`:

```
In [190]: y = s - s.shift(); y
    ....: 0   NaT
    ....: 1   1 days
    ....: 2   1 days
dtype: timedelta64[ns]
```

```
In [191]: y[1] = np.nan; y
    ....: 0   NaT
    ....: 1   NaT
    ....: 2   1 days
dtype: timedelta64[ns]
```

7.12 Aliasing Axis Names

To globally provide aliases for axis names, one can define these 2 functions:

```
In [192]: def set_axis_alias(cls, axis, alias):
    ....:     if axis not in cls._AXIS_NUMBERS:
    ....:         raise Exception("invalid axis \[\%s\] for alias \[\%s\]" % (axis, alias))
    ....:     cls._AXIS_ALIASES[alias] = axis

In [193]: def clear_axis_alias(cls, axis, alias):
    ....:     if axis not in cls._AXIS_NUMBERS:
    ....:         raise Exception("invalid axis \[\%s\] for alias \[\%s\]" % (axis, alias))
    ....:     cls._AXIS_ALIASES.pop(alias, None)
```

```
In [194]: set_axis_alias(pd.DataFrame,'columns', 'myaxis2')
```

```
In [195]: df2 = pd.DataFrame(np.random.randn(3,2),columns=['c1','c2'],index=['i1','i2 i3'])
```

```
In [196]: df2.sum(axis='myaxis2')  
```

```
Out[196]:
    i1   0.745167
    i2  -0.176251
    i3   0.014354
dtype: float64
```

```
In [197]: clear_axis_alias(pd.DataFrame,'columns', 'myaxis2')
```

7.13 Creating Example Data

To create a dataframe from every combination of some given values, like R’s `expand.grid()` function, we can create a dict where the keys are column names and the values are lists of the data values:
In [198]: def expand_grid(data_dict):
 : rows = itertools.product(*data_dict.values())
 : return pd.DataFrame.from_records(rows, columns=data_dict.keys())
 :
In [199]: df = expand_grid(
 : {'height': [60, 70],
 : 'weight': [100, 140, 180],
 : 'sex': ['Male', 'Female']})
 :
In [200]: df
Out[200]:
 height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female
We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started. The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To get started, import numpy and load pandas into your namespace:

```
In [1]: import numpy as np
In [2]: import pandas as pd
```

Here is a basic tenet to keep in mind: **data alignment is intrinsic.** The link between labels and data will not be broken unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in separate sections.

8.1 Series

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the **index.** The basic method to create a Series is to call:

```
>>> s = pd.Series(data, index=index)
```

Here, **data** can be many different things:

- a Python dict
- an ndarray
- a scalar value (like 5)

The passed **index** is a list of axis labels. Thus, this separates into a few cases depending on what **data** is:

From ndarray

If **data** is an ndarray, **index** must be the same length as **data.** If no index is passed, one will be created having values

```
In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [4]: s
Out[47]:
   a    0.2941
   b    0.2869
   c   1.7098
```

```
In [5]: s.index
Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [6]: pd.Series(np.random.randn(5))
Out[6]:
0  -0.4531
1  -1.8215
2  -0.1263
3  -0.1533
4   0.4055
dtype: float64

Note: Starting in v0.8.0, pandas supports non-unique index values. If an operation that does not support duplicate index values is attempted, an exception will be raised at that time. The reason for being lazy is nearly all performance-based (there are many instances in computations, like parts of GroupBy, where the index is not used).

From dict

If data is a dict, if index is passed the values in data corresponding to the labels in the index will be pulled out. Otherwise, an index will be constructed from the sorted keys of the dict, if possible.

In [7]: d = {'a' : 0., 'b' : 1., 'c' : 2.}

In [8]: pd.Series(d)
Out[8]:
a  0.0
b  1.0
c  2.0
dtype: float64

In [9]: pd.Series(d, index=['b', 'c', 'd', 'a'])

Note: NaN (not a number) is the standard missing data marker used in pandas

From scalar value If data is a scalar value, an index must be provided. The value will be repeated to match the length of index.

In [10]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[10]:
a  5.0
b  5.0
c  5.0
8.1.1 Series is ndarray-like

Series acts very similarly to a ndarray, and is a valid argument to most NumPy functions. However, things like slicing also slice the index.

In [11]: s[0]
Out[11]: 0.29413876297575337

In [12]: s[:3]
Out[12]:
a  0.2941
b  0.2869
c  1.7098
dtype: float64

In [13]: s[s > s.median()]
Out[13]:
a  0.2941
c  1.7098
dtype: float64

In [14]: s[[4, 3, 1]]
Out[14]:
e  0.2696
d -0.2126
b  0.2869
dtype: float64

In [15]: np.exp(s)
Out[15]:
a  1.3420
b  1.3323
c  5.5276
d  0.8085
e  1.3094
dtype: float64

We will address array-based indexing in a separate section.

8.1.2 Series is dict-like

A Series is like a fixed-size dict in that you can get and set values by index label:

In [16]: s['a']
Out[16]: 0.29413876297575337

In [17]: s['e'] = 12.
In [18]: s
Out[18]:
    a    0.2941
    b    0.2869
    c    1.7098
    d   -0.2126
    e    12.0000
dtype: float64

In [19]: 'e' in s
   → True

In [20]: 'f' in s
   → False

If a label is not contained, an exception is raised:

```python
>>> s['f']
KeyError: 'f'
```

Using the `get` method, a missing label will return None or specified default:

```python
In [21]: s.get('f')
In [22]: s.get('f', np.nan)
Out[22]: nan
```

See also the section on attribute access.

### 8.1.3 Vectorized operations and label alignment with Series

When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary. Series can also be passed into most NumPy methods expecting an ndarray.

```python
In [23]: s + s
Out[23]:
 a 0.5883
 b 0.5739
 c 3.4195
 d -0.4252
 e 24.0000
dtype: float64

In [24]: s * 2
→ a 0.5883
 b 0.5739
 c 3.4195
 d -0.4252
 e 24.0000
dtype: float64

In [25]: np.exp(s)
```
A key difference between Series and ndarray is that operations between Series automatically align the data based on label. Thus, you can write computations without giving consideration to whether the Series involved have the same labels.

```python
In [26]: s[1:] + s[:-1]
Out[26]:
a NaN
b 0.5739
c 3.4195
d -0.4252
e NaN
dtype: float64
```

The result of an operation between unaligned Series will have the **union** of the indexes involved. If a label is not found in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data alignment features of the pandas data structures set pandas apart from the majority of related tools for working with labeled data.

---

**Note:** In general, we chose to make the default result of operations between differently indexed objects yield the **union** of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is typically important information as part of a computation. You of course have the option of dropping labels with missing data via the `dropna` function.

### 8.1.4 Name attribute

Series can also have a `name` attribute:

```python
In [27]: s = pd.Series(np.random.randn(5), name='something')
In [28]: s
Out[28]:
 0 -0.5046
 1 1.4051
 2 0.7781
 3 -0.7990
 4 -0.6707
Name: something, dtype: float64
```

```python
In [29]: s.name
Out[29]: 'something'
```

The Series `name` will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as you will see below.
New in version 0.18.0.

You can rename a Series with the `pandas.Series.rename()` method.

```python
In [30]: s2 = s.rename("different")
In [31]: s2.name
Out[31]: 'different'
```

Note that \( s \) and \( s2 \) refer to different objects.

### 8.2 DataFrame

**DataFrame** is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:

- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame

Along with the data, you can optionally pass `index` (row labels) and `columns` (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

#### 8.2.1 From dict of Series or dicts

The result `index` will be the **union** of the indexes of the various Series. If there are any nested dicts, these will be first converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

```python
In [32]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
 : 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}

In [33]: df = pd.DataFrame(d)

In [34]: df
Out[34]: one two
 a 1.0 1.0
 b 2.0 2.0
 c 3.0 3.0
 d NaN 4.0

In [35]: pd.DataFrame(d, index=['d', 'b', 'a'])
Out[35]: one two
 d NaN 4.0
 b 2.0 2.0
 a 1.0 1.0
```
The row and column labels can be accessed respectively by accessing the `index` and `columns` attributes:

**Note:** When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.

```
In [37]: df.index
Out[37]: Index([‘a’, ‘b’, ‘c’, ‘d’], dtype=’object’)

In [38]: df.columns
Out[38]: Index([‘one’, ‘two’], dtype=’object’)
```

### 8.2.2 From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays. If no index is passed, the result will be `range(n)`, where `n` is the array length.

```
In [39]: d = {‘one’ : [1., 2., 3., 4.],
 : ‘two’ : [4., 3., 2., 1.]
 : }

In [40]: pd.DataFrame(d)
Out[40]:
 one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0

In [41]: pd.DataFrame(d, index=[‘a’, ‘b’, ‘c’, ‘d’])
Out[41]:
 one two
a 1.0 4.0
b 2.0 3.0
c 3.0 2.0
d 4.0 1.0
```

### 8.2.3 From structured or record array

This case is handled identically to a dict of arrays.

```
In [42]: data = np.zeros((2,), dtype=[(‘A’, ‘i4’), (‘B’, ‘f4’), (‘C’, ‘a10’)])

In [43]: data[:] = [(1,2.,’Hello’), (2,3.,”World”)]
```
In [44]: pd.DataFrame(data)
Out[44]:
   A  B   C
0  1  2.0 b'Hello'
1  2  3.0 b'World'

In [45]: pd.DataFrame(data, index=['first', 'second'])
Out[45]:
   A  B   C
first 1  2.0 b'Hello'
second 2  3.0 b'World'

In [46]: pd.DataFrame(data, columns=['C', 'A', 'B'])
   C   A  B
0 b'Hello' 1  2.0
1 b'World' 2  3.0

Note: DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.

8.2.4 From a list of dicts

In [47]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [48]: pd.DataFrame(data2)
Out[48]:
   a  b   c
0  1  2  NaN
1  5 10 20.0

In [49]: pd.DataFrame(data2, index=['first', 'second'])
Out[49]:
   a  b   c
first 1  2  NaN
second 5 10 20.0

In [50]: pd.DataFrame(data2, columns=['a', 'b'])
   a  b
0  1  2
1  5 10

8.2.5 From a dict of tuples

You can automatically create a multi-indexed frame by passing a tuples dictionary

In [51]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
   ....:     ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
   ....:     ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
   ....:     ('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2}})
8.2.6 From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).

Missing Data

Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, use np.nan for those values which are missing. Alternatively, you may pass a numpy.MaskedArray as the data argument to the DataFrame constructor, and its masked entries will be considered missing.

8.2.7 Alternate Constructors

DataFrame.from_dict

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates like the DataFrame constructor except for the orient parameter which is 'columns' by default, but which can be set to 'index' in order to use the dict keys as row labels.

DataFrame.from_records

DataFrame.from_records takes a list of tuples or an ndarray with structured dtype. Works analogously to the normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the index. For example:

```
In [52]: data
Out[52]:
array([(1, 2., b'Hello'), (2, 3., b'World')],
 dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])
In [53]: pd.DataFrame.from_records(data, index='C')

Out[53]:
 A B
C b'Hello' 1 2.0 b'World' 2 3.0
```

DataFrame.from_items

DataFrame.from_items works analogously to the form of the dict constructor that takes a sequence of (key, value) pairs, where the keys are column (or row, in the case of orient='index') names, and the value are the column values (or row values). This can be useful for constructing a DataFrame with the columns in a particular order without having to pass an explicit list of columns:

```
In [54]: pd.DataFrame.from_items({('A', [1, 2, 3]), ('B', [4, 5, 6])})
Out[54]:
 A B
0 1 2
1 3 4
2 5 6
```
If you pass `orient='index'`, the keys will be the row labels. But in this case you must also pass the desired column names:

```
In [55]: pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
 : orient='index', columns=['one', 'two', 'three'])
Out[55]:
 one two three
A 1.0 2.0 3.0
B 4.0 5.0 6.0
```

### 8.2.8 Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting columns works with the same syntax as the analogous dict operations:

```
In [56]: df['one']
Out[56]:
 a 1.0
 b 2.0
 c 3.0
 d NaN
Name: one, dtype: float64

In [57]: df['three'] = df['one'] * df['two']
In [58]: df['flag'] = df['one'] > 2
In [59]: df
Out[59]:
 one two three flag
 a 1.0 1.0 1.0 False
 b 2.0 2.0 4.0 False
 c 3.0 3.0 9.0 True
 d NaN 4.0 NaN False
```

Columns can be deleted or popped like with a dict:

```
In [60]: del df['two']
In [61]: three = df.pop('three')
In [62]: df
Out[62]:
 one flag
 a 1.0 False
 b 2.0 False
 c 3.0 True
 d NaN False
```

When inserting a scalar value, it will naturally be propagated to fill the column:
In [63]: df['foo'] = 'bar'

In [64]: df
Out[64]:
   one  flag  foo
  a    1.0    False bar
  b    2.0    False bar
  c    3.0     True  bar
  d  NaN    False   NaN

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s index:

In [65]: df['one_trunc'] = df['one'][:2]

In [66]: df
Out[66]:
   one  flag  foo  one_trunc
  a    1.0    False bar  1.0
  b    2.0    False bar  2.0
  c    3.0     True  bar   NaN
  d  NaN    False   NaN   NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.

By default, columns get inserted at the end. The `insert` function is available to insert at a particular location in the columns:

In [67]: df.insert(1, 'bar', df['one'])

In [68]: df
Out[68]:
   one  bar  flag  foo  one_trunc
  a    1.0  1.0    False bar  1.0
  b    2.0  2.0    False bar  2.0
  c    3.0  3.0     True  bar   NaN
  d  NaN  NaN    False   NaN   NaN

8.2.9 Assigning New Columns in Method Chains

New in version 0.16.0.

Inspired by `dplyr`'s `mutate` verb, DataFrame has an `assign()` method that allows you to easily create new columns that are potentially derived from existing columns.

In [69]: iris = pd.read_csv('data/iris.data')

In [70]: iris.head()
Out[70]:
   SepalLength  SepalWidth  PetalLength  PetalWidth     Name
  0      5.1         3.5         1.4         0.2  Iris-setosa
  1      4.9         3.0         1.4         0.2  Iris-setosa
  2      4.7         3.2         1.3         0.2  Iris-setosa
  3      4.6         3.1         1.5         0.2  Iris-setosa
  4      5.0         3.6         1.4         0.2  Iris-setosa

In [71]: (iris.assign(sepal_ratio = iris['SepalWidth'] / iris['SepalLength']))
Above was an example of inserting a precomputed value. We can also pass in a function of one argument to be evaluated on the DataFrame being assigned to.

```python
In [72]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] / x['SepalLength'])).head()
```

assign always returns a copy of the data, leaving the original DataFrame untouched.

Passing a callable, as opposed to an actual value to be inserted, is useful when you don’t have a reference to the DataFrame at hand. This is common when using assign in chains of operations. For example, we can limit the DataFrame to just those observations with a Sepal Length greater than 5, calculate the ratio, and plot:

```python
In [73]: (iris.query('SepalLength > 5')
....: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
....: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
....: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
```

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0x120a283c8>
Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.

The function signature for `assign` is simply `**kwargs`. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a `Series` or NumPy array), or a function of one argument to be called on the DataFrame. A copy of the original DataFrame is returned, with the new values inserted.

Warning: Since the function signature of `assign` is `**kwargs`, a dictionary, the order of the new columns in the resulting DataFrame cannot be guaranteed to match the order you pass in. To make things predictable, items are inserted alphabetically (by key) at the end of the DataFrame.

All expressions are computed first, and then assigned. So you can’t refer to another column being assigned in the same call to `assign`. For example:

```python
In [74]: # Don't do this, bad reference to 'C'
 df.assign(C = lambda x: x['A'] + x['B'],
 D = lambda x: x['A'] + x['C'])
In [2]: # Instead, break it into two assigns
 (df.assign(C = lambda x: x['A'] + x['B'])
 .assign(D = lambda x: x['A'] + x['C']))
```

8.2.10 Indexing / Selection

The basics of indexing are as follows:
### Operation	Syntax	Result
Select column | `df[col]` | Series
Select row by label | `df.loc[label]` | Series
Select row by integer location | `df.iloc[loc]` | Series
Slice rows | `df[5:10]` | DataFrame
Select rows by boolean vector | `df[bool_vec]` | DataFrame

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

```python
In [75]: df.loc['b']
Out[75]:
 one 2
 bar 2
flag False
foo bar
one_trunc 2
Name: b, dtype: object
```

```python
In [76]: df.iloc[2]
Out[76]:
 one 3
 bar 3
flag True
foo bar
one_trunc NaN
Name: c, dtype: object
```

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.

### 8.2.11 Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on both the columns and the index (row labels). Again, the resulting object will have the union of the column and row labels.

```python
In [77]: df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
In [78]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
In [79]: df + df2
```

```python
Out[79]:
 A B C D
0 1.307 2.495 0.991 NaN
1 2.523 -0.038 -0.618 NaN
2 -0.133 -1.478 -0.567 NaN
3 -0.463 -0.681 1.515 NaN
4 0.062 -1.168 0.553 NaN
5 3.188 -0.025 0.661 NaN
6 -0.878 -0.085 -2.768 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
```

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the DataFrame columns, thus broadcasting row-wise. For example:
In the special case of working with time series data, and the DataFrame index also contains dates, the broadcasting will be column-wise:

```
In [81]: index = pd.date_range('1/1/2000', periods=8)

In [82]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))

In [83]: df
Out[83]:
 A B C
2000-01-01 0.0817 1.3905 -1.9620
2000-01-02 -0.5056 0.0213 -0.3171
2000-01-03 -0.0259 0.8407 1.4135
2000-01-04 0.0492 0.4879 0.4263
2000-01-05 1.2432 -0.6222 -0.5386
2000-01-06 0.7915 -0.0203 0.1844
2000-01-07 0.1616 0.6414 -1.8116
2000-01-08 -0.1140 -0.8574 0.1719

In [84]: type(df['A'])
 ...: ˓→pandas.core.series.Series

In [85]: df - df['A']
 ...: ˓→
 2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 ...
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 NaN NaN NaN
2000-01-04 00:00:00 ... 2000-01-08 00:00:00 A B C
2000-01-01 NaN ... NaN NaN NaN NaN
2000-01-02 NaN ... NaN NaN NaN NaN
2000-01-03 NaN ... NaN NaN NaN NaN
2000-01-04 NaN ... NaN NaN NaN NaN
2000-01-05 NaN ... NaN NaN NaN NaN
2000-01-06 NaN ... NaN NaN NaN NaN
2000-01-07 NaN ... NaN NaN NaN NaN
2000-01-08 NaN ... NaN NaN NaN NaN
```
Warning:

```python
def - df['A']
```

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is

```python
df.sub(df['A'], axis=0)
```

For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.

Operations with scalars are just as you would expect:

```python
In [86]: df * 5 + 2
Out[86]:
 A B C
2000-01-01 1.5914 8.9525 -7.8102
2000-01-02 -0.5279 2.1063 0.4146
2000-01-03 1.8705 6.2037 9.0676
2000-01-04 2.2461 4.4393 4.1314
2000-01-05 8.2159 -1.1111 -0.6930
2000-01-06 5.9576 1.8985 2.9221
2000-01-07 1.1918 5.2071 -7.0578
2000-01-08 1.4298 -2.2869 2.8595
```

```python
In [87]: 1 / df
```

```plaintext
 →
 A B C
2000-01-01 -12.2384 0.7192 -0.5097
2000-01-02 -1.9779 47.0519 -3.1539
2000-01-03 -38.6178 1.1894 0.7075
2000-01-04 20.3130 2.0498 2.3458
2000-01-05 0.8044 -1.6072 -1.8566
2000-01-06 1.2634 -49.2551 5.4221
2000-01-07 -6.1864 1.5590 -0.5520
2000-01-08 -8.7695 -1.1663 5.8170
```

```python
In [88]: df ** 4
```

```plaintext
 →
 A B C
2000-01-01 4.4576e-05 3.7384e+00 14.8192
2000-01-02 6.5337e-02 2.0403e-07 0.0101
2000-01-03 4.4962e-07 4.9964e-01 3.9922
2000-01-04 5.8735e-06 5.6645e-02 0.0330
2000-01-05 2.3885e+00 1.4989e-01 0.0842
2000-01-06 3.9249e-01 1.6900e-07 0.0012
2000-01-07 6.8273e-04 1.6926e-01 10.7700
2000-01-08 1.6908e-04 5.4038e-01 0.0009
```

Boolean operators work as well:
In [89]: df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)

In [90]: df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)

In [91]: df1 & df2
Out[91]:
   a  b
0  False  False
1  False   True
2   True  False

In [92]: df1 | df2
Out[92]:
   a  b
0   True   True
1   True   True
2   True   True

In [93]: df1 ^ df2
Out[93]:
   a  b
0   True   True
1   True  False
2  False   True

In [94]: -df1
Out[94]:
   a  b
0  False   True
1   True  False
2  False  False

8.2.12 Transposing

To transpose, access the T attribute (also the transpose function), similar to an ndarray:

# only show the first 5 rows
In [95]: df[:5].T
Out[95]:
A  -0.0817  -0.5056  -0.0259   0.0492   1.2432
B   1.3905   0.0213   0.8407   0.4879  -0.6222
C  -1.9620  -0.3171   1.4135   0.4263  -0.5386

8.2.13 DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on DataFrame, assuming the data within are numeric:

In [96]: np.exp(df)
Out[96]:
   A  B  C
0  2.0  0.7  1.2
1  2.9  1.7  1.1
2  1.0  1.3 -0.2
3  0.0  1.1  1.1
4  1.0  2.7  0.1

8.2. DataFrame
The dot method on DataFrame implements matrix multiplication:

\begin{verbatim}
In [98]: df.T.dot(df)
Out[98]:
\begin{array}{ccc}
A & B & C \\
A & 2.4765 & -0.9176 & 0.0546 \\
B & -0.9176 & 4.4129 & -2.3166 \\
C & 0.0546 & -2.3166 & 9.7653 \\
\end{array}
\end{verbatim}

Similarly, the dot method on Series implements dot product:

\begin{verbatim}
In [99]: s1 = pd.Series(np.arange(5,10))
In [100]: s1.dot(s1)
Out[100]: 255
\end{verbatim}

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in places from a matrix.

### 8.2.14 Console display

Very large DataFrames will be truncated to display them in the console. You can also get a summary using `info()`.
(Here I am reading a CSV version of the `baseball` dataset from the `plyr` R package):

\begin{verbatim}
In [101]: baseball = pd.read_csv('data/baseball.csv')
In [102]: print(baseball)
\begin{verbatim}
id player year stint ... hbp sh sf gidp
0 88641 womacto01 2006 2 ... 0.0 3.0 0.0 0.0
1 88643 schilcu01 2006 1 ... 0.0 0.0 0.0 0.0
.. ... ... ... ... ... ... ... ...
98 89533 aloumo01 2007 1 ... 2.0 0.0 3.0 13.0
99 89534 alomasa02 2007 1 ... 0.0 0.0 0.0 0.0
\end{verbatim}

[100 rows x 23 columns]
\end{verbatim}
```python
In [103]: baseball.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
team 100 non-null object
lg 100 non-null object
g 100 non-null int64
ab 100 non-null int64
r 100 non-null int64
h 100 non-null int64
X2b 100 non-null int64
X3b 100 non-null int64
hr 100 non-null int64
rbi 100 non-null float64
sb 100 non-null float64
cs 100 non-null float64
bb 100 non-null int64
so 100 non-null float64
libb 100 non-null float64
hbp 100 non-null float64
sh 100 non-null float64
sf 100 non-null float64
gidp 100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.0+ KB
```

However, using `to_string` will return a string representation of the DataFrame in tabular form, though it won’t always fit the console width:

```python
In [104]: print(baseball.iloc[-20:, :12].to_string())
```

<table>
<thead>
<tr>
<th>id</th>
<th>player</th>
<th>year</th>
<th>stint</th>
<th>team</th>
<th>lg</th>
<th>g</th>
<th>ab</th>
<th>r</th>
<th>h</th>
<th>X2b</th>
<th>X3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>89474</td>
<td>2007</td>
<td>1</td>
<td>COL</td>
<td>NL</td>
<td>43</td>
<td>94</td>
<td>9</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>89480</td>
<td>2007</td>
<td>1</td>
<td>OAK</td>
<td>AL</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>89481</td>
<td>2007</td>
<td>1</td>
<td>SLN</td>
<td>NL</td>
<td>117</td>
<td>365</td>
<td>39</td>
<td>92</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>83</td>
<td>89482</td>
<td>2007</td>
<td>1</td>
<td>NYN</td>
<td>NL</td>
<td>76</td>
<td>193</td>
<td>24</td>
<td>54</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>89489</td>
<td>2007</td>
<td>1</td>
<td>NYN</td>
<td>NL</td>
<td>139</td>
<td>538</td>
<td>71</td>
<td>139</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>85</td>
<td>89493</td>
<td>2007</td>
<td>1</td>
<td>CIN</td>
<td>NL</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>89494</td>
<td>2007</td>
<td>1</td>
<td>NYN</td>
<td>NL</td>
<td>21</td>
<td>41</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>89495</td>
<td>2007</td>
<td>1</td>
<td>CIN</td>
<td>NL</td>
<td>80</td>
<td>215</td>
<td>23</td>
<td>57</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>89497</td>
<td>2007</td>
<td>1</td>
<td>NYA</td>
<td>AL</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>89</td>
<td>89498</td>
<td>2007</td>
<td>1</td>
<td>BOS</td>
<td>AL</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>89499</td>
<td>2007</td>
<td>1</td>
<td>TOR</td>
<td>AL</td>
<td>69</td>
<td>189</td>
<td>23</td>
<td>48</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>91</td>
<td>89501</td>
<td>2007</td>
<td>2</td>
<td>ARI</td>
<td>NL</td>
<td>28</td>
<td>40</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>89502</td>
<td>2007</td>
<td>1</td>
<td>MIN</td>
<td>AL</td>
<td>50</td>
<td>153</td>
<td>18</td>
<td>40</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>93</td>
<td>89521</td>
<td>2007</td>
<td>1</td>
<td>SFO</td>
<td>NL</td>
<td>126</td>
<td>340</td>
<td>75</td>
<td>94</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>89523</td>
<td>2007</td>
<td>1</td>
<td>HOU</td>
<td>NL</td>
<td>141</td>
<td>517</td>
<td>68</td>
<td>130</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>95</td>
<td>89526</td>
<td>2007</td>
<td>2</td>
<td>FLO</td>
<td>NL</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>89527</td>
<td>2007</td>
<td>1</td>
<td>SFO</td>
<td>NL</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>89530</td>
<td>2007</td>
<td>1</td>
<td>HOU</td>
<td>NL</td>
<td>117</td>
<td>349</td>
<td>38</td>
<td>82</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>98</td>
<td>89533</td>
<td>2007</td>
<td>1</td>
<td>NYN</td>
<td>NL</td>
<td>87</td>
<td>328</td>
<td>51</td>
<td>112</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>89534</td>
<td>2007</td>
<td>1</td>
<td>NYN</td>
<td>NL</td>
<td>8</td>
<td>22</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
New since 0.10.0, wide DataFrames will now be printed across multiple rows by default:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.040542</td>
<td>-1.126415</td>
<td>0.549956</td>
<td>1.323044</td>
<td>-0.219197</td>
<td>0.581467</td>
<td>-0.519407</td>
</tr>
<tr>
<td>1</td>
<td>-2.603736</td>
<td>0.532069</td>
<td>0.327184</td>
<td>-1.251625</td>
<td>1.481966</td>
<td>-0.642683</td>
<td>1.248002</td>
</tr>
<tr>
<td>2</td>
<td>0.683625</td>
<td>-1.876826</td>
<td>-1.873827</td>
<td>-0.251457</td>
<td>0.027599</td>
<td>1.235291</td>
<td>0.850574</td>
</tr>
<tr>
<td>7</td>
<td>-0.271582</td>
<td>0.344684</td>
<td>-0.643988</td>
<td>-0.378918</td>
<td>-0.924127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.954333</td>
<td>-0.475215</td>
<td>-1.258974</td>
<td>-1.142863</td>
<td>-1.015321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.140302</td>
<td>2.149143</td>
<td>0.504452</td>
<td>0.678026</td>
<td>-0.628443</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can change how much to print on a single row by setting the `display.width` option:

```
In [106]: pd.set_option('display.width', 40) # default is 80

In [107]: pd.DataFrame(np.random.randn(3, 12))
```

```
Out[107]:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.191156</td>
<td>-1.145363</td>
</tr>
<tr>
<td>1</td>
<td>0.762474</td>
<td>0.481666</td>
</tr>
<tr>
<td>2</td>
<td>0.076257</td>
<td>-0.897159</td>
</tr>
<tr>
<td>3</td>
<td>-1.299878</td>
<td>-0.110240</td>
</tr>
<tr>
<td>4</td>
<td>0.577103</td>
<td>-0.076021</td>
</tr>
<tr>
<td>5</td>
<td>-0.528311</td>
<td>-0.660014</td>
</tr>
<tr>
<td>6</td>
<td>0.416876</td>
<td>-0.436400</td>
</tr>
<tr>
<td>7</td>
<td>0.202660</td>
<td>-0.314950</td>
</tr>
<tr>
<td>8</td>
<td>0.780048</td>
<td>2.162047</td>
</tr>
<tr>
<td>9</td>
<td>-0.383171</td>
<td>-0.172217</td>
</tr>
<tr>
<td>10</td>
<td>0.542758</td>
<td>1.955407</td>
</tr>
<tr>
<td>11</td>
<td>-0.764147</td>
<td>0.298845</td>
</tr>
</tbody>
</table>
```

You can adjust the max width of the individual columns by setting `display.max_colwidth`:

```
In [108]: datafile={'filename': ['filename_01','filename_02'],
 : 'path': ['media/user_name/storage/folder_01/filename_01",
 : "media/user_name/storage/folder_02/filename_02"
 :}

In [109]: pd.set_option('display.max_colwidth',30)

In [110]: pd.DataFrame(datafile)
```

```
Out[110]:

<table>
<thead>
<tr>
<th>filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename_01</td>
</tr>
<tr>
<td>filename_02</td>
</tr>
<tr>
<td>path</td>
</tr>
<tr>
<td>media/user_name/storage/fo...</td>
</tr>
<tr>
<td>media/user_name/storage/fo...</td>
</tr>
</tbody>
</table>
```

Chapter 8. Intro to Data Structures
In [111]: pd.set_option('display.max_colwidth',100)

In [112]: pd.DataFrame(datafile)
Out[112]:
   filename   path
0  filename_01  media/user_name/storage/folder_01/filename_01
1  filename_02  media/user_name/storage/folder_02/filename_02

You can also disable this feature via the `expand_frame_repr` option. This will print the table in one block.

### 8.2.15 DataFrame column attribute access and IPython completion

If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:

```
In [113]: df = pd.DataFrame({'foo1': np.random.randn(5),
 'foo2': np.random.randn(5)})
```

```
In [114]: df
Out[114]:
 foo1 foo2
0 0.82514 1.74997
1 -0.38802 1.40294
2 -0.33930 0.62322
3 0.14116 0.02013
4 0.56593 -2.85846
```

```
In [115]: df.foo1
Out[115]:
 0 1 2 3 4
-0.82514 -1.74997
-0.38802 -1.40294
-0.33930 0.62322
 0.14116 0.02013
 0.56593 -2.85846
Name: foo1, dtype: float64
```

The columns are also connected to the IPython completion mechanism so they can be tab-completed:

```
In [5]: df.fo<TAB>
df.foo1 df.foo2
```

### 8.3 Panel

**Warning:** In 0.20.0, Panel is deprecated and will be removed in a future version. See the section *Deprecation Panel.*
Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you may find the axis names slightly arbitrary:

- **items**: axis 0, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1, it is the **index** (rows) of each of the DataFrames
- **minor_axis**: axis 2, it is the **columns** of each of the DataFrames

**Construction of Panels works about like you would expect:**

### 8.3.1 From 3D ndarray with optional axis labels

```python
In [116]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=pd.date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

In [117]: wp
Out[117]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

### 8.3.2 From dict of DataFrame objects

```python
In [118]: data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
 'Item2' : pd.DataFrame(np.random.randn(4, 2))
 }

In [119]: pd.Panel(data)
Out[119]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
```

Note that the values in the dict need only be **convertible to DataFrame**. Thus, they can be any of the other valid inputs to DataFrame as per above.

One helpful factory method is `Panel.from_dict`, which takes a dictionary of DataFrames as above, and the following named parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersect</td>
<td>False</td>
<td>drops elements whose indices do not align</td>
</tr>
<tr>
<td>orient</td>
<td>items</td>
<td>use minor to use DataFrames' columns as panel items</td>
</tr>
</tbody>
</table>

For example, compare to the construction above:
In [120]: pd.Panel.from_dict(data, orient='minor')
Out[120]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type columns, all of the data will get upcasted to dtype=object unless you pass orient='minor':

In [121]: df = pd.DataFrame({'a': ['foo', 'bar', 'baz'],
                      'b': np.random.randn(3)})

In [122]: df
Out[122]:
   a      b
0  foo  1.047583
1  bar  0.507575
2  baz  1.172740

In [123]: data = {'item1': df, 'item2': df}

In [124]: panel = pd.Panel.from_dict(data, orient='minor')

In [125]: panel['a']
Out[125]:
    item1  item2
0      foo   foo
1      bar   bar
2      baz   baz

In [126]: panel['b']
Out[126]:
    item1  item2
0   1.047583  1.047583
1   0.507575  0.507575
2   1.172740  1.172740

In [127]: panel['b'].dtypes
Out[127]:
item1  float64
item2  float64
dtype: object

Note: Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-wise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on, of course, in future releases. And faster if you join me in working on the codebase.
8.3.3 From DataFrame using `to_panel` method

This method was introduced in v0.7 to replace `LongPanel.to_long`, and converts a DataFrame with a two-level index to a Panel.

```python
In [128]: midx = pd.MultiIndex(levels=[['one', 'two'], ['x', 'y']], labels=[[1,1,0,0], [1,0,1,0]])

In [129]: df = pd.DataFrame({'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)

In [130]: df.to_panel()
Out[130]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y
```

8.3.4 Item selection / addition / deletion

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:

```python
In [131]: wp['Item1']
Out[131]:
 A B C D
2000-01-01 0.885765 0.158014 -1.981797 1.769622
2000-01-02 0.093792 -1.269228 1.290159 0.509707
2000-01-03 -0.251960 -1.127396 -0.430936 -1.243710
2000-01-04 -0.854956 -0.327742 0.210942 0.152473
2000-01-05 -0.061545 2.845263 -0.507224 1.772662

In [132]: wp['Item3'] = wp['Item1'] / wp['Item2']
```

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python identifier, you can access it as an attribute and tab-complete it in IPython.

8.3.5 Transposing

A Panel can be rearranged using its `transpose` method (which does not make a copy by default unless the data are heterogeneous):

```python
In [133]: wp.transpose(2, 0, 1)
Out[133]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
```
### 8.3.6 Indexing / Selection

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select item</td>
<td>wp[item]</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at major_axis label</td>
<td>wp.major_xs(val)</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at minor_axis label</td>
<td>wp.minor_xs(val)</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

For example, using the earlier example data, we could do:

```python
In [134]: wp['Item1']
Out[134]:
 A B C D
2000-01-01 0.885765 0.158014 -1.981797 1.769622
2000-01-02 0.093792 -1.269228 1.290159 0.509707
2000-01-03 -0.251960 -1.127396 -0.430936 -1.243710
2000-01-04 -0.854956 -0.327742 0.210942 0.152473
2000-01-05 -0.061545 2.845263 -0.507224 1.772662
```

```python
In [135]: wp.major_xs(wp.major_axis[2])
```

```python
In [136]: wp.minor_axis
```

```python
In [137]: wp.minor_xs('C')
```

### 8.3.7 Squeezing

Another way to change the dimensionality of an object is to squeeze a 1-len object, similar to `wp['Item1']`

```python
In [138]: wp.reindex(items=['Item1']).squeeze()
Out[138]:
 A B C D
2000-01-01 0.885765 0.158014 -1.981797 1.769622
2000-01-02 0.093792 -1.269228 1.290159 0.509707
2000-01-03 -0.251960 -1.127396 -0.430936 -1.243710
2000-01-04 -0.854956 -0.327742 0.210942 0.152473
2000-01-05 -0.061545 2.845263 -0.507224 1.772662
```

```python
In [139]: wp.reindex(items=['Item1'], minor=['B']).squeeze()
```

8.3. Panel 481
8.3.8 Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section hierarchical indexing for more on this. To convert a Panel to a DataFrame, use the to_frame method:

```python
In [140]: panel = pd.Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
 : major_axis=pd.date_range('1/1/2000', periods=5),
 : minor_axis=['a', 'b', 'c', 'd'])
.....:
In [141]: panel.to_frame()
Out[141]:
 one two three
a 0.368964 -2.033050 0.525741 -1.298233 0.291669 0.36973 -1.58014
b -1.596338 -0.271503 1.311232 0.010581 0.177649 1.84500 2.177649
 c 0.294397 0.000658 0.535689 0.882541 0.741563 0.368960 0.368960
 d 1.633316 0.301351 0.350587 1.038137 0.524001 0.817009 0.868204
b -0.561237 -0.310997 0.893930 -1.046022 -0.724384 0.327463 2.177649
 c -1.316660 0.608487 2.064058 0.741563 0.368960 0.368960 0.368960
 d 1.038137 1.791018 0.548489 1.038137 1.791018 0.548489 1.038137
 c -1.367749 -0.724384 -1.298233 -1.046022 -1.046022 -1.046022 -1.046022
 d 1.633316 0.301351 0.350587 1.038137 0.524001 0.817009 0.868204
b 0.10581 0.327463 -0.286955 -0.193618 -0.724384 0.327463 -0.286955
 c 0.882541 -1.046022 -0.193618 0.177449 0.741563 0.368960 -0.811164
 d 0.177449 -1.424694 1.122169 0.177449 0.741563 0.368960 1.122169
 c 0.291669 1.845002 1.289298 0.291669 0.291669 1.845002 1.289298
 d 2.177649 0.099995 -0.811164 2.177649 0.099995 -0.811164 2.177649
b -1.154972 0.635333 0.687572 -2.075966 -1.484139 -0.653155 -1.321267
 c -0.858758 0.259096 -1.321267 -2.075966 -1.484139 -0.653155 -1.321267
 d -0.868204 0.817009 -0.593775 -0.868204 0.817009 -0.593775 -0.868204
```

8.4 Deprecate Panel

Over the last few years, pandas has increased in both breadth and depth, with new features, datatype support, and manipulation routines. As a result, supporting efficient indexing and functional routines for Series, DataFrame and Panel has contributed to an increasingly fragmented and difficult-to-understand codebase.

The 3-D structure of a Panel is much less common for many types of data analysis, than the 1-D of the Series or the 2-D of the DataFrame. Going forward it makes sense for pandas to focus on these areas exclusively.

Oftentimes, one can simply use a MultiIndex DataFrame for easily working with higher dimensional data.

In addition, the xarray package was built from the ground up, specifically in order to support the multi-dimensional analysis that is one of Panel's main usecases. Here is a link to the xarray panel-transition documentation.
In [142]: p = tm.makePanel()

In [143]: p

Out[143]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 30 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-02-11 00:00:00
Minor_axis axis: A to D

Convert to a MultiIndex DataFrame

In [144]: p.to_frame()

Out[144]:

<table>
<thead>
<tr>
<th>major</th>
<th>minor</th>
<th>ItemA</th>
<th>ItemB</th>
<th>ItemC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-03</td>
<td>A</td>
<td>-0.562101</td>
<td>0.596722</td>
<td>-0.006076</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-1.188433</td>
<td>0.623781</td>
<td>0.414700</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-1.122897</td>
<td>1.570412</td>
<td>-1.121722</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.068153</td>
<td>0.637637</td>
<td>-0.332359</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>A</td>
<td>0.348637</td>
<td>-1.196606</td>
<td>0.584980</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.364369</td>
<td>0.044965</td>
<td>-0.104393</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.255063</td>
<td>-1.555786</td>
<td>1.864044</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.645839</td>
<td>-1.004495</td>
<td>0.211849</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>A</td>
<td>-3.136335</td>
<td>0.684902</td>
<td>0.764032</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.522007</td>
<td>-0.700244</td>
<td>0.618741</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.019730</td>
<td>1.515842</td>
<td>-1.117555</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.966118</td>
<td>1.146482</td>
<td>1.156103</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>A</td>
<td>0.950982</td>
<td>-2.420257</td>
<td>-0.334286</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.379510</td>
<td>-0.800428</td>
<td>1.477061</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-0.185257</td>
<td>1.535935</td>
<td>-0.459102</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1.929061</td>
<td>0.955239</td>
<td>-0.167683</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>A</td>
<td>-0.817696</td>
<td>-0.497864</td>
<td>0.723964</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.219003</td>
<td>-0.262461</td>
<td>0.479880</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.980392</td>
<td>0.440980</td>
<td>0.254221</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.515374</td>
<td>0.393402</td>
<td>1.725259</td>
</tr>
<tr>
<td>2000-01-10</td>
<td>A</td>
<td>-1.522532</td>
<td>-1.155281</td>
<td>-1.294066</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-1.434896</td>
<td>-0.294109</td>
<td>-0.338110</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.363619</td>
<td>0.923475</td>
<td>-0.180491</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-0.007877</td>
<td>0.886686</td>
<td>-0.482607</td>
</tr>
<tr>
<td>2000-01-11</td>
<td>A</td>
<td>0.877248</td>
<td>-0.182729</td>
<td>1.511304</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.137177</td>
<td>0.455629</td>
<td>0.169672</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.044038</td>
<td>-1.046968</td>
<td>1.634983</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.566788</td>
<td>-0.961336</td>
<td>-0.008121</td>
</tr>
<tr>
<td>2000-01-12</td>
<td>A</td>
<td>-0.596688</td>
<td>1.440756</td>
<td>0.917094</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.004067</td>
<td>0.610660</td>
<td>0.187756</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2000-02-02</td>
<td>C</td>
<td>-1.426564</td>
<td>-0.315895</td>
<td>-0.729149</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-1.951812</td>
<td>0.298852</td>
<td>-1.409432</td>
</tr>
<tr>
<td>2000-02-03</td>
<td>A</td>
<td>0.876211</td>
<td>1.780657</td>
<td>1.232949</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.753136</td>
<td>0.626754</td>
<td>0.480243</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.307062</td>
<td>-0.513063</td>
<td>-1.543837</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-0.304052</td>
<td>0.626159</td>
<td>-0.433954</td>
</tr>
<tr>
<td>2000-02-04</td>
<td>A</td>
<td>-1.510807</td>
<td>-0.508626</td>
<td>1.396962</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.453719</td>
<td>0.243984</td>
<td>0.188892</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.846308</td>
<td>-0.000835</td>
<td>0.058163</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>-0.378778</td>
<td>0.651006</td>
<td>-0.382207</td>
</tr>
<tr>
<td>2000-02-07</td>
<td>A</td>
<td>1.178281</td>
<td>-0.319874</td>
<td>0.081011</td>
</tr>
</tbody>
</table>

8.4. Deprecate Panel
Alternatively, one can convert to an `xarray.DataArray`.

```
In [145]: p.to_xarray()
Out[145]:
<xarray.DataArray (items: 3, major_axis: 30, minor_axis: 4)>
array([[-0.562101, -1.188433, -1.122897, 1.068153],
 [0.348637, -0.364369, 1.255063, 0.645839],
 ...,
 [3.082589, 0.431345, -0.108185, 0.928076],
 [0.453499, -0.279384, -0.555896, 0.771169]],
 [[0.596722, 0.623781, 1.570412, 0.637637],
 [-1.196606, 0.044965, -1.555786, -1.004495],
 ...,
 [0.418458, 0.251429, 0.422885, 1.326783],
 [0.655473, 0.879678, -0.78057 , 1.339542]],
 [[-0.006076, 0.4147 , -1.121722, -0.332359],
 [0.58498 , -0.104393, 1.864044, 0.211849],
 ...,
 [-0.202864, 0.264253, 0.966498, -0.897329],
 [-0.287878, -0.032215, -1.366063, 0.032964]]])

Coordinates:
* items (items) object 'ItemA' 'ItemB' 'ItemC'
* major_axis (major_axis) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05 ...
* minor_axis (minor_axis) object 'A' 'B' 'C' 'D'
```

You can see the full-documentation for the `xarray` package.
8.5 Panel4D and PanelND (Deprecated)

Warning: In 0.19.0 Panel4D and PanelND are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a to_xarray() method to automate this conversion.

See the docs of a previous version for documentation on these objects.
Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:

```
In [1]: index = pd.date_range('1/1/2000', periods=8)

In [2]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
 columns=['A', 'B', 'C'])

In [4]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=pd.date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])
```

**9.1 Head and Tail**

To view a small sample of a Series or DataFrame object, use the `head()` and `tail()` methods. The default number of elements to display is five, but you may pass a custom number.

```
In [5]: long_series = pd.Series(np.random.randn(1000))

In [6]: long_series.head()
Out[6]:
 0 0.229453
 1 0.304418
 2 0.736135
 3 -0.859631
 4 -0.424100
 dtype: float64

In [7]: long_series.tail(3)
```

```
Out[7]:
 ...
997 -0.351587
998 1.136249
999 -0.448789
 dtype: float64
```
9.2 Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata

- **shape**: gives the axis dimensions of the object, consistent with ndarray
- **Axis labels**
  - **Series**: *index* (only axis)
  - **DataFrame**: *index* (rows) and *columns*
  - **Panel**: *items*, *major_axis*, and *minor_axis*

Note, these attributes can be safely assigned to!

```
In [8]: df[:2]
Out[8]:
 A B C
2000-01-01 0.048869 -1.360687 -0.47901
2000-01-02 -0.859661 -0.231595 -0.52775

In [9]: df.columns = [x.lower() for x in df.columns]

In [10]: df
Out[10]:
 a b c
2000-01-01 0.0489 -1.3607 -0.4790
2000-01-02 -0.8597 -0.2316 -0.5278
2000-01-03 -1.2963 0.1507 0.1238
2000-01-04 0.5717 1.5556 -0.8237
2000-01-05 0.5354 -1.0328 1.4697
2000-01-06 1.3041 1.4497 0.2031
2000-01-07 -1.0320 0.9698 -0.9627
2000-01-08 1.3821 -0.9388 0.6691
```

To get the actual data inside a data structure, one need only access the **values** property:

```
In [11]: s.values
Out[11]: array([-1.9339, 0.3773, 0.7341, 2.1416, -0.0112])

In [12]: df.values
Out[12]:
array([[0.0489, -1.3607, -0.4790],
 [-0.8597, -0.2316, -0.5278],
 [-1.2963, 0.1507, 0.1238],
 [0.5717, 1.5556, -0.8238],
 [0.5354, -1.0328, 1.4697],
 [1.3041, 1.4497, 0.2031],
 [-1.0320, 0.9698, -0.9627],
 [1.3821, -0.9388, 0.6691]])

In [13]: wp.values
Out[13]:
array([[-0.4336, -0.2736, 0.6804, -0.3084],
 [-0.2761, -1.8212, -1.9936, -1.9274],
 [-2.0279, 1.6250, 0.5511, 3.0593],
 [0.4553, -0.0307, 0.9357, 1.0612],
 [-2.1079, 0.1999, 0.3236, -0.6416]])
```
If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype.

### 9.3 Accelerated operations

pandas has support for accelerating certain types of binary numerical and boolean operations using the numexpr library and the bottleneck libraries.

These libraries are especially useful when dealing with large data sets, and provide large speedups. numexpr uses smart chunking, caching, and multiple cores. bottleneck is a set of specialized cython routines that are especially fast when dealing with arrays that have nans.

Here is a sample (using 100 column x 100,000 row DataFrames):

<table>
<thead>
<tr>
<th>Operation</th>
<th>0.11.0 (ms)</th>
<th>Prior Version (ms)</th>
<th>Ratio to Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>df1 &gt; df2</td>
<td>13.32</td>
<td>125.35</td>
<td>0.1063</td>
</tr>
<tr>
<td>df1 * df2</td>
<td>21.71</td>
<td>36.63</td>
<td>0.5928</td>
</tr>
<tr>
<td>df1 + df2</td>
<td>22.04</td>
<td>36.50</td>
<td>0.6039</td>
</tr>
</tbody>
</table>

You are highly encouraged to install both libraries. See the section Recommended Dependencies for more installation info.

These are both enabled to be used by default, you can control this by setting the options:

New in version 0.20.0.

```python
pd.set_option('compute.use_bottleneck', False)
pd.set_option('compute.use_numexpr', False)
```

### 9.4 Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:

- Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
- Missing data in computations

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.
9.4.1 Matching / broadcasting behavior

DataFrame has the methods `add()`, `sub()`, `mul()`, `div()` and related functions `radd()`, `rsub()`, ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the `index` or `columns` via the `axis` keyword:

```
In [14]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c', 'd']),
 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),
 'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd']))

In [15]: df
Out[15]:
 one three two
 a -1.101558 NaN 1.124472
 b -0.177289 -0.634293 2.487104
 c 0.462215 1.931194 -0.486066
 d NaN -1.222918 -0.456288

In [16]: row = df.iloc[1]
In [17]: column = df['two']
In [18]: df.sub(row, axis='columns')
Out[18]:
 one three two
 a 0.924269 NaN -1.362632
 b 0.000000 0.000000 0.000000
 c 0.639504 2.565487 -2.973170
 d NaN -0.588625 -2.943392
In [19]: df.sub(row, axis=1)

In [20]: df.sub(column, axis='index')

In [21]: df.sub(column, axis=0)
```
Furthermore you can align a level of a multi-indexed DataFrame with a Series.

```python
In [22]: dfmi = df.copy()
In [23]: dfmi.index = pd.MultiIndex.from_tuples([(1,'a'), (1,'b'), (1,'c'), (2,'a')], names=['first','second'])
In [24]: dfmi.sub(column, axis=0, level='second')
Out[24]:
 one three two
first second
1 a -2.226031 NaN 0.00000
 b -2.664393 -3.121397 0.00000
 c 0.948280 2.417260 0.00000
2 a NaN -2.347391 -1.58076
```

With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

```python
In [25]: major_mean = wp.mean(axis='major')
In [26]: major_mean
Out[26]:
 Item1 Item2
A -0.878036 -0.092218
B -0.060128 0.529811
C 0.099453 -0.715139
D 0.248599 -0.186535
In [27]: wp.sub(major_mean, axis='major')
```

And similarly for axis="items" and axis="minor".

**Note:** I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code...

Series and Index also support the `divmod()` built-in. This function takes the floor division and modulo operation at the same time returning a two-tuple of the same type as the left hand side. For example:

```python
In [28]: s = pd.Series(np.arange(10))
In [29]: s
Out[29]:
0 0
```

9.4. Flexible binary operations
In [30]: div, rem = divmod(s, 3)

In [31]: div
Out[31]:
0  0
1  0
2  0
3  1
4  1
5  1
6  2
7  2
8  2
9  3
dtype: int64

In [32]: rem
Out[32]:
0  0
1  1
2  2
3  0
4  1
5  2
6  0
7  1
8  2
9  0
dtype: int64

In [33]: idx = pd.Index(np.arange(10))

In [34]: idx
Out[34]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

In [35]: div, rem = divmod(idx, 3)

In [36]: div
Out[36]: Int64Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')

In [37]: rem
Out[37]: Int64Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')

We can also do elementwise `divmod()`:
9.4.2 Missing data / operations with fill values

In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a \texttt{fill\_value}, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using \texttt{fillna} if you wish).

In [41]: df

Out[41]:
\begin{tabular}{ccc}
one & three & two \\
\hline
a & -1.101558 & NaN & 1.124472 \\
b & -0.177289 & -0.634293 & 2.487104 \\
c & 0.462215 & 1.931194 & -0.486066 \\
d & NaN & -1.222918 & -0.456288 \\
\end{tabular}

In [42]: df2

\begin{tabular}{ccc}
one & three & two \\
\hline
a & -1.101558 & 1.000000 & 1.124472 \\
b & -0.177289 & -0.634293 & 2.487104 \\
c & 0.462215 & 1.931194 & -0.486066 \\
d & NaN & -1.222918 & -0.456288 \\
\end{tabular}

In [43]: df + df2
9.4.3 Flexible Comparisons

Starting in v0.8, pandas introduced binary comparison methods `eq`, `ne`, `lt`, `gt`, `le`, and `ge` to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above:

```python
In [45]: df.gt(df2)
Out[45]:
 one three two
a False False False
b False False False
c False False False
d False False False
```

```python
In [46]: df2.ne(df)
Out[46]:
 one three two
a False True False
b False False False
c False False False
d True False False
```

These operations produce a pandas object the same type as the left-hand-side input that if of `dtype bool`. These boolean objects can be used in indexing operations, see [here](#).

9.4.4 Boolean Reductions

You can apply the reductions: `empty`, `any()`, `all()`, and `bool()` to provide a way to summarize a boolean result.

```python
In [47]: (df > 0).all()
Out[47]:
 one three two
 False False False
dtype: bool
```

```python
In [48]: (df > 0).any()
Out[48]:
 one three two
 False False False
```
You can reduce to a final boolean value.

```
In [49]: (df > 0).any().any()
Out[49]: True
```

You can test if a pandas object is empty, via the `empty` property.

```
In [50]: df.empty
Out[50]: False
```

```
In [51]: pd.DataFrame(columns=list('ABC')).empty
Out[51]: True
```

To evaluate single-element pandas objects in a boolean context, use the method `bool()`:

```
In [52]: pd.Series([True]).bool()
Out[52]: True
```

```
In [53]: pd.Series([False]).bool()
Out[53]: False
```

```
In [54]: pd.DataFrame([[True]]).bool()
Out[54]: True
```

```
In [55]: pd.DataFrame([[False]]).bool()
Out[55]: False
```

**Warning:** You might be tempted to do the following:

```python
>>> if df:
 ...
```

Or

```python
>>> df and df2
```

These both will raise as you are trying to compare multiple values.

```
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.
˓
 all().
```

See gotchas for a more detailed discussion.

### 9.4.5 Comparing if objects are equivalent

Often you may find there is more than one way to compute the same result. As a simple example, consider `df+df` and `df*2`. To test that these two computations produce the same result, given the tools shown above, you might imagine using `(df+df == df*2).all()`. But in fact, this expression is False:
Notice that the boolean DataFrame `df+df == df*2` contains some False values! That is because NaNs do not compare as equals:

```python
In [58]: np.nan == np.nan
Out[58]: False
```

So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an `equals()` method for testing equality, with NaNs in corresponding locations treated as equal.

```python
In [59]: (df+df).equals(df*2)
Out[59]: True
```

Note that the Series or DataFrame index needs to be in the same order for equality to be True:

```python
In [60]: df1 = pd.DataFrame({'col':['foo', 0, np.nan]})
In [61]: df2 = pd.DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
In [62]: df1.equals(df2)
Out[62]: False
In [63]: df1.equals(df2.sort_index())
Out[63]: True
```

### 9.4.6 Comparing array-like objects

You can conveniently do element-wise comparisons when comparing a pandas data structure with a scalar value:

```python
In [64]: pd.Series(['foo', 'bar', 'baz']) == 'foo'
Out[64]:
0 True
1 False
2 False
dtype: bool

In [65]: pd.Index(['foo', 'bar', 'baz']) == 'foo'
```

Pandas also handles element-wise comparisons between different array-like objects of the same length:
In [66]: pd.Series(['foo', 'bar', 'baz']) == pd.Index(['foo', 'bar', 'qux'])
Out[66]:
    0   True
    1   True
    2  False
dtype: bool

In [67]: pd.Series(['foo', 'bar', 'baz']) == np.array(['foo', 'bar', 'qux'])

Trying to compare Index or Series objects of different lengths will raise a ValueError:

In [55]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
ValueError: Series lengths must match to compare

In [56]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
ValueError: Series lengths must match to compare

Note that this is different from the numpy behavior where a comparison can be broadcast:

In [68]: np.array([1, 2, 3]) == np.array([2])
Out[68]: array([False, True, False], dtype=bool)

or it can return False if broadcasting can not be done:

In [69]: np.array([1, 2, 3]) == np.array([1, 2])
Out[69]: False

### 9.4.7 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of “higher quality”. However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is `combine_first()`, which we illustrate:

In [70]: df1 = pd.DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
                        'B' : [np.nan, 2., 3., np.nan, 6.]})

In [71]: df2 = pd.DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
                        'B' : [np.nan, np.nan, 3., 4., 6., 8.]})

In [72]: df1
Out[72]:
   A   B
0  1.0 NaN
1 NaN  2.0
2  3.0  3.0
3  5.0 NaN

9.4. Flexible binary operations
9.4.8 General DataFrame Combine

The `combine_first()` method above calls the more general DataFrame method `combine()`. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (i.e., columns whose names are the same).

So, for instance, to reproduce `combine_first()` as above:

```python
In [75]: combiner = lambda x, y: np.where(pd.isnull(x), y, x)

In [76]: df1.combine(df2, combiner)
Out[76]:
 A B
0 1.0 NaN
1 2.0 2.0
2 3.0 3.0
3 5.0 4.0
4 3.0 6.0
5 7.0 8.0
```

9.5 Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on `Series`, `DataFrame`, and `Panel`. Most of these are aggregations (hence producing a lower-dimensional result) like `sum()`, `mean()`, and `quantile()`, but some of them, like `cumsum()` and `cumprod()`, produce an object of the same size. Generally speaking, these methods take an `axis` argument, just like `ndarray.{sum, std, ...}`, but the axis can be specified by name or integer:

- **Series**: no axis argument needed
• **DataFrame**: “index” (axis=0, default), “columns” (axis=1)

• **Panel**: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)

For example:

```
In [77]: df
Out[77]:
 one three two
 a -1.101558 NaN 1.124472
 b -0.177289 -0.634293 2.487104
 c 0.462215 1.931194 -0.486066
 d NaN -1.222918 -0.456288
```

```
In [78]: df.mean(0)
 →
 one -0.272211
 three 0.024661
 two 0.667306
dtype: float64
```

```
In [79]: df.mean(1)
 →
 a 0.011457
 b 0.558507
 c 0.635781
 d -0.839603
dtype: float64
```

All such methods have a `skipna` option signaling whether to exclude missing data (`True` by default):

```
In [80]: df.sum(0, skipna=False)
Out[80]:
 one NaN
 three NaN
 two 2.669223
dtype: float64
```

```
In [81]: df.sum(axis=1, skipna=True)
 →
 a 0.022914
 b 1.675522
 c 1.907343
 d -1.679206
dtype: float64
```

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:

```
In [82]: ts_stand = (df - df.mean()) / df.std()

In [83]: ts_stand.std()
Out[83]:
 one 1.0
 three 1.0
 two 1.0
```

9.5. Descriptive statistics
Note that methods like `cumsum()` and `cumprod()` preserve the location of NaN values. This is somewhat different from `expanding()` and `rolling()`. For more details please see this note.

Here is a quick reference summary table of common functions. Each also takes an optional `level` parameter which applies only if the object has a hierarchical index.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation</td>
</tr>
<tr>
<td>median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mode</td>
<td>Mode</td>
</tr>
<tr>
<td>abs</td>
<td>Absolute Value</td>
</tr>
<tr>
<td>prod</td>
<td>Product of values</td>
</tr>
<tr>
<td>std</td>
<td>Bessel-corrected sample standard deviation</td>
</tr>
<tr>
<td>var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>sem</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>skew</td>
<td>Sample skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt</td>
<td>Sample kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>cumsum</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>cumprod</td>
<td>Cumulative product</td>
</tr>
<tr>
<td>cummax</td>
<td>Cumulative maximum</td>
</tr>
<tr>
<td>cummin</td>
<td>Cumulative minimum</td>
</tr>
</tbody>
</table>

Note that by chance some NumPy methods, like `mean`, `std`, and `sum`, will exclude NAs on Series input by default:

```
In [87]: np.mean(df['one'])
Out[87]: -0.2722109480450114

In [88]: np.mean(df['one'].values)
Out[88]: nan
```
Series also has a method `nunique()` which will return the number of unique non-null values:

```
In [89]: series = pd.Series(np.random.randn(500))
In [90]: series[20:500] = np.nan
In [91]: series[10:20] = 5
In [92]: series.nunique()
Out[92]: 11
```

### 9.5.1 Summarizing data: describe

There is a convenient `describe()` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course):

```
In [93]: series = pd.Series(np.random.randn(1000))
In [94]: series[::2] = np.nan
In [95]: series.describe()
Out[95]:
 count 500.000000
 mean -0.032127
 std 1.067484
 min -3.463789
 25% -0.725523
 50% -0.053230
 75% 0.679790
 max 3.120271
 dtype: float64
```

```
In [96]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [97]: frame.iloc[::2] = np.nan
In [98]: frame.describe()
Out[98]:
 a b c d e
 count 500.000000 500.000000 500.000000 500.000000 500.000000
 mean -0.045109 -0.052045 0.024520 0.006117 0.001141
 std 1.029268 1.002320 1.042793 1.040134 1.005207
 min -2.915767 -3.294023 -3.610499 -2.907036 -3.010899
 25% -0.763783 -0.720389 -0.609600 -0.665896 -0.682900
 50% -0.086033 -0.048843 0.006093 0.043191 -0.001651
 75% 0.663399 0.620980 0.728382 0.735973 0.656439
 max 3.400646 2.925597 3.416896 3.331522 3.007143
```

You can select specific percentiles to include in the output:

```
In [99]: series.describe(percentiles=[.05, .25, .75, .95])
Out[99]:
 count 500.000000
 mean -0.032127
 std 1.067484
 min -3.463789
```

### 9.5. Descriptive statistics
By default, the median is always included.

For a non-numerical Series object, `describe()` will give a simple summary of the number of unique values and most frequently occurring values:

```python
In [100]: s = pd.Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])
In [101]: s.describe()
Out[101]:
 count 9
 unique 4
 top a
 freq 5
dtype: object
```

Note that on a mixed-type DataFrame object, `describe()` will restrict the summary to include only numerical columns or, if none are, only categorical columns:

```python
In [102]: frame = pd.DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)})
In [103]: frame.describe()
Out[103]:
 b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000
```

This behaviour can be controlled by providing a list of types as `include/exclude` arguments. The special value `all` can also be used:

```python
In [104]: frame.describe(include=['object'])
Out[104]:
 a
count 4
unique 2
 top Yes
 freq 2
```

```python
In [105]: frame.describe(include=['number'])
Out[105]:
 b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
```
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000

\[\text{In [106]:} \quad \text{frame.describe(include='all')}\]

\[
\begin{array}{cc}
\text{count} & 4.000000 \\
\text{unique} & NaN \\
\text{top} & Yes \\
\text{freq} & 2.000000 \\
\text{mean} & 1.500000 \\
\text{std} & 1.290994 \\
\text{min} & 0.000000 \\
\text{25%} & 0.750000 \\
\text{50%} & 1.500000 \\
\text{75%} & 2.250000 \\
\text{max} & 3.000000 \\
\end{array}
\]

That feature relies on `select_dtypes`. Refer to there for details about accepted inputs.

### 9.5.2 Index of Min/Max Values

The `idxmin()` and `idxmax()` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values:

\[\text{In [107]:} \quad \text{s1 = pd.Series(np.random.randn(5))}\]
\[\text{In [108]:} \quad \text{s1}\]
\[\text{Out[108]:} \quad \text{0 -1.649461}
\text{1 0.169660}
\text{2 1.246181}
\text{3 0.131682}
\text{4 -2.001988}
\text{dtype: float64}\]
\[\text{In [109]:} \quad \text{s1.idxmin()}, \text{s1.idxmax()}\]
\[\text{Out[109]:} \quad (4, 2)\]

\[\text{In [110]:} \quad \text{df1 = pd.DataFrame(np.random.randn(5,3), columns=['A','B','C'])}\]
\[\text{In [111]:} \quad \text{df1}\]
\[\text{Out[111]:} \quad \begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
0 & -1.273023 & 0.870502 & 0.214583 \\
1 & 0.088452 & -0.173364 & 1.207466 \\
2 & 0.546121 & 0.409515 & -0.310515 \\
3 & 0.585014 & -0.490528 & -0.054639 \\
4 & -0.239226 & 0.701089 & 0.228656 \\
\end{array}\]
\[\text{In [112]:} \quad \text{df1.idxmin(axis=0)}\]
\[\text{Out[112]:} \quad \text{\ldots}\]

9.5. Descriptive statistics
When there are multiple rows (or columns) matching the minimum or maximum value, \texttt{idxmin()} and \texttt{idxmax()} return the first matching index:

\begin{verbatim}
In [113]: df1.idxmax(axis=1)
\end{verbatim}

\begin{verbatim}
0  B
1  C
2  A
3  A
4  B
dtype: object
\end{verbatim}

Note: \texttt{idxmin} and \texttt{idxmax} are called \texttt{argmin} and \texttt{argmax} in NumPy.

\subsection*{9.5.3 Value counts (histogramming) / Mode}

The \texttt{value_counts()} Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays:

\begin{verbatim}
In [117]: data = np.random.randint(0, 7, size=50)
In [118]: data
\end{verbatim}

\begin{verbatim}
array([3, 3, 0, 2, 1, 0, 5, 5, 3, 6, 1, 5, 6, 2, 0, 0, 6, 3, 3, 5, 0, 4, 3,
      3, 3, 0, 6, 1, 3, 5, 5, 0, 4, 0, 6, 3, 6, 5, 4, 3, 2, 1, 5, 0, 1, 1,
      6, 4, 1, 4])
\end{verbatim}

\begin{verbatim}
In [119]: s = pd.Series(data)
In [120]: s.value_counts()
\end{verbatim}

\begin{verbatim}
3 11
0  9
5  8
\end{verbatim}
Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

```python
In [122]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [123]: s5.mode()
Out[123]:
0 3
1 7
dtype: int64

In [124]: df5 = pd.DataFrame({"A": np.random.randint(0, 7, size=50),
 "B": np.random.randint(-10, 15, size=50)})

In [125]: df5.mode()
Out[125]:
A B
0 2 -5
```

### 9.5.4 Discretization and quantiling

Continuous values can be discretized using the `cut()` (bins based on values) and `qcut()` (bins based on sample quantiles) functions:

```python
In [126]: arr = np.random.randn(20)

In [127]: factor = pd.cut(arr, 4)

In [128]: factor
Out[128]:
[(-2.611, -1.58], (0.473, 1.499], (-2.611, -1.58], (-1.58, -0.554], (-0.554, 0.473],
 ...,
 (0.473, 1.499], (0.473, 1.499], (-0.554, 0.473], (-0.554, 0.473]
Length: 20
Categories (4, interval[float64]): [(-2.611, -1.58] < (-1.58, -0.554] < (-0.554, 0.
 => -473] <
 (0.473, 1.499]]
```
In [129]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])

In [130]: factor
Out[130]:
[(-5, -1], (0, 0], (-5, -1], (-1, 0], ..., (1, 5], (1, 5], (-1, 0], (-1, 0], ...
Length: 20
Categories (4, interval[int64]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:

In [131]: arr = np.random.randn(30)

In [132]: factor = pd.qcut(arr, [0, .25, .5, .75, 1])

In [133]: factor
Out[133]:
[(0.544, 1.976], (0.544, 1.976], (-1.255, -0.375], (0.544, 1.976], (-0.103, 0.544], ..
Length: 30
Categories (4, interval[float64]): [(-1.255, -0.375) < (-0.375, -0.103) < (-0.103, 0.
544] < (0.544, 1.976)]

In [134]: pd.value_counts(factor)

Out[134]:

\( (0.544, 1.976] \) 8
\( (-1.255, -0.375] \) 8
\( (-0.103, 0.544] \) 7
\( (-0.375, -0.103] \) 7
dtype: int64

We can also pass infinite values to define the bins:

In [135]: arr = np.random.randn(20)

In [136]: factor = pd.cut(arr, [-np.inf, 0, np.inf])

In [137]: factor
Out[137]:
[(0.0, inf], (0.0, inf], (0.0, inf], (0.0, inf], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0],
Length: 20
Categories (2, interval[float64]): [(-inf, 0.0] < (0.0, inf]]

9.6 Function application

To apply your own or another library’s functions to pandas objects, you should be aware of the three methods below. The appropriate method to use depends on whether your function expects to operate on an entire DataFrame or Series, row- or column-wise, or elementwise.

1. Tablewise Function Application: pipe()
2. **Row or Column-wise Function Application**: `apply()
3. **Aggregation API**: `agg()` and `transform()
4. **Applying Elementwise Functions**: `applymap()`

### 9.6.1 Tablewise Function Application

New in version 0.16.2.

DataFrames and Series can of course just be passed into functions. However, if the function needs to be called in a chain, consider using the `pipe()` method. Compare the following

```python
f, g, and h are functions taking and returning `DataFrames`
>>> f(g(h(df), arg1=1), arg2=2, arg3=3)
```

with the equivalent

```python
>>> (df.pipe(h)
 .pipe(g, arg1=1)
 .pipe(f, arg2=2, arg3=3)
)
```

Pandas encourages the second style, which is known as method chaining. `pipe` makes it easy to use your own or another library’s functions in method chains, alongside pandas’ methods.

In the example above, the functions `f`, `g`, and `h` each expected the DataFrame as the first positional argument. What if the function you wish to apply takes its data as, say, the second argument? In this case, provide `pipe` with a tuple of `(callable, data_keyword)`.

```
.pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)')
```

For example, we can fit a regression using statsmodels. Their API expects a formula first and a DataFrame as the second argument, `data`. We pass in the function, keyword pair `(sm.poisson, 'data')` to `pipe`:

```python
In [138]: import statsmodels.formula.api as sm
In [139]: bb = pd.read_csv('data/baseball.csv', index_col='id')
In [140]: (bb.query('h > 0')
 : .assign(ln_h = lambda df: np.log(df.h))
 : .pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)')
 : .fit()
 : .summary()
 :)
```

```
Optimization terminated successfully.
Current function value: 2.116284
Iterations 24
```

```
Out[140]:
<class 'statsmodels.iolib.summary.Summary'>

Poisson Regression Results
===
Dep. Variable: hr No. Observations: 68
Model: Poisson Df Residuals: 63
Method: MLE Df Model: 4
Date: Fri, 05 May 2017 Pseudo R-squ.: 0.6878
Time: 12:15:01 LL-Null: -460.91
converged: True LLR p-value: 6.774e-136
```

9.6. Function application 507
The pipe method is inspired by unix pipes and more recently dplyr and magrittr, which have introduced the popular (**)& (read pipe) operator for R. The implementation of pipe here is quite clean and feels right at home in python. We encourage you to view the source code (`pd.DataFrame.pipe??` in IPython).

### 9.6.2 Row or Column-wise Function Application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the `apply()` method, which, like the descriptive statistics methods, take an optional `axis` argument:

#### In [141]:
```
df.apply(np.mean)
```
```
Out[141]:
one -0.272211
three 0.024661
two 0.667306
dtype: float64
```

#### In [142]:
```
df.apply(np.mean, axis=1)
```
```
→
a 0.011457
b 0.558507
c 0.635781
d -0.839603
dtype: float64
```

#### In [143]:
```
df.apply(lambda x: x.max() - x.min())
```
```
→
one 1.563773
three 3.154112
two 2.973170
dtype: float64
```

#### In [144]:
```
df.apply(np.cumsum)
```
```
→
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-1.101558</td>
<td>NaN</td>
<td>1.124472</td>
</tr>
<tr>
<td>b</td>
<td>-1.278848</td>
<td>-0.634293</td>
<td>3.611576</td>
</tr>
<tr>
<td>c</td>
<td>-0.816633</td>
<td>1.296901</td>
<td>3.125511</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>0.073983</td>
<td>2.669223</td>
</tr>
</tbody>
</table>
```

#### In [145]:
```
df.apply(np.exp)
```
```
→
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.101558</td>
<td>NaN</td>
<td>1.124472</td>
</tr>
<tr>
<td>b</td>
<td>1.278848</td>
<td>-0.634293</td>
<td>3.611576</td>
</tr>
<tr>
<td>c</td>
<td>0.816633</td>
<td>1.296901</td>
<td>3.125511</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>0.073983</td>
<td>2.669223</td>
</tr>
</tbody>
</table>
```
.apply() will also dispatch on a string method name.

```python
In [146]: df.apply('mean')
Out[146]:
one -0.272211
three 0.024661
two 0.667306
dtype: float64

In [147]: df.apply('mean', axis=1)
Out[147]:
a 0.011457
b 0.558507
c 0.635781
d -0.839603
dtype: float64
```

Depending on the return type of the function passed to `apply()`, the result will either be of lower dimension or the same dimension.

`apply()` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred:

```python
In [148]: tsdf = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'],
 index=pd.date_range('1/1/2000', periods=1000))

In [149]: tsdf.apply(lambda x: x.idxmax())
Out[149]:
A 2001-04-25
B 2002-05-31
C 2002-09-25
dtype: datetime64[ns]
```

You may also pass additional arguments and keyword arguments to the `apply()` method. For instance, consider the following function you would like to apply:

```python
def subtract_and_divide(x, sub, divide=1):
 return (x - sub) / divide
```

You may then apply this function as follows:

```python
df.apply(subtract_and_divide, args=(5,), divide=3)
```

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

```python
In [150]: tsdf
Out[150]:
 A B C
2000-01-01 -0.720299 0.546303 -0.082042
2000-01-02 0.200295 -0.577554 -0.908402
```

9.6. Function application
Finally, `apply()` takes an argument `raw` which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality.

### 9.6.3 Aggregation API

New in version 0.20.0.

The aggregation API allows one to express possibly multiple aggregation operations in a single concise way. This API is similar across pandas objects, see [groupby API](#), the [window functions API](#), and the [resample API](#). The entry point for aggregation is the method `aggregate()`, or the alias `agg()`.

We will use a similar starting frame from above:

```python
In [152]: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
 index=pd.date_range('1/1/2000', periods=10))
In [153]: tsdf.iloc[3:7] = np.nan
In [154]: tsdf
```

```
Out[154]:
 A B C
2000-01-01 0.170247 -0.916844 0.835024
2000-01-02 1.259919 0.801111 0.445614
2000-01-03 1.453046 2.430373 0.653093
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -1.874526 0.569822 -0.609644
2000-01-09 0.812462 0.565894 -1.461363
2000-01-10 -0.985475 1.388154 -0.078747
```
Using a single function is equivalent to *apply()*; You can also pass named methods as strings. These will return a *Series* of the aggregated output:

```python
In [155]: tsdf.agg(np.sum)
Out[155]:
 A 0.835673
 B 4.838510
 C -0.216025
dtype: float64
```

```python
In [156]: tsdf.agg('sum')
Out[156]:
 A 0.835673
 B 4.838510
 C -0.216025
dtype: float64
```

# these are equivalent to a `.sum()` because we are aggregating on a single function
```python
In [157]: tsdf.sum()
Out[157]:
 A 0.835673
 B 4.838510
 C -0.216025
dtype: float64
```

Single aggregations on a *Series* this will result in a scalar value:

```python
In [158]: tsdf.A.agg('sum')
Out[158]: 0.835672979158205
```

### 9.6.3.1 Aggregating with multiple functions

You can pass multiple aggregation arguments as a list. The results of each of the passed functions will be a row in the resultant *DataFrame*. These are naturally named from the aggregation function.

```python
In [159]: tsdf.agg(['sum'])
Out[159]:
 sum
A 0.835673
B 4.838510
C -0.216025
```

Multiple functions yield multiple rows:

```python
In [160]: tsdf.agg(['sum', 'mean'])
Out[160]:
 sum mean
A 0.835673 0.139279
B 4.838510 0.806418
C -0.216025 -0.036004
```

On a *Series*, multiple functions return a *Series*, indexed by the function names:

```python
In [161]: tsdf.A.agg(['sum', 'mean'])
Out[161]:
 sum 0.835673
 mean 0.139279
Name: A, dtype: float64
```

### 9.6. Function application
Passing a lambda function will yield a <lambda> named row:

```
In [162]: tsdf.A.agg(['sum', lambda x: x.mean()])
Out[162]:
 sum <lambda>
Name: A, dtype: float64
```

Passing a named function will yield that name for the row:

```
In [163]: def mymean(x):
 : return x.mean()
 :
In [164]: tsdf.A.agg(['sum', mymean])
Out[164]:
 sum mymean
Name: A, dtype: float64
```

### 9.6.3.2 Aggregating with a dict

Passing a dictionary of column names to a scalar or a list of scalars, to DataFrame.agg allows you to customize which functions are applied to which columns. Note that the results are not in any particular order, you can use an OrderedDict instead to guarantee ordering.

```
In [165]: tsdf.agg({'A': 'mean', 'B': 'sum'})
Out[165]:
 A B
Name: 0, dtype: float64
```

Passing a list-like will generate a DataFrame output. You will get a matrix-like output of all of the aggregators. The output will consist of all unique functions. Those that are not noted for a particular column will be NaN:

```
In [166]: tsdf.agg({'A': ['mean', 'min'], 'B': 'sum'})
Out[166]:
 A B
 mean 0.139279 NaN
 min 1.875426 NaN
 sum NaN 4.83851
```

### 9.6.3.3 Mixed Dtypes

When presented with mixed dtypes that cannot aggregate, .agg will only take the valid aggregations. This is similar to how groupby .agg works.

```
In [167]: mdf = pd.DataFrame({'A': [1, 2, 3],
 : 'B': [1.0, 2.0, 3.0],
 : 'C': ['foo', 'bar', 'baz'],
 : 'D': pd.date_range('20130101', periods=3))
In [168]: mdf.dtypes
Out[168]:
```
A  int64
B  float64
C  object
D  datetime64[ns]
dtype: object

In [169]: mdf.agg(['min', 'sum'])
Out[169]:
   A   B   C   D
min 1.0  1.0  bar 2013-01-01
sum 6.0 6.0  foobarbaz  NaT

9.6.3.4 Custom describe

With `.agg()` is it possible to easily create a custom describe function, similar to the built in `describe` function.

In [170]: from functools import partial
In [171]: q_25 = partial(pd.Series.quantile, q=0.25)
In [172]: q_25.__name__ = '25%'
In [173]: q_75 = partial(pd.Series.quantile, q=0.75)
In [174]: q_75.__name__ = '75%'
In [175]: tsdf.agg(['count', 'mean', 'std', 'min', q_25, 'median', q_75, 'max'])
Out[175]:
     A       B       C
count 6.000000 6.000000 6.000000
mean  0.139279  0.806418 -0.036004
std   1.323362  1.100830  0.874990
min  -1.874526 -0.916844 -1.461363
25%   -0.696544  0.566876 -0.476920
median  0.491354  0.685467  0.183433
75%   1.148055  1.241393  0.601223
max   1.453046  2.430373  0.835024

9.6.4 Transform API

New in version 0.20.0.

The `transform()` method returns an object that is indexed the same (same size) as the original. This API allows you to provide multiple operations at the same time rather than one-by-one. Its API is quite similar to the `.agg` API.

Use a similar frame to the above sections.

In [176]: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
                       index=pd.date_range('1/1/2000', periods=10))

In [177]: tsdf.iloc[3:7] = np.nan

In [178]: tsdf
Out[178]:

9.6. Function application
Transform the entire frame. `.transform()` allows input functions as: a numpy function, a string function name or a user defined function.

```
In [179]: tsdf.transform(np.abs)
Out[179]:
 A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675
2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106
```

```
In [180]: tsdf.transform('abs')
```

```
In [181]: tsdf.transform(lambda x: x.abs())
```
Here `.transform()` received a single function; this is equivalent to a ufunc application:

```
In [182]: np.abs(tsdf)
Out[182]:
 A B C
2000-01-01 0.578465 0.503335 0.987140
2000-01-02 0.767147 0.266046 1.083797
2000-01-03 0.195348 0.722247 0.894537
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 0.556397 0.542165 0.308675
2000-01-09 1.010924 0.672504 1.139222
2000-01-10 0.354653 0.563622 0.365106
```

Passing a single function to `.transform()` with a Series will yield a single Series in return:

```
In [183]: tsdf.A.transform(np.abs)
Out[183]:
2000-01-01 0.578465
2000-01-02 0.767147
2000-01-03 0.195348
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
2000-01-08 0.556397
2000-01-09 1.010924
2000-01-10 0.354653
Freq: D, Name: A, dtype: float64
```

### 9.6.4.1 Transform with multiple functions

Passing multiple functions will yield a column multi-indexed DataFrame. The first level will be the original frame column names; the second level will be the names of the transforming functions:

```
In [184]: tsdf.transform([np.abs, lambda x: x+1])
Out[184]:
 absolute <lambda> absolute <lambda> absolute <lambda>
2000-01-01 0.578465 0.421535 0.503335 0.496665 0.987140 0.012860
2000-01-02 0.767147 0.232853 0.266046 0.733954 1.083797 2.083797
2000-01-03 0.195348 1.195348 0.722247 1.722247 0.894537 0.105463
2000-01-04 NaN NaN NaN NaN NaN NaN
2000-01-05 NaN NaN NaN NaN NaN NaN
2000-01-06 NaN NaN NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN NaN NaN
2000-01-08 0.556397 0.443603 0.542165 1.542165 0.308675 0.691325
2000-01-09 1.010924 -0.010924 0.672504 0.327496 1.139222 -0.139222
2000-01-10 0.354653 1.354653 0.563622 1.563622 0.365106 0.634894
```

Passing multiple functions to a Series will yield a DataFrame. The resulting column names will be the transforming functions:

```
In [185]: tsdf.A.transform([np.abs, lambda x: x+1])
Out[185]:
```

### 9.6. Function application
9.6.4.2 Transforming with a dict

Passing a dict of functions will allow selective transforming per column.

```
In [186]: tsdf.transform({'A': np.abs, 'B': lambda x: x+1})
Out[186]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.578465</td>
<td>0.496665</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.767147</td>
<td>0.733954</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.195348</td>
<td>1.722247</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.556397</td>
<td>1.542165</td>
</tr>
<tr>
<td>2000-01-09</td>
<td>1.010924</td>
<td>0.327496</td>
</tr>
<tr>
<td>2000-01-10</td>
<td>0.354653</td>
<td>1.563622</td>
</tr>
</tbody>
</table>
```

Passing a dict of lists will generate a multi-indexed DataFrame with these selective transforms.

```
In [187]: tsdf.transform({'A': np.abs, 'B': [lambda x: x+1, 'sqrt']})
Out[187]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>sqrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.578465</td>
<td>0.496665</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.767147</td>
<td>0.733954</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.195348</td>
<td>1.722247</td>
<td>0.849851</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.556397</td>
<td>1.542165</td>
<td>0.736318</td>
</tr>
<tr>
<td>2000-01-09</td>
<td>1.010924</td>
<td>0.327496</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-10</td>
<td>0.354653</td>
<td>1.563622</td>
<td>0.750748</td>
</tr>
</tbody>
</table>
```

9.6.5 Applying Elementwise Functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods `applymap()` on DataFrame and analogously `map()` on Series accept any Python function taking a single value and returning a single value. For example:

```
In [188]: df4
Out[188]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.578465</td>
<td>0.421535</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.767147</td>
<td>0.232853</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.195348</td>
<td>1.195348</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.556397</td>
<td>0.443603</td>
</tr>
<tr>
<td>2000-01-09</td>
<td>1.010924</td>
<td>-0.010924</td>
</tr>
<tr>
<td>2000-01-10</td>
<td>0.354653</td>
<td>1.354653</td>
</tr>
</tbody>
</table>
Series.map() has an additional feature which is that it can be used to easily “link” or “map” values defined by a secondary series. This is closely related to merging/joining functionality:

In [192]: s = pd.Series(['six', 'seven', 'six', 'seven', 'six'],
                index=['a', 'b', 'c', 'd', 'e'])

In [193]: t = pd.Series({'six' : 6., 'seven' : 7.})

In [194]: s
Out[194]:
       a six
       b seven
       c six
       d seven
       e six
       dtype: object

In [195]: s.map(t)
Out[195]:
       a     6
       b     7
       c     6
       d     7
       e     6
       dtype: float64

9.6.6 Applying with a Panel

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will
be a `DataFrame`.

**Note:** Prior to 0.13.1, `apply` on a `Panel` would only work on `ufuncs` (e.g. `np.sum`/`np.max`).

```python
In [196]: import pandas.util.testing as tm
In [197]: panel = tm.makePanel(5)
In [198]: panel
Out[198]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [199]: panel['ItemA']

→
 A B C D
2000-01-03 1.092702 0.604244 -2.927808 0.339642
2000-01-04 -1.481449 -0.487265 0.082065 1.499953
2000-01-05 1.781190 1.990533 0.456554 -0.317818
2000-01-06 -0.031543 0.327007 -1.757911 0.447371
2000-01-07 0.480993 1.053639 0.982407 -1.315799

A transformational apply.

```python
In [200]: result = panel.apply(lambda x: x*2, axis='items')
In [201]: result
Out[201]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [202]: result['ItemA']

→
   A   B   C   D
2000-01-03  2.185405  1.208489 -5.855616  0.679285
2000-01-04 -2.962899 -0.974530  0.164130  2.999905
2000-01-05  3.562379  3.981066  0.913107 -0.635635
2000-01-06 -0.063086  0.654013 -3.515821  0.894742
2000-01-07  0.961986  2.107278  1.964815 -2.631598

A reduction operation.

```python
In [203]: panel.apply(lambda x: x.dtype, axis='items')
Out[203]:
A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
```
A similar reduction type operation

```python
In [204]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[204]:
 ItemA ItemB ItemC
A 1.841893 0.918017 -1.160547
B 3.488158 -2.629773 0.603397
C -3.164692 0.805970 0.806501
D 0.653349 -0.152299 0.252577
```

This last reduction is equivalent to

```python
In [205]: panel.sum('major_axis')
Out[205]:
 ItemA ItemB ItemC
A 1.841893 0.918017 -1.160547
B 3.488158 -2.629773 0.603397
C -3.164692 0.805970 0.806501
D 0.653349 -0.152299 0.252577
```

A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

```python
In [206]: result = panel.apply(lambda x: (x-x.mean())/x.std(), axis='major_axis')
```

```python
In [207]: result
Out[207]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

```python
In [208]: result['ItemA']
```

```python
2000-01-03 0.585813 0.102070 1.394063 0.201263
2000-01-04 -0.496089 0.295066 0.434345 1.318766
2000-01-05 1.142642 1.131112 0.661833 -0.431942
2000-01-06 -0.323445 -0.405085 -0.683386 0.305017
2000-01-07 0.091079 0.389108 0.981273 -1.393105
```

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

```python
In [209]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
In [210]: result = panel.apply(f, axis = ['items','major_axis'])
In [211]: result
Out[211]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
```
### 9.7 Reindexing and altering labels

`reindex()` is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To `reindex` means to conform the data to match a given set of labels along a particular axis. This accomplishes several things:

- Reorders the existing data to match a new set of labels
- Inserts missing value (NA) markers in label locations where no data for that label existed
- If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

```python
In [216]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [217]: s
Out[217]:
 a -0.454087
```

This is equivalent to the following

```python
In [213]: result = pd.Panel(dict([
 ...: (ax, f(panel.loc[:,:,ax])
 ...: for ax in panel.minor_axis]))
In [214]: result
Out[214]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
In [215]: result.loc[:,:,'ItemA']

 A B C D
2000-01-03 0.859304 0.448509 -1.109374 0.397237
2000-01-04 -1.053319 -1.063370 0.986639 1.152266
2000-01-05 1.106511 1.143185 -0.093917 -0.583083
2000-01-06 0.561619 -0.835608 -1.075936 0.194525
2000-01-07 -0.339514 1.097901 0.747522 -1.147605
```
Here, the $f$ label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:

```
In [219]: df
Out[219]:
 one two
a -1.101558 1.124472
b -0.177289 -0.634293
 2.487104
 c 0.462215 -0.486066
d NaN -1.222918 -0.456288
In [220]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
 three two one
 c 1.931194 -0.486066 0.462215
 f NaN NaN NaN
 b -0.634293 2.487104 -0.177289
```

For convenience, you may utilize the `reindex_axis()` method, which takes the labels and a keyword `axis` parameter.

Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series and a DataFrame, the following can be done:

```
In [221]: rs = s.reindex(df.index)
In [222]: rs
Out[222]:
a -0.454087
b -0.360309
c -0.951631
d -0.535459
dtype: float64

In [223]: rs.index
Out[223]:
 a -0.454087
 b -0.360309
c -0.951631
d -0.535459
dtype: float64
```

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.

See also:
**MultiIndex / Advanced Indexing** is an even more concise way of doing reindexing.

**Note:** When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: **many operations are faster on pre-aligned data.** Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because `reindex` has been heavily optimized), but when CPU cycles matter sprinkling a few explicit `reindex` calls here and there can have an impact.

### 9.7.1 Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the `reindex_like()` method is available to make this simpler:

```
In [224]: df2
Out [224]:
 one two
a -1.101558 1.124472
b -0.177289 2.487104
c 0.462215 -0.486066

In [225]: df3
Out [225]:
 one two
a -0.829347 0.082635
b 0.094922 1.445267
c 0.734426 -1.527903

In [226]: df.reindex_like(df2)
```

### 9.7.2 Aligning objects with each other with `align`

The `align()` method is the fastest way to simultaneously align two objects. It supports a `join` argument (related to **joining and merging**):

- `join='outer'`: take the union of the indexes (default)
- `join='left'`: use the calling object’s index
- `join='right'`: use the passed object’s index
- `join='inner'`: intersect the indexes

It returns a tuple with both of the reindexed Series:

```
In [227]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [228]: s1 = s[:4]
```
In [229]: s2 = s[1:]

In [230]: s1.align(s2)
Out[230]:
(a 0.505453  
b 1.788110  
c -0.405908  
d -0.801912  
e NaN  
dtype: float64, a  NaN  
b 1.788110  
c -0.405908  
d -0.801912  
e 0.768460  
dtype: float64)

In [231]: s1.align(s2, join='inner')

In [232]: s1.align(s2, join='left')

For DataFrames, the join method will be applied to both the index and the columns by default:

In [233]: df.align(df2, join='inner')
Out[233]:
( one two
 a -1.101558  1.124472
 b -0.177289  2.487104
 c 0.462215  -0.486066, one two
 a -1.101558  1.124472
 b -0.177289  2.487104
 c 0.462215  -0.486066)

You can also pass an axis option to only align on the specified axis:

In [234]: df.align(df2, join='inner', axis=0)
Out[234]:
( one three two
 a -1.101558  NaN  1.124472
 b -0.177289  2.487104
 c 0.462215  -0.486066)

9.7. Reindexing and altering labels
If you pass a Series to `DataFrame.align()`, you can choose to align both objects either on the DataFrame’s index or columns using the `axis` argument:

```
In [235]: df.align(df2.iloc[0], axis=1)
Out[235]:
 one three two
 a -1.101558 NaN 1.124472
 b -0.177289 -0.634293 2.487104
 c 0.462215 1.931194 -0.486066
d NaN -1.222918 -0.456288, one -1.101558
three NaN
 two 1.124472
Name: a, dtype: float64)
```

### 9.7.3 Filling while reindexing

`reindex()` takes an optional parameter `method` which is a filling method chosen from the following table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
<tr>
<td>nearest</td>
<td>Fill from the nearest index value</td>
</tr>
</tbody>
</table>

We illustrate these fill methods on a simple Series:

```
In [236]: rng = pd.date_range('1/3/2000', periods=8)
In [237]: ts = pd.Series(np.random.randn(8), index=rng)
In [238]: ts2 = ts[[0, 3, 6]]
In [239]: ts
Out[239]:
2000-01-03 0.466284
2000-01-04 -0.457411
2000-01-05 -0.364060
2000-01-06 0.785367
2000-01-07 -1.463093
2000-01-08 1.187315
2000-01-09 -0.493153
2000-01-10 -1.323445
Freq: D, dtype: float64
In [240]: ts2
Out[240]:
2000-01-03 0.466284
2000-01-06 0.785367
2000-01-09 -0.493153
dtype: float64
```
These methods require that the indexes are **ordered** increasing or decreasing.

Note that the same result could have been achieved using `fillna` (except for `method='nearest'`) or `interpolate`:

```python
In [245]: ts2.reindex(ts.index).fillna(method='ffill')
```

```
Out[245]:
```

---

9.7. Reindexing and altering labels
`reindex()` will raise a ValueError if the index is not monotonic increasing or decreasing. `fillna()` and `interpolate()` will not make any checks on the order of the index.

### 9.7.4 Limits on filling while reindexing

The `limit` and `tolerance` arguments provide additional control over filling while reindexing. Limit specifies the maximum count of consecutive matches:

```python
In [246]: ts2.reindex(ts.index, method='ffill', limit=1)
Out[246]:
2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 NaN
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 NaN
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64
```

In contrast, tolerance specifies the maximum distance between the index and indexer values:

```python
In [247]: ts2.reindex(ts.index, method='ffill', tolerance='1 day')
Out[247]:
2000-01-03 0.466284
2000-01-04 0.466284
2000-01-05 NaN
2000-01-06 0.785367
2000-01-07 0.785367
2000-01-08 NaN
2000-01-09 -0.493153
2000-01-10 -0.493153
Freq: D, dtype: float64
```

Notice that when used on a `DatetimeIndex`, `TimedeltaIndex`, or `PeriodIndex`, `tolerance` will coerced into a `Timedelta` if possible. This allows you to specify tolerance with appropriate strings.

### 9.7.5 Dropping labels from an axis

A method closely related to `reindex` is the `drop()` function. It removes a set of labels from an axis:

```python
In [248]: df
Out[248]:
 one three two
a -1.101558 NaN 1.124472
```
b -0.177289 -0.634293 2.487104
c 0.462215 1.931194 -0.486066
d NaN -1.222918 -0.456288

In [249]: df.drop(['a', 'd'], axis=0)

˓→ one three two
b -0.177289 -0.634293 2.487104
c 0.462215 1.931194 -0.486066

In [250]: df.drop(['one'], axis=1)

˓→ three two
a NaN 1.124472
b -0.634293 2.487104
c 1.931194 -0.486066
d -1.222918 -0.456288

Note that the following also works, but is a bit less obvious / clean:

In [251]: df.reindex(df.index.difference(['a', 'd']))

Out[251]:
one three two
b -0.177289 -0.634293 2.487104
c 0.462215 1.931194 -0.486066

9.7.6 Renaming / mapping labels

The `rename()` method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [252]: s

Out[252]:
a 0.505453
b 1.788110
c -0.405908
d -0.801912
e 0.768460
dtype: float64

In [253]: s.rename(str.upper)

Out[253]:
A 0.505453
B 1.788110
C -0.405908
D -0.801912
E 0.768460
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). A dict or Series can also be used:

In [254]: df.rename(columns={'one': 'foo', 'two': 'bar'},
               index={'a': 'apple', 'b': 'banana', 'd': 'durian'})

9.7. Reindexing and altering labels
......

Out[254]:
               foo    three    bar
apple -1.101558   NaN  1.124472
banana -0.177289 -0.634293  2.487104
c  0.462215  1.931194 -0.486066
durian   NaN -1.222918 -0.456288

If the mapping doesn’t include a column/index label, it isn’t renamed. Also extra labels in the mapping don’t throw an error.

The `rename()` method also provides an `inplace` named parameter that is by default `False` and copies the underlying data. Pass `inplace=True` to rename the data in place.

New in version 0.18.0.

Finally, `rename()` also accepts a scalar or list-like for altering the `Series.name` attribute.

In [255]: s.rename("scalar-name")
Out[255]:
df = pd.DataFrame({'col1' : np.random.randn(3), 'col2' : np.random.randn(3)}}
  →,
      →,
      →
      →
.....:        index=['a', 'b', 'c'])
.....:
In [257]: for col in df:
      .....:  print(col)
      .....:  print(col)
coll
col2

The Panel class has a related `rename_axis()` class which can rename any of its three axes.

### 9.8 Iteration

The behavior of basic iteration over pandas objects depends on the type. When iterating over a Series, it is regarded as array-like, and basic iteration produces the values. Other data structures, like DataFrame and Panel, follow the dict-like convention of iterating over the “keys” of the objects.

In short, basic iteration (for i in object) produces:

- **Series**: values
- **DataFrame**: column labels
- **Panel**: item labels

Thus, for example, iterating over a DataFrame gives you the column names:

Pandas objects also have the dict-like `iteritems()` method to iterate over the (key, value) pairs.

To iterate over the rows of a DataFrame, you can use the following methods:
• **iterrows()**: Iterate over the rows of a DataFrame as (index, Series) pairs. This converts the rows to Series objects, which can change the dtypes and has some performance implications.

• **itertuples()**: Iterate over the rows of a DataFrame as namedtuples of the values. This is a lot faster than **iterrows()**, and is in most cases preferable to use to iterate over the values of a DataFrame.

**Warning**: Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed and can be avoided with one of the following approaches:

- Look for a vectorized solution: many operations can be performed using built-in methods or numpy functions, (boolean) indexing, ...
- When you have a function that cannot work on the full DataFrame/Series at once, it is better to use **apply()** instead of iterating over the values. See the docs on **function application**.
- If you need to do iterative manipulations on the values but performance is important, consider writing the inner loop using e.g. cython or numba. See the **enhancing performance** section for some examples of this approach.

**Warning**: You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect!

For example, in the following case setting the value has no effect:

<table>
<thead>
<tr>
<th>In [258]:</th>
<th>df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})</th>
</tr>
</thead>
<tbody>
<tr>
<td>In [259]:</td>
<td>for index, row in df.iterrows():</td>
</tr>
<tr>
<td></td>
<td>.....: row['a'] = 10</td>
</tr>
<tr>
<td></td>
<td>.....:</td>
</tr>
<tr>
<td>In [260]:</td>
<td>df</td>
</tr>
<tr>
<td>Out[260]:</td>
<td>a b</td>
</tr>
<tr>
<td></td>
<td>0 1 a</td>
</tr>
<tr>
<td></td>
<td>1 2 b</td>
</tr>
<tr>
<td></td>
<td>2 3 c</td>
</tr>
</tbody>
</table>

### 9.8.1 iteritems

Consistent with the dict-like interface, **iteritems()** iterates through key-value pairs:

- **Series**: (index, scalar value) pairs
- **DataFrame**: (column, Series) pairs
- **Panel**: (item, DataFrame) pairs

For example:

<table>
<thead>
<tr>
<th>In [261]:</th>
<th>for item, frame in wp.iteritems():</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.....: print(item)</td>
</tr>
<tr>
<td></td>
<td>.....: print(frame)</td>
</tr>
<tr>
<td></td>
<td>.....:</td>
</tr>
<tr>
<td>Item1</td>
<td>A B C D</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>-0.433567 -0.273610 0.680433 -0.308450</td>
</tr>
</tbody>
</table>

### 9.8. Iteration
9.8.2 iterrows

`iterrows()` allows you to iterate through the rows of a DataFrame as Series objects. It returns an iterator yielding each index value along with a Series containing the data in each row:

```
In [262]: for row_index, row in df.iterrows():
 : print(' %s
 %s' % (row_index, row))
 :
0 a 1
 b a
Name: 0, dtype: object
1 a 2
 b b
Name: 1, dtype: object
2 a 3
 b c
Name: 2, dtype: object
```

**Note:** Because `iterrows()` returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```
In [263]: df_orig = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])

In [264]: df_orig.dtypes
Out[264]:
int int64
float float64
dtype: object

In [265]: row = next(df_orig.iterrows())[1]

In [266]: row
Out[266]:
int 1.0
float 1.5
Name: 0, dtype: float64
```

All values in `row`, returned as a Series, are now upcasted to floats, also the original integer value in column x:
To preserve dtypes while iterating over the rows, it is better to use `itertuples()` which returns namedtuples of the values and which is generally much faster as `iterrows`.

For instance, a contrived way to transpose the DataFrame would be:

```python
In [269]: df2 = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})
In [270]: print(df2)
 x y
0 1 4
1 2 5
2 3 6
In [271]: print(df2.T)
 x y
0 1 4
1 2 5
2 3 6
In [272]: df2_t = pd.DataFrame(dict((idx,values) for idx, values in df2.iterrows()))
In [273]: print(df2_t)
 0 1 2
 x 1 2 3
 y 4 5 6
```

### 9.8.3 `itertuples`

The `itertuples()` method will return an iterator yielding a namedtuple for each row in the DataFrame. The first element of the tuple will be the row’s corresponding index value, while the remaining values are the row values.

For instance,

```python
In [274]: for row in df.itertuples():
 : print(row)
 :
Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')
```

This method does not convert the row to a Series object but just returns the values inside a namedtuple. Therefore, `itertuples()` preserves the data type of the values and is generally faster as `iterrows()`.

**Note:** The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.
9.9 .dt accessor

Series has an accessor to succinctly return datetime like properties for the values of the Series, if it is a date-time/period like Series. This will return a Series, indexed like the existing Series.

```python
datetime
In [275]: s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))

In [276]: s
Out[276]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [277]: s.dt.hour
Out[277]:
0 9
1 9
2 9
3 9
dtype: int64

In [278]: s.dt.second
Out[278]:
0 12
1 12
2 12
3 12
dtype: int64

In [279]: s.dt.day
Out[279]:
0 1
1 2
2 3
3 4
dtype: int64
```

This enables nice expressions like this:

```python
In [280]: s[s.dt.day==2]
Out[280]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
```

You can easily produces tz aware transformations:

```python
In [281]: stz = s.dt.tz_localize('US/Eastern')

In [282]: stz
Out[282]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
```
You can also chain these types of operations:

```python
In [284]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[284]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
```

You can also format datetime values as strings with `Series.dt.strftime()` which supports the same format as the standard `strftime()`.

```python
DatetimeIndex
In [285]: s = pd.Series(pd.date_range('20130101', periods=4))

In [286]: s
Out[286]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]

In [287]: s.dt.strftime('%Y/%m/%d')
Out[287]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
```

```python
PeriodIndex
In [288]: s = pd.Series(pd.period_range('20130101', periods=4))

In [289]: s
Out[289]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [290]: s.dt.strftime('%Y/%m/%d')
Out[290]:
0 2013/01/01
1 2013/01/02
```
The `.dt` accessor works for period and timedelta dtypes.

```python
period
In [291]: s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))

In [292]: s
Out[292]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [293]: s.dt.year
Out[293]:
0 2013
1 2013
2 2013
3 2013
dtype: int64

In [294]: s.dt.day
Out[294]:
0 1
1 2
2 3
3 4
dtype: int64

timedelta
In [295]: s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [296]: s
Out[296]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]

In [297]: s.dt.days
Out[297]:
0 1
1 1
2 1
3 1
dtype: int64

In [298]: s.dt.seconds
Out[298]:
0 5
1 6
2 7
3 8
```

```
```

Chapter 9. Essential Basic Functionality
Series is equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s str attribute and generally have names matching the equivalent (scalar) built-in string methods. For example:

```
In [300]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [301]: s.str.lower()
Out[301]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
```

Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expressions by default (and in some cases always uses them).

Please see Vectorized String Methods for a complete description.

## 9.11 Sorting

**Warning:** The sorting API is substantially changed in 0.17.0, see here for these changes. In particular, all sorting methods now return a new object by default, and DO NOT operate in-place (except by passing inplace=True).

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.
9.11.1 By Index

The primary method for sorting axis labels (indexes) are the `Series.sort_index()` and the `DataFrame.sort_index()` methods.

```
In [302]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
 ...: columns=['three', 'two', 'one'])
 :

DataFrame
In [303]: unsorted_df.sort_index()
Out[303]:
 three two one
 a NaN NaN NaN
 b NaN NaN NaN
 c NaN NaN NaN
 d NaN NaN NaN

In [304]: unsorted_df.sort_index(ascending=False)
 → three two one
 d NaN NaN NaN
 c NaN NaN NaN
 b NaN NaN NaN
 a NaN NaN NaN

In [305]: unsorted_df.sort_index(axis=1)
 → one three two
 a NaN NaN NaN
 d NaN NaN NaN
 c NaN NaN NaN
 b NaN NaN NaN

Series
In [306]: unsorted_df['three'].sort_index()
 → a NaN
 b NaN
 c NaN
 d NaN
Name: three, dtype: float64
```

9.11.2 By Values

The `Series.sort_values()` and `DataFrame.sort_values()` are the entry points for value sorting (that is the values in a column or row). `DataFrame.sort_values()` can accept an optional `by` argument for `axis=0` which will use an arbitrary vector or a column name of the DataFrame to determine the sort order:

```
In [307]: df1 = pd.DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})

In [308]: df1.sort_values(by='two')
Out[308]:
```
The `by` argument can take a list of column names, e.g.:

```
In [309]: df1[['one', 'two', 'three']].sort_values(by=['one','two'])
Out[309]:
 one two three
 0 2 5 1
 1 1 4 3
 2 1 3 2
 3 1 2 4
```

These methods have special treatment of NA values via the `na_position` argument:

```
In [310]: s[2] = np.nan
In [311]: s.sort_values()
Out[311]:
 0 A
 3 Aaba
 1 B
 4 Baca
 6 CABA
 8 cat
 7 dog
 5 NaN
dtype: object
In [312]: s.sort_values(na_position='first')
```

### 9.11.3 searchsorted

Series has the `searchsorted()` method, which works similar to `numpy.ndarray.searchsorted()`.

```
In [313]: ser = pd.Series([1, 2, 3])
In [314]: ser.searchsorted([0, 3])
Out[314]: array([0, 2])
```
9.11.4 smallest / largest values

New in version 0.14.0.

Series has the \texttt{nsmallest()} and \texttt{nlargest()} methods which return the smallest or largest \(n\) values. For a large Series this can be much faster than sorting the entire Series and calling head\((n)\) on the result.
New in version 0.17.0.

```
In [326]: df.nlargest(5, ['a', 'c'])
```

```
 a b c
0 11 f 3.0
1 10 c 3.2
2 11 f 4.0
3 8 e NaN
4 1 d 4.0
```
9.11.5 Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.

```python
In [330]: df1.columns = pd.MultiIndex.from_tuples([(a', 'one'), (a', 'two'), (b', 'three')])
In [331]: df1.sort_values(by=('a', 'two'))
Out[331]:
 a b
one two three
3 1 2 4
2 1 3 2
1 1 4 3
0 2 5 1
```

9.12 Copying

The `copy()` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of ways to alter a DataFrame in-place:

- Inserting, deleting, or modifying a column
- Assigning to the index or columns attributes
- For homogeneous data, directly modifying the values via the `values` attribute or advanced indexing

To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly.

9.13 dtypes

The main types stored in pandas objects are `float`, `int`, `bool`, `datetime64[ns]` and `datetime64[ns, tz]` (in >= 0.17.0), `timedelta[ns]`, `category` (in >= 0.15.0), and `object`. In addition these dtypes have item sizes, e.g. `int64` and `int32`. See `Series with TZ` for more detail on `datetime64[ns, tz]` dtypes.

A convenient `dtypes` attribute for DataFrames returns a Series with the data type of each column.

```python
In [332]: dft = pd.DataFrame(dict(A = np.random.rand(3),
......: B = 1,
......: C = 'foo',
......: D = pd.Timestamp('2001-01-02'),
......: E = pd.Series([1.0]*3).astype('float32'),
......: F = False,
......: G = pd.Series([1]*3,dtype='int8')))
In [333]: dft
Out[333]:
 A B C D E F G
0 0.534749 1 foo 2001-01-02 1.0 False 1
1 0.688452 1 foo 2001-01-02 1.0 False 1
2 0.777842 1 foo 2001-01-02 1.0 False 1
```
On a Series use the `dtype` attribute.

```python
In [335]: dft['A'].dtype
Out[335]: dtype('float64')
```

If a pandas object contains data multiple dtypes IN A SINGLE COLUMN, the dtype of the column will be chosen to accommodate all of the data types (object is the most general).

```python
these ints are coerced to floats
In [336]: pd.Series([1, 2, 3, 4, 5, 6.])
Out[336]:
 0 1.0
 1 2.0
 2 3.0
 3 4.0
 4 5.0
 5 6.0
dtype: float64

string data forces an 'object' dtype
In [337]: pd.Series([1, 2, 3, 6., 'foo'])
```

The method `get_dtype_counts()` will return the number of columns of each type in a DataFrame:

```python
In [338]: dft.get_dtype_counts()
```

Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly via the `dtype` keyword, a passed `ndarray`, or a passed `Series`, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.
In [339]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')

In [340]: df1
Out[340]:
   A   
0 -2.038777
1  1.121731
2  0.586626
3 -0.282532
4  0.410238
5 -0.540166
6  1.400679
7 -0.255975

In [341]: df1.dtypes

Out[341]:
A    float32
dtype: object

In [342]: df2 = pd.DataFrame(dict(A = pd.Series(np.random.randn(8), dtype='float16'),
                                  B = pd.Series(np.random.randn(8)),
                                  C = pd.Series(np.array(np.random.randn(8), dtype='uint8'))))

In [343]: df2
Out[343]:
   A      B      C
0 -0.624512 -1.397492  0
1  0.022354  1.338115  0
2 -0.433594  0.781169 255
3 -0.405762 -0.791687  0
4 -0.149658 -0.764810 255
5  0.644531 -2.000933  0
6 -1.260742 -0.345662  0
7  0.365967  0.393915  0

In [344]: df2.dtypes

Out[344]:
A    float16
B    float64
C    uint8
dtype: object

9.13.1 defaults

By default integer types are int64 and float types are float64, REGARDLESS of platform (32-bit or 64-bit). The following will all result in int64 dtypes.

In [345]: pd.DataFrame([[1, 2]], columns=['a']).dtypes
Out[345]:
a    int64
dtype: object
Numpy, however will choose *platform-dependent* types when creating arrays. The following **WILL** result in `int32` on 32-bit platform.

```
In [348]: frame = pd.DataFrame(np.array([1, 2]))
```

### 9.13.2 upcasting

Types can potentially be *upcasted* when combined with other types, meaning they are promoted from the current type (say `int` to `float`)

```
In [349]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [350]: df3
```

```
0 -2.663288 -1.397492 0.0
1 1.144085 1.338115 0.0
2 0.153032 0.781169 255.0
3 -0.688294 -0.791687 0.0
4 0.260580 -0.764810 255.0
5 0.104365 -2.000933 0.0
6 0.139937 -0.345662 0.0
7 0.109992 0.393915 0.0

In [351]: df3.dtypes
```

```
˓→ A float32
 B float64
 C float64
dtype: object
```

The `values` attribute on a DataFrame return the *lower-common-denominator* of the dtypes, meaning the dtype that can accommodate **ALL** of the types in the resulting homogeneous dtype numpy array. This can force some *upcasting*.

```
In [352]: df3.values.dtype
```

```
Out[352]: dtype('float64')
```

### 9.13.3 astype

You can use the `astype()` method to explicitly convert dtypes from one to another. These will by default return a copy, even if the dtype was unchanged (pass `copy=False` to change this behavior). In addition, they will raise an exception if the astype operation is invalid.
Upcasting is always according to the `numpy` rules. If two different dtypes are involved in an operation, then the more general one will be used as the result of the operation.

```
In [353]: df3
Out[353]:
 A B C
0 -2.663288 -1.397492 0
1 1.144085 1.338115 0
2 0.153032 0.781169 255
3 -0.688294 -0.791687 0
4 0.260580 -0.764810 255
5 0.104365 -2.000933 0
6 0.139937 -0.345662 0
7 0.109992 0.393915 0
```

```
In [354]: df3.dtypes
Out[354]:
A float32
B float64
C float64
dtype: object
```

```
conversion of dtypes
In [355]: df3.astype('float32').dtypes
Out[355]:
A float32
B float32
C float32
dtype: object
```

Convert a subset of columns to a specified type using `astype()`

```
In [356]: dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})

In [357]: dft[['a','b']] = dft[['a','b']].astype(np.uint8)

In [358]: dft
Out[358]:
 a b c
0 1 4 7
1 2 5 8
2 3 6 9

In [359]: dft.dtypes
Out[359]:
a uint8
b uint8
c int64
dtype: object
```

New in version 0.19.0.

Convert certain columns to a specific dtype by passing a dict to `astype()`

```
In [360]: df1 = pd.DataFrame({'a': [1,0,1], 'b': [4,5,6], 'c': [7, 8, 9]})

In [361]: df1 = df1.astype({'a': np.bool, 'c': np.float64})
```
In [362]: dft1
Out[362]:
  a  b  c
0  True 4  7.0
1  False 5  8.0
2  True 6  9.0

In [363]: dft1.dtypes
Out[363]:
   a    bool
   b  int64
   c float64
dtype: object

Note: When trying to convert a subset of columns to a specified type using `astype()` and `loc()`, upcasting occurs. `loc()` tries to fit in what we are assigning to the current dtypes, while [] will overwrite them taking the dtype from the right hand side. Therefore the following piece of code produces the unintended result.

In [364]: dft = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]})
In [365]: dft.loc[:, ['a', 'b']].astype(np.uint8).dtypes
Out[365]:
   a    uint8
   b    uint8
dtype: object
In [366]: dft.loc[:, ['a', 'b']] = dft.loc[:, ['a', 'b']].astype(np.uint8)
In [367]: dft.dtypes
Out[367]:
   a    int64
   b    int64
   c    int64
dtype: object

9.13.4 object conversion

pandas offers various functions to try to force conversion of types from the object dtype to other types. The following functions are available for one dimensional object arrays or scalars:

- `to_numeric()` (conversion to numeric dtypes)

In [368]: m = ['1.1', 2, 3]
In [369]: pd.to_numeric(m)
Out[369]: array([ 1.1, 2. , 3. ])

- `to_datetime()` (conversion to datetime objects)

In [370]: import datetime
In [371]: m = ['2016-07-09', datetime.datetime(2016, 3, 2)]
In [372]: pd.to_datetime(m)
Out[372]: DatetimeIndex(['2016-07-09', '2016-03-02'], dtype='datetime64[ns]',
 freq=None)

• to_timedelta() (conversion to timedelta objects)

In [373]: m = ['5us', pd.Timedelta('1day')]
In [374]: pd.to_timedelta(m)
Out[374]: TimedeltaIndex(['0 days 00:00:00.000005', '1 days 00:00:00'], dtype=
<timedelta64[ns]>, freq=None)

To force a conversion, we can pass in an errors argument, which specifies how pandas should deal with elements that cannot be converted to desired dtype or object. By default, errors='raise', meaning that any errors encountered will be raised during the conversion process. However, if errors='coerce', these errors will be ignored and pandas will convert problematic elements to pd.NaT (for datetime and timedelta) or np.nan (for numeric). This might be useful if you are reading in data which is mostly of the desired dtype (e.g. numeric, datetime), but occasionally has non-conforming elements intermixed that you want to represent as missing:

In [375]: import datetime
In [376]: m = ['apple', datetime.datetime(2016, 3, 2)]
In [377]: pd.to_datetime(m, errors='coerce')
Out[377]: DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)
In [378]: m = ['apple', 2, 3]
In [379]: pd.to_numeric(m, errors='coerce')
Out[379]: array(['apple', 2., 3.], dtype=object)
In [380]: m = ['apple', pd.Timedelta('1day')]
In [381]: pd.to_timedelta(m, errors='coerce')
Out[381]: TimedeltaIndex(['NaT', '1 days'], dtype='timedelta64[ns]', freq=None)

The errors parameter has a third option of errors='ignore', which will simply return the passed in data if it encounters any errors with the conversion to a desired data type:

In [382]: import datetime
In [383]: m = ['apple', datetime.datetime(2016, 3, 2)]
In [384]: pd.to_datetime(m, errors='ignore')
Out[384]: array(['apple', datetime.datetime(2016, 3, 2, 0, 0)], dtype=object)
In [385]: m = ['apple', 2, 3]
In [386]: pd.to_numeric(m, errors='ignore')
Out[386]: array(['apple', 2, 3], dtype=object)
In [387]: m = ['apple', pd.Timedelta('1day')]
In [388]: pd.to_timedelta(m, errors='ignore')
Out[388]: array(['apple', Timedelta('1 days 00:00:00')], dtype=object)

In addition to object conversion, to_numeric() provides another argument downcast, which gives the option of
downcasting the newly (or already) numeric data to a smaller dtype, which can conserve memory:

```python
In [389]: m = ['1', 2, 3]
In [390]: pd.to_numeric(m, downcast='integer') # smallest signed int dtype
Out[390]: array([1, 2, 3], dtype=int8)
In [391]: pd.to_numeric(m, downcast='signed') # same as 'integer'
Out[391]: array([1, 2, 3], dtype=int8)
In [392]: pd.to_numeric(m, downcast='unsigned') # smallest unsigned int dtype
Out[392]: array([1, 2, 3], dtype=uint8)
In [393]: pd.to_numeric(m, downcast='float') # smallest float dtype
Out[393]: array([1., 2., 3.], dtype=float32)
```

As these methods apply only to one-dimensional arrays, lists or scalars; they cannot be used directly on multi-dimensional objects such as DataFrames. However, with `apply()`, we can “apply” the function over each column efficiently:

```python
In [394]: import datetime
In [395]: df = pd.DataFrame([[2016-07-09, datetime.datetime(2016, 3, 2)]] * 2, dtype='O')
In [396]: df
Out[396]:
0 1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02
In [397]: df.apply(pd.to_datetime)
Out[397]:
 0 1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02
In [398]: df = pd.DataFrame([[1.1, 2, 3]] * 2, dtype='O')
In [399]: df
Out[399]:
 0 1 2
0 1.1 2 3
1 1.1 2 3
In [400]: df.apply(pd.to_numeric)
Out[400]:
 0 1 2
0 1.1 2 3
1 1.1 2 3
In [401]: df = pd.DataFrame([[5us, pd.Timedelta('1day')]] * 2, dtype='O')
In [402]:
Out[402]:
```
9.13.5 gotchas

Performing selection operations on integer type data can easily upcast the data to floating. The dtype of the input data will be preserved in cases where nans are not introduced (starting in 0.11.0) See also Support for integer NA

In [404]: dfi = df3.astype('int32')

In [405]: dfi['E'] = 1

In [406]: dfi

Out[406]:
A  B  C  E
0  -2 -1  0  1
1   1  1  0  1
2   0  0  255  1
3   0  0   0  1
4   0  0  255  1
5   0 -2  0  1
6   0  0   0  1
7   0  0   0  1

In [407]: dfi.dtypes

Out[407]:
A int32
B int32
C int32
E int64
dtype: object

In [408]: casted = dfi[dfi>0]

In [409]: casted

Out[409]:
A     B     C    E
0  NaN  NaN  NaN  1
1  1.0  1.0  NaN  1
2  NaN  NaN  255.0  1
3  NaN  NaN  NaN  1
4  NaN  NaN  255.0  1
5  NaN  NaN  NaN  1
6  NaN  NaN  NaN  1
7  NaN  NaN  NaN  1
9.14 Selecting columns based on dtype

New in version 0.14.1.

The `select_dtypes()` method implements subsetting of columns based on their `dtype`.

First, let’s create a `DataFrame` with a slew of different dtypes:

```python
In [417]: df = pd.DataFrame({'string': list('abc'),
 'int64': list(range(1, 4)),
 'uint8': np.arange(3, 6).astype('u1'),
 'float64': np.arange(4.0, 7.0),
```

In [418]: df['tdeltas'] = df.dates.diff()

In [419]: df['uint64'] = np.arange(3, 6).astype('u8')

In [420]: df['other_dates'] = pd.date_range('20130101', periods=3).values

In [421]: df['tz_aware_dates'] = pd.date_range('20130101', periods=3, tz='US/Eastern')

In [422]: df

Out[422]:
bool1  bool2  category  dates  float64  int64  string  \
0   True   False      A 2017-05-05 12:15:02.873800  4.0  1    a
1  False   True      B 2017-05-06 12:15:02.873800  5.0  2    b
2   True   False      C 2017-05-07 12:15:02.873800  6.0  3    c

uint8  tdeltas  uint64  other_dates  tz_aware_dates
0      3   NaT      3 2013-01-01 2013-01-01 00:00:00-05:00
1      4   1 days   4 2013-01-02 2013-01-02 00:00:00-05:00
2      5   1 days   5 2013-01-03 2013-01-03 00:00:00-05:00

And the dtypes

In [423]: df.dtypes

Out[423]:
bool1  bool2  category  dates  float64  int64  string  \
  bool  bool         category  datetime64[ns]  float64  int64
bool1  bool2  category  dates  float64  int64  string  \
  bool  bool         category  datetime64[ns]  float64  int64

select_dtypes() has two parameters include and exclude that allow you to say “give me the columns WITH these dtypes” (include) and/or “give the columns WITHOUT these dtypes” (exclude).

For example, to select bool columns

In [424]: df.select_dtypes(include=[bool])

Out[424]:
bool1  bool2
0   True   False
1  False   True
2   True   False

You can also pass the name of a dtype in the numpy dtype hierarchy:
In [425]: df.select_dtypes(include=['bool'])
Out[425]:
   bool1  bool2
0   True  False
1  False   True
2   True  False

`select_dtypes()` also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsigned integers

In [426]: df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
Out[426]:
   bool1  bool2  float64  int64  tdeltas
0   True  False       4.0       1 NaT
1  False   True       5.0       2 1 days
2   True  False       6.0       3 1 days

To select string columns you must use the `object` dtype:

In [427]: df.select_dtypes(include=['object'])
Out[427]:
   string
0   a
1   b
2   c

To see all the child dtypes of a generic `dtype` like `numpy.number` you can define a function that returns a tree of child dtypes:

In [428]:
def subdtypes(dtype):
   ....:     subs = dtype.__subclasses__()
   ....:     if not subs:
   ....:         return dtype
   ....:     return [dtype, [subdtypes(dt) for dt in subs]]

All numpy dtypes are subclasses of `numpy.generic`:

In [429]: subdtypes(np.generic)
Out[429]:
[[numpy.generic, [[numpy.number,
                   [[numpy.integer,
                    [[numpy.signedinteger,
                     [numpy.int8,
                      numpy.int16,
                      numpy.int32,
                      numpy.int64,
                      numpy.timedelta64]],
                    [numpy.unsignedinteger,
                     [numpy.uint8,
                      numpy.uint16,
                      numpy.uint32,
                      numpy.uint64,
                      numpy.uint64]],
                    [numpy.inexact,
                     [numpy.floating,
                      [numpy.float16,
                       numpy.float32,
                       numpy.float64]]]]]]]]]
[[numpy.floating,
    [numpy.float16, numpy.float32, numpy.float64, numpy.float128]],
   [numpy.complexfloating,
    [numpy.complex64, numpy.complex128, numpy.complex256]]],
[numpy.flexible,
 [[numpy.character, [numpy.bytes_, numpy.str_]],
  [numpy.void, [numpy.record]]],
 numpy.bool_,
 numpy.datetime64,
 numpy.object_]]

**Note:** Pandas also defines the types category, and datetime64[ns, tz], which are not integrated into the normal numpy hierarchy and won’t show up with the above function.

**Note:** The include and exclude parameters must be non-string sequences.
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the `str` attribute and generally have names matching the equivalent (scalar) built-in string methods:

```python
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [2]: s.str.lower()
Out[2]:
 0 a
 1 b
 2 c
 3 aaba
 4 baca
 5 NaN
 6 caba
 7 dog
 8 cat
 dtype: object
In [3]: s.str.upper()
Out[3]:
 0 A
 1 B
 2 C
 3 AABA
 4 BACA
 5 NaN
 6 CABA
 7 DOG
 8 CAT
 dtype: object
In [4]: s.str.len()
Out[4]:
 0 1.0
 1 1.0
 2 1.0
 3 4.0
 4 4.0
 5 NaN
 6 4.0
 7 3.0
```
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:

```
In [9]: df = pd.DataFrame(randn(3, 2), columns=['Column A', 'Column B'], index=range(3))
```

```
In [10]: df
Out[10]:
 Column A Column B
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812
```

Since `df.columns` is an Index object, we can use the `.str` accessor:

```
In [11]: df.columns.str.strip()
Out[11]: Index(['Column A', 'Column B'], dtype='object')
```

```
In [12]: df.columns.str.lower()
Out[12]: Index(['column a', 'column b'], dtype='object')
```

These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:

```
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
```

```
In [14]: df
Out[14]:
 column_a column_b
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812
```

Note: If you have a Series where lots of elements are repeated (i.e. the number of unique elements in the Series is a lot smaller than the length of the Series), it can be faster to convert the original Series to one of type category and then use `.str.<method>` or `.dt.<property>` on that. The performance difference comes from the fact that, for Series of type category, the string operations are done on the `.categories` and not on each element of the Series.
Please note that a Series of type category with string .categories has some limitations in comparison of Series of type string (e.g. you can’t add strings to each other: \( s + " \ " + s \) won’t work if \( s \) is a Series of type category). Also, .str methods which operate on elements of type list are not available on such a Series.

### 10.1 Splitting and Replacing Strings

Methods like \texttt{split} return a Series of lists:

```
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_')
Out[16]:
 0 [a, b, c]
 1 [c, d, e]
 2 NaN
 3 [f, g, h]
 dtype: object
```

Elements in the split lists can be accessed using \texttt{get} or \texttt{[]} notation:

```
In [17]: s2.str.split('_').str.get(1)
Out[17]:
 0
0 b
1 d
2 NaN
3 g
 dtype: object
```

```
In [18]: s2.str.split('_').str[1]
Out[18]:
 0
0 b
1 d
2 NaN
3 g
 dtype: object
```

Easy to expand this to return a DataFrame using \texttt{expand}.

```
In [19]: s2.str.split('_', expand=True)
Out[19]:
 0 1 2
 0 a b c
 1 c d e
 2 NaN None None
 3 f g h
```

It is also possible to limit the number of splits:

```
In [20]: s2.str.split('_', expand=True, n=1)
Out[20]:
 0 1
 0 a b_c
 1 c d_e
 2 NaN None
 3 f g_h
```
rsplit is similar to split except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:

```python
In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]:
 0 1
0 a_b c
1 c_d e
2 NaN None
3 f_g h
```

Methods like replace and findall take regular expressions, too:

```python
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
 : '', np.nan, 'CABA', 'dog', 'cat'])
 :
In [23]: s3
Out[23]:
0 A
1 B
2 C
3 Aaba
4 Baca
5 NaN
6 CABA
7 dog
8 cat
dtype: object
In [24]: s3.str.replace('^a|dog', 'XX-XX ', case=False)
```

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:

```python
Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])

This does what you'd naively expect:
In [26]: dollars.str.replace('\$', '')
Out[26]:
0 12
1 -10
2 10,000
```

556 Chapter 10. Working with Text Data
dtype: object

# But this doesn't:
In [27]: dollars.str.replace('-$', '-')

Out[27]:
0  12
1 -$10
2 $10,000
dtype: object

# We need to escape the special character (for >1 len patterns)
In [28]: dollars.str.replace(r'-\$', '-')

Out[28]:
0  12
1 -10
2 $10,000
dtype: object

The replace method can also take a callable as replacement. It is called on every pat using re.sub(). The callable should expect one positional argument (a regex object) and return a string.

New in version 0.20.0.

# Reverse every lowercase alphabetic word
In [29]: pat = r'\[a-z]+'
In [30]: repl = lambda m: m.group(0)[::-1]
In [31]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)
Out[31]:
0  oof 123
1  rab zab
2  NaN
dtype: object

# Using regex groups
In [32]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
In [33]: repl = lambda m: m.group('two').swapcase()
In [34]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)
Out[34]:
0  bAR
1  NaN
dtype: object

The replace method also accepts a compiled regular expression object from re.compile() as a pattern. All flags should be included in the compiled regular expression object.

New in version 0.20.0.

In [35]: import re
In [36]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
In [37]: s3.str.replace(regex_pat, 'XX-XX ')

10.1. Splitting and Replacing Strings
Including a flags argument when calling replace with a compiled regular expression object will raise a `ValueError`.

```python
In [38]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)

ValueError: case and flags cannot be set when pat is a compiled regex
```

### 10.2 Indexing with `.str`

You can use `[ ]` notation to directly index by position locations. If you index past the end of the string, the result will be a NaN.

```python
In [39]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [40]: s.str[0]
Out[40]:
0 A
1 B
2 C
3 A
4 B
5 NaN
6 C
7 d
8 c
dtype: object

In [41]: s.str[1]

Out[41]:
0 NaN
1 NaN
2 NaN
3 a
4 a
5 NaN
6 A
7 o
8 a
dtype: object
```
10.3 Extracting Substrings

10.3.1 Extract first match in each subject (extract)

New in version 0.13.0.

**Warning:** In version 0.18.0, `extract` gained the `expand` argument. When `expand=False` it returns a `Series`, `Index`, or `DataFrame`, depending on the subject and regular expression pattern (same behavior as pre-0.18.0). When `expand=True` it always returns a `DataFrame`, which is more consistent and less confusing from the perspective of a user.

The `extract` method accepts a regular expression with at least one capture group.

Extracting a regular expression with more than one group returns a `DataFrame` with one column per group.

```python
In [42]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[42]:
 0 1
0 a 1
1 b 2
2 NaN NaN
```

Elements that do not match return a row filled with `NaN`. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects. The `dtype` of the result is always object, even if no match is found and the result only contains `NaN`.

Named groups like

```python
In [43]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
Out[43]:
 letter digit
0 a 1
1 b 2
2 NaN NaN
```

and optional groups like

```python
In [44]: pd.Series(['a1', 'b2', '3']).str.extract('([ab])?((\d)', expand=False)
Out[44]:
 0 1
0 a 1
1 b 2
2 NaN 3
```

can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.

Extracting a regular expression with one group returns a `DataFrame` with one column if `expand=True`.

```python
In [45]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])\d', expand=True)
Out[45]:
 0
0 1
```

10.3. Extracting Substrings
It returns a Series if `expand=False`.

```python
In [46]: pd.Series(["a1", "b2", "c3"]).str.extract('ab\d', expand=False)
Out[46]:
0 1
1 2
2 NaN
dtype: object
```

Calling on an `Index` with a regex with exactly one capture group returns a `DataFrame` with one column if `expand=True`,

```python
In [47]: s = pd.Series(["A11", "B22", "C33"], ["a1", "b2", "c3"])
In [48]: s
Out[48]:
 A11 a1
 B22 b2
 C33 c3
dtype: object
In [49]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
```

It returns an `Index` if `expand=False`.

```python
In [50]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[50]:
 letter
0 A
1 B
2 C
```

Calling on an `Index` with a regex with more than one capture group returns a `DataFrame` if `expand=True`.

```python
In [51]: s.index.str.extract("(?P<letter>[a-zA-Z])(\d+)", expand=True)
```

It raises `ValueError` if `expand=False`.

```python
>>> s.index.str.extract("(?P<letter>[a-zA-Z])(\d+)", expand=False)
ValueError: only one regex group is supported with Index
```

The table below summarizes the behavior of `extract(expand=False)` (input subject in first column, number of groups in regex in first row)

<table>
<thead>
<tr>
<th>Input Subject</th>
<th>1 Group</th>
<th>&gt;1 Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index</td>
<td>ValueError</td>
</tr>
<tr>
<td>Series</td>
<td>Series</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>
10.3.2 Extract all matches in each subject (extractall)

New in version 0.18.0.

Unlike `extract` (which returns only the first match),

```
In [52]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
Out[53]:
A a1a2
B b1
C c1
dtype: object

In [54]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'

In [55]: s.str.extract(two_groups, expand=True)
Out[55]:
 letter digit
A a 1
B b 1
C c 1
```

the `extractall` method returns every match. The result of `extractall` is always a DataFrame with a MultiIndex on its rows. The last level of the MultiIndex is named `match` and indicates the order in the subject.

```
In [56]: s.str.extractall(two_groups)
Out[56]:
 letter digit match
A a 1 0
 a 2 1
B b 1 0
C c 1 0
```

When each subject string in the Series has exactly one match,

```
In [57]: s = pd.Series(['a3', 'b3', 'c2'])

In [58]: s
Out[58]:
0 a3
1 b3
2 c2
dtype: object
```

then `extractall(pat).xs(0, level='match')` gives the same result as `extract(pat)`.

```
In [59]: extract_result = s.str.extract(two_groups, expand=True)

In [60]: extract_result
Out[60]:
 letter digit match
0 a 3 0
1 b 3 0
2 c 2 0
```
Index also supports `.str.extractall`. It returns a DataFrame which has the same result as a `Series.str.extractall` with a default index (starts from 0).

New in version 0.19.0.

### 10.4 Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

```python
In [66]: pattern = r'[0-9][a-z]'

In [67]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[67]:
0 False
1 False
2 True
3 True
4 True
dtype: bool
```
or match a pattern:

```
In [68]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)
Out[68]:
0 False
1 False
2 True
3 True
4 False
dtype: bool
```

The distinction between `match` and `contains` is strictness: `match` relies on strict `re.match`, while `contains` relies on `re.search`.

Methods like `match`, `contains`, `startswith`, and `endswith` take an extra `na` argument so missing values can be considered True or False:

```
In [69]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [70]: s4.str.contains('A', na=False)
Out[70]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: bool
```

### 10.5 Creating Indicator Variables

You can extract dummy variables from string columns. For example if they are separated by a ' | ':

```
In [71]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
In [72]: s.str.get_dummies(sep='|')
Out[72]:
 a b c
 0 1 0 0
 1 1 1 0
 2 0 0 0
 3 1 0 1
```

String Index also supports `get_dummies` which returns a MultiIndex.

New in version 0.18.1.

```
In [73]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
In [74]: idx.str.get_dummies(sep='|')
Out[74]:
MultiIndex(levels=[{0, 1}, {0, 1}, {0, 1}],
 names=['a' 'a|b' 'a|c'])
```
labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],
names=['a', 'b', 'c'])

See also `get_dummies()`.

## 10.6 Method Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cat()</code></td>
<td>Concatenate strings</td>
</tr>
<tr>
<td><code>split()</code></td>
<td>Split strings on delimiter</td>
</tr>
<tr>
<td><code>rsplit()</code></td>
<td>Split strings on delimiter working from the end of the string</td>
</tr>
<tr>
<td><code>get()</code></td>
<td>Index into each element (retrieve i-th element)</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>Join strings in each element of the Series with passed separator</td>
</tr>
<tr>
<td><code>get_dummies()</code></td>
<td>Split strings on the delimiter returning DataFrame of dummy variables</td>
</tr>
<tr>
<td><code>contains()</code></td>
<td>Return boolean array if each string contains pattern/regex</td>
</tr>
<tr>
<td><code>replace()</code></td>
<td>Replace occurrences of pattern/regex with some other string or the return value of a callable given the occurrence</td>
</tr>
<tr>
<td><code>repeat()</code></td>
<td>Duplicate values (s.str.repeat(3) equivalent to x * 3)</td>
</tr>
<tr>
<td><code>pad()</code></td>
<td>Add whitespace to left, right, or both sides of strings</td>
</tr>
<tr>
<td><code>center()</code></td>
<td>Equivalent to str.center</td>
</tr>
<tr>
<td><code>ljust()</code></td>
<td>Equivalent to str.ljust</td>
</tr>
<tr>
<td><code>rjust()</code></td>
<td>Equivalent to str.rjust</td>
</tr>
<tr>
<td><code>zfill()</code></td>
<td>Equivalent to str.zfill</td>
</tr>
<tr>
<td><code>wrap()</code></td>
<td>Split long strings into lines with length less than a given width</td>
</tr>
<tr>
<td><code>slice()</code></td>
<td>Slice each string in the Series</td>
</tr>
<tr>
<td><code>slice_replace()</code></td>
<td>Replace slice in each string with passed value</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Count occurrences of pattern</td>
</tr>
<tr>
<td><code>startswith()</code></td>
<td>Equivalent to str.startswith(pat) for each element</td>
</tr>
<tr>
<td><code>endswith()</code></td>
<td>Equivalent to str.endswith(pat) for each element</td>
</tr>
<tr>
<td><code>findall()</code></td>
<td>Compute list of all occurrences of pattern/regex for each string</td>
</tr>
<tr>
<td><code>match()</code></td>
<td>Call re.match on each element, returning matched groups as list</td>
</tr>
<tr>
<td><code>extract()</code></td>
<td>Call re.search on each element, returning DataFrame with one row for each element and one column for each capture group</td>
</tr>
<tr>
<td><code>extractall()</code></td>
<td>Call re.findall on each element, returning DataFrame with one row for each match and one column for each capture group</td>
</tr>
<tr>
<td><code>len()</code></td>
<td>Compute string lengths</td>
</tr>
<tr>
<td><code>strip()</code></td>
<td>Equivalent to str.strip</td>
</tr>
<tr>
<td><code>rstrip()</code></td>
<td>Equivalent to str.rstrip</td>
</tr>
<tr>
<td><code>lstrip()</code></td>
<td>Equivalent to str.lstrip</td>
</tr>
<tr>
<td><code>partition()</code></td>
<td>Equivalent to str.partition</td>
</tr>
<tr>
<td><code>rpartition()</code></td>
<td>Equivalent to str.rpartition</td>
</tr>
<tr>
<td><code>lower()</code></td>
<td>Equivalent to str.lower</td>
</tr>
<tr>
<td><code>upper()</code></td>
<td>Equivalent to str.upper</td>
</tr>
<tr>
<td><code>find()</code></td>
<td>Equivalent to str.find</td>
</tr>
<tr>
<td><code>rfind()</code></td>
<td>Equivalent to str.rfind</td>
</tr>
<tr>
<td><code>index()</code></td>
<td>Equivalent to str.index</td>
</tr>
<tr>
<td><code>rindex()</code></td>
<td>Equivalent to str.rindex</td>
</tr>
<tr>
<td><code>capitalize()</code></td>
<td>Equivalent to str.capitalize</td>
</tr>
<tr>
<td><code>swapcase()</code></td>
<td>Equivalent to str.swapcase</td>
</tr>
<tr>
<td><code>normalize()</code></td>
<td>Return Unicode normal form. Equivalent to unicodedata.normalize</td>
</tr>
<tr>
<td><code>translate()</code></td>
<td>Equivalent to str.translate</td>
</tr>
<tr>
<td><code>isalnum()</code></td>
<td>Equivalent to str.isalnum</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td><code>isalpha()</code></td>
<td>Equivalent to <code>str.isalpha</code></td>
</tr>
<tr>
<td><code>isdigit()</code></td>
<td>Equivalent to <code>str.isdigit</code></td>
</tr>
<tr>
<td><code>isspace()</code></td>
<td>Equivalent to <code>str.isspace</code></td>
</tr>
<tr>
<td><code>islower()</code></td>
<td>Equivalent to <code>str.islower</code></td>
</tr>
<tr>
<td><code>isupper()</code></td>
<td>Equivalent to <code>str.isupper</code></td>
</tr>
<tr>
<td><code>istitle()</code></td>
<td>Equivalent to <code>str.istitle</code></td>
</tr>
<tr>
<td><code>isnumeric()</code></td>
<td>Equivalent to <code>str.isnumeric</code></td>
</tr>
<tr>
<td><code>isdecimal()</code></td>
<td>Equivalent to <code>str.isdecimal</code></td>
</tr>
</tbody>
</table>
11.1 Overview

pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.

Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute:

```
In [1]: import pandas as pd
In [2]: pd.options.display.max_rows
Out[2]: 15
In [3]: pd.options.display.max_rows = 999
In [4]: pd.options.display.max_rows
Out[4]: 999
```

There is also an API composed of 5 relevant functions, available directly from the pandas namespace:

- `get_option()` / `set_option()` - get/set the value of a single option.
- `reset_option()` - reset one or more options to their default value.
- `describe_option()` - print the descriptions of one or more options.
- `option_context()` - execute a codeblock with a set of options that revert to prior settings after execution.

Note: developers can check out pandas/core/config.py for more info.

All of the functions above accept a regexp pattern (re.search style) as an argument, and so passing in a substring will work - as long as it is unambiguous:

```
In [5]: pd.get_option("display.max_rows")
Out[5]: 999
In [6]: pd.set_option("display.max_rows",101)
In [7]: pd.get_option("display.max_rows")
Out[7]: 101
In [8]: pd.set_option("max_r",102)
In [9]: pd.get_option("display.max_rows")
Out[9]: 102
```
The following will **not work** because it matches multiple option names, e.g. `display.max_colwidth`, `display.max_rows`, `display.max_columns`:

```python
In [10]: try:
 : pd.get_option("column")
 : except KeyError as e:
 : print(e)
 :
'Pattern matched multiple keys'
```

**Note:** Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

You can get a list of available options and their descriptions with `describe_option`. When called with no argument `describe_option` will print out the descriptions for all available options.

### 11.2 Getting and Setting Options

As described above, `get_option()` and `set_option()` are available from the pandas namespace. To change an option, call `set_option('option regex', new_value)`

```python
In [11]: pd.get_option('mode.sim_interactive')
Out[11]: False

In [12]: pd.set_option('mode.sim_interactive', True)

In [13]: pd.get_option('mode.sim_interactive')
Out[13]: True
```

**Note:** that the option `mode.sim_interactive` is mostly used for debugging purposes.

All options also have a default value, and you can use `reset_option` to do just that:

```python
In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60
```

It's also possible to reset multiple options at once (using a regex):

```python
In [19]: pd.reset_option("^display")
height has been deprecated.
line_width has been deprecated, use display.width instead (currently both are identical)
```

`option_context` context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the `with` block:
In [20]: with pd.option_context("display.max_rows",10,"display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....:     10
   ....:     5
In [21]: print(pd.get_option("display.max_rows"))
   \\
60
In [22]: print(pd.get_option("display.max_columns"))
   \\
20

### 11.3 Setting Startup Options in python/ipython Environment

Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default ipython profile can be found at:

```
$IPYTHONDIR/profile_default/startup
```

More information can be found in the ipython documentation. An example startup script for pandas is displayed below:

```python
import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)
```

### 11.4 Frequently Used Options

The following is a walkthrough of the more frequently used display options.

`display.max_rows` and `display.max_columns` sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

In [23]: df = pd.DataFrame(np.random.randn(7,2))
In [24]: pd.set_option('max_rows', 7)
In [25]: df
Out[25]:
   0   1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771
In [26]: pd.set_option('max_rows', 5)
In [27]: df
display.expand_frame_repr allows for the the representation of dataframes to stretch across pages, wrapped over the full column vs row-wise.

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows as a truncated frame, or as a summary.
In [35]: df = pd.DataFrame(np.random.randn(10,10))

In [36]: pd.set_option('max_rows', 5)

In [37]: pd.set_option('large_repr', 'truncate')

In [38]: df
Out[38]:
    0   1   2   3   4   5   6
0 -1.41 1.61 1.02 0.57 0.88 -2.21 0.97
1  0.55 -1.22 -1.23 0.77 -1.28 -0.73 -0.12
..   ... ... ... ... ... ... ...
8 -2.48 -0.28 0.03 0.11 1.13 -0.98 1.47
9 -1.07 0.44 2.35 0.58 0.22 -0.74 0.76
[10 rows x 10 columns]

In [39]: pd.set_option('large_repr', 'info')

In [40]: df
Out[40]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
    0     1     2     3     4     5     6
dtypes: float64(10)
memory usage: 880.0 bytes

In [41]: pd.reset_option('large_repr')

In [42]: pd.reset_option('max_rows')

display.max_colwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis.

In [43]: df = pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string'],
                                    ['horse', 'cow', 'banana', 'apple']]))

In [44]: pd.set_option('max_colwidth', 40)
In [45]: df
Out[45]:
   0  1     2             3
0 foo bar bim uncomfortably long string
1 horse cow banana apple

In [46]: pd.set_option('max_colwidth', 6)

In [47]: df
Out[47]:
   0  1     2     3
0 foo bar bim un... horse cow ba... apple

In [48]: pd.reset_option('max_colwidth')

display.max_info_columns sets a threshold for when by-column info will be given.

In [49]: df = pd.DataFrame(np.random.randn(10,10))

In [50]: pd.set_option('max_info_columns', 11)

In [51]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
   0       10 non-null float64
   1       10 non-null float64
   2       10 non-null float64
   3       10 non-null float64
   4       10 non-null float64
   5       10 non-null float64
   6       10 non-null float64
   7       10 non-null float64
   8       10 non-null float64
   9       10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [52]: pd.set_option('max_info_columns', 5)

In [53]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 880.0 bytes

In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. Note that you can specify the option df.info(null_counts=True) to override on showing a particular frame.

In [55]: df = pd.DataFrame(np.random.choice([0,1,np.nan], size=(10,10)))

In [56]: df
Out[56]:
```
 0 1 2 3 4 5 6 7 8 9
0 0.0 1.0 1.0 0.0 1.0 1.0 0.0 NaN 1.0 NaN
1 NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 1.0
2 1.0 NaN 1.0 NaN 0.0 1.0 NaN NaN 0.0 1.0
3 0.0 1.0 NaN 0.0 NaN 1.0 NaN NaN 0.0 0.0
4 0.0 1.0 NaN NaN NaN NaN NaN 0.0 0.0 0.0
5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
6 0.0 1.0 NaN NaN NaN NaN NaN 0.0 0.0 0.0
7 0.0 1.0 NaN NaN NaN NaN NaN 0.0 0.0 0.0
8 0.0 1.0 NaN NaN NaN NaN NaN 0.0 0.0 0.0
9 NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 0.0
```

In [57]: `pd.set_option('max_info_rows', 11)`

In [58]: `df.info()`
```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 0 8 non-null float64
 1 5 non-null float64
 2 8 non-null float64
 3 7 non-null float64
 4 5 non-null float64
 5 7 non-null float64
 6 6 non-null float64
 7 6 non-null float64
 8 8 non-null float64
 9 3 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes
```

In [59]: `pd.set_option('max_info_rows', 5)`

In [60]: `df.info()`
```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 0 float64
 1 float64
 2 float64
 3 float64
 4 float64
 5 float64
 6 float64
 7 float64
 8 float64
 9 float64
dtypes: float64(10)
memory usage: 880.0 bytes
```

In [61]: `pd.reset_option('max_info_rows')`

display.precision sets the output display precision in terms of decimal places. This is only a suggestion.

In [62]: `df = pd.DataFrame(np.random.randn(5,5))`

In [63]: `pd.set_option('precision', 7)`
In [64]: df
Out[64]:
   0  1  2  3  4
0 -2.0490 2.8466 -1.2080 -0.4504 2.4239
1  0.1211 0.2669 0.8438 -0.2225 2.0219
2 -0.7168 -2.2245 -1.0611 -0.2328 0.4308
3 -0.6655 1.8298 -1.4065 1.0782 0.3228
4  0.2003 0.8900 0.1948 0.3516 0.4489

In [65]: pd.set_option('precision',4)

In [66]: df
Out[66]:
   0  1  2  3  4
0 -2.0490 2.8466 -1.2080 -0.4504 2.4239
1  0.1211 0.2669 0.8438 -0.2225 2.0220
2 -0.7168 -2.2245 -1.0611 -0.2328 0.4308
3 -0.6655 1.8298 -1.4065 1.0782 0.3228
4  0.2003 0.8900 0.1948 0.3516 0.4489

display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. Note, this does not effect the precision at which the number is stored.

In [67]: df = pd.DataFrame(np.random.randn(6,6))

In [68]: pd.set_option('chop_threshold', 0)

In [69]: df
Out[69]:
   0  1  2  3  4  5
0 -0.1979 0.9657 -1.5229 -0.1166 0.2956 -1.0477
1  1.6406 1.9058 2.7721 0.0888 -1.1442 -0.6334
2  0.9254 -0.0064 -0.8204 -0.6009 -1.0393 0.8248
3 -0.8241 -0.3377 -0.9278 -0.8401 0.2485 -0.1093
4  0.4320 -0.4607 0.3365 -3.2076 -1.5359 0.4098
5 -0.6731 -0.7411 -0.1109 -2.6729 0.8645 0.0609

In [70]: pd.set_option('chop_threshold', .5)

In [71]: df
Out[71]:
   0  1  2  3  4  5
0  0.0000 0.9657 -1.5229  0.0000  0.0000 -1.0477
1  1.6406 1.9058  2.7721  0.0000 -1.1442 -0.6334
2  0.9254  0.0000 -0.8204 -0.6009 -1.0393  0.8248
3 -0.8241  0.0000 -0.9278 -0.8401  0.2485 -0.1093
4  0.0000  0.0000  0.0000 -3.2076 -1.5359  0.0000
5 -0.6731 -0.7411 -0.1109 -2.6729  0.8645  0.0000

In [72]: pd.reset_option('chop_threshold')

display.colheader_justify controls the justification of the headers. Options are ‘right’, and ‘left’.

In [73]: df = pd.DataFrame(np.array([[np.random.randn(6), np.random.randint(1,9,6)*.1,
                         np.zeros(6)].T,
                         columns=['A', 'B', 'C'], dtype='float')
                         ....:}
In [74]: pd.set_option('colheader_justify', 'right')

In [75]: df
Out[75]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9331</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.2888</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1.3250</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.5892</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.5314</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>-1.1987</td>
<td>0.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In [76]: pd.set_option('colheader_justify', 'left')

In [77]: df
Out[77]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9331</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.2888</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1.3250</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.5892</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.5314</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>-1.1987</td>
<td>0.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In [78]: pd.reset_option('colheader_justify')

### 11.5 Available Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.chop_threshold</td>
<td>None</td>
<td>If set to a float value, all float values smaller than the given threshold will be displayed as exactly 0 by repr and friends.</td>
</tr>
<tr>
<td>display.colheader_justify</td>
<td>right</td>
<td>Controls the justification of column headers. used by DataFrameFormatter.</td>
</tr>
<tr>
<td>display.column_space</td>
<td>12</td>
<td>No description available.</td>
</tr>
<tr>
<td>display.date_dayfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the day first, eg 20/01/2005</td>
</tr>
<tr>
<td>display.date_yearfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the year first, eg 2005/01/20</td>
</tr>
<tr>
<td>display.encoding</td>
<td>UTF-8</td>
<td>Defaults to the detected encoding of the console. Specifies the encoding to be used for strings.</td>
</tr>
<tr>
<td>display.expand_frame_repr</td>
<td>True</td>
<td>Whether to print out the full DataFrame repr for wide DataFrames across multiple lines</td>
</tr>
<tr>
<td>display.float_format</td>
<td>None</td>
<td>The callable should accept a floating point number and return a string with the desired format of the number.</td>
</tr>
<tr>
<td>display.height</td>
<td>60</td>
<td>Deprecated. Use display.max_rows instead.</td>
</tr>
<tr>
<td>display.large_repr</td>
<td>truncate</td>
<td>For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show full information.</td>
</tr>
<tr>
<td>display.latex.escape</td>
<td>True</td>
<td>Escapes special characters in Dataframes, when using the to_latex method.</td>
</tr>
<tr>
<td>display.latex.longtable</td>
<td>False</td>
<td>Specifies if the to_latex method of a DataFrame uses the longtable format.</td>
</tr>
<tr>
<td>display.latex.multicolumn</td>
<td>True</td>
<td>Combines columns when using a MultiIndex.</td>
</tr>
<tr>
<td>display.latex.multicolumn_format</td>
<td>'l'</td>
<td>Alignment of multicolumn labels.</td>
</tr>
<tr>
<td>display.latex.multirow</td>
<td>False</td>
<td>Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.</td>
</tr>
<tr>
<td>display.line_width</td>
<td>80</td>
<td>Deprecated. Use display.width instead.</td>
</tr>
<tr>
<td>display.max_columns</td>
<td>20</td>
<td>max_rows and max_columns are used in <strong>repr</strong>() methods to decide if to_string() should be used.</td>
</tr>
<tr>
<td>display.max_colwidth</td>
<td>50</td>
<td>The maximum width in characters of a column in the repr of a pandas data structure.</td>
</tr>
<tr>
<td>display.max_info_columns</td>
<td>100</td>
<td>max_info_columns is used in DataFrame.info method to decide if per column information should be shown.</td>
</tr>
<tr>
<td>display.max_info_rows</td>
<td>1690785</td>
<td>df.info() will usually show null-counts for each column. For large frames this can be slow.</td>
</tr>
</tbody>
</table>
### 11.6 Number Formatting

pandas also allows you to set how numbers are displayed in the console. This option is not set through the `set_options` API.

Use the `set_eng_float_format` function to alter the floating-point formatting of pandas objects to produce a particular format.

For instance:

```python
In [79]: import numpy as np
In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [82]: s/1.e3
Out[82]:
 a -236.866u
 b 846.974u
 c -685.597u
 d 609.099u
 e -303.961u
dtype: float64
```

```python
In [83]: s/1.e6
```

```
Out[83]:
 a -236.866n
 b 846.974n
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.max_rows</td>
<td>60</td>
<td>This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. 'None' value means unlimited.</td>
</tr>
<tr>
<td>display.max_seq_items</td>
<td>100</td>
<td>When pretty-printing a long sequence, no more than <code>max_seq_items</code> will be printed.</td>
</tr>
<tr>
<td>display.memory_usage</td>
<td>True</td>
<td>This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.</td>
</tr>
<tr>
<td>display.multi_sparse</td>
<td>True</td>
<td>“Sparsify” MultiIndex display (don’t display repeated elements in outer levels within a group)</td>
</tr>
<tr>
<td>display.notebook_repr_html</td>
<td>True</td>
<td>When True, IPython notebook will use html representation for pandas objects (if it is available).</td>
</tr>
<tr>
<td>display.pprint_nest_depth</td>
<td>3</td>
<td>Controls the number of nested levels to process when pretty-printing</td>
</tr>
<tr>
<td>display.precision</td>
<td>6</td>
<td>Floating point output precision in terms of number of places after the decimal, for regular printing.</td>
</tr>
<tr>
<td>display.show_dimensions</td>
<td>truncate</td>
<td>Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)</td>
</tr>
<tr>
<td>display.width</td>
<td>80</td>
<td>Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will use the default width.</td>
</tr>
<tr>
<td>display.html.table_schema</td>
<td>False</td>
<td>Whether to publish a Table Schema representation for frontends that support it.</td>
</tr>
<tr>
<td>html.border</td>
<td>1</td>
<td>A <code>border=value</code> attribute is inserted in the <code>&lt;table&gt;</code> tag for the DataFrame HTML representation.</td>
</tr>
<tr>
<td>io.excel.xls.writer</td>
<td>xlwt</td>
<td>The default Excel writer engine for ‘xls’ files.</td>
</tr>
<tr>
<td>io.excel.xlsm.writer</td>
<td>openpyxl</td>
<td>The default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default) and ‘xlwt’.</td>
</tr>
<tr>
<td>io.hdf.default_format</td>
<td>None</td>
<td>default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’</td>
</tr>
<tr>
<td>io.hdf.dropna_table</td>
<td>True</td>
<td>drop ALL nan rows when appending to a table</td>
</tr>
<tr>
<td>mode.chained_assignment</td>
<td>warn</td>
<td>Raise an exception, warn, or no action if trying to use chained assignment, The default is warn</td>
</tr>
<tr>
<td>mode.sim_interactive</td>
<td>False</td>
<td>Whether to simulate interactive mode for purposes of testing</td>
</tr>
<tr>
<td>mode.use_inf_as_null</td>
<td>False</td>
<td>True means treat None, NaN, -INF, INF as null (old way), False means None and NaN are null</td>
</tr>
<tr>
<td>compute.use_bottleneck</td>
<td>True</td>
<td>Use the bottleneck library to accelerate computation if it is installed</td>
</tr>
<tr>
<td>compute.use_numexpr</td>
<td>True</td>
<td>Use the numexpr library to accelerate computation if it is installed</td>
</tr>
</tbody>
</table>
To round floats on a case-by-case basis, you can also use `round()` and `round()`.

### 11.7 Unicode Formatting

**Warning:** Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If DataFrame or Series contains these characters, default output cannot be aligned properly.

**Note:** Screen captures are attached for each outputs to show the actual results.

```python
In [84]: df = pd.DataFrame({u'': ['UK', u''], u'': ['Alice', u'']})
In [85]: df;
```

Enable `display.unicode.east_asian_width` allows pandas to check each character’s “East Asian Width” property. These characters can be aligned properly by checking this property, but it takes longer time than standard `len` function.

```python
In [86]: pd.set_option('display.unicode.east_asian_width', True)
In [87]: df;
```

In addition, Unicode contains characters which width is “Ambiguous”. These character’s width should be either 1 or 2 depending on terminal setting or encoding. Because this cannot be distinguished from Python, `display.unicode.ambiguous_as_wide` option is added to handle this.

By default, “Ambiguous” character’s width, “¡” (inverted exclamation) in below example, is regarded as 1.

```python
In [88]: df = pd.DataFrame({'a': ['xxx', u'¡¡'], 'b': ['yyy', u'¡¡']})
In [89]: df;
```
Enabling `display.unicode.ambiguous_as_wide` lets pandas figure these character's width as 2. Note that this option will be effective only when `display.unicode.east_asian_width` is enabled. Confirm starting position has been changed, but is not aligned properly because the setting is mismatched with this environment.

```python
In [90]: pd.set_option('display.unicode.ambiguous_as_wide', True)
In [91]: df;
```

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxx</td>
<td>yyy</td>
</tr>
<tr>
<td>1</td>
<td>ii</td>
<td>ii</td>
</tr>
</tbody>
</table>
```

### 11.8 Table Schema Display

New in version 0.20.0.

`DataFrame` and `Series` will publish a Table Schema representation by default. False by default, this can be enabled globally with the `display.html.table_schema` option:

```python
In [92]: pd.set_option('display.html.table_schema', True)
```

Only `display.max_rows` are serialized and published.
INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:

- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Expect more work to be invested in higher-dimensional data structures (including Panel) in the future, especially in label-based advanced indexing.

**Note:** The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

**Warning:** In 0.15.0 Index has internally been refactored to no longer subclass ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

**Warning:** Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.

See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation.

See the cookbook for some advanced strategies
12.1 Different Choices for Indexing

New in version 0.11.0.

Object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

- **`.loc`** is primarily label based, but may also be used with a boolean array. `.loc` will raise `KeyError` when the items are not found. Allowed inputs are:
  - A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
  - A list or array of labels ['a', 'b', 'c']
  - A slice object with labels 'a': 'f', (note that contrary to usual python slices, both the start and the stop are included!)
  - A boolean array
  - A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

  New in version 0.18.1.

See more at Selection by Label

- **`.iloc`** is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. `.iloc` will raise `IndexError` if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:
  - An integer e.g. 5
  - A list or array of integers [4, 3, 0]
  - A slice object with ints 1:7
  - A boolean array
  - A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

  New in version 0.18.1.

See more at Selection by Position

See more at Advanced Indexing and Advanced Hierarchical.

- `.loc`, `.iloc`, and also [] indexing can accept a callable as indexer. See more at Selection By Callable.

Getting values from an object with multi-axes selection uses the following notation (using `.loc` as an example, but applies to `.iloc` as well). Any of the axes accessors may be the null slice `. Axes left out of the specification are assumed to be `. (e.g. p.loc['a'] is equiv to p.loc['a', :, :])

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Indexers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>s.loc[indexer]</td>
</tr>
<tr>
<td>DataFrame</td>
<td>df.loc[row_indexer, column_indexer]</td>
</tr>
<tr>
<td>Panel</td>
<td>p.loc[item_indexer, major_indexer, minor_indexer]</td>
</tr>
</tbody>
</table>
12.2 Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. __getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. Thus,

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Selection</th>
<th>Return Value Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>series[label]</td>
<td>scalar value</td>
</tr>
<tr>
<td>DataFrame</td>
<td>frame[colname]</td>
<td>Series corresponding to colname</td>
</tr>
<tr>
<td>Panel</td>
<td>panel[itemname]</td>
<td>DataFrame corresponding to the itemname</td>
</tr>
</tbody>
</table>

Here we construct a simple time series data set to use for illustrating the indexing functionality:

```
In [1]: dates = pd.date_range('1/1/2000', periods=8)
In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
In [3]: df
Out[3]:
 A B C D
0 0.47 -0.28 -1.51 -1.14
1 1.21 -0.17 0.12 -1.04
2 -0.86 -2.10 -0.50 1.07
3 0.72 -0.71 -1.04 0.27
4 -0.42 0.57 0.28 -1.09
5 -0.67 0.11 -1.48 0.52
6 0.40 -2.11 -1.72 -1.04
7 -0.37 -1.16 -1.34 0.84
In [4]: panel = pd.Panel({'one' : df, 'two' : df - df.mean()})
In [5]: panel
Out[5]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D
```

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using []:

```
In [6]: s = df['A']
In [7]: s[dates[5]]
Out[7]: -0.6736897080883706
In [8]: panel['two']
```

Note: None of the indexing functionality is time series specific unless specifically stated.
You can pass a list of columns to `[]` to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:

```
In [9]: df
Out[9]:
 A B C D
0 0.469112 -0.282863 -1.509059 -1.135632
1 1.212112 0.173215 0.119209 -1.044236
2 -0.861849 -2.104569 -0.494929 1.071804
3 0.721555 -0.706771 -1.039575 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 -0.673690 0.113648 -1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268
7 -0.370647 -1.157892 -1.344312 0.844885
```

```
In [10]: df[['B', 'A']] = df[['A', 'B']]
Out[10]:
 A B C D
0 -0.282863 0.469112 -1.509059 -1.135632
1 -0.173215 1.212112 0.119209 -1.044236
2 -2.104569 -0.861849 -0.494929 1.071804
3 -0.706771 0.721555 -1.039575 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 0.113648 -0.673690 -1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268
7 -1.157892 -0.370647 -1.344312 0.844885
```

You may find this useful for applying a transform (in-place) to a subset of the columns.

```
In [12]: df[['A', 'B']]
Out[12]:
 A B
0 0.469112 -0.282863
1 1.212112 0.173215
2 -0.861849 -2.104569
3 0.721555 -0.706771
4 -0.424972 0.567020
5 -0.673690 0.113648
6 0.404705 0.577046
7 -1.157892 -0.370647
```

```
In [13]: df.loc[:,['B', 'A']] = df[['A', 'B']]
```

```
In [14]: df[['A', 'B']]
Out[14]:
 A B
0 0.469112 -0.282863
1 1.212112 0.173215
2 -0.861849 -2.104569
3 0.721555 -0.706771
4 -0.424972 0.567020
5 -0.673690 0.113648
6 0.404705 0.577046
7 -1.157892 -0.370647
```

Warning: pandas aligns all AXES when setting Series and DataFrame from .loc, and .iloc. This will not modify df because the column alignment is before value assignment.
The correct way is to use raw values

```
In [15]: df.loc[:,['B', 'A']] = df[['A', 'B']].values

In [16]: df[['A', 'B']]
Out[16]:
 A B
2000-01-01 0.469112 -0.282863
2000-01-02 1.212112 -0.173215
2000-01-03 -0.861849 -2.104569
2000-01-04 0.721555 -0.706771
2000-01-05 -0.424972 0.567020
2000-01-06 -0.673690 0.113648
2000-01-07 0.404705 0.577046
2000-01-08 -0.370647 -1.157892
```

### 12.3 Attribute Access

You may access an index on a Series, column on a DataFrame, and an item on a Panel directly as an attribute:

```
In [17]: sa = pd.Series([1,2,3],index=list('abc'))

In [18]: dfa = df.copy()

In [19]: sa.b
Out[19]: 2

In [20]: dfa.A
Out[20]:
Freq: D, Name: A, dtype: float64

In [21]: panel.one
```

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.
In [22]: sa.a = 5

In [23]: sa
Out[23]:
   a  5
   b  2
   c  3
dtype: int64

In [24]: dfa.A = list(range(len(dfa.index)))  # ok if A already exists

In [25]: dfa
Out[25]:
   A  B     C     D
0  0 -0.282863 -1.509059 -1.135632
1  1 -0.173215  0.119209 -1.044236
2  2 -2.104569 -0.494929  1.071804
3  3 -0.706771 -1.039575  0.271860
4  4  0.567020  0.276232 -1.087401
5  5  0.113648 -1.478427  0.524988
6  6  0.577046 -1.715002 -1.039268
7  7 -1.157892 -1.344312  0.844885

In [26]: dfa['A'] = list(range(len(dfa.index)))  # use this form to create a new column

In [27]: dfa
Out[27]:
   A  B     C     D
0  0 -0.282863 -1.509059 -1.135632
1  1 -0.173215  0.119209 -1.044236
2  2 -2.104569 -0.494929  1.071804
3  3 -0.706771 -1.039575  0.271860
4  4  0.567020  0.276232 -1.087401
5  5  0.113648 -1.478427  0.524988
6  6  0.577046 -1.715002 -1.039268
7  7 -1.157892 -1.344312  0.844885

Warning:
- You can use this access only if the index element is a valid python identifier, e.g. s.1 is not allowed. See here for an explanation of valid identifiers.
- The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed.
- Similarly, the attribute will not be available if it conflicts with any of the following list: index, major_axis, minor_axis, items, labels.
- In any of these cases, standard indexing will still work, e.g. s['1'],s['min'], and s['index'] will access the corresponding element or column.
- The Series/Panel accesses are available starting in 0.13.0.

If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

You can also assign a dict to a row of a DataFrame:
In [28]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})

In [29]: x.iloc[1] = dict(x=9, y=99)

In [30]: x

Out[30]:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

### 12.4 Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the .iloc method. For now, we explain the semantics of slicing using the [ ] operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

In [31]: s[:5]

Out[31]:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
</tr>
<tr>
<td>0.469112</td>
</tr>
<tr>
<td>2000-01-02</td>
</tr>
<tr>
<td>1.212112</td>
</tr>
<tr>
<td>2000-01-03</td>
</tr>
<tr>
<td>-0.861849</td>
</tr>
<tr>
<td>2000-01-04</td>
</tr>
<tr>
<td>0.721555</td>
</tr>
<tr>
<td>2000-01-05</td>
</tr>
<tr>
<td>-0.424972</td>
</tr>
</tbody>
</table>

Freq: D, Name: A, dtype: float64

In [32]: s[::2]

Out[32]:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
</tr>
<tr>
<td>0.469112</td>
</tr>
<tr>
<td>2000-01-03</td>
</tr>
<tr>
<td>-0.861849</td>
</tr>
<tr>
<td>2000-01-05</td>
</tr>
<tr>
<td>-0.424972</td>
</tr>
<tr>
<td>2000-01-07</td>
</tr>
<tr>
<td>0.404705</td>
</tr>
</tbody>
</table>

Freq: 2D, Name: A, dtype: float64

In [33]: s[::-1]

Out[33]:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-08</td>
</tr>
<tr>
<td>-0.370647</td>
</tr>
<tr>
<td>2000-01-07</td>
</tr>
<tr>
<td>0.404705</td>
</tr>
<tr>
<td>2000-01-06</td>
</tr>
<tr>
<td>-0.673690</td>
</tr>
<tr>
<td>2000-01-05</td>
</tr>
<tr>
<td>-0.424972</td>
</tr>
<tr>
<td>2000-01-04</td>
</tr>
<tr>
<td>0.721555</td>
</tr>
<tr>
<td>2000-01-03</td>
</tr>
<tr>
<td>-0.861849</td>
</tr>
<tr>
<td>2000-01-02</td>
</tr>
<tr>
<td>1.212112</td>
</tr>
<tr>
<td>2000-01-01</td>
</tr>
<tr>
<td>0.469112</td>
</tr>
</tbody>
</table>

Freq: -1D, Name: A, dtype: float64

Note that setting works as well:

In [34]: s2 = s.copy()

In [35]: s2[:5] = 0

In [36]: s2
With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a common operation.

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See *Returning a View versus Copy*.

**Warning:** .loc is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in a DatetimeIndex. These will raise a TypeError.

### 12.5 Selection By Label
In [4]: df1.loc[2:3]
TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'>
with these indexers [2] of <type 'int'>

String likes in slicing can be convertible to the type of the index and lead to natural slicing.

In [41]: df1.loc['20130102':'20130104']
Out[41]:
               A          B          C          D
2013-01-02  0.357021  -0.674600  -1.776904  -0.968914
2013-01-03  -1.294524   0.413738   0.276662  -0.472035
2013-01-04  -0.013960  -0.362543  -0.006154  -0.923061

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. At least 1 of the labels for which you ask, must be in the index or a KeyError will be raised! When slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the label and not the position.

The .loc attribute is the primary access method. The following are valid inputs:

- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
- A list or array of labels ['a', 'b', 'c']
- A slice object with labels 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!)
- A boolean array
- A callable, see Selection By Callable

In [42]: s1 = pd.Series(np.random.randn(6),index=list('abcdef'))

In [43]: s1
Out[43]:
a  1.431256
b  1.340309
c -1.170299
d -0.226169
e  0.410835
f  0.813850
dtype: float64

In [44]: s1.loc['c':]
→
c -1.170299
d -0.226169
e  0.410835
f  0.813850
dtype: float64

In [45]: s1.loc['b']
→1.3403088497993827

Note that setting works as well:
<table>
<thead>
<tr>
<th>In [46]:</th>
<th>s1.loc['c':] = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>In [47]:</td>
<td>s1</td>
</tr>
</tbody>
</table>
| Out[47]: | a 1.431256  
b 1.340309  
c 0.000000  
d 0.000000  
e 0.000000  
f 0.000000  
dtype: float64 |

With a DataFrame

| In [48]: | df1 = pd.DataFrame(np.random.randn(6,4),  
| ....: | index=list('abcdef'),  
| ....: | columns=list('ABCD'))  
| ....: | |
| In [49]: | df1 |
| Out[49]: | A   B   C   D  
| a  0.132003 -0.827317 -0.076467 -1.187678  
b  1.130127 -1.436737 -1.413681  1.607920  
c  1.024180  0.569605  0.875906 -2.211372  
d  0.974466 -2.006747 -0.410001 -0.078638  
e  0.545952 -1.219217 -1.226825  0.769804  
f -1.281247 -0.727707 -0.121306 -0.097883 |

| In [50]: | df1.loc[['a', 'b', 'd'], :] |
| Out[50]: | A   B   C   D  
| a  0.132003 -0.827317 -0.076467 -1.187678  
b  1.130127 -1.436737 -1.413681  1.607920  
c  1.024180  0.569605  0.875906 -2.211372  
d  0.974466 -2.006747 -0.410001 -0.078638 |

Accessing via label slices

| In [51]: | df1.loc['d':, 'A':'C'] |
| Out[51]: | A   B   C  
| d  0.974466 -2.006747 -0.410001  0.769804  
e  0.545952 -1.219217 -1.226825  0.769804  
f -1.281247 -0.727707 -0.121306 -0.097883 |

For getting a cross section using a label (equiv to df.xs('a'))

| In [52]: | df1.loc['a'] |
| Out[52]: | A  0.132003  
| B -0.827317  
| C -0.076467  
| D -1.187678  
| Name: a, dtype: float64 |

For getting values with a boolean array
In [53]: df1.loc['a'] > 0
Out[53]:
A   True
B  False
C  False
D  False
Name: a, dtype: bool

In [54]: df1.loc[:, df1.loc['a'] > 0]
Out[54]:
A
a 0.132003
b 1.130127
c 1.024180
d 0.974466
e 0.545952
f -1.281247

For getting a value explicitly (equiv to deprecated df.get_value('a', 'A'))

# this is also equivalent to `df1.at['a', 'A']`
In [55]: df1.loc['a', 'A']
Out[55]:
0  0.132003
2  0.341734
4  0.959726
6 -1.110336
8 -0.619976
dtype: float64

12.6 Selection By Position

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See [Returning a View versus Copy](#).

Pandas provides a suite of methods in order to get [purely integer based indexing](#). The semantics follow closely python and numpy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError.

The `.iloc` attribute is the primary access method. The following are valid inputs:

- An integer e.g. 5
- A list or array of integers `[4, 3, 0]`
- A slice object with ints `1:7`
- A boolean array
- A callable, see [Selection By Callable](#)

In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2)))

In [57]: s1
Out[57]:
0  0.695775
2  0.341734
4  0.959726
6  1.110336
8  0.619976
dtype: float64
In [58]: s1.iloc[:3]
Out[58]:
   0   0.695775
   2   0.341734
   4   0.959726
   dtype: float64

In [59]: s1.iloc[3]
Out[59]:
   -1.1103361028911669

Note that setting works as well:

In [60]: s1.iloc[:3] = 0
In [61]: s1
Out[61]:
   0   0.000000
   2   0.000000
   4   0.000000
   6  -1.110336
   8  -0.619976
   dtype: float64

With a DataFrame

In [62]: df1 = pd.DataFrame(np.random.randn(6,4),
                      index=list(range(0,12,2)),
                      columns=list(range(0,8,2)))

In [63]: df1
Out[63]:
   0    2    4    6
0  0.149748 -0.732339  0.687738  0.176444
2  0.403310 -0.154951  0.301624 -2.179861
4 -1.369849 -0.954208  1.462696 -1.743161
6 -0.826591 -0.345352  1.314232  0.690579
8  0.995761  2.396780  0.014871  3.357427
10 -0.317441 -1.236269  0.896171 -0.487602

Select via integer slicing

In [64]: df1.iloc[:3]
Out[64]:
   0    2    4    6
0  0.149748 -0.732339  0.687738  0.176444
2  0.403310 -0.154951  0.301624 -2.179861
4 -1.369849 -0.954208  1.462696 -1.743161

In [65]: df1.iloc[1:5, 2:4]
   →
   590 Chapter 12. Indexing and Selecting Data
Select via integer list

```python
In [66]: df1.iloc[[1, 3, 5], [1, 3]]
Out [66]:
 2 6
 0 0.403310 -0.154951
 2 -0.154951 -2.179861
 4 -1.369849 -0.954208
 6 -0.345352 0.690579
 10 -1.236269 -0.487602
```

```python
In [67]: df1.iloc[1:3, :]
Out [67]:
 0 2 4 6
 0 0.403310 -0.154951 0.301624 -2.179861
 2 -0.154951 0.301624 1.462696 -1.743161
 4 -1.369849 -0.954208 1.462696 -1.743161
```

```python
In [68]: df1.iloc[:, 1:3]
Out [68]:
 2 4
 0 -0.732339 0.687738
 2 -0.154951 0.301624
 4 -0.954208 1.462696
 6 -0.345352 1.314232
 8 2.396780 0.014871
 10 -1.236269 0.896171
```

```python
In [69]: df1.iloc[1, 1]
Out [69]: -0.15495077442490321
```

# this is also equivalent to ``df1.iat[1,1]``

```python
In [69]: df1.iloc[1, 1]
Out [69]: -0.15495077442490321
```

For getting a cross section using an integer position (equiv to `df.xs(1)`)

```python
In [70]: df1.iloc[1]
Out [70]:
 0 2 4 6
 0 0.403310 -0.154951 0.301624 -2.179861
 2 -0.154951 0.301624 1.462696 -1.743161
 4 -1.369849 -0.954208 1.462696 -1.743161
Name: 2, dtype: float64
```

Out of range slice indexes are handled gracefully just as in Python/Numpy.

```
these are allowed in python/numpy.
Only works in Pandas starting from v0.14.0.
In [71]: x = list('abcdef')
In [72]: x
Out [72]: ['a', 'b', 'c', 'd', 'e', 'f']
In [73]: x[4:10]
Out [73]: ['e', 'f']
In [74]: x[8:10]
Out [74]: []
```

12.6. Selection By Position
In [75]: s = pd.Series(x)

In [76]: s
Out[76]:
0   a
1   b
2   c
3   d
4   e
5   f
dtype: object

In [77]: s.iloc[4:10]
Out[77]:
4   e
5   f
dtype: object

In [78]: s.iloc[8:10]
˓→Series([], dtype: object)

Note: Prior to v0.14.0, iloc would not accept out of bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed.

Note that this could result in an empty axis (e.g. an empty DataFrame being returned)

In [79]: dfl = pd.DataFrame(np.random.randn(5,2), columns=list('AB'))

In [80]: dfl
Out[80]:
     A        B
0  -0.082240  -2.182937
1   0.380396   0.084844
2   0.432390   1.519970
3  -0.493662   0.600178
4   0.274230   0.132885

In [81]: dfl.iloc[:, 2:3]
˓→Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [82]: dfl.iloc[:, 1:3]
˓→
     B
0  -2.182937
1   0.084844
2   1.519970
3   0.600178
4   0.132885

In [83]: dfl.iloc[4:6]
A single indexer that is out of bounds will raise an `IndexError`. A list of indexers where any element is out of bounds will raise an `IndexError`

```python
dfl.iloc[[4, 5, 6]]
IndexError: positional indexers are out-of-bounds

dfl.iloc[:, 4]
IndexError: single positional indexer is out-of-bounds
```

### 12.7 Selection By Callable

New in version 0.18.1.

`.loc`, `.iloc`, and also [] indexing can accept a `callable` as indexer. The `callable` must be a function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing.

```python
In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),
 index=list('abcdef'),
 columns=list('ABCD'))

In [85]: df1
Out[85]:
 A B C D
a 0.023688 2.410179 1.450520 0.206053
b -0.251905 -2.213588 1.063327 1.266143
c 0.299368 -0.863838 0.408204 -1.048089
d -0.025747 -0.988387 0.094055 1.262731
e 1.289997 0.082423 -0.055758 0.536580
f -0.489682 0.369374 -0.034571 -2.484478

In [86]: df1.loc[lambda df: df.A > 0, :]

In [87]: df1.iloc[:, lambda df: [0, 1]]
```

12.7. Selection By Callable 593
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.023688</td>
<td>2.410179</td>
</tr>
<tr>
<td>b</td>
<td>-0.251905</td>
<td>-2.213588</td>
</tr>
<tr>
<td>c</td>
<td>0.299368</td>
<td>-0.863838</td>
</tr>
<tr>
<td>d</td>
<td>-0.025747</td>
<td>-0.988387</td>
</tr>
<tr>
<td>e</td>
<td>1.289997</td>
<td>0.082423</td>
</tr>
<tr>
<td>f</td>
<td>-0.489682</td>
<td>0.369374</td>
</tr>
</tbody>
</table>

In [89]: df1[lambda df: df.columns[0]]

In [90]: df1.A.loc[lambda s: s > 0]

In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [92]: (bb.groupby(['year', 'team']).sum()....: .loc[lambda df: df.r > 100])

You can use callable indexing in Series.

Using these methods / indexers, you can chain data selection operations without using temporary variable.
12.8 IX Indexer is Deprecated

**Warning:** Starting in 0.20.0, the `.ix` indexer is deprecated, in favor of the more strict `.iloc` and `.loc` indexers.

`.ix` offers a lot of magic on the inference of what the user wants to do. To wit, `.ix` can decide to index *positionally* OR via *labels* depending on the data type of the index. This has caused quite a bit of user confusion over the years.

The recommended methods of indexing are:

- `.loc` if you want to *label* index
- `.iloc` if you want to *positionally* index.

---

```python
In [93]: dfd = pd.DataFrame(
 ...: {'A': [1, 2, 3],
 ...: 'B': [4, 5, 6]},
 ...: index=list('abc'))
 ...

In [94]: dfd
Out[94]:
 A B
 a 1 4
 b 2 5
 c 3 6
```

Previous Behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.

```python
In [3]: dfd.ix[[0, 2], 'A']
Out[3]:
 a 1
 c 3
Name: A, dtype: int64
```

Using `.loc`. Here we will select the appropriate indexes from the index, then use *label* indexing.

```python
In [95]: dfd.loc[dfd.index[[0, 2]], 'A']
Out[95]:
 a 1
 c 3
Name: A, dtype: int64
```

This can also be expressed using `.iloc`, by explicitly getting locations on the indexers, and using *positional* indexing to select things.

```python
In [96]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
Out[96]:
 a 1
 c 3
Name: A, dtype: int64
```

For getting *multiple* indexers, using `.get_indexer`

```python
In [97]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
Out[97]:
 A B
 a 1 4
 c 3 6
```
12.9 Selecting Random Samples

A random selection of rows or columns from a Series, DataFrame, or Panel with the `sample()` method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

```python
In [98]: s = pd.Series([0,1,2,3,4,5])

When no arguments are passed, returns 1 row.
In [99]: s.sample()
Out[99]:
 4
 4
 dtype: int64

One may specify either a number of rows:
In [100]: s.sample(n=3)
Out[100]:
 0
 1
 4
 4
 1
 1
 dtype: int64

Or a fraction of the rows:
In [101]: s.sample(frac=0.5)
Out[101]:
 5
 3
 1
 1
 dtype: int64
```

By default, `sample` will return each row at most once, but one can also sample with replacement using the `replace` option:

```python
In [102]: s = pd.Series([0,1,2,3,4,5])

Without replacement (default):
In [103]: s.sample(n=6, replace=False)
Out[103]:
 0
 1
 5
 5
 3
 3
 4
 4
 dtype: int64

With replacement:
In [104]: s.sample(n=6, replace=True)
Out[104]:
 0
 4
 3
 2
 4
 4
 dtype: int64
```
By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the `sample` function sampling weights as `weights`. These weights can be a list, a numpy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:

```
In [105]: s = pd.Series([0,1,2,3,4,5])
In [106]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [107]: s.sample(n=3, weights=example_weights)
Out[107]:
5 5
4 4
3 3
dtype: int64
```

# Weights will be re-normalized automatically
```
In [108]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
In [109]: s.sample(n=1, weights=example_weights2)
Out[109]:
0 0
dtype: int64
```

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.

```
In [110]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [111]: df2.sample(n = 3, weights = 'weight_column')
Out[111]:
 col1 weight_column
1 8 0.4
0 9 0.5
2 7 0.1
```

`sample` also allows users to sample columns instead of rows using the `axis` argument.

```
In [112]: df3 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [113]: df3.sample(n=1, axis=1)
Out[113]:
 col1
0 1
1 2
2 3
```

Finally, one can also set a seed for `sample`'s random number generator using the `random_state` argument, which will accept either an integer (as a seed) or a numpy RandomState object.

```
In [114]: df4 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [115]: df4.sample(n=2, random_state=2)
```

12.9. Selecting Random Samples
### 12.10 Setting With Enlargement

New in version 0.13.

The `.loc[]` operations can perform enlargement when setting a non-existant key for that axis. In the `Series` case this is effectively an appending operation

A `DataFrame` can be enlarged on either axis via `.loc`

```python
Out[115]:
 col1 col2
2 3 4
1 2 3

In [116]: df4.sample(n=2, random_state=2)

Out[116]:
 col1 col2
2 3 4
1 2 3

12.10 Setting With Enlargement

New in version 0.13.

The `.loc[]` operations can perform enlargement when setting a non-existant key for that axis.

In the `Series` case this is effectively an appending operation

```python
In [117]: se = pd.Series([1,2,3])

In [118]: se

Out[118]:
0   1
1   2
2   3
dtype: int64


In [120]: se

Out[120]:
0   1.0
1   2.0
2   3.0
5   5.0
dtype: float64

A `DataFrame` can be enlarged on either axis via `.loc`

```python
In [121]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
 columns=['A','B'])

In [122]: dfi

Out[122]:
 A B
0 0 1
1 2 3
2 4 5

In [123]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']

In [124]: dfi

Out[124]:
 A B C
0 0 1
1 2 3
2 4 5
```
This is like an `append` operation on the DataFrame.

```python
In [125]: dfi.loc[3] = 5

In [126]: dfi
Out[126]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
```

## 12.11 Fast scalar value getting and setting

Since indexing with `[]` must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the `at` and `iat` methods, which are implemented on all of the data structures.

Similarly to `loc`, `at` provides *label* based scalar lookups, while `iat` provides *integer* based lookups analogously to `iloc`.

```python
In [127]: s.iat[5]
Out[127]: 5

In [128]: df.at[dates[5], 'A']
Out[128]: -0.67368970808837059

In [129]: df.iat[3, 0]
Out[129]: 0.72155516224436689
```

You can also set using these same indexers.

```python
In [130]: df.at[dates[5], 'E'] = 7

In [131]: df.iat[3, 0] = 7
```

`at` may enlarge the object in-place as above if the indexer is missing.

```python
In [132]: df.at[dates[-1]+1, 0] = 7

In [133]: df
Out[133]:
 A B C D E
0 0.469112 -0.282863 -1.509059 -1.135632 NaN
1 1.212112 -0.173215 0.119209 -1.044236 NaN
2 -0.861849 -2.104569 -0.494929 1.071804 NaN
3 7.000000 -0.706771 -1.039575 0.271860 NaN
4 0.424972 0.567020 0.276232 -1.087401 NaN
5 -0.673690 0.113648 -1.715002 -1.039268 NaN
6 0.404705 0.577046 -1.715002 -1.039268 NaN
7 -0.370647 -1.157892 -1.344312 0.844885 NaN
8 NaN NaN NaN NaN 7.0
```

### 12.11. Fast scalar value getting and setting
12.12 Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: `|` for `or`, `&` for `and`, and `~` for `not`. These must be grouped by using parentheses.

Using a boolean vector to index a Series works exactly as in a numpy ndarray:

```python
In [134]: s = pd.Series(range(-3, 4))
In [135]: s
Out[135]:
 0 -3
 1 -2
 2 -1
 3 0
 4 1
 5 2
 6 3
 dtype: int64
In [136]: s[s > 0]
Out[136]:
 4
 5
 6
 dtype: int64
```

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):

```python
In [137]: df[df['A'] > 0]
Out[137]:
 A B C D E
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN
```

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):
List comprehensions and `map` method of Series can also be used to produce more complex criteria:

```python
In [140]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six '],
 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
 'c': np.random.randn(7)})

only want 'two' or 'three'
In [141]: criterion = df2['a'].map(lambda x: x.startswith('t'))
In [142]: df2[criterion]
```

```
Out[142]:
 a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075
```

# equivalent but slower
```
In [143]: df2[[x.startswith('t') for x in df2['a']]]
```

```
Out[143]:
 a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075
```

# Multiple criteria
```
In [144]: df2[criterion & (df2['b'] == 'x')]
```

```
Out[144]:
 a b c
3 three x 0.361719
```

Note, with the choice methods `Selection by Label, Selection by Position, and Advanced Indexing` you may select along more than one axis using boolean vectors combined with other indexing expressions.

```
In [145]: df2.loc[criterion & (df2['b'] == 'x'),'b':'c']
```

```
Out[145]:
 b c
3 x 0.361719
```

### 12.13 Indexing with isin

Consider the `isin` method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:

```
In [146]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [147]: s
Out[147]:
4 0
```

12.13. Indexing with isin
The same method is available for `Index` objects and is useful for the cases when you don’t know which of the sought labels are in fact present:

```
In [150]: s[s.index.isin([2, 4, 6])]
Out[150]:
 0
 0 4
 2 2
dtype: int64
```

# compare it to the following
```
In [151]: s[[2, 4, 6]]
Out[151]:
 2 0.0
 4 0.0
 6 NaN
dtype: float64
```

In addition to that, `MultiIndex` allows selecting a separate level to use in the membership check:

```
In [152]: s_mi = pd.Series(np.arange(6),
 index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']))
In [153]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[153]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
In [154]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
```

```
In [155]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[155]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [156]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[156]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [157]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[157]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [158]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[158]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [159]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[159]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [160]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[160]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [161]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[161]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [162]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[162]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [163]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[163]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [164]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[164]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [165]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[165]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [166]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[166]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [167]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[167]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [168]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[168]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [169]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[169]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```

```
In [170]: s_mi.iloc[s mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c'))])
Out[170]:
 a 0
 b 1
 c 2
 a 3
 b 4
 c 5
dtype: int64
```
DataFrame also has an `isin` method. When calling `isin`, pass a set of values as either an array or dict. If values is an array, `isin` returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.

```
In [155]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
...
Out[155]:
 0 a 0
 1 c 2
 0 a 3
 1 c 5
 dtype: int64
```

Oftentimes you’ll want to match certain values with certain columns. Just make values a `dict` where the key is the column, and the value is a list of items you want to check for.

```
In [156]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], 'ids2': ['a', 'n', 'c', 'n']})

In [157]: values = ['a', 'b', 1, 3]

In [158]: df.isin(values)
```

```
 ids ids2 vals
 0 True True True
 1 True False False
 2 False False True
 3 False False False
```

Combine DataFrame’s `isin` with the `any()` and `all()` methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:

```
In [161]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}

In [162]: row_mask = df.isin(values).all(1)

In [163]: df[row_mask]
```

```
 ids ids2 vals
 0 a a 1
```
12.14 The `where()` Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the `where` method in `Series` and `DataFrame`.

To return only the selected rows

```
In [164]: s[s > 0]
Out[164]:
3 1
2 2
1 3
0 4
dtype: int64
```

To return a Series of the same shape as the original

```
In [165]: s.where(s > 0)
Out[165]:
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
dtype: float64
```

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. `where` is used under the hood as the implementation. Equivalent is `df.where(df < 0)`

```
In [166]: df[df < 0]
Out[166]:
 A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 NaN -0.114722 NaN
2000-01-08 NaN NaN -0.048788 -0.808838
```

In addition, `where` takes an optional `other` argument for replacement of values where the condition is False, in the returned copy.

```
In [167]: df.where(df < 0, -df)
Out[167]:
 A B C D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 NaN -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 NaN -0.299674 -0.227870 -0.600705 -1.233203
2000-01-04 NaN -1.222082 NaN -1.169184 -0.605656 -0.948458 -0.048788 -0.684718
2000-01-05 NaN -0.605656 -1.169184 NaN -0.948458 NaN -0.048048 -0.808838
2000-01-06 NaN -0.948458 NaN -0.684718 NaN -0.048048 -0.808838 NaN
2000-01-07 -2.670153 NaN -0.114722 NaN -0.048788 -0.808838 -1.392071 -0.808838
```

You may wish to set values based on some boolean criteria. This can be done intuitively like so:
In [168]: s2 = s.copy()

In [169]: s2[s2 < 0] = 0

In [170]: s2
Out[170]:
   0   1   2   3   4
0  0   1   2   3   4
dtype: int64

In [171]: df2 = df.copy()

In [172]: df2[df2 < 0] = 0

In [173]: df2
Out[173]:
   A   B   C   D
0 0.0 0.0 0.5 0.2
1 0.0 0.4 0.0 1.7
2 0.0 0.3 0.0 0.3
3 0.8 0.0 0.6 0.0
4 0.7 0.0 0.0 0.3
5 0.8 0.0 2.3 0.0
6 0.0 0.0 0.2 0.0
7 0.8 1.4 0.0 0.8

By default, `where()` returns a modified copy of the data. There is an optional parameter `inplace` so that the original data can be modified without creating a copy:

In [174]: df_orig = df.copy()

In [175]: df_orig.where(df > 0, -df, inplace=True);

In [176]: df_orig
Out[176]:
   A   B   C   D
0 2.1 1.3 0.5 0.2
1 0.3 0.4 1.9 1.6
2 0.8 0.3 0.2 0.2
3 0.8 1.2 0.6 1.2
4 0.7 0.6 1.2 0.3
5 0.8 0.9 2.3 0.7
6 2.7 0.1 0.2 0.0
7 0.8 1.4 0.0 0.8

Note: The signature for `DataFrame.where()` differs from `numpy.where()`. Roughly `df1.where(m, df2)` is equivalent to `np.where(m, df1, df2).

In [177]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
Out[177]:
   A   B   C   D
0 True True True True
1 True True True True
2 True True True True
3 True True True True

12.14. The `where()` Method and Masking
where can also accept `axis` and `level` parameters to align the input when performing the `where`.

```python
In [181]: df2 = df.copy()
In [182]: df2.where(df2>0,df2['A'],axis='index')
Out[182]:
 A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.846958
2000-01-04 0.669692 0.669692 0.669692 0.342416
2000-01-05 0.868584 0.868584 2.297780 0.868584
2000-01-06 0.846958 0.846958 0.600705 0.846958
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
```

This is equivalent (but faster than) the following.

```python
In [183]: df2 = df.copy()
In [184]: df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
Out[184]:
 A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.846958
2000-01-04 0.669692 0.669692 0.669692 0.342416
2000-01-05 0.868584 0.868584 2.297780 0.868584
2000-01-06 0.846958 0.846958 0.600705 0.846958
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
```

New in version 0.13.

Where can also accept `axis` and `level` parameters to align the input when performing the where.
New in version 0.18.1.

Where can accept a callable as condition and other arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other argument.

```python
In [185]: df3 = pd.DataFrame({'A': [1, 2, 3],
 'B': [4, 5, 6],
 'C': [7, 8, 9]})

In [186]: df3.where(lambda x: x > 4, lambda x: x + 10)
Out[186]:
 A B C
0 11 14 7
1 12 5 8
2 13 6 9
```

mask

mask is the inverse boolean operation of where.

```python
In [187]: s.mask(s >= 0)
Out[187]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64
```

```python
In [188]: df.mask(df >= 0)
Out[188]:
 A B C D
2000-01-06 -2.104139 -1.309525 NaN NaN
2000-01-07 -0.352481 NaN -1.192319 NaN
2000-01-08 -0.864883 NaN -1.227870 NaN
2000-01-09 NaN -1.222082 NaN -1.233203
2000-01-10 NaN -0.605656 -1.169184 NaN
2000-01-11 NaN -0.948458 NaN -0.684718
2000-01-12 -2.670153 -0.114722 NaN -0.048048
2000-01-13 NaN NaN -0.048788 -0.808838
```

12.15 The `query()` Method (Experimental)

New in version 0.13.

```
Dataframe objects have a query() method that allows selection using an expression.
```

You can get the value of the frame where column b has values between the values of columns a and c. For example:

```python
In [189]: n = 10

In [190]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
```
In [191]: df
Out[191]:
   a    b    c
0 0.438921 0.11868 0.863670
1 0.138138 0.577363 0.686602
2 0.595307 0.564592 0.520630
3 0.913052 0.926075 0.616184
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
6 0.792342 0.216974 0.564056
7 0.397890 0.454131 0.915716
8 0.074315 0.437913 0.019794
9 0.559209 0.502065 0.026437

# pure python
In [192]: df[(df.a < df.b) & (df.b < df.c)]
Out[192]:
   a    b    c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716

# query
In [193]: df.query('(a < b) & (b < c)')
Out[193]:
   a    b    c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716

Do the same thing but fall back on a named index if there is no column with the name a.

In [194]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))
In [195]: df.index.name = 'a'
In [196]: df
Out[196]:
   b    c
0 0  4
1 0  1
2 3  4
3 4  3
4 1  4
5 0  3
6 0  1
7 3  4
8 2  3
9 1  1
In [197]: df.query('a < b and b < c')
If instead you don’t want to or cannot name your index, you can use the name `index` in your query expression:

```python
In [198]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
In [199]: df
Out[199]:
 b c
0 3 1
1 3 0
2 5 6
3 5 2
4 7 4
5 0 1
6 2 5
7 0 1
8 6 0
9 7 9
In [200]: df.query('index < b < c')
```

```
 b c
2 5 6
```

**Note:** If the name of your index overlaps with a column name, the column name is given precedence. For example,

```python
In [201]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})
In [202]: df.index.name = 'a'
In [203]: df.query('a > 2') # uses the column 'a', not the index
Out[203]:
a
 a
1 3
3 3
```

You can still use the index in a query expression by using the special identifier ‘index’:

```python
In [204]: df.query('index > 2')
Out[204]:
a
 a
3 3
4 2
```

If for some reason you have a column named `index`, then you can refer to the index as `ilevel_0` as well, but at this point you should consider renaming your columns to something less ambiguous.
12.15.1 MultiIndex query() Syntax

You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame:

```python
In [205]: n = 10
In [206]: colors = np.random.choice(['red', 'green'], size=n)
In [207]: foods = np.random.choice(['eggs', 'ham'], size=n)
In [208]: colors
Out[208]: array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green', 'green', 'green'], dtype='<U5')
In [209]: foods
Out[209]: array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs', 'eggs'], dtype='<U4')
In [210]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
In [211]: df = pd.DataFrame(np.random.randn(n, 2), index=index)
In [212]: df
Out[212]:
 0 1
color food
red ham 0.194889 -0.381994
 ham 0.318587 2.089075
 eggs -0.728293 -0.090255
green eggs -0.748199 1.318931
 eggs -2.029766 0.792652
 ham 0.461007 -0.542749
 eggs -0.305384 -0.479195
 eggs 0.095031 -0.270099
 eggs 0.229453 0.304418
In [213]: df.query('color == "red"')
Out[213]:
 0 1
color food
red ham 0.194889 -0.381994
 ham 0.318587 2.089075
 eggs -0.728293 -0.090255
```

If the levels of the MultiIndex are unnamed, you can refer to them using special names:

```python
In [214]: df.index.names = [None, None]
In [215]: df
Out[215]:
 0 1
 610 Chapter 12. Indexing and Selecting Data
```
The convention is `ilevel_0`, which means “index level 0” for the 0th level of the index.

### 12.15.2 `query()` Use Cases

A use case for `query()` is when you have a collection of `DataFrame` objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying.
In [221]: expr = '0.0 <= a <= c <= 0.5'

In [222]: map(lambda frame: frame.query(expr), [df, df2])
Out[222]: <map at 0x129ed58d0>

12.15.3 query() Python versus pandas Syntax Comparison

Full numpy-like syntax

In [223]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))
In [224]: df
Out[224]:
   a  b  c
0   7  8  9
1   1  0  7
2   2  7  2
3   6  2  2
4   2  6  3
5   3  8  2
6   1  7  2
7   5  1  5
8   9  8  0
9   1  5  0

In [225]: df.query('(a < b) & (b < c)')
Out[225]:
   a  b  c
0  7  8  9

In [226]: df[(df.a < df.b) & (df.b < df.c)]
Out[226]:
   a  b  c
0  7  8  9

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &/|)

In [227]: df.query('a < b & b < c')
Out[227]:
   a  b  c
0  7  8  9

Use English instead of symbols

In [228]: df.query('a < b and b < c')
Out[228]:
   a  b  c
0  7  8  9
Pretty close to how you might write it on paper

```
In [229]: df.query('a < b < c')
Out[229]:
 a b c
0 7 8 9
```

### 12.15.4 The in and not in operators

`query()` also supports special use of Python’s `in` and `not in` comparison operators, providing a succinct syntax for calling the `isin` method of a `Series` or `DataFrame`.

```
get all rows where columns "a" and "b" have overlapping values
In [230]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbccccc'),
 : 'c': np.random.randint(5, size=12),
 : 'd': np.random.randint(9, size=12))

In [231]: df
Out[231]:
 a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

In [232]: df.query('a in b')
```

```
→
 a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
```

# How you’d do it in pure Python
```
In [233]: df[df.a.isin(df.b)]
```

```
→
 a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
```

12.15. The `query()` Method (Experimental)
In [234]: df.query('a not in b')

→
  a  b  c  d
6  d  b  3  3
7  d  b  2  1
8  e  c  4  3
9  e  c  2  0
10  f  c  0  6
11  f  c  1  2

# pure Python
In [235]: df[~df.a.isin(df.b)]

→
  a  b  c  d
6  d  b  3  3
7  d  b  2  1
8  e  c  4  3
9  e  c  2  0
10  f  c  0  6
11  f  c  1  2

You can combine this with other expressions for very succinct queries:

# rows where cols a and b have overlapping values and col c's values are less than col d's
In [236]: df.query('a in b and c < d')
Out[236]:
  a  b  c  d
0  a  a  2  6
1  a  a  4  7
2  b  a  1  6
4  c  b  3  6
5  c  b  0  2

# pure Python
In [237]: df[df.b.isin(df.a) & (df.c < df.d)]

→
  a  b  c  d
0  a  a  2  6
1  a  a  4  7
2  b  a  1  6
4  c  b  3  6
5  c  b  0  2
10  f  c  0  6
11  f  c  1  2

Note: Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression
df.query('a in b + c + d')
(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be.
12.15.5 Special use of the == operator with list objects

Comparing a list of values to a column using ==/!= works similarly to in/not in

```python
In [238]: df.query('b == ["a", "b", "c"]')
Out[238]:
 a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

pure Python
In [239]: df[df.b.isin(["a", "b", "c")]
 a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

In [240]: df.query('c == [1, 2]')
 a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2

In [241]: df.query('c != [1, 2]')
 a b c d
0 a a 4 7
4 c b 3 6
5 c b 0 2
6 d b 3 3
8 e c 4 3
```
# using in/not in

In [242]: df.query('[1, 2] in c')

→
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>a</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>a</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>d</td>
<td>b</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
<td>c</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>c</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

In [243]: df.query('[1, 2] not in c')

→
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>b</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>c</td>
<td>b</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>b</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>c</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>c</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

# pure Python

In [244]: df[df.c.isin([1, 2])]

→
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>a</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>a</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>a</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>d</td>
<td>b</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
<td>c</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>c</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

## 12.15.6 Boolean Operators

You can negate boolean expressions with the word **not** or the ~ operator.

In [245]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [246]: df['bools'] = np.random.rand(len(df)) > 0.5

In [247]: df.query('~bools')

Out[247]:
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>bools</th>
</tr>
</thead>
<tbody>
<tr>
<td>616</td>
<td>0.697753</td>
<td>0.212799</td>
<td>0.329209</td>
</tr>
<tr>
<td>617</td>
<td>0.275396</td>
<td>0.691034</td>
<td>0.826619</td>
</tr>
<tr>
<td>618</td>
<td>0.190649</td>
<td>0.558748</td>
<td>0.262467</td>
</tr>
</tbody>
</table>

In [248]: df.query('not bools')

→
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>bools</th>
</tr>
</thead>
<tbody>
<tr>
<td>619</td>
<td>0.697753</td>
<td>0.212799</td>
<td>0.329209</td>
</tr>
<tr>
<td>620</td>
<td>0.275396</td>
<td>0.691034</td>
<td>0.826619</td>
</tr>
<tr>
<td>621</td>
<td>0.190649</td>
<td>0.558748</td>
<td>0.262467</td>
</tr>
</tbody>
</table>
Of course, expressions can be arbitrarily complex too

```python
short query syntax
In [250]: shorter = df.query('a < b < c and (not bools) or bools > 2')

equivalent in pure Python
In [251]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]

In [252]: shorter
Out[252]:
 a b c bools
 0 0.697753 0.212799 0.329209 False
 7 0.275396 0.691034 0.826619 False
 8 0.190649 0.558748 0.262467 False

In [253]: longer
Out[253]:
 a b c bools
 0 0.697753 0.212799 0.329209 False
 7 0.275396 0.691034 0.826619 False
 8 0.190649 0.558748 0.262467 False

In [254]: shorter == longer
```

### 12.15.7 Performance of query ()

DataFrame.query() using numexpr is slightly faster than Python for large frames

12.15. The query() Method (Experimental)
Note: You will only see the performance benefits of using the numexpr engine with DataFrame.query() if your frame has more than approximately 200,000 rows.

This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().

12.16 Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

- duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
• **drop_duplicates** removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a keep parameter to specify targets to be kept.

• keep='first' (default): mark / drop duplicates except for the first occurrence.
• keep='last': mark / drop duplicates except for the last occurrence.
• keep=False: mark / drop all duplicates.

```
In [255]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
 'c': np.random.randn(7))

In [256]: df2
Out[256]:
 a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
4 two x -0.390820
5 three x -1.964475
6 four x 1.298329

In [257]: df2.duplicated('a')
Out[257]:
0 False
1 True
2 False
3 True
4 True
5 False
6 False
dtype: bool

In [258]: df2.duplicated('a', keep='last')
Out[258]:
0 True
1 False
2 True
3 True
4 False
5 False
6 False
dtype: bool

In [259]: df2.duplicated('a', keep=False)
Out[259]:
0 True
1 True
2 True
3 True
4 True
```
Also, you can pass a list of columns to identify duplications.

```
In [263]: df2.duplicated(['a', 'b'])
Out[263]:
0 False
1 False
2 False
3 False
4 True
5 False
6 False
dtype: bool
```

To drop duplicates by index value, use `Index.duplicated` then perform slicing. Same options are available in `keep` parameter.

```
In [265]: df3 = pd.DataFrame({'a': np.arange(6),
 : 'b': np.random.randn(6)},
```
12.17 Dictionary-like `get()` method

Each of Series, DataFrame, and Panel have a `get` method which can return a default value.

```
In [271]: s = pd.Series([1,2,3], index=['a','b','c'])

In [272]: s.get('a') # equivalent to s['a']
Out[272]: 1

In [273]: s.get('x', default=-1)
Out[273]: -1
```
12.18 The select() Method

Another way to extract slices from an object is with the select method of Series, DataFrame, and Panel. This method should be used only when there is no more direct way. select takes a function which operates on labels along axis and returns a boolean. For instance:

```
In [274]: df.select(lambda x: x == 'A', axis=1)
Out[274]:
A
2000-01-01 0.355794
2000-01-02 1.635763
2000-01-03 0.854409
2000-01-04 -0.216659
2000-01-05 2.414688
2000-01-06 -1.206215
2000-01-07 0.779461
2000-01-08 -0.878999
```

12.19 The lookup() Method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup method allows for this and returns a numpy array. For instance,

```
In [275]: dflookup = pd.DataFrame(np.random.rand(20,4), columns=['A','B','C','D'])
In [276]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[276]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])
```

12.20 Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be raised.

Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index directly is to pass a list or other sequence to Index:

```
In [277]: index = pd.Index(['e', 'd', 'a', 'b'])
In [278]: index
Out[278]: Index(['e', 'd', 'a', 'b'], dtype='object')
In [279]: 'd' in index
Out[279]: True
```

You can also pass a name to be stored in the index:

```
In [280]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')
In [281]: index.name
Out[281]: 'something'
```
The name, if set, will be shown in the console display:

```python
In [282]: index = pd.Index(list(range(5)), name='rows')
In [283]: columns = pd.Index(['A', 'B', 'C'], name='cols')
In [284]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)

In [285]: df
Out [285]:
 cols A B C
 rows
0 1 1.29599 0.185778 0.436259
1 2 0.678101 0.311369 -0.528378
2 3 -0.674808 -1.103529 -0.656157
3 4 1.889957 2.076651 -1.102192
4 5 -1.211795 -0.791746 0.634724

In [286]: df['A']
 →
 rows
0 1.29599
1 0.678101
2 -0.674808
3 1.889957
4 -1.211795
Name: A, dtype: float64
```

### 12.20.1 Setting metadata

New in version 0.13.0.

Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name (or, for MultiIndex, levels and labels).

You can use the `rename`, `set_names`, `set_levels`, and `set_labels` to set these attributes directly. They default to returning a copy; however, you can specify `inplace=True` to have the data change in place.

See [Advanced Indexing](#) for usage of MultiIndexes.

```python
In [287]: ind = pd.Index([1, 2, 3])
In [288]: ind.rename("apple")
Out [288]: Int64Index([1, 2, 3], dtype='int64', name='apple')

In [289]: ind
 →
Int64Index([1, 2, 3], dtype='int64')

Out [289]: Int64Index([1, 2, 3], dtype='int64')

In [290]: ind.set_names(['apple'], inplace=True)
In [291]: ind.name = "bob"
In [292]: ind
Out [292]: Int64Index([1, 2, 3], dtype='int64', name='bob')
```

New in version 0.15.0.

---

**12.20. Index objects**
set_names, set_levels, and set_labels also take an optional level' argument

In [293]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
In [294]: index
Out[294]: MultiIndex(levels=[[0, 1, 2], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=['first', 'second'])
In [295]: index.levels[1]
\→ Index(['one', 'two'], dtype='object', name='second')
In [296]: index.set_levels(['a', 'b'], level=1)
\→ MultiIndex(levels=[[0, 1, 2], ['a', 'b']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=['first', 'second'])

12.20.2 Set operations on Index objects

Warning: In 0.15.0. the set operations + and − were deprecated in order to provide these for numeric type operations on certain index types. + can be replace by .union() or |, and − by .difference().

The two main operations are union (|), intersection (&) These can be directly called as instance methods or used via overloaded operators. Difference is provided via the .difference() method.

In [297]: a = pd.Index(['c', 'b', 'a'])
In [298]: b = pd.Index(['c', 'e', 'd'])
In [299]: a | b
Out[299]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
In [300]: a & b
Out[300]: Index(['c'], dtype='object')
In [301]: a.difference(b)
Out[301]: Index(['a', 'b'], dtype='object')

Also available is the symmetric_difference (^) operation, which returns elements that appear in either idx1 or idx2 but not both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1)), with duplicates dropped.

In [302]: idx1 = pd.Index([1, 2, 3, 4])
In [303]: idx2 = pd.Index([2, 3, 4, 5])
In [304]: idx1.symmetric_difference(idx2)
12.20.3 Missing values

New in version 0.17.1.

**Important:** Even though `Index` can hold missing values (NaN), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

12.21 Set / Reset Index

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.

12.21.1 Set an index

DataFrame has a set_index method which takes a column name (for a regular `Index`) or a list of column names (for a `MultiIndex`), to create a new, indexed DataFrame:
pandas: powerful Python data analysis toolkit, Release 0.20.1

```
In [312]: data
Out[312]:
 a b c d
0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0
```

```
In [313]: indexed1 = data.set_index('c')
```

```
In [314]: indexed1
Out[314]:
 a b d
 c
 z bar one 1.0
 y bar two 2.0
 x foo one 3.0
 w foo two 4.0
```

```
In [315]: indexed2 = data.set_index(['a', 'b'])
```

```
In [316]: indexed2
Out[316]:
 c d
 a b
 bar one z 1.0
 two y 2.0
 foo one x 3.0
 two w 4.0
```

The `append` keyword option allows you to keep the existing index and append the given columns to a MultiIndex:

```
In [317]: frame = data.set_index('c', drop=False)
```

```
In [318]: frame = frame.set_index(['a', 'b'], append=True)
```

```
In [319]: frame
Out[319]:
 c d
 a b
 bar one z 1.0
 two y 2.0
 foo one x 3.0
 two w 4.0
```

Other options in `set_index` allow you not drop the index columns or to add the index in-place (without creating a new object):

```
In [320]: data.set_index('c', drop=False)
Out[320]:
 a b c d
 c
 z bar one 1.0
 y bar two 2.0
 x foo one 3.0
 w foo two 4.0
```

```
In [321]: data.set_index(['a', 'b'], inplace=True)
```

Chapter 12. Indexing and Selecting Data
In [322]: data
Out[322]:
    c  d
     a  b
     bar  one  z  1.0
           two  y  2.0
       foo  one  x  3.0
              two  w  4.0

12.21.2 Reset the index

As a convenience, there is a new function on DataFrame called `reset_index` which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation to `set_index`

In [323]: data
Out[323]:
    c  d
    a  b
    bar  one  z  1.0
           two  y  2.0
       foo  one  x  3.0
              two  w  4.0

In [324]: data.reset_index()

→
   a  b  c  d
  0  bar  one  z  1.0
  1  bar  two  y  2.0
  2  foo  one  x  3.0
  3  foo  two  w  4.0

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the `names` attribute.

You can use the `level` keyword to remove only a portion of the index:

In [325]: frame
Out[325]:
     c  d
    c  a  b
    z  bar  one  z  1.0
        y  bar  two  y  2.0
    x  foo  one  x  3.0
        w  foo  two  w  4.0

In [326]: frame.reset_index(level=1)

→
   a  c  d
   c  b
   z  one  bar  z  1.0
       y  two  bar  y  2.0
   x  one  foo  x  3.0
       w  two  foo  w  4.0
reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index values in the DataFrame’s columns.

**Note:** The reset_index method used to be called delevel which is now deprecated.

### 12.21.3 Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

```python
data.index = index```

12.22 Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example.

```python
In [327]: dfmi = pd.DataFrame([list('abcd'),
                           list('efgh'),
                           list('ijkl'),
                           list('mnop')],
                       columns=pd.MultiIndex.from_product([[['one','two'],
                           ['first','second']]]))

In [328]: dfmi
Out[328]:
   one     two
first    second first    second
0      a       c   b       d
1      e       g   f       h
2      i       k   j       l
3      m       o   n       p

Compare these two access methods:
```
In [329]: dfmi['one']['second']
Out[329]:
 0 b
 1 f
 2 j
 3 n
Name: second, dtype: object
```
```
In [330]: dfmi.loc[:,('one','second')]
Out[330]:
 0 b
 1 f
 2 j
 3 n
Name: (one, second), dtype: object
```
These both yield the same results, so which should you use? It is instructive to understand the order of operations on
these and why method 2 (.loc) is much preferred over method 1 (chained []):

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another
python operation dfmi_with_one['second'] selects the series indexed by 'second' happens. This is indi-
cated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls
to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:, ('one', 'second')] which passes a nested tuple of (slice(None), ('one',
'second')) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore
this order of operations can be significantly faster, and allows one to index both axes if so desired.

12.22.1 Why does assignment fail when using chained indexing?

The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy warning?
We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this,
think about how the Python interpreter executes this code:

```
dfmi.loc[:, ('one', 'second')] = value
becomes
dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)
```

But this code is handled differently:

```
dfmi['one']['second'] = value
becomes
dfmi.__getitem__('one').__setitem__('second', value)
```

See that __getitem__ in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a
copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether
the __setitem__ will modify dfmi or a temporary object that gets thrown out immediately afterward. That’s what
SettingWithCopy is warning you about!

Note: You may be wondering whether we should be concerned about the loc property in the first example. But
dfmi.loc is guaranteed to be dfmi itself with modified indexing behavior, so dfmi.loc.__getitem__ /
dfmi.loc.__setitem__ operate on dfmi directly. Of course, dfmi.loc.__getitem__(idx) may be
a view or a copy of dfmi.

Sometimes a SettingWithCopy warning will arise at times when there’s no obvious chained indexing going on.
These are the bugs that SettingWithCopy is designed to catch! Pandas is probably trying to warn you that you’ve
done this:

```
def do_something(df):
 foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
... many lines here ...
 foo['quux'] = value # We don’t know whether this will modify df or not!
 return foo
```

Yikes!
12.22.2 Evaluation order matters

Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will set values on a copy of a slice, then a SettingWithCopy exception will be raised (this raise/warn behavior is new starting in 0.13.0).

You can control the action of a chained assignment via the option `mode.chained_assignment`, which can take the values ['raise', 'warn', 'None'], where showing a warning is the default.

```python
In [331]: dfb = pd.DataFrame({'a' : ['one', 'one', 'two',
.....: 'three', 'two', 'one', 'six'],
.....: 'c' : np.arange(7))
.....:
This will show the SettingWithCopyWarning
but the frame values will be set
In [332]: dfb['c'][dfb.a.str.startswith('o')] = 42
```

This however is operating on a copy and will not work.

```python
>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
Traceback (most recent call last)
... SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_index,col_indexer] = value instead
```

A chained assignment can also crop up in setting in a mixed dtype frame.

**Note:** These setting rules apply to all of `.loc/.iloc`

This is the correct access method

```python
In [333]: dfc = pd.DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})
In [334]: dfc.loc[0,'A'] = 11
```

This *can* work at times, but is not guaranteed, and so should be avoided

```python
In [336]: dfc = dfc.copy()
In [337]: dfc['A'][0] = 111
```

---

Chapter 12. Indexing and Selecting Data
This will **not** work at all, and so should be avoided

```python
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
...
SettingWithCopyException:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_index,col_indexer] = value instead
```

**Warning:** The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.
This section covers indexing with a MultiIndex and more advanced indexing features. See the Indexing and Selecting Data for general indexing documentation.

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

**Warning:** In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

See the cookbook for some advanced strategies

### 13.1 Hierarchical indexing (MultiIndex)

Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the cookbook for some advanced strategies

#### 13.1.1 Creating a MultiIndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex as an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo different ways to initialize MultiIndexes.

```
In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ...: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']
 ...: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']
 ...:
```
In [2]: tuples = list(zip(*arrays))

In [3]: tuples

Out[3]: [('bar', 'one'),
        ('bar', 'two'),
        ('baz', 'one'),
        ('baz', 'two'),
        ('foo', 'one'),
        ('foo', 'two'),
        ('qux', 'one'),
        ('qux', 'two')]

In [4]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [5]: index

Out[5]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
                 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
                 names=['first', 'second'])

In [6]: s = pd.Series(np.random.randn(8), index=index)

In [7]: s

Out[7]:

<table>
<thead>
<tr>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar one</td>
<td>0.469112</td>
</tr>
<tr>
<td>two</td>
<td>-0.282863</td>
</tr>
<tr>
<td>baz one</td>
<td>-1.509059</td>
</tr>
<tr>
<td>two</td>
<td>-1.135632</td>
</tr>
<tr>
<td>foo one</td>
<td>1.212112</td>
</tr>
<tr>
<td>two</td>
<td>-0.173215</td>
</tr>
<tr>
<td>qux one</td>
<td>0.119209</td>
</tr>
<tr>
<td>two</td>
<td>-1.044236</td>
</tr>
</tbody>
</table>

dtype: float64

When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex. from_product function:

In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]

In [9]: pd.MultiIndex.from_product(iterables, names=['first', 'second'])

Out[9]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
                 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
                 names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:

In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
            np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]

In [11]: s = pd.Series(np.random.randn(8), index=arrays)

In [12]: s
```
Out[12]:
bar one -0.861849
 two -2.104569
baz one -0.494929
 two 1.071804
foo one 0.721555
 two -0.706771
qux one -1.039575
 two 0.271860
dtype: float64

In [13]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays)
In [14]: df

Out[14]:
 0 1 2 3
bar one -0.424972 0.567020 0.276232 -1.087401
two 0.673690 0.113648 -1.478427 0.524988
baz one 0.404705 0.577046 -1.715002 -1.039268
two 0.370647 -1.157892 -1.344312 0.844885
foo one 1.075770 -0.109050 1.643563 -1.469388
two 0.357021 -0.674600 -1.776904 -0.968914
qux one -1.294524 0.413738 0.276662 0.472035
two 0.013960 -0.362543 -0.006154 0.923061
```

All of the `MultiIndex` constructors accept a `names` argument which stores string names for the levels themselves. If no names are provided, `None` will be assigned:

```
In [15]: df.index.names
Out[15]: FrozenList([None, None])
```

This index can back any axis of a pandas object, and the number of levels of the index is up to you:

```
In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
In [17]: df

Out[17]:
 first bar baz foo qux
 second one one one one
 A 0.895717 0.805244 -1.206412 2.565646
 B 0.410835 0.813850 0.132003 -0.827317
 C -1.413681 1.607920 1.024180 0.569605
 first second two
 A -0.226169
 B -1.436737
 C -2.006747
```

```
In [18]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])
```

13.1. Hierarchical indexing (MultiIndex)
We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.

It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

```
In [19]: pd.Series(np.random.randn(8), index=tuples)
Out[19]:
 (bar, one) -1.236269
 (bar, two) 0.896171
 (baz, one) -0.487602
 (baz, two) -0.082240
 (foo, one) -2.182937
 (foo, two) 0.380396
 (qux, one) 0.084844
 (qux, two) 0.432390
dtype: float64
```

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in pandas.

```
in [22]: pd.set_option('display.multi_sparse', True)
```

### 13.1.2 Reconstructing the level labels

The method `get_level_values` will return a vector of the labels for each location at a particular level:

```python
In [23]: index.get_level_values(0)
Out[23]: Index(["bar", "bar", "baz", "baz", "foo", "foo", "qux"], dtype='object', name='first')
In [24]: index.get_level_values('second')
```

---

636 Chapter 13. MultiIndex / Advanced Indexing
13.1.3 Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame:

```
In [25]: df['bar']
Out[25]:
 second one two
A 0.8957 0.8052 0.2668
B 0.4108 0.8138 0.5521
C -1.4137 1.6079 -0.0495
```

```
In [26]: df['bar', 'one']
→
 second
A 0.8957
B 0.4108
C -1.4137
Name: (bar, one), dtype: float64
```

```
In [27]: df['bar']['one']
→
 second
A 0.8957
B 0.4108
C -1.4137
Name: one, dtype: float64
```

```
In [28]: s['qux']
→
 one two
 -1.04 0.27
dtype: float64
```

See *Cross-section with hierarchical index* for how to select on a deeper level.

13.1.4 Defined Levels

The repr of a MultiIndex shows ALL the defined levels of an index, even if the they are not actually used. When slicing an index, you may notice this. For example:

```
original multi-index
In [29]: df.columns
Out[29]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
 names=['first', 'second'])

sliced
In [30]: df[['foo','qux']].columns
→
```
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
    labels=[[2, 2, 3, 3], [0, 1, 0, 1]],
    names=['first', 'second'])

This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see the actual used levels.

```
In [31]: df[['foo','qux']].columns.values
Out[31]: array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')],
 dtype=object)
```

# for a specific level
```
In [32]: df[['foo','qux']].columns.get_level_values(0)
Out[32]: Index(['foo', 'foo', 'qux', 'qux'], dtype='object', name='first')
```

To reconstruct the multiindex with only the used levels

New in version 0.20.0.

```
In [33]: df[['foo','qux']].columns.remove_unused_levels()
Out[33]: MultiIndex(levels=[['foo', 'qux'], ['one', 'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['first', 'second'])
```

### 13.1.5 Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data alignment will work the same as an Index of tuples:

```
In [34]: s + s[:-2]
Out[34]:
 bar one -1.723698
 two -4.209138
 baz one -0.989859
 two 2.143608
 foo one 1.443110
 two -1.413542
 qux one NaN
 two NaN
dtype: float64
```

```
In [35]: s + s[:2]
```

```
 bar one -1.723698
 two NaN
 baz one -0.989859
 two NaN
 foo one 1.443110
 two NaN
 qux one -2.079150
 two NaN
dtype: float64
```
reindex can be called with another MultiIndex or even a list or array of tuples:

```
In [36]: s.reindex(index[:3])
Out[36]:
first second
bar one -0.861849
 two -2.104569
baz one -0.494929
dtype: float64

In [37]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
 →
foo two -0.706771
bar one -0.861849
qux one -1.039575
baz one -0.494929
dtype: float64
```

### 13.2 Advanced indexing with hierarchical index

Syntactically integrating MultiIndex in advanced indexing with `.loc` is a bit challenging, but we’ve made every effort to do so. For example the following works as you would expect:

```
In [38]: df = df.T

In [39]: df
Out[39]:
 A B C
first second
bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
baz one 2.565646 -0.827317 0.569605
two 2.656546 0.132003 1.024180
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466
two -0.226169 -1.436737 -2.006747

In [40]: df.loc['bar']
 →
 A B C
 second
one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920

In [41]: df.loc['bar', 'two']
 →
 A
one 0.805244
 B 0.813850
 C 1.607920
Name: (bar, two), dtype: float64
```

“Partial” slicing also works quite nicely.
You can slice with a ‘range’ of values, by providing a slice of tuples.

In [43]: df.loc[('baz', 'two'):('qux', 'one')]
Out[43]:
   A     B      C
first second
baz  two  2.565646 -0.827317  0.569605
foo  one  1.431256 -0.076467  0.875906
two  1.340309 -1.187678 -2.211372
qux  one -1.170299  1.130127  0.974466

In [44]: df.loc[('baz', 'two'):'foo']

Passing a list of labels or tuples works similar to reindexing:

In [45]: df.loc[['bar', 'two'], ['qux', 'one']]
Out[45]:
   A     B      C
first second
bar  two  0.805244  0.813850  1.607920
qux  one -1.170299  1.130127  0.974466

13.2.1 Using slicers

New in version 0.14.0.

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.
You should do this:

```python
df.loc[{slice('A1','A3')}, :]
```

rather than this:

```python
df.loc[{slice('A1','A3')}]
```

```
In [46]: def mklbl(prefix,n):
 : return ["%s%c" % (prefix,i) for i in range(n)]
 :

In [47]: miindex = pd.MultiIndex.from_product([mklbl('A',4),
 : mklbl('B',2),
 : mklbl('C',4),
 : mklbl('D',2)])
 :

In [48]: micolumns = pd.MultiIndex.from_tuples([('a','foo'),('a','bar'),
 : ('b','foo'),('b','bah')],
 : names=['lvl0', 'lvl1'])
 :

In [49]: dfmi = pd.DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
 : index=miindex,
 : columns=micolumns).sort_index().sort_index(axis=1)
 :

In [50]: dfmi
Out[50]:
 lvl0 a b
 lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
C1 D0 9 8 11 10
 D1 13 12 15 14
C2 D0 17 16 19 18
 D1 21 20 23 22
C3 D0 25 24 27 26
 D1 29 28 31 30

A3 B1 C0 D1 229 228 231 230
C1 D0 233 232 235 234
 D1 237 236 239 238
C2 D0 241 240 243 242
 D1 245 244 247 246
C3 D0 249 248 251 250
 D1 253 252 255 254
[64 rows x 4 columns]
```

Basic multi-index slicing using slices, lists, and labels.

```
In [51]: dfmi.loc[{slice('A1','A3'), slice(None), ['C1', 'C3')}, :]
Out[51]:
 lvl0 a b
 lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74
```

13.2. Advanced indexing with hierarchical index 641
You can use a `pd.IndexSlice` to have a more natural syntax using : rather than using `slice(None)`

```
In [52]: idx = pd.IndexSlice

In [53]: dfmi.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']]
```

```
Out[53]:
 a b
 lvl0 lvl1 foo
A0 B0 C1 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58

A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
B1 C1 D0 232 234
 D1 236 238
 C3 D0 248 250
 D1 252 254
[32 rows x 2 columns]
```

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

```
In [54]: dfmi.loc['A1', (slice(None), 'foo')]
```

```
Out[54]:
 a b
 lvl0 lvl1 foo
B0 C0 D0 64 66
 D1 68 70
 C1 D0 72 74
 C2 D0 80 82
 D1 84 86
 C3 D0 88 90

B1 C0 D1 100 102
```

[24 rows x 4 columns]
Using a boolean indexer you can provide selection related to the values.

```python
In [56]: mask = dfmi[('a', 'foo')] > 200

In [57]: dfmi.loc[idx[mask, :, ['C1', 'C3']], idx[:, 'foo']]

Out[57]:
<table>
<thead>
<tr>
<th>lvl0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>foo</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td>C3</td>
<td>216</td>
<td>218</td>
</tr>
<tr>
<td>D1</td>
<td>220</td>
<td>222</td>
</tr>
<tr>
<td>B1</td>
<td>232</td>
<td>234</td>
</tr>
<tr>
<td>D1</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>C3</td>
<td>248</td>
<td>250</td>
</tr>
<tr>
<td>D1</td>
<td>252</td>
<td>254</td>
</tr>
</tbody>
</table>
```

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

```python
In [58]: dfmi.loc(axis=0)[, :, ['C1', 'C3']]

Out[58]:
<table>
<thead>
<tr>
<th>lvl0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl1</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>D1</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>C3</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>D1</td>
<td>29</td>
<td>28</td>
</tr>
</tbody>
</table>
```
Furthermore you can set the values using these methods

```python
In [59]: df2 = dfmi.copy()

In [60]: df2.loc(axis=0)[; :, ['C1', 'C3']] = -10

In [61]: df2
```

```
Out[61]:
 lvl0 a b
 lvl1
 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
 C1 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10
 C2 D0 17 16 19 18
 D1 21 20 23 22
 C3 D0 -10 -10 -10 -10

A3 B1 C0 D1 229 228 231 230
 C1 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10
 C2 D0 9000 8000 11000 10000
 D1 13000 12000 15000 14000
 C3 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10
[64 rows x 4 columns]
```

You can use a right-hand-side of an alignable object as well.

```python
In [62]: df2 = dfmi.copy()

In [63]: df2.loc[idx[:, :, ['C1', 'C3']], :] = df2 * 1000

In [64]: df2
```

```
Out[64]:
 lvl0 a b
 lvl1
 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
 C1 D0 9000 8000 11000 10000
 D1 13000 12000 15000 14000
 C2 D0 17 16 19 18
 D1 21 20 23 22
```
13.2.2 Cross-section

The `xs` method of `DataFrame` additionally takes a level argument to make selecting data at a particular level of a `MultiIndex` easier.

```python
In [65]: df
Out[65]:
 A B C
first second
bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 0.974466
qux one -1.170299 1.130127 0.974466
two -0.226169 -1.436737 -2.006747

In [66]: df.xs('one', level='second')

In [67]: df.loc[(slice(None),'one'),:]

In [68]: df = df.T

In [69]: df.xs('one', level='second', axis=1)
```

You can also select on the columns with `xs()`, by providing the axis argument

```
In [68]: df = df.T

In [69]: df.xs('one', level='second', axis=1)
```
# using the slicers (new in 0.14.0)
In [70]: df.loc[:,(slice(None),'one')]
Out[70]:
first  bar  baz  foo  qux
    second one one one one
A  0.895717 -1.206412 1.431256 -1.170299
B  0.410835  0.132003 -0.076467  1.130127
C -1.413681  1.024180  0.875906  0.974466

xs() also allows selection with multiple keys

In [71]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[71]:
first  bar
    second one
A  0.895717
B  0.410835
C -1.413681

# using the slicers (new in 0.14.0)
In [72]: df.loc[:,('bar','one')]
Out[72]:
A  0.895717
B  0.410835
C -1.413681
Name: (bar, one), dtype: float64

New in version 0.13.0.

You can pass drop_level=False to xs() to retain the level that was selected

In [73]: df.xs('one', level='second', axis=1, drop_level=False)
Out[73]:
first  bar  baz  foo  qux
    second one one one one
A  0.895717 -1.206412 1.431256 -1.170299
B  0.410835  0.132003 -0.076467  1.130127
C -1.413681  1.024180  0.875906  0.974466

versus the result with drop_level=True (the default value)

In [74]: df.xs('one', level='second', axis=1, drop_level=True)
Out[74]:
first  bar  baz  foo  qux
A  0.895717 -1.206412 1.431256 -1.170299
B  0.410835  0.132003 -0.076467  1.130127
C -1.413681  1.024180  0.875906  0.974466
13.2.3 Advanced reindexing and alignment

The parameter `level` has been added to the `reindex` and `align` methods of pandas objects. This is useful to broadcast values across a level. For instance:

```python
In [75]: midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']],
 labels=[[1,1,0,0],[1,0,1,0]])

In [76]: df = pd.DataFrame(np.random.randn(4,2), index=midx)

In [77]: df
Out[77]:
 0 1
one y 1.519970 -0.493662
 x 0.600178 0.274230
zero y 0.132885 -0.023688
 x 2.410179 1.450520

In [78]: df2 = df.mean(level=0)

In [79]: df2
Out[79]:
 0 1
zero 1.271532 0.713416
one 1.060074 -0.109716

In [80]: df2.reindex(df.index, level=0)

In [81]: df_aligned, df2_aligned = df.align(df2, level=0)

In [82]: df_aligned
Out[82]:
 0 1
one y 1.519970 -0.493662
 x 0.600178 0.274230
zero y 0.132885 -0.023688
 x 2.410179 1.450520

In [83]: df2_aligned
```
13.2.4 Swapping levels with `swaplevel()`

The `swaplevel` function can switch the order of two levels:

```python
In [84]: df[:5]
Out[84]:
 0 1
one y 1.519970 -0.493662
 x 0.600178 0.274230
zero y 0.132885 -0.023688
 x 2.410179 1.450520

In [85]: df[:5].swaplevel(0, 1, axis=0)
Out[85]:
 y 0 1
one 1.519970 -0.493662
 x 0.600178 0.274230
zero 0.132885 -0.023688
 x 2.410179 1.450520
```

13.2.5 Reordering levels with `reorder_levels()`

The `reorder_levels` function generalizes the `swaplevel` function, allowing you to permute the hierarchical index levels in one step:

```python
In [86]: df[:5].reorder_levels([1,0], axis=0)
Out[86]:
 0 1
y 0 1.519970 -0.493662
 x 0.600178 0.274230
y zero 0.132885 -0.023688
 x 2.410179 1.450520
```

13.3 Sorting a MultiIndex

For MultiIndex-ed objects to be indexed & sliced effectively, they need to be sorted. As with any index, you can use `sort_index`.

```python
In [87]: import random; random.shuffle(tuples)

In [88]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))

In [89]: s
Out[89]:
 bar one 0.206053
 foo two-0.251905
 bar two-2.213588
 one 1.063327
 qux two 1.266143
 baz two 0.299368
 qux one-0.863838
 baz one 0.408204
dtype: float64
```
In [90]: s.sort_index()

   bar   one  0.206053
         two  1.063327
    baz   one  0.408204
         two  0.299368
    foo   one -2.213588
         two -0.251905
   qux   one -0.863838
         two  1.266143

dtype: float64

In [91]: s.sort_index(level=0)

   bar   one  0.206053
         two  1.063327
    baz   one  0.408204
         two  0.299368
    foo   one -2.213588
         two -0.251905
   qux   one -0.863838
         two  1.266143

dtype: float64

In [92]: s.sort_index(level=1)

   bar   one  0.206053
    baz   one  0.408204
    foo   one -2.213588
   qux   one -0.863838
    bar   two  1.063327
    baz   two  0.299368
    foo   two -0.251905
   qux   two  1.266143

dtype: float64

You may also pass a level name to `sort_index` if the MultiIndex levels are named.

In [93]: s.index.set_names(['L1', 'L2'], inplace=True)

In [94]: s.sort_index(level='L1')

Out[94]:

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
<tr>
<td>baz</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
<tr>
<td>foo</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
<tr>
<td>qux</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
</tbody>
</table>

dtype: float64

In [95]: s.sort_index(level='L2')
### MultiIndex / Advanced Indexing

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

```python
In [96]: df.T.sort_index(level=1, axis=1)
```

**Out[96]:**
```
 zero one zero one
 x x y y
0 2.410179 0.600178 0.132885 1.519970
1 1.450520 0.274230 -0.023688 -0.493662
```

Indexing will work even if the data are not sorted, but will be rather inefficient (and show a `PerformanceWarning`). It will also return a copy of the data rather than a view:

```python
In [97]: dfm = pd.DataFrame({'jim': [0, 0, 1, 1],
 'joe': ['x', 'x', 'z', 'y'],
 'jolie': np.random.rand(4)})
```

```python
In [98]: dfm = dfm.set_index(['jim', 'joe'])
```

```python
In [99]: dfm
```

**Out[99]:**
```
 jolie
 jim joe
0 x 0.490671
 x 0.120248
1 z 0.537020
 y 0.110968
```

```python
In [4]: dfm.loc[(1, 'z')]
```

**PerformanceWarning:** indexing past lexsort depth may impact performance.

**Out[4]:**
```
 jolie
 jim joe
0 x 0.490671
 x 0.120248
1 z 0.537020
 y 0.110968
 1 z 0.64094
```

Furthermore if you try to index something that is not fully lexsorted, this can raise:

```python
In [5]: dfm.loc[(0,'y'):(1, 'z')]
```

**UnsortedIndexError:** 'Key length (2) was greater than MultiIndex lexsort depth (1)'

The `is_lexsorted()` method on an `Index` show if the index is sorted, and the `lexsort_depth` property returns the sort depth:
In [100]: dfm.index.is_lexsorted()
Out[100]: False

In [101]: dfm.index.lexsort_depth

In [102]: dfm = dfm.sort_index()

In [103]: dfm

In [104]: dfm.index.is_lexsorted()

In [105]: dfm.index.lexsort_depth

And now selection works as expected.

In [106]: dfm.loc[(0,'y'):(1, 'z')]

13.4 Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the `take` method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. `take` will also accept negative integers as relative positions to the end of the object.

In [107]: index = pd.Index(np.random.randint(0, 1000, 10))

In [108]: index

In [109]: positions = [0, 9, 3]

In [110]: index[positions]

In [111]: index.take(positions)
In [112]: ser = pd.Series(np.random.randn(10))

In [113]: ser.iloc[positions]
Out[113]:
0  -0.179666
9   1.824375
3   0.392149

dtype: float64

In [114]: ser.take(positions)
Out[114]:
0  -0.179666
9   1.824375
3   0.392149

dtype: float64

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

In [115]: frm = pd.DataFrame(np.random.randn(5, 3))

In [116]: frm.take([1, 4, 3])
Out[116]:
    0    1    2
0 -1.23788 0.106854 -1.276829
4  0.629675 -1.425966 1.857704
3  0.979542 -1.633678 0.615855

In [117]: frm.take([0, 2], axis=1)
Out[117]:
   0    2
0 0.595974 0.601544
1 -1.237881 -1.276829
2 -0.767101 1.499591
3  0.979542 0.615855
4  0.629675 1.857704

It is important to note that the take method on pandas objects are not intended to work on boolean indices and may return unexpected results.

In [118]: arr = np.random.randn(10)

In [119]: arr.take([False, False, True, True])
Out[119]: array([-1.1935, -1.1935, 0.6775, 0.6775])

In [120]: arr[[0, 1]]
Out[120]: array([-1.1935, 0.6775])

In [121]: ser = pd.Series(np.random.randn(10))

In [122]: ser.take([False, False, True, True])
Out[122]:
0   0.233141
0   0.233141
1  -0.223540
1  -0.223540

dtype: float64
In [123]: ser.iloc[[0, 1]]
Out[123]:
0  0.233141
1 -0.223540
dtype: float64

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.

13.5 Index Types

We have discussed MultiIndex in the previous sections pretty extensively. DatetimeIndex and PeriodIndex are shown here. TimedeltaIndex are here.

In the following sub-sections we will highlight some other index types.

13.5.1 CategoricalIndex

New in version 0.16.1.

We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series with a category dtype would convert this to regular object-based Index.

In [124]: df = pd.DataFrame({'A': np.arange(6),
                     'B': list('aabbca'))

In [125]: df['B'] = df['B'].astype('category', categories=list('cab'))

In [126]: df
Out[126]:
     A  B
0    0  a
1    1  a
2    2  b
3    3  b
4    4  c
5    5  a

In [127]: df.dtypes
Out[127]:
A  int64
B  category
dtype: object

In [128]: df.B.cat.categories
Out[128]:
Index(['c', 'a', 'b'], dtype='object')

Setting the index, will create a CategoricalIndex
Indexing with __getitem__/.iloc/.loc works similarly to an Index with duplicates. The indexers MUST be in the category or the operation will raise.

These PRESERVE the CategoricalIndex

Sorting will order by the order of the categories

Groupby operations on the index will preserve the index nature as well

Reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the PASSED Categorical dtype. This allows one to arbitrarily index these even with values NOT in the categories, similarly to how you can reindex ANY pandas index.
A
B
a 0.0
a 1.0
a 5.0
e NaN

In [137]: df2.reindex(['a','e']).index

Out[137]: Index(['a', 'a', 'a', 'e'], dtype='object', name='B')

In [138]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))

In [139]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index

Warning: Reshaping and Comparison operations on a CategoricalIndex must have the same categories or a TypeError will be raised.

In [9]: df3 = pd.DataFrame({'A' : np.arange(6),
'B' : pd.Series(list('aabbca')).astype('category')})

In [11]: df3 = df3.set_index('B')

In [11]: df3.index

Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u'b', u'c'], ordered=False, name=u'B', dtype='category')

In [12]: pd.concat([df2, df3])

TypeError: categories must match existing categories when appending

13.5.2 Int64Index and RangeIndex

Warning: Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.

Int64Index is a fundamental basic index in pandas. This is an Immutable array implementing an ordered, sliceable set. Prior to 0.18.0, the Int64Index would provide the default index for all NDFrame objects.

RangeIndex is a sub-class of Int64Index added in version 0.18.0, now providing the default index for all NDFrame objects. RangeIndex is an optimized version of Int64Index that can represent a monotonic ordered set. These are analogous to python range types.
13.5.3 Float64Index

Note: As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.

New in version 0.13.0.

By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [], ix, loc for scalar indexing and slicing work exactly the same.

In [140]: indexf = pd.Index([1.5, 2, 3, 4.5, 5])

In [141]: indexf
Out [141]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [142]: sf = pd.Series(range(5), index=indexf)

In [143]: sf
Out [143]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
dtype: int64

Scalar selection for [], .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

In [144]: sf[3]
Out [144]: 2

In [145]: sf[3.0]
Out [145]: 2

In [146]: sf.loc[3]
Out [146]: 2

In [147]: sf.loc[3.0]
Out [147]: 2

The only positional indexing is via iloc

In [148]: sf.iloc[3]
Out [148]: 3

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [], ix, loc and ALWAYS positional with iloc

In [149]: sf[2:4]
Out [149]:
2.0 1
3.0 2
dtype: int64
In float indexes, slicing using floats is allowed

```
In [152]: sf[2.1:4.6]
Out[152]:
3.0 2
4.5 3
dtype: int64
```

In non-float indexes, slicing using floats will raise a `TypeError`

```
In [1]: pd.Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)
```

```
In [1]: pd.Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)
```

**Warning:** Using a scalar float indexer for `.iloc` has been removed in 0.18.0, so the following will raise a `TypeError`

```
In [3]: pd.Series(range(5)).iloc[3.0]
TypeError: cannot do positional indexing on <class 'pandas.indexes.range.RangeIndex'> with these indexers [3.0] of <type 'float'>
```

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

```
In [154]: dfir = pd.concat([pd.DataFrame(np.random.randn(5,2),
 index=np.arange(5) * 250.0,
 columns=list('AB')),
 pd.DataFrame(np.random.randn(6,2),
 index=np.arange(4,10) * 250.1,
 columns=list('AB'))])
```

```
In [155]: dfir
```
Selection operations then will always work on a value basis, for all selection operators.

You could then easily pick out the first 1 second (1000 ms) of data then.
13.5.4 IntervalIndex

New in version 0.20.0.

**Warning:** These indexing behaviors are provisional and may change in a future version of pandas.

```python
In [161]: df = pd.DataFrame({'A': [1, 2, 3, 4]},
 index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4]))
```

Label based indexing via `.loc` along the edges of an interval works as you would expect, selecting that particular interval.

```python
In [163]: df.loc[2]
```

If you select a label *contained* within an interval, this will also select the interval.

```python
In [165]: df.loc[2.5]
```

13.5. Index Types
13.6 Miscellaneous indexing FAQ

13.6.1 Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .loc. The following code will generate exceptions:

```python
s = pd.Series(range(5))
s[-1]
df = pd.DataFrame(np.random.randn(5, 4))
df
df.loc[-2:]
```

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing).

13.6.2 Non-monotonic indexes require exact matches

If the index of a `Series` or `DataFrame` is monotonically increasing or decreasing, then the bounds of a label-based slice can be outside the range of the index, much like slice indexing a normal Python list. Monotonicity of an index can be tested with the `is_monotonic_increasing` and `is_monotonic_decreasing` attributes.

```
In [167]: df = pd.DataFrame(index=[2, 3, 3, 4, 5], columns=['data'], data=list(range(6)))
In [168]: df.index.is_monotonic_increasing
Out[168]: True
no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4:
In [169]: df.loc[2:4, :]
Out[169]:
data
 2 0
 3 1
 4 3
slice is are outside the index, so empty DataFrame is returned
In [170]: df.loc[13:15, :]
Out[170]:
Empty DataFrame
Columns: [data]
Index: []
```

On the other hand, if the index is not monotonic, then both slice bounds must be `unique` members of the index.

```
In [171]: df = pd.DataFrame(index=[2, 3, 1, 4, 3, 5], columns=['data'], data=list(range(6)))
In [172]: df.index.is_monotonic_increasing
Out[172]: False
OK because 2 and 4 are in the index
In [173]: df.loc[2:4, :]
```
13.6.3 Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series:

```
In [174]: s = pd.Series(np.random.randn(6), index=list('abcdef'))
```

```
In [175]: s
Out[175]:
 a 0.112246
 b 0.871721
 c -0.816064
 d -0.784880
 e 1.030659
 f 0.187483
```

Suppose we wished to slice from \texttt{c} to \texttt{e}, using integers this would be

```
In [176]: s[2:5]
```

```
Out[176]:
 c -0.816064
 d -0.784880
 e 1.030659
```

However, if you only had \texttt{c} and \texttt{e}, determining the next element in the index can be somewhat complicated. For example, the following does not work:

```
s.loc['c':'e'+1]
```

A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design decision to make label-based slicing include both endpoints:
This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.

13.6.4 Indexing potentially changes underlying Series dtype

The different indexing operation can potentially change the dtype of a Series.

```python
In [178]: series1 = pd.Series([1, 2, 3])

In [179]: series1.dtype
Out[179]: dtype('int64')

In [180]: res = series1[[0, 4]]

In [181]: res.dtype
Out[181]: dtype('float64')

In [182]: res
Out[182]:
0 1.0
4 NaN
dtype: float64

In [183]: series2 = pd.Series([True])

In [184]: series2.dtype
Out[184]: dtype('bool')

In [185]: res = series2.reindex_like(series1)

In [186]: res.dtype
Out[186]: dtype('O')

In [187]: res
Out[187]:
0 True
1 NaN
2 NaN
dtype: object
```

This is because the (re)indexing operations above silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as numpy.logical_and.

See the this old issue for a more detailed discussion.
14.1 Statistical Functions

14.1.1 Percent Change

Series, DataFrame, and Panel all have a method `pct_change` to compute the percent change over a given number of periods (using `fill_method` to fill NA/null values before computing the percent change).

```
In [1]: ser = pd.Series(np.random.randn(8))
In [2]: ser.pct_change()
Out[2]:
0 NaN
1 -1.602976
2 4.334938
3 -0.247456
4 -2.067345
5 -1.142903
6 -1.688214
7 -9.759729
dtype: float64
```

```
In [3]: df = pd.DataFrame(np.random.randn(10, 4))
In [4]: df.pct_change(periods=3)
Out[4]:
 0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 -0.218320 -1.054001 1.987147 -0.510183
3 -0.439121 -1.816454 0.649715 -4.822809
4 -0.127833 -3.042065 -5.866604 -1.776977
5 -2.596833 -1.959538 -2.111697 -3.798900
6 -2.596833 -1.959538 -2.111697 -3.798900
7 2.492606 -1.357320 -1.205802 -1.558697
8 0.825385 0.036094 -0.067696 -0.371806
9 -1.012977 2.324558 -1.003744 -0.371806
```

14.1.2 Covariance

The Series object has a method `cov` to compute covariance between series (excluding NA/null values).
In 

Analogously, DataFrame has a method `cov` to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

**Note:** Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

DataFrame `cov` also supports an optional `min_periods` keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.
### 14.1.3 Correlation

Several methods for computing correlations are provided:

<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pearson (default)</td>
<td>Standard correlation coefficient</td>
</tr>
<tr>
<td>kendall</td>
<td>Kendall Tau correlation coefficient</td>
</tr>
<tr>
<td>spearman</td>
<td>Spearman rank correlation coefficient</td>
</tr>
</tbody>
</table>

All of these are currently computed using pairwise complete observations.

**Note:** Please see the caveats associated with this method of calculating correlation matrices in the covariance section.

```python
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [16]: frame.iloc[:,2] = np.nan

Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098775

In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406371

Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
 a b c d e
a 1.0 0.04 0.05 0.03 0.02
b 0.04 1.0 -0.02 0.01 0.00
c 0.05 -0.02 1.0 0.01 -0.05
d 0.03 0.01 0.01 1.0 0.02
e 0.02 0.00 0.05 0.02 1.0

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like `cov`, `corr` also supports the optional `min_periods` keyword:

```python
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [21]: frame.loc[frame.index[:5], 'a'] = np.nan
In [22]: frame.loc[frame.index[5:10], 'b'] = np.nan

In [23]: frame.corr()
Out[23]:
   a   b   c
a  1.0  0.0  0.0
b  0.0  1.0  0.0
c  0.0  0.0  1.0

In [24]: frame.corr(min_periods=12)
   a   b   c
a  1.0 NaN  0.0
```

14.1. Statistical Functions 665
A related method `corrwith` is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

```
In [25]: index = ['a', 'b', 'c', 'd', 'e']
In [26]: columns = ['one', 'two', 'three', 'four']
In [27]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
In [28]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
In [29]: df1.corrwith(df2)
Out[29]:
       one     two     three     four
a -0.125501 -0.493244  0.344056  0.004183
b  0.125501  0.493244 -0.344056 -0.004183
c  0.125501 -0.493244  0.344056 -0.004183
d  0.125501  0.493244 -0.344056  0.004183
e  0.125501 -0.493244  0.344056 -0.004183
```

```
In [30]: df2.corrwith(df1, axis=1)
   a -0.675817
   b  0.458296
   c  0.190809
   d -0.186275
   e NaN
```

14.1.4 Data ranking

The `rank` method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

```
In [31]: s = pd.Series(np.random.randn(5), index=list('abcde'))
In [32]: s['d'] = s['b']  # so there's a tie
In [33]: s.rank()
Out[33]:
       a       b       c       d
a  5.0000  2.5000  1.0000  2.5000
b  2.5000  5.0000  4.0000  1.5000
c  1.0000  4.0000  2.0000  3.5000
d  2.5000  1.5000  3.5000  5.0000
e  4.0000  NaN    3.0000  2.5000
```

`rank` is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are excluded from the ranking.

```
In [34]: df = pd.DataFrame(np.random.randn(10, 6))
```
In [36]: df
Out[36]:
 0 1 2 3 4 5
0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004
3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347
6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180
7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422
8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544
9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064

In [37]: df.rank(1)

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.

rank supports different tie-breaking methods, specified with the method parameter:

- **average**: average rank of tied group
- **min**: lowest rank in the group
- **max**: highest rank in the group
- **first**: ranks assigned in the order they appear in the array

14.2 Window Functions

Warning: Prior to version 0.18.0, `pd.rolling_*`, `pd.expanding_*`, and `pd.ewm_*` were module level functions and are now deprecated. These are replaced by using the `Rolling`, `Expanding` and `EWM` objects and a corresponding method call.

The deprecation warning will show the new syntax, see an example [here](url) You can view the previous documentation [here](url)

For working with data, a number of windows functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis.
Starting in version 0.18.1, the `rolling()` and `expanding()` functions can be used directly from DataFrameGroupBy objects, see the `groupby docs`.

Note: The API for window statistics is quite similar to the way one works with GroupBy objects, see the documentation [here](#).

We work with `rolling`, `expanding` and `exponentially weighted` data through the corresponding objects, `Rolling`, `Expanding` and `EWM`.

```python
In [38]: s = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [39]: s = s.cumsum()
In [40]: s
Out[40]:
2000-01-01   -0.268824
2000-01-02   -1.771855
2000-01-03   -0.818003
2000-01-04   -0.659244
2000-01-05   -1.942133
2000-01-06   -1.869391
2000-01-07    0.563674
...           ...
2002-09-20  -68.233054
2002-09-21  -66.765687
2002-09-22  -67.457323
2002-09-23  -69.253182
2002-09-24  -70.296818
2002-09-25  -70.844674
2002-09-26  -72.475016
Freq: D, Length: 1000, dtype: float64
```

These are created from methods on `Series` and `DataFrame`.

```python
In [41]: r = s.rolling(window=60)
In [42]: r
Out[42]: Rolling [window=60, center=False, axis=0]
```

These object provide tab-completion of the avaible methods and properties.

```python
In [14]: r.
r.agg r.apply r.count r.exclusions r.max r.median r.
--name r.skew r.sum
r.aggregate r.corr r.cov r.kurt r.mean r.min r.
--quantile r.std r.var
```

Generally these methods all have the same interface. They all accept the following arguments:

- `window`: size of moving window
- `min_periods`: threshold of non-null data points to require (otherwise result is NA)
- `center`: boolean, whether to set the labels at the center (default is False)
Warning: The `freq` and `how` arguments were in the API prior to 0.18.0 changes. These are deprecated in the new API. You can simply resample the input prior to creating a window function.

For example, instead of `s.rolling(window=5, freq='D').max()` to get the max value on a rolling 5 Day window, one could use `s.resample('D').max().rolling(window=5).max()`, which first resamples the data to daily data, then provides a rolling 5 day window.

We can then call methods on these rolling objects. These return like-indexed objects:

```python
In [43]: r.mean()
Out[43]:
2000-01-01       NaN
2000-01-02       NaN
2000-01-03       NaN
2000-01-04       NaN
2000-01-05       NaN
2000-01-06       NaN
2000-01-07       NaN
...              ...
2002-09-20  -62.694135
2002-09-21  -62.812190
2002-09-22  -62.914971
2002-09-23  -63.061867
2002-09-24  -63.213876
2002-09-25  -63.375074
2002-09-26  -63.539734
Freq: D, Length: 1000, dtype: float64
```

```python
In [44]: s.plot(style='k--')
Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x115b03438>
```

```python
In [45]: r.mean().plot(style='k')
Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x115b03438>
```

14.2. Window Functions

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

```python
In [46]: df = pd.DataFrame(np.random.randn(1000, 4),
    index=pd.date_range('1/1/2000', periods=1000),
    columns=['A', 'B', 'C', 'D'])

In [47]: df = df.cumsum()

In [48]: df.rolling(window=60).sum().plot(subplots=True)
```

```
Out[48]: array([<matplotlib.axes._subplots.AxesSubplot object at 0x11fc7db38>,
    <matplotlib.axes._subplots.AxesSubplot object at 0x120008b00>,
    <matplotlib.axes._subplots.AxesSubplot object at 0x1200694a8>,
    <matplotlib.axes._subplots.AxesSubplot object at 0x1200d3ac8>], dtype=object)
```
14.2.1 Method Summary

We provide a number of the common statistical functions:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count()</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum()</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean()</td>
<td>Mean of values</td>
</tr>
<tr>
<td>median()</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min()</td>
<td>Minimum</td>
</tr>
<tr>
<td>max()</td>
<td>Maximum</td>
</tr>
<tr>
<td>std()</td>
<td>Bessel-corrected sample standard deviation</td>
</tr>
<tr>
<td>var()</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>skew()</td>
<td>Sample skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt()</td>
<td>Sample kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile()</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>apply()</td>
<td>Generic apply</td>
</tr>
<tr>
<td>cov()</td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td>corr()</td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

The `apply()` function takes an extra `func` argument and performs generic rolling computations. The `func` argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:

```
In [49]: mad = lambda x: np.fabs(x - x.mean()).mean()

In [50]: s.rolling(window=60).apply(mad).plot(style='k')
Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x1203785f8>
```
14.2.2 Rolling Windows

Passing \texttt{win_type} to \texttt{.rolling} generates a generic rolling window computation, that is weighted according the \texttt{win_type}. The following methods are available:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{sum()}</td>
<td>Sum of values</td>
</tr>
<tr>
<td>\texttt{mean()}</td>
<td>Mean of values</td>
</tr>
</tbody>
</table>

The weights used in the window are specified by the \texttt{win_type} keyword. The list of recognized types are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- kaiser (needs beta)
- gaussian (needs std)
- general_gaussian (needs power, width)
• slepian (needs width).

```python
In [51]: ser = pd.Series(np.random.randn(10), index=pd.date_range('1/1/2000', periods=10))

In [52]: ser.rolling(window=5, win_type='triang').mean()
Out[52]:
2000-01-01       NaN
2000-01-02       NaN
2000-01-03       NaN
2000-01-04       NaN
2000-01-05   -1.037870
2000-01-06   -0.767705
2000-01-07   -0.383197
2000-01-08   -0.395513
2000-01-09   -0.558440
2000-01-10   -0.672416
Freq: D, dtype: float64

Note that the boxcar window is equivalent to mean().

In [53]: ser.rolling(window=5, win_type='boxcar').mean()
Out[53]:
2000-01-01       NaN
2000-01-02       NaN
2000-01-03       NaN
2000-01-04       NaN
2000-01-05   -0.841164
2000-01-06   -0.779948
2000-01-07   -0.565487
2000-01-08   -0.502815
2000-01-09   -0.553755
2000-01-10   -0.472211
Freq: D, dtype: float64

In [54]: ser.rolling(window=5).mean()
```

For some windowing functions, additional parameters must be specified:

```python
In [55]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1)
Out[55]:
2000-01-01       NaN
2000-01-02       NaN
2000-01-03       NaN
2000-01-04       NaN
2000-01-05 -1.309989
2000-01-06 -1.420992
2000-01-07 -1.365058
2000-01-08 -1.309989
2000-01-09 -1.276777
2000-01-10 -1.253251
Freq: D, dtype: float64
```

14.2. Window Functions
Note: For .sum() with a win_type, there is no normalization done to the weights for the window. Passing custom weights of [1, 1, 1] will yield a different result than passing weights of [2, 2, 2], for example. When passing a win_type instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.

In contrast, the nature of the .mean() calculation is such that the weights are normalized with respect to each other. Weights of [1, 1, 1] and [2, 2, 2] yield the same result.

14.2.3 Time-aware Rolling

New in version 0.19.0.

New in version 0.19.0 are the ability to pass an offset (or convertible) to a .rolling() method and have it produce variable sized windows based on the passed time window. For each time point, this includes all preceding values occurring within the indicated time delta.

This can be particularly useful for a non-regular time frequency index.

```
In [56]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
                   index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))

In [57]: dft
Out[57]:
         B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  2.0
2013-01-01 09:00:03  NaN
2013-01-01 09:00:04  4.0
```

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

```
In [58]: dft.rolling(2).sum()
Out[58]:
         B
2013-01-01 09:00:00  NaN
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  3.0
2013-01-01 09:00:03  NaN
2013-01-01 09:00:04  NaN

In [59]: dft.rolling(2, min_periods=1).sum()
   B
2013-01-01 09:00:00  0.0
```
Specifying an offset allows a more intuitive specification of the rolling frequency.

In [60]: dft.rolling('2s').sum()
Out[60]:

<table>
<thead>
<tr>
<th>Date</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>1.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>3.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>2.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

In [61]:
 dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index = pd.Index([pd.Timestamp('20130101 09:00:00'),
 pd.Timestamp('20130101 09:00:02'),
 pd.Timestamp('20130101 09:00:03'),
 pd.Timestamp('20130101 09:00:05'),
 pd.Timestamp('20130101 09:00:06')],
 name='foo'))

In [62]: dft
Out[62]:

<table>
<thead>
<tr>
<th>Date</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>1.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>2.0</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>4.0</td>
</tr>
</tbody>
</table>

In [63]: dft.rolling(2).sum()

Using the time-specification generates variable windows for this sparse data.

In [64]: dft.rolling('2s').sum()

Using the time-specification generates variable windows for this sparse data.
Furthermore, we now allow an optional `on` parameter to specify a column (rather than the default of the index) in a DataFrame.

```python
In [65]: dft = dft.reset_index()
In [66]: dft
Out[66]:
       foo  B
0 2013-01-01 09:00:00  0.0
1 2013-01-01 09:00:02  1.0
2 2013-01-01 09:00:03  2.0
3 2013-01-01 09:00:05  NaN
4 2013-01-01 09:00:06  4.0
```

```python
In [67]: dft.rolling('2s', on='foo').sum()
Out[67]:
       foo  B
0 2013-01-01 09:00:00  0.0
1 2013-01-01 09:00:02  1.0
2 2013-01-01 09:00:03  3.0
3 2013-01-01 09:00:05  NaN
4 2013-01-01 09:00:06  4.0
```

14.2.4 Rolling Window Endpoints

New in version 0.20.0.

The inclusion of the interval endpoints in rolling window calculations can be specified with the `closed` parameter:

<table>
<thead>
<tr>
<th>closed</th>
<th>Description</th>
<th>Default for</th>
</tr>
</thead>
<tbody>
<tr>
<td>right</td>
<td>close right endpoint</td>
<td>time-based windows</td>
</tr>
<tr>
<td>left</td>
<td>close left endpoint</td>
<td>fixed windows</td>
</tr>
<tr>
<td>both</td>
<td>close both endpoints</td>
<td></td>
</tr>
<tr>
<td>neither</td>
<td>open endpoints</td>
<td></td>
</tr>
</tbody>
</table>

For example, having the right endpoint open is useful in many problems that require that there is no contamination from present information back to past information. This allows the rolling window to compute statistics “up to that point in time”, but not including that point in time.

```python
In [68]: df = pd.DataFrame({'x': 1},
                   index = [pd.Timestamp('20130101 09:00:01'),
                             pd.Timestamp('20130101 09:00:02'),
                             pd.Timestamp('20130101 09:00:03'),
                             pd.Timestamp('20130101 09:00:04'),
                             pd.Timestamp('20130101 09:00:06')])

In [69]: df['right'] = df.rolling('2s', closed='right').x.sum()  # default
In [70]: df['both'] = df.rolling('2s', closed='both').x.sum()
In [71]: df['left'] = df.rolling('2s', closed='left').x.sum()
In [72]: df['neither'] = df.rolling('2s', closed='neither').x.sum()
```
Currently, this feature is only implemented for time-based windows. For fixed windows, the closed parameter cannot be set and the rolling window will always have both endpoints closed.

14.2.5 Time-aware Rolling vs. Resampling

Using `.rolling()` with a time-based index is quite similar to `resampling`. They both operate and perform reductive operations on time-indexed pandas objects.

When using `.rolling()` with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same sized result as the input.

When using `.resample()` with an offset. Construct a new index that is the frequency of the offset. For each frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The result of this aggregation is the output for that frequency point. The windows are fixed size size in the frequency space. Your result will have the shape of a regular frequency between the min and the max of the original input object.

To summarize, `.rolling()` is a time-based window operation, while `.resample()` is a frequency-based window operation.

14.2.6 Centering Windows

By default the labels are set to the right edge of the window, but a `center` keyword is available so the labels can be set at the center.
14.2.7 Binary Window Functions

`cov()` and `corr()` can compute moving window statistics about two `Series` or any combination of `DataFrame/Series` or `DataFrame/DataFrame`. Here is the behavior in each case:

- **two Series**: compute the statistic for the pairing.
- **DataFrame/Series**: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame.
- **DataFrame/DataFrame**: by default compute the statistic for matching column names, returning a DataFrame. If the keyword argument `pairwise=True` is passed then computes the statistic for each pair of columns, returning a MultiIndexed DataFrame whose index are the dates in question (see the next section).

For example:

```
In [76]: df = pd.DataFrame(np.random.randn(1000, 4),
                   index=pd.date_range('1/1/2000', periods=1000),
                   columns=['A', 'B', 'C', 'D'])

In [77]: df = df.cumsum()

In [78]: df2 = df[:20]

In [79]: df2.rolling(window=5).corr(df2['B'])
```

```
Out[79]:
     A         B         C         D
2000-01-01 NaN      NaN      NaN      NaN
2000-01-02 NaN      NaN      NaN      NaN
2000-01-03 NaN      NaN      NaN      NaN
2000-01-04 NaN      NaN      NaN      NaN
2000-01-05 0.768775 1.0      -0.977990 0.800252
2000-01-06 0.744106 1.0      -0.967912 0.830021
2000-01-07 0.683257 1.0      -0.928969 0.384916
...   ...       ...       ...       ...
2000-01-14 -0.392318 1.0     0.570240 -0.591056
2000-01-15 0.017217 1.0     0.649900 -0.896258
2000-01-16 0.691078 1.0     0.807450 -0.939302
2000-01-17 0.274506 1.0     0.582601 -0.902954
2000-01-18 0.330459 1.0     0.515707 -0.545268
2000-01-19 0.046756 1.0     -0.104334 -0.419799
2000-01-20 -0.328241 1.0    -0.650974 -0.777777
[20 rows x 4 columns]
```
14.2.8 Computing rolling pairwise covariances and correlations

Warning: Prior to version 0.20.0 if `pairwise=True` was passed, a `Panel` would be returned. This will now return a 2-level MultiIndexed DataFrame, see the whatsnew [here](#).

In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the `pairwise` keyword argument, which in the case of `DataFrame` inputs will yield a MultiIndexed DataFrame whose index are the dates in question. In the case of a single `DataFrame` argument the `pairwise` argument can even be omitted:

Note: Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the [covariance section](#) for caveats associated with this method of calculating covariance and correlation matrices.

```python
In [80]: covs = df[['B','C','D']].rolling(window=50).cov(df[['A','B','C']], pairwise=True)
In [81]: covs.loc['2002-09-22':]
Out[81]:
          B       C       D
2002-09-22  1.367467  8.676734 -8.047366
          B  3.067315  0.865946 -1.052533
          C  0.865946  7.739761 -4.943924
2002-09-23  0.910343  8.669065 -8.443062
          B  2.625456  0.565152 -0.907654
          C  0.565152  7.825521 -5.367526
2002-09-24  0.463332  8.514509 -8.776514
          B  2.306695  0.267746 -0.732186
          C  0.267746  7.771425 -5.696962
2002-09-25  0.467976  8.198236 -9.162599
          B  2.307129  0.267287 -0.754080
          C  0.267287  7.466559 -5.822650
2002-09-26  0.545781  7.899084 -9.326238
          B  2.311058  0.322295 -0.844451
          C  0.322295  7.038237 -5.684445
```

```python
In [82]: correls = df.rolling(window=50).corr()
In [83]: correls.loc['2002-09-22':]
Out[83]:
          A       B       C       D
2002-09-22  1.000000  0.186397  0.744551 -0.769767
          B  0.186397  1.000000  0.177725 -0.240802
          C  0.744551  0.177725  1.000000 -0.712051
          D -0.769767 -0.240802 -0.712051  1.000000
2002-09-23  1.000000  0.134723  0.743113 -0.758758
          B  0.134723  1.000000  0.124683 -0.209934
          C  0.743113  0.124683  1.000000 -0.719088
          D -0.758758 -0.209934 -0.719088  1.000000
          ...  ...  ...  ...  ...
2002-09-25  0.075157  1.000000  0.064399 -0.164179
          B  0.075157  1.000000  0.064399 -0.164179
          C  0.731888  0.064399  1.000000 -0.704686
          D -0.739160 -0.164179 -0.704686  1.000000
2002-09-26  1.000000  0.087756  0.727792 -0.736562
          B  0.087756  1.000000  0.079913 -0.179477
          C  0.731888  0.079913  1.000000 -0.704686
          D -0.739160 -0.179477 -0.704686  1.000000
```

14.2. Window Functions
You can efficiently retrieve the time series of correlations between two columns by reshaping and indexing:

```python
In [84]: correls.unstack()[('A', 'C')].plot()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x11f896160>
```

14.3 Aggregation

Once the `Rolling`, `Expanding` or `EWM` objects have been created, several methods are available to perform multiple computations on the data. These operations are similar to the aggregating API, groupby API, and resample API.

```python
In [85]: dfa = pd.DataFrame(np.random.randn(1000, 3),
                   index=pd.date_range('1/1/2000', periods=1000),
                   columns=['A', 'B', 'C'])

In [86]: r = dfa.rolling(window=60, min_periods=1)

In [87]: r
Out[87]: Rolling [window=60, min_periods=1, center=False, axis=0]
```

We can aggregate by passing a function to the entire DataFrame, or select a Series (or multiple Series) via standard
getitem.

```python
In [88]: r.aggregate(np.sum)

Out[88]:
   A         B         C
2000-01-01 -0.289838 -0.370545 -1.284206
2000-01-02  0.216612 -1.675528 -1.169415
2000-01-03  1.154661 -1.634017 -1.566620
2000-01-04  2.969393 -4.003274 -1.816179
2000-01-05  4.690630 -4.682017 -2.717209
2000-01-06  3.880630 -4.447700 -1.078947
2000-01-07  4.001957 -2.884072 -3.116903
   ...     ...        ...  
2002-09-20  2.652493 -10.528875  9.867805
2002-09-21  0.844497  9.280944   9.522649
2002-09-22  2.860036 -9.270337   6.415245
2002-09-23  3.510163 -8.151439   5.177219
2002-09-24  6.524983 -10.168078   5.792639
2002-09-25  6.409626 -9.956226   5.704050
2002-09-26  5.093787  7.074515   6.905823
[1000 rows x 3 columns]
In [89]: r[['A']].aggregate(np.sum)

→
2000-01-01  -0.289838
2000-01-02  -0.216612
2000-01-03   1.154661
2000-01-04   2.969393
2000-01-05   4.690630
2000-01-06   3.880630
2000-01-07   4.001957
   ...     ...        ...  
2002-09-20  2.652493
2002-09-21  0.844497
2002-09-22  2.860036
2002-09-23  3.510163
2002-09-24  6.524983
2002-09-25  6.409626
2002-09-26  5.093787
Freq: D, Name: A, Length: 1000, dtype: float64
In [90]: r[['A', 'B']].aggregate(np.sum)

→
   A         B
2000-01-01 -0.289838 -0.370545
2000-01-02  0.216612 -1.675528
2000-01-03  1.154661 -1.634017
2000-01-04  2.969393 -4.003274
2000-01-05  4.690630 -4.682017
2000-01-06  3.880630 -4.447700
2000-01-07  4.001957 -2.884072
   ...     ...        
2002-09-20  2.652493 -10.528875
2002-09-21  0.844497  9.280944
2002-09-22  2.860036  9.956226
2002-09-23  3.510163  8.151439
```

14.3. Aggregation
As you can see, the result of the aggregation will have the selected columns, or all columns if none are selected.

14.3.1 Applying multiple functions

With windowed `Series` you can also pass a list of functions to do aggregation with, outputting a DataFrame:

```python
In [91]: r['A'].agg([np.sum, np.mean, np.std])
```

```plaintext
Out[91]:

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>-0.289838</td>
<td>-0.289838</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-0.216612</td>
<td>-0.108306</td>
<td>0.256725</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.154661</td>
<td>0.384887</td>
<td>0.873311</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>2.969393</td>
<td>0.742348</td>
<td>1.009734</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>4.690630</td>
<td>0.938126</td>
<td>0.977914</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>3.880630</td>
<td>0.646772</td>
<td>1.128883</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>4.001957</td>
<td>0.571708</td>
<td>1.049487</td>
</tr>
</tbody>
</table>
... | ...       | ...       | ...        |
| 2002-09-20 | 2.652493  | 0.044208  | 1.164919   |
| 2002-09-21 | 0.844497  | 0.014075  | 1.148231   |
| 2002-09-22 | 2.860036  | 0.047667  | 1.132051   |
| 2002-09-23 | 3.510163  | 0.058503  | 1.134296   |
| 2002-09-24 | 6.524983  | 0.108750  | 1.144204   |
| 2002-09-25 | 6.409626  | 0.106827  | 1.142913   |
| 2002-09-26 | 5.093787  | 0.084896  | 1.151416   |
[1000 rows x 3 columns]
```

On a windowed DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```python
In [92]: r.agg([np.sum, np.mean])
```

```plaintext
Out[92]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sum</td>
<td>mean</td>
<td>sum</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>-0.289838</td>
<td>-0.289838</td>
<td>-0.370545</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-0.216612</td>
<td>-0.108306</td>
<td>-1.675528</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.154661</td>
<td>0.384887</td>
<td>-1.634017</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>2.969393</td>
<td>0.742348</td>
<td>-4.003274</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>4.690630</td>
<td>0.938126</td>
<td>-4.682017</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>3.880630</td>
<td>0.646772</td>
<td>-4.477000</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>4.001957</td>
<td>0.571708</td>
<td>-2.884072</td>
</tr>
</tbody>
</table>
... | ...    | ...    | ...    | ...    | ...    | ...    |
| 2002-09-20 | 2.652493  | 0.044208 | -10.528875 | -0.175481 | 9.867805  | 0.164643 |
| 2002-09-21 | 0.844497  | 0.014075 | -9.280944  | -0.154682 | 9.522649  | 0.158711 |
| 2002-09-22 | 2.860036  | 0.047667 | -9.270337  | -0.154506 | 6.415245  | 0.106921 |
| 2002-09-23 | 3.510163  | 0.058503 | -8.151439  | -0.135857 | 5.177219  | 0.086287 |
| 2002-09-24 | 6.524983  | 0.108750 | -10.168078 | -0.169468 | 5.792639  | 0.096544 |
| 2002-09-25 | 6.409626  | 0.106827 | -9.956226  | -0.165937 | 5.704050  | 0.095068 |
| 2002-09-26 | 5.093787  | 0.084896 | -7.074515  | -0.117909 | 6.905823  | 0.115097 |
[1000 rows x 6 columns]
```
Passing a dict of functions has different behavior by default, see the next section.

14.3.2 Applying different functions to DataFrame columns

By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```python
In [93]: r.agg({'A' : np.sum,
       : lambda x: np.std(x, ddof=1)})

Out[93]:
     A         B
2000-01-01 -0.289838  NaN
2000-01-02 -0.216612  0.660747
2000-01-03  1.154661  0.689929
2000-01-04  2.969393  1.072199
2000-01-05  4.690630  0.939657
2000-01-06  3.880630  0.966848
2000-01-07  4.001957  1.240137
...   ...       ...
2002-09-20  2.652493  1.114814
2002-09-21  0.844497  1.113220
2002-09-22  2.860036  1.113208
2002-09-23  3.510163  1.132381
2002-09-24  6.524983  1.080963
2002-09-25  6.409626  1.082911
2002-09-26  5.093787  1.136199
[1000 rows x 2 columns]
```

The function names can also be strings. In order for a string to be valid it must be implemented on the windowed object.

```python
In [94]: r.agg({'A' : 'sum', 'B' : 'std'})

Out[94]:
     A         B
2000-01-01 -0.289838  NaN
2000-01-02 -0.216612  0.660747
2000-01-03  1.154661  0.689929
2000-01-04  2.969393  1.072199
2000-01-05  4.690630  0.939657
2000-01-06  3.880630  0.966848
2000-01-07  4.001957  1.240137
...   ...       ...
2002-09-20  2.652493  1.114814
2002-09-21  0.844497  1.113220
2002-09-22  2.860036  1.113208
2002-09-23  3.510163  1.132381
2002-09-24  6.524983  1.080963
2002-09-25  6.409626  1.082911
2002-09-26  5.093787  1.136199
[1000 rows x 2 columns]
```

Furthermore you can pass a nested dict to indicate different aggregations on different columns.
In [95]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })
Out[95]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sum</td>
<td>std</td>
<td>mean</td>
<td>std</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>-0.289838</td>
<td>NaN</td>
<td>-0.370545</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-0.216612</td>
<td>0.256725</td>
<td>-0.837764</td>
<td>0.660747</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.154661</td>
<td>0.873311</td>
<td>-0.544672</td>
<td>0.689929</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>2.969393</td>
<td>1.009734</td>
<td>-1.000819</td>
<td>1.072199</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>4.690630</td>
<td>0.977914</td>
<td>-0.936403</td>
<td>0.939657</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>3.880630</td>
<td>1.128883</td>
<td>-0.741283</td>
<td>0.966848</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>4.001957</td>
<td>1.049487</td>
<td>-0.412010</td>
<td>1.240137</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>2.652493</td>
<td>1.164919</td>
<td>-0.175481</td>
<td>1.114814</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>0.844497</td>
<td>1.148231</td>
<td>-0.154682</td>
<td>1.113220</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.860036</td>
<td>1.132051</td>
<td>-0.154506</td>
<td>1.113208</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>3.510163</td>
<td>1.134296</td>
<td>-0.135857</td>
<td>1.132381</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>6.524983</td>
<td>1.144204</td>
<td>-0.169468</td>
<td>1.080963</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>6.409626</td>
<td>1.142913</td>
<td>-0.165937</td>
<td>1.082911</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>5.093787</td>
<td>1.151416</td>
<td>-0.117909</td>
<td>1.136199</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]

14.4 Expanding Windows

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time.

These follow a similar interface to `rolling`, with the `expanding` method returning an `Expanding` object.

As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:

```python
In [96]: df.rolling(window=len(df), min_periods=1).mean()[:5]  
Out[96]:  
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
<td>-0.001675</td>
<td>0.071823</td>
<td>0.892566</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.654522</td>
<td>-0.171495</td>
<td>0.179278</td>
<td>0.853361</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.708733</td>
<td>-0.064489</td>
<td>-0.238271</td>
<td>1.371111</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.987613</td>
<td>0.163472</td>
<td>-0.919693</td>
<td>1.566485</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>1.426971</td>
<td>0.288267</td>
<td>-1.358877</td>
<td>1.808650</td>
</tr>
</tbody>
</table>

In [97]: df.expanding(min_periods=1).mean()[:5]  

```

These have a similar set of methods to `rolling` methods.
14.4.1 Method Summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Sum of values</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Mean of values</td>
</tr>
<tr>
<td><code>median()</code></td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>Minimum</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>Maximum</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>Unbiased variance</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td><code>kurt()</code></td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td><code>quantile()</code></td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td><code>apply()</code></td>
<td>Generic apply</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

Aside from not having a `window` parameter, these functions have the same interfaces as their `.rolling` counterparts. Like above, the parameters they all accept are:

- `min_periods`: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. No NaNs will be output once `min_periods` non-null data points have been seen.
- `center`: boolean, whether to set the labels at the center (default is `False`)

Note: The output of the `.rolling` and `.expanding` methods do not return a NaN if there are at least `min_periods` non-null values in the current window. For example,

```python
In [98]: sn = pd.Series([1, 2, np.nan, 3, np.nan, 4])

In [99]: sn
Out[99]:
0   1.0
1   2.0
2  NaN
3   3.0
4  NaN
5   4.0
dtype: float64

In [100]: sn.rolling(2).max()
Out[100]:
0   NaN
1   2.0
2  NaN
3  NaN
4  NaN
5  NaN
dtype: float64

In [101]: sn.rolling(2, min_periods=1).max()
```

14.4. Expanding Windows
In case of expanding functions, this differs from `cumsum()`, `cumprod()`, `cummax()`, and `cummin()`, which return NaN in the output wherever a NaN is encountered in the input. In order to match the output of `cumsum` with expanding, use `fillna()`:

```python
In [102]: sn.expanding().sum()
Out[102]:
   0   1.0
   1   3.0
   2   3.0
   3   6.0
   4   6.0
   5  10.0
dtype: float64
```

```python
In [103]: sn.cumsum()
Out[103]:
   0   1.0
   1   3.0
   2  NaN
   3   6.0
   4  NaN
   5  10.0
dtype: float64
```

```python
In [104]: sn.cumsum().fillna(method='ffill')
Out[104]:
   0   1.0
   1   3.0
   2   3.0
   3   6.0
   4   6.0
   5  10.0
dtype: float64
```

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the `mean()` output for the previous time series dataset:

```python
In [105]: s.plot(style='k--')
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x11fcd7668>
```

```python
In [106]: s.expanding().mean().plot(style='k')
Out[106]: <matplotlib.axes._subplots.AxesSubplot at 0x11fcd7668>
```
14.5 Exponentially Weighted Windows

A related set of functions are exponentially weighted versions of several of the above statistics. A similar interface to `.rolling` and `.expanding` is accessed through the `.ewm` method to receive an `EWM` object. A number of expanding EW (exponentially weighted) methods are provided:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mean()</code></td>
<td>EW moving average</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>EW moving variance</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>EW moving standard deviation</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>EW moving correlation</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>EW moving covariance</td>
</tr>
</tbody>
</table>

In general, a weighted moving average is calculated as

\[y_t = \frac{\sum_{i=0}^{t} w_i x_{t-i}}{\sum_{i=0}^{t} w_i}, \]

where \(x_t \) is the input and \(y_t \) is the result.

The EW functions support two variants of exponential weights. The default, `adjust=True`, uses the weights \(w_i = (1 - \alpha)^i \) which gives

\[y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2x_{t-2} + \ldots + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots + (1 - \alpha)^t} \]
When `adjust=False` is specified, moving averages are calculated as

\[
y_0 = x_0 \\
y_t = (1 - \alpha)y_{t-1} + \alpha x_t,
\]

which is equivalent to using weights

\[
w_i = \begin{cases}
\alpha(1-\alpha)^i & \text{if } i < t \\
(1-\alpha)^i & \text{if } i = t.
\end{cases}
\]

Note: These equations are sometimes written in terms of \(\alpha' = 1 - \alpha\), e.g.

\[
y_t = \alpha' y_{t-1} + (1 - \alpha')x_t.
\]

The difference between the above two variants arises because we are dealing with series which have finite history. Consider a series of infinite history:

\[
y_t = \frac{x_t + (1-\alpha)x_{t-1} + (1-\alpha)^2x_{t-2} + ...}{1 + (1-\alpha) + (1-\alpha)^2 + ...}
\]

Noting that the denominator is a geometric series with initial term equal to 1 and a ratio of \(1-\alpha\) we have

\[
y_t = \frac{x_t + (1-\alpha)x_{t-1} + (1-\alpha)^2x_{t-2} + ...}{1-(1-\alpha)}
\]

\[
= [x_t + (1-\alpha)x_{t-1} + (1-\alpha)^2x_{t-2} + ...]\alpha
\]

\[
= \alpha x_t + [(1-\alpha)x_{t-1} + (1-\alpha)^2x_{t-2} + ...]\alpha
\]

\[
= \alpha x_t + (1-\alpha)[x_{t-1} + (1-\alpha)x_{t-2} + ...]\alpha
\]

\[
= \alpha x_t + (1-\alpha)y_{t-1}
\]

which shows the equivalence of the above two variants for infinite series. When `adjust=True` we have \(y_0 = x_0\) and from the last representation above we have \(y_t = \alpha x_t + (1-\alpha)y_{t-1}\), therefore there is an assumption that \(x_0\) is not an ordinary value but rather an exponentially weighted moment of the infinite series up to that point.

One must have \(0 < \alpha \leq 1\), and while since version 0.18.0 it has been possible to pass \(\alpha\) directly, it’s often easier to think about either the **span**, **center of mass (com)** or **half-life** of an EW moment:

- **Span** corresponds to what is commonly called an “N-day EW moving average”.
- **Center of mass** has a more physical interpretation and can be thought of in terms of span: \(c = (s-1)/2\).
- **Half-life** is the period of time for the exponential weight to reduce to one half.
- **Alpha** specifies the smoothing factor directly.

One must specify precisely one of **span**, **center of mass**, **half-life** and **alpha** to the EW functions:

- **Span** corresponds to what is commonly called an “N-day EW moving average”.
- **Center of mass** has a more physical interpretation and can be thought of in terms of span: \(c = (s-1)/2\).
- **Half-life** is the period of time for the exponential weight to reduce to one half.
- **Alpha** specifies the smoothing factor directly.

Here is an example for a univariate time series:

```python
In [107]: s.plot(style='k--')
Out[107]: <matplotlib.axes._subplots.AxesSubplot at 0x111396940>

In [108]: s.ewm(span=20).mean().plot(style='k')
```

```python
\text{Out[108]:} <matplotlib.axes._subplots.AxesSubplot at 0x111396940>
```
EWM has a `min_periods` argument, which has the same meaning it does for all the `.expanding` and `.rolling` methods: no output values will be set until at least `min_periods` non-null values are encountered in the (expanding) window. (This is a change from versions prior to 0.15.0, in which the `min_periods` argument affected only the `min_periods` consecutive entries starting at the first non-null value.)

EWM also has an `ignore_na` argument, which determines how intermediate null values affect the calculation of the weights. When `ignore_na=False` (the default), weights are calculated based on absolute positions, so that intermediate null values affect the result. When `ignore_na=True` (which reproduces the behavior in versions prior to 0.15.0), weights are calculated by ignoring intermediate null values. For example, assuming `adjust=True`, if `ignore_na=False`, the weighted average of 3, NaN, 5 would be calculated as

\[
\frac{(1 - \alpha) \cdot 3 + 1 \cdot 5}{(1 - \alpha)^2 + 1}
\]

Whereas if `ignore_na=True`, the weighted average would be calculated as

\[
\frac{(1 - \alpha) \cdot 3 + 1 \cdot 5}{(1 - \alpha) + 1}
\]

The `var()`, `std()`, and `cov()` functions have a `bias` argument, specifying whether the result should contain biased or unbiased statistics. For example, if `bias=True`, `ewmvar(x)` is calculated as `ewmvar(x) = ewma(x**2) - ewma(x)**2`; whereas if `bias=False` (the default), the biased variance statistics are scaled by debiasing factors

\[
\frac{\left(\sum_{i=0}^{t} w_i\right)^2}{\left(\sum_{i=0}^{t} w_i\right)^2 - \sum_{i=0}^{t} w_i^2}
\]

(For \(w_i = 1\), this reduces to the usual \(N/(N - 1)\) factor, with \(N = t + 1\).) See Weighted Sample Variance for further details.

14.5. Exponentially Weighted Windows
In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the cookbook for some advanced strategies

15.1 Missing data basics

15.1.1 When / why does data become missing?

Some might quibble over our usage of missing. By “missing” we simply mean null or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example

```python
In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
                      columns=['one', 'two', 'three'])
...
...

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
Out[4]:
     one   two   three  four  five
a   -0.166778  0.501113 -0.355322   bar  False
b   -0.337890  0.580967  0.983801   bar  False
c   0.057802  0.761948 -0.712964   bar   True
d   -0.443160 -0.974602  1.047704   bar  False
e   -0.717852 -1.053898 -0.019369   bar  False

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
Out[6]:
```
15.1.2 Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that “missing” or “null”.

Note: Prior to version v0.10.0 inf and -inf were also considered to be “null” in computations. This is no longer the case by default; use the mode.use_inf_as_null option to recover it.

To make detecting missing values easier (and across different array dtypes), pandas provides the isnull() and notnull() functions, which are also methods on Series and DataFrame objects:

```python
In [7]: df2['one']
Out[7]:
a -0.166778
b NaN
c -0.337890
d NaN
e 0.057802
f -0.443160
g NaN
h -0.717852
Name: one, dtype: float64

In [8]: pd.isnull(df2['one'])
→
a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool

In [9]: df2['four'].notnull()
→
a True
b False
c True
```
Warning: One has to be mindful that in python (and numpy), the `nan`'s don’t compare equal, but `None`'s do. Note that Pandas/numpy uses the fact that `np.nan != np.nan`, and treats `None` like `np.nan`.

In [11]: `None == None`
Out[11]: `True`

In [12]: `np.nan == np.nan`

So as compared to above, a scalar equality comparison versus a `None/np.nan` doesn’t provide useful information.

In [13]: `df2['one'] == np.nan`
Out[13]:
a False
b False
c False
d False
e False
f False
g False
h False
Name: one, dtype: bool

15.2 Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.
15.3 Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

```
In [20]: s = pd.Series([1, 2, 3])
In [21]: s.loc[0] = None
In [22]: s
Out[22]:
   0  NaN
   1  2.0
   2  3.0
 dtype: float64
```

Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

```
In [23]: s = pd.Series(["a", "b", "c"])
In [24]: s.loc[0] = None
In [25]: s.loc[1] = np.nan
```
15.4 Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

```python
In [26]: s
Out[26]:
0   None
1    NaN
2     c
dtype: object
```

```python
In [27]: a
Out[27]:
   one    two
a  NaN  0.501113
b  NaN  0.580967
c  NaN  0.761948
d -0.443160 -0.974602
e  0.057802  0.761948
f -0.443160 -0.974602
g  0.057802  0.761948
h -0.443160 -1.053898
```

```python
In [28]: b
→
   one    two    three
a  NaN  0.501113 -0.355322
b  NaN  0.580967  0.983801
c  NaN  0.761948 -0.712964
d -0.443160 -0.974602  0.047704
e  0.057802  0.761948 -0.712964
f -0.443160 -0.974602  0.047704
g  0.057802  0.761948 -0.712964
h  NaN  0.057802 -2.107796
```

```python
In [29]: a + b
→
   one    three    two
a  NaN   NaN  1.002226
b  NaN   NaN  0.115604
c  NaN   NaN  1.161935
d -0.886321  NaN -1.949205
e  0.115604 NaN  0.983801
f -0.443160  NaN -1.053898
g  0.057802  NaN -2.107796
h  NaN   NaN  0.047704
```

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and here) are all written to account for missing data. For example:

- When summing data, NA (missing) values will be treated as zero
- If the data are all NA, the result will be NA
- Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays

```python
In [30]: df
Out[30]:
   one    two    three
a  NaN  0.501113 -0.355322
b  NaN  0.580967  0.983801
c  NaN  0.761948 -0.712964
d -0.443160 -0.974602  0.047704
e  0.057802  0.761948 -0.712964
f -0.443160 -0.974602  0.047704
```

15.4. Calculations with missing data
In

15.4.1 NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example:

See the groupby section here for more information.

15.5 Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.
15.5.1 Filling missing values: `fillna`

The `fillna` function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

Replace NA with a scalar value

```python
In [36]: df2
Out[36]:
          one   two   three   four    five  timestamp
a       NaN  0.501113 -0.355322  bar  False       NaT
c       NaN  0.580967  0.983801  bar  False       NaT
e  0.057802  0.761948 -0.712964  bar   True  2012-01-01
f -0.443160 -0.974602  1.047704  bar  False  2012-01-01
h       NaN -1.053898 -0.019369  bar  False       NaT
In [37]: df2.fillna(0)
Out[37]:
   one   two   three   four    five  timestamp
a  0.000000  0.501113 -0.355322  bar  False  1970-01-01
c  0.000000  0.580967  0.983801  bar  False  1970-01-01
e  0.057802  0.761948 -0.712964  bar   True  2012-01-01
f -0.443160 -0.974602  1.047704  bar  False  2012-01-01
h  0.000000 -1.053898 -0.019369  bar  False  1970-01-01
In [38]: df2['four'].fillna('missing')
```

Fill gaps forward or backward

Using the same filling arguments as `reindexing`, we can propagate non-null values forward or backward:

```python
In [39]: df
Out[39]:
   one   two   three
a       NaN  0.501113 -0.355322
c       NaN  0.580967  0.983801
e  0.057802  0.761948 -0.712964
f -0.443160 -0.974602  1.047704
h       NaN -1.053898 -0.019369
In [40]: df.fillna(method='pad')
```

Limit the amount of filling
If we only want consecutive gaps filled up to a certain number of data points, we can use the `limit` keyword:

```
In [41]: df
Out[41]:
   one   two   three
  a   NaN  0.501113 -0.355322
c   NaN  0.580967  0.983801
e   NaN   NaN   NaN
f   NaN   NaN   NaN
  h   NaN -1.053898 -0.019369

In [42]: df.fillna(method='pad', limit=1)
```

To remind you, these are the available filling methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point.

The `ffill()` function is equivalent to `fillna(method='ffill')` and `bfill()` is equivalent to `fillna(method='bfill')`

15.5.2 Filling with a PandasObject

New in version 0.12.

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

```
In [43]: dff = pd.DataFrame(np.random.randn(10,3), columns=list('ABC'))
In [44]: dff.iloc[3:5,0] = np.nan
In [45]: dff.iloc[4:6,1] = np.nan
In [46]: dff.iloc[5:8,2] = np.nan
In [47]: dff
Out[47]:
   A         B         C
0  0.758887  2.340598  0.219039
1 -1.235583  0.031785  0.701683
2 -1.557016 -0.636986 -1.238610
3   NaN      1.002278  0.654052
4   NaN      NaN     1.053999
5  0.651981   NaN      NaN
6  0.109001 -0.533294   NaN
```
In [48]: dff.fillna(dff.mean())

\[\begin{array}{ccc}
0 & 0.758887 & 2.340598 \\
1 & -1.235583 & 0.031785 \\
2 & -1.557016 & -0.636986 \\
3 & -0.407125 & -1.002278 \\
4 & -0.407125 & 0.033067 \\
5 & 0.651981 & 0.033067 \\
6 & 0.109001 & -0.533294 \\
7 & -1.037831 & -1.150016 \\
8 & -0.687693 & 1.921056 \\
9 & -0.258742 & -0.706329 \\
\end{array}\]

In [49]: dff.fillna(dff.mean()['B':'C'])

\[\begin{array}{ccc}
0 & 0.758887 & 2.340598 \\
1 & -1.235583 & 0.031785 \\
2 & -1.557016 & -0.636986 \\
3 & NaN & -1.002278 \\
4 & NaN & 0.033067 \\
5 & 0.651981 & 0.033067 \\
6 & 0.109001 & -0.533294 \\
7 & -1.037831 & -1.150016 \\
8 & -0.687693 & 1.921056 \\
9 & -0.258742 & -0.706329 \\
\end{array}\]

New in version 0.13.

Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [50]: dff.where(pd.notnull(dff), dff.mean(), axis='columns')

\[\begin{array}{ccc}
0 & 0.758887 & 2.340598 \\
1 & -1.235583 & 0.031785 \\
2 & -1.557016 & -0.636986 \\
3 & NaN & -1.002278 \\
4 & NaN & 0.033067 \\
5 & 0.651981 & 0.033067 \\
6 & 0.109001 & -0.533294 \\
7 & -1.037831 & -1.150016 \\
8 & -0.687693 & 1.921056 \\
9 & -0.258742 & -0.706329 \\
\end{array}\]

15.5.3 Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the `dropna` method:
Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined in the API.

15.5.4 Interpolation

New in version 0.13.0: `interpolate()` and `interpolate()` have revamped interpolation methods and functionality.

New in version 0.17.0: The `limit_direction` keyword argument was added.

Both Series and DataFrame objects have an `interpolate` method that, by default, performs linear interpolation at missing datapoints.
Index aware interpolation is available via the method keyword:

```
In [59]: ts2
Out[59]:
2000-01-31  0.469112
2000-02-29  NaN
2002-07-31 -5.689738
2005-01-31  NaN
2008-04-30 -8.916232
dtype: float64
```

```python
In [60]: ts2.interpolate()
```

Index aware interpolation is available via the method keyword:

```
In [56]: ts.count()
Out[56]:
61
```

```
In [57]: ts.interpolate().count()
Out[57]:
100
```

```
In [58]: ts.interpolate().plot()
```

```
Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x12fa5e4a8>
```
2000-01-31 0.469112
2000-02-29 -2.610313
2002-07-31 -5.689738
2005-01-31 -7.302985
2008-04-30 -8.916232
dtype: float64

In [61]: ts2.interpolate(method='time')

Out[61]:
 2000-01-31 0.469112
 2000-02-29 0.273272
 2002-07-31 -5.689738
 2005-01-31 -7.095568
 2008-04-30 -8.916232
dtype: float64

For a floating-point index, use method='values':

In [62]: ser
Out[62]:
 0.0 0.0
 1.0 NaN
 10.0 10.0
dtype: float64

In [63]: ser.interpolate()

Out[63]:
 0.0 0.0
 1.0 5.0
 10.0 10.0
dtype: float64

In [64]: ser.interpolate(method='values')

Out[64]:
 0.0 0.0
 1.0 1.0
 10.0 10.0
dtype: float64

You can also interpolate with a DataFrame:

In [65]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [66]: df
Out[66]:
 A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40

In [67]: df.interpolate()
The method argument gives access to fancier interpolation methods. If you have scipy installed, you can set pass the name of a 1-d interpolation routine to method. You’ll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with.

- If you are dealing with a time series that is growing at an increasing rate, method='quadratic' may be appropriate.
- If you have values approximating a cumulative distribution function, then method='pchip' should work well.
- To fill missing values with goal of smooth plotting, use method='akima'.

Warning: These methods require scipy.
When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

```python
In [71]: df.interpolate(method='spline', order=2)
Out[71]:
    A     B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
```

```python
In [72]: df.interpolate(method='polynomial', order=2)
```

```python
In [73]: np.random.seed(2)
In [74]: ser = pd.Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))
In [75]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
In [76]: ser[bad] = np.nan
In [77]: methods = ['linear', 'quadratic', 'cubic']
In [78]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
In [79]: df.plot()
```

```
704 Chapter 15. Working with missing data
```
Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ `reindex` and `interpolate` methods to interpolate at the new values.

```python
In [80]: ser = pd.Series(np.sort(np.random.uniform(size=100)))

# interpolate at new_index
In [81]: new_index = ser.index | pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [82]: interp_s = ser.reindex(new_index).interpolate(method='pchip')

In [83]: interp_s[49:51]
Out[83]:
49.00 0.471410
49.25 0.476841
49.50 0.481780
49.75 0.485998
50.00 0.489266
50.25 0.491814
50.50 0.493995
50.75 0.495763
51.00 0.497074
dtype: float64
```

15.5.4.1 Interpolation Limits

Like other pandas fill methods, `interpolate` accepts a `limit` keyword argument. Use this argument to limit the number of consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:
By default, `limit` applies in a forward direction, so that only NaN values after a non-NaN value can be filled. If you provide 'backward' or 'both' for the `limit_direction` keyword argument, you can fill NaN values before non-NaN values, or both before and after non-NaN values, respectively:

```python
In [86]: ser.interpolate(limit=1)  # limit_direction == 'forward'
Out[86]:
    0    NaN
    1    NaN
    2     5.0
    3     7.0
    4    NaN
    5    NaN
    6    13.0
dtype: float64

In [87]: ser.interpolate(limit=1, limit_direction='backward')
   ...
Out[87]:
    0    NaN
    1     5.0
    2     5.0
    3    NaN
    4    NaN
    5    11.0
    6    13.0
dtype: float64

In [88]: ser.interpolate(limit=1, limit_direction='both')
   ...
```

15.5.5 Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v0.8 is the `replace` method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.
For a Series, you can replace a single value or a list of values by another value:

```python
In [89]: ser = pd.Series([0., 1., 2., 3., 4.])
In [90]: ser.replace(0, 5)
Out[90]:
0  5.0
1  1.0
2  2.0
3  3.0
4  4.0
dtype: float64
```

You can replace a list of values by a list of other values:

```python
In [91]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[91]:
0  4.0
1  3.0
2  2.0
3  1.0
4  0.0
dtype: float64
```

You can also specify a mapping dict:

```python
In [92]: ser.replace({0: 10, 1: 100})
Out[92]:
0  10.0
1  100.0
2  2.0
3  3.0
4  4.0
dtype: float64
```

For a DataFrame, you can specify individual values by column:

```python
In [93]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})
In [94]: df.replace({'a': 0, 'b': 5}, 100)
Out[94]:
   a  b
0  100 100
1   1   6
2   2   7
3   3   8
4   4   9
```

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

```python
In [95]: ser.replace([1, 2, 3], method='pad')
Out[95]:
0  0.0
1  0.0
2  0.0
3  0.0
4  4.0
dtype: float64
```
15.5.6 String/Regular Expression Replacement

Note: Python strings prefixed with the r character such as r'hello world' are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., r'\' == '\'. You should read about them if this is unclear.

Replace the . with nan (str -> str)

```
In [96]: d = {'a': list(range(4)), 'b': list('ab. '), 'c': ['a', 'b', np.nan, 'd']}
In [97]: df = pd.DataFrame(d)
In [98]: df.replace('.', np.nan)
Out[98]:
   a  b  c
0  0  a  a
1  1  b  b
2  NaN NaN
3  NaN  d
```

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)

```
In [99]: df.replace(r'\s*\.\s*', np.nan, regex=True)
Out[99]:
   a  b  c
0  0  a  a
1  1  b  b
2  NaN NaN
3  NaN  d
```

Replace a few different values (list -> list)

```
In [100]: df.replace(['a', '.'], ['b', np.nan])
Out[100]:
   a  b  c
0  0  b  b
1  1  b  b
2  NaN NaN
3  NaN  d
```

list of regex -> list of regex

```
In [101]: df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True)
Out[101]:
   a  b  c
0  stuff stuff
1  1  b  b
2  dot  NaN
3  dot  d
```

Only search in column 'b' (dict -> dict)

```
In [102]: df.replace({'b': '.'}, {'b': np.nan})
Out[102]:
   a  b  c
0  0  a  a
```

708 Chapter 15. Working with missing data
Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)

```python
In [103]: df.replace({'b': r'\s*\.*\s*'}, {'b': np.nan}, regex=True)
Out[103]:
   a  b  c
0  a  a
1  b  b
2  NaN NaN
3  NaN d
```

You can pass nested dictionaries of regular expressions that use regex=True

```python
In [104]: df.replace({'b': {'b': r''}}, regex=True)
Out[104]:
   a  b  c
0  a  a
1  b
2  . Nan
3  . d
```

or you can pass the nested dictionary like so

```python
In [105]: df.replace(regex={'b': {r'\s*\.*\s*': np.nan}})
Out[105]:
   a  b  c
0  a  a
1  b
2  . Nan
3  . d
```

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well

```python
In [106]: df.replace({'b': r'\s*(\.*)\s*'}, {'b': r'\1ty'}, regex=True)
Out[106]:
   a  b  c
0  a  a
1  b
2  .ty Nan
3  .ty d
```

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)

```python
In [107]: df.replace([r'\s*\.*\s*', r'a\|b'], np.nan, regex=True)
Out[107]:
   a  b  c
0  NaN NaN
1  NaN NaN
2  NaN NaN
3  NaN d
```

All of the regular expression examples can also be passed with the to_replace argument as the regex argument. In this case the value argument must be passed explicitly by name or regex must be a nested dictionary. The
previous example, in this case, would then be

```python
In [108]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
Out[108]:
   a    b    c
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  NaN   d
```

This can be convenient if you do not want to pass `regex=True` every time you want to use a regular expression.

Note: Anywhere in the above `replace` examples that you see a regular expression a compiled regular expression is valid as well.

15.5.7 Numeric Replacement

Similar to `DataFrame.fillna`

```python
In [109]: df = pd.DataFrame(np.random.randn(10, 2))
In [110]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5
In [111]: df.replace(1.5, np.nan)
Out[111]:
       0     1
0 -0.844214 -1.021415
1  0.432396 -0.323580
2  0.423825  0.799180
3  1.262614  0.751965
4  NaN      NaN
5  NaN      NaN
6 -0.498174 -1.060799
7  0.591667 -0.183257
8  1.019855 -1.482465
9  NaN      NaN
```

Replacing more than one value via lists works as well

```python
In [112]: df00 = df.values[0, 0]
In [113]: df.replace([1.5, df00], [np.nan, 'a'])
Out[113]:
       0    1
0      a  -1.02141
1  0.432396 -0.32358
2  0.423825  0.79918
3  1.262614  0.751965
4  NaN      NaN
5  NaN      NaN
6 -0.498174 -1.060799
7  0.591667 -0.183257
8  1.019855 -1.482465
9  NaN      NaN
```
You can also operate on the DataFrame in place

```python
In [115]: df.replace(1.5, np.nan, inplace=True)
```

Warning: When replacing multiple bool or datetime64 objects, the first argument to replace (to_replace) must match the type of the value being replaced type. For example,

```python
s = pd.Series([True, False, True])
s.replace({'a string': 'new value', True: False})  # raises
```

will raise a TypeError because one of the dict keys is not of the correct type for replacement.

However, when replacing a single object such as,

```python
In [116]: s = pd.Series([True, False, True])
In [117]: s.replace('a string', 'another string')
```

the original NDFrame object will be returned untouched. We're working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

15.6 Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we've established some “casting rules” when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

<table>
<thead>
<tr>
<th>data type</th>
<th>Cast to</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>boolean</td>
<td>object</td>
</tr>
<tr>
<td>float</td>
<td>no cast</td>
</tr>
<tr>
<td>object</td>
<td>no cast</td>
</tr>
</tbody>
</table>

For example:

```python
In [118]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])
In [119]: s > 0
```

```plaintext
Out [119]:
0   True
2   True
4   True
6   True
7   True
```
Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

```
In [124]: reindexed = s.reindex(list(range(8))).fillna(0)
In [125]: reindexed[crit]
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-125-2da204ed1ac7> in <module>()
----> 1 reindexed[crit]
/Users/taugspurger/sandbox/pandas/pandas/core/series.py in __getitem__(self, key)
   637     key = list(key)
   638 --> 639     if com.is_bool_indexer(key):
/Users/taugspurger/sandbox/pandas/pandas/core/common.py in is_bool_indexer(key)
   187         if not lib.is_bool_array(key):
   188             if isnull(key).any():
-> 189                 raise ValueError('cannot index with vector containing ' 'NA / NaN values')
   190         key = check_bool_indexer(self.index, key)
   191     return False

ValueError: cannot index with vector containing NA / NaN values
```

However, these can be filled in using `fillna` and it will work fine:

```
In [126]: reindexed[crit.fillna(False)]
Out[126]:
0  0.126504
2  0.696198
```

Chapter 15. Working with missing data
In [127]: reindexed[crit.fillna(True)]

Out[127]:
 0 0.126504
 1 0.000000
 2 0.696198
 3 0.000000
 4 0.697416
 5 0.000000
 6 0.601516
 7 0.003659
dtype: float64
GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps:

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into groups and do something with those groups yourself. In the apply step, we might wish to one of the following:

- **Aggregation**: computing a summary statistic (or statistics) about each group. Some examples:
 - Compute group sums or means
 - Compute group sizes / counts
- **Transformation**: perform some group-specific computations and return a like-indexed. Some examples:
 - Standardizing data (zscore) within group
 - Filling NAs within groups with a value derived from each group
- **Filtration**: discard some groups, according to a group-wise computation that evaluates True or False. Some examples:
 - Discarding data that belongs to groups with only a few members
 - Filtering out data based on the group sum or mean
- Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly combined result if it doesn’t fit into either of the above two categories

Since the set of object instance methods on pandas data structures are generally rich and expressive, we often simply want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who have used a SQL-based tool (or `itertools`), in which you can write code like:

```sql
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2
```

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality then provide some non-trivial examples / use cases.

See the *cookbook* for some advanced strategies.
16.1 Splitting an object into groups

Pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:

```python
# default is axis=0
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])
```

The mapping can be specified many different ways:

- A Python function, to be called on each of the axis labels
- A list or NumPy array of the same length as the selected axis
- A dict or Series, providing a label → group name mapping
- For DataFrame objects, a string indicating a column to be used to group. Of course `df.groupby('A')` is just syntactic sugar for `df.groupby(df['A'])`, but it makes life simpler
- For DataFrame objects, a string indicating an index level to be used to group.
- A list of any of the above things

Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:

```python
In [1]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
                      ...:                        'foo', 'bar', 'foo', 'foo'],
                      ...
                      ...
                      ...
                      ...
                      ...
                      ...
                      'B': ['one', 'one', 'two', 'three',
                      ...
                      ...
                      ...
                      ...
                      ...
                      ...
                      'C': np.random.randn(8),
                      ...
                      ...
                      ...
                      ...
                      ...
                      'D': np.random.randn(8))})
```

```python
In [2]: df
Out[2]:
   A    B     C     D
0  foo  one  0.469112 -0.861849
1  bar  one -0.282863 -2.104569
2  foo  two -1.509059  -0.494929
3  bar  three -1.135632  1.071804
4  foo  two  1.212112  0.721555
5  bar  two -0.173215  -0.706771
6  foo  one  0.119209 -1.039575
7  foo  three -1.044236  0.271860
```

We could naturally group by either the A or B columns or both:

```python
In [3]: grouped = df.groupby('A')
In [4]: grouped = df.groupby(['A', 'B'])
```
These will split the DataFrame on its index (rows). We could also split by the columns:

```
In [5]: def get_letter_type(letter):
    ...:     if letter.lower() in 'aeiou':
    ...:         return 'vowel'
    ...:     else:
    ...:         return 'consonant'
    ...
In [6]: grouped = df.groupby(get_letter_type, axis=1)
```

Starting with 0.8, pandas Index objects now support duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values:

```
In [7]: lst = [1, 2, 3, 1, 2, 3]
In [8]: s = pd.Series([1, 2, 3, 10, 20, 30], lst)
In [9]: grouped = s.groupby(level=0)
In [10]: grouped.first()
Out[10]:
   1  1
   2  2
   3  3
   dtype: int64
In [11]: grouped.last()
Out[11]:
   1  10
   2  20
   3  30
   dtype: int64
In [12]: grouped.sum()
Out[12]:
   1   11
   2   22
   3   33
   dtype: int64
```

Note that **no splitting occurs** until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

16.1.1 GroupBy sorting

By default the group keys are sorted during the groupby operation. You may however pass `sort=False` for potential speedups:
In [13]: df2 = pd.DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})

In [14]: df2.groupby(['X']).sum()
Out[14]:
 Y
X
A 7
B 3

In [15]: df2.groupby(['X'], sort=False).sum()
 Out[15]:
 Y
X
B 3
A 7

Note that `groupby` will preserve the order in which observations are sorted within each group. For example, the groups created by `groupby()` below are in the order they appeared in the original DataFrame:

In [16]: df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})

In [17]: df3.groupby(['X']).get_group('A')
Out[17]:
 X Y
0 A 1
2 A 3

In [18]: df3.groupby(['X']).get_group('B')
 Out[18]:
 X Y
1 B 4
3 B 2

16.1.2 GroupBy object attributes

The `groups` attribute is a dict whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group. In the above example we have:

In [19]: df.groupby('A').groups
Out[19]:
{'bar': Int64Index([1, 3, 5], dtype='int64'),
 'foo': Int64Index([0, 2, 4, 6, 7], dtype='int64')}

In [20]: df.groupby(get_letter_type, axis=1).groups
 Out[20]:
{'consonant': Index(['B', 'C', 'D'], dtype='object'),
 'vowel': Index(['A'], dtype='object')}

Calling the standard Python `len` function on the GroupBy object just returns the length of the `groups` dict, so it is largely just a convenience:

In [21]: grouped = df.groupby(['A', 'B'])

In [22]: grouped.groups
Out[22]:
pandas: powerful Python data analysis toolkit, Release 0.20.1

In [23]: len(grouped)

Out[23]: 6

GroupBy will tab complete column names (and other attributes)

In [24]: df

Out[24]:

<table>
<thead>
<tr>
<th>gender</th>
<th>height</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>42.849980</td>
<td>157.500553</td>
</tr>
<tr>
<td>male</td>
<td>49.607315</td>
<td>177.340407</td>
</tr>
<tr>
<td>male</td>
<td>56.293531</td>
<td>171.524640</td>
</tr>
<tr>
<td>female</td>
<td>48.421077</td>
<td>144.251986</td>
</tr>
<tr>
<td>male</td>
<td>46.556882</td>
<td>152.526206</td>
</tr>
<tr>
<td>female</td>
<td>68.448851</td>
<td>168.272968</td>
</tr>
<tr>
<td>male</td>
<td>70.757698</td>
<td>136.431469</td>
</tr>
<tr>
<td>female</td>
<td>76.435631</td>
<td>174.094104</td>
</tr>
<tr>
<td>male</td>
<td>45.306120</td>
<td>177.540920</td>
</tr>
</tbody>
</table>

In [25]: gb = df.groupby('gender')

16.1.3 GroupBy with MultiIndex

With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.

Let’s create a Series with a two-level MultiIndex.

In [27]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

In [28]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

In [29]: s = pd.Series(np.random.randn(8), index=index)

In [30]: s

Out[30]:

16.1. Splitting an object into groups

719
We can then group by one of the levels in `s`.

```python
In [31]: grouped = s.groupby(level=0)

In [32]: grouped.sum()
Out[32]:
   first
bar  -0.962232
baz  1.237723
foo  0.785980
qux  1.911055
dtype: float64
```

If the MultiIndex has names specified, these can be passed instead of the level number:

```python
In [33]: s.groupby(level='second').sum()
Out[33]:
   second
one  0.980950
two  1.991575
dtype: float64
```

The aggregation functions such as `sum` will take the level parameter directly. Additionally, the resulting index will be named according to the chosen level:

```python
In [34]: s.sum(level='second')
Out[34]:
   second
one  0.980950
two  1.991575
dtype: float64
```

New in version 0.6.

Grouping with multiple levels is supported.

```python
In [35]: s
Out[35]:
   first  second  third
bar   doo  one  -1.131345
   two  -0.089329
baz   bee  one  0.337863
   two  -0.945867
foo   bop  one  -0.932132
   two   1.956030
qux   bop  one   0.017587
   two  -0.016692
```
dtype: float64

In [36]: s.groupby(level=['first', 'second']).sum()

 first second
bar doo -1.220674
baz bee -0.608004
foo bop 1.023898
qux bop 0.000895
dtype: float64

New in version 0.20.

Index level names may be supplied as keys.

In [37]: s.groupby(['first', 'second']).sum()
Out[37]:
 first second
bar doo -1.220674
baz bee -0.608004
foo bop 1.023898
qux bop 0.000895
dtype: float64

More on the sum function and aggregation later.

16.1.4 Grouping DataFrame with Index Levels and Columns

A DataFrame may be grouped by a combination of columns and index levels by specifying the column names as strings and the index levels as `pd.Grouper` objects.

In [38]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 : ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

In [39]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second']

In [40]: df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3],
 : 'B': np.arange(8)},
 : index=index)

In [41]: df
Out[41]:

 A B
first second
bar one 1 0
two 1 1
baz one 1 2
two 1 3
foo one 2 4
two 2 5
qux one 3 6
two 3 7

The following example groups df by the second index level and the A column.
Index levels may also be specified by name.

```python
In [43]: df.groupby([pd.Grouper(level='second'), 'A']).sum()
Out[43]:
    B
second A
one  1  2  
     2  4  
     3  6  
two 1  4  
     2  5  
     3  7
```

New in version 0.20.

Index level names may be specified as keys directly to `groupby`.

```python
In [44]: df.groupby(['second', 'A']).sum()
Out[44]:
    B
second A
one  1  2  
     2  4  
     3  6  
two 1  4  
     2  5  
     3  7
```

16.1.5 DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different for each of the columns. Thus, using `[]` similar to getting a column from a DataFrame, you can do:

```python
In [45]: grouped = df.groupby(['A'])
In [46]: grouped_C = grouped['C']
In [47]: grouped_D = grouped['D']
```

This is mainly syntactic sugar for the alternative and much more verbose:

```python
In [48]: df['C'].groupby(df['A'])
Out[48]: <pandas.core.groupby.SeriesGroupBy object at 0x1201161d0>
```

Additionally this method avoids recomputing the internal grouping information derived from the passed key.
16.2 Iterating through groups

With the `GroupBy` object in hand, iterating through the grouped data is very natural and functions similarly to `itertools.groupby`:

```python
In [49]: grouped = df.groupby('A')

In [50]: for name, group in grouped:
   ....:     print(name)
   ....:     print(group)
   ....:
bar
   A   B   C   D
   1 bar one  0.254161  1.511763
   3 bar three 0.215897 -0.990582
   5 bar two  -0.077118  1.211526
foo
   A   B   C   D
   0 foo one  -0.575247  1.346061
   2 foo two -1.143704  1.627081
   4 foo two  1.193555 -0.441652
   6 foo one  -0.408530  0.268520
   7 foo three -0.862495  0.024580
```

In the case of grouping by multiple keys, the group name will be a tuple:

```python
In [51]: for name, group in df.groupby(['A', 'B']):
   ....:     print(name)
   ....:     print(group)
   ....:
('bar', 'one')
   A   B   C   D
   1 bar one  0.254161  1.511763
('bar', 'three')
   A   B   C   D
   3 bar three 0.215897 -0.990582
('bar', 'two')
   A   B   C   D
   5 bar two  -0.077118  1.211526
('foo', 'one')
   A   B   C   D
   0 foo one  -0.575247  1.346061
('foo', 'three')
   A   B   C   D
   6 foo one  -0.408530  0.268520
('foo', 'two')
   A   B   C   D
   7 foo three -0.862495  0.024580
```

It's standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: `for (k1, k2), group in grouped:`.
16.3 Selecting a group

A single group can be selected using `GroupBy.get_group()`:

```python
In [52]: grouped.get_group('bar')
Out[52]:
   A   B   C     D
1  bar one 0.254161 1.511763
3  bar three 0.215897 -0.990582
5   bar two -0.077118 1.211526
```

Or for an object grouped on multiple columns:

```python
In [53]: df.groupby(['A', 'B']).get_group(('bar', 'one'))
Out[53]:
   A   B   C     D
1  bar one 0.254161 1.511763
```

16.4 Aggregation

Once the GroupBy object has been created, several methods are available to perform a computation on the grouped data. These operations are similar to the aggregating API, window functions API, and resample API.

An obvious one is aggregation via the `aggregate` or equivalently `agg` method:

```python
In [54]: grouped = df.groupby('A')
In [55]: grouped.aggregate(np.sum)
Out[55]:
   C     D
A
bar 0.392940 1.732707
foo -1.796421 2.824590
```

```python
In [56]: grouped = df.groupby(['A', 'B'])
In [57]: grouped.aggregate(np.sum)
Out[57]:
   C     D
A B
bar one 0.254161 1.511763
   three 0.215897 -0.990582
   two -0.077118 1.211526
foo one -0.983776 1.614581
   three -0.862495 0.024580
   two 0.049851 1.185429
```

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is a `MultiIndex` by default, though this can be changed by using the `as_index` option:

```python
In [58]: grouped = df.groupby(['A', 'B'], as_index=False)
In [59]: grouped.aggregate(np.sum)
Out[59]:
   C     D
A B
bar one 0.254161 1.511763
   three 0.215897 -0.990582
   two -0.077118 1.211526
foo one -0.983776 1.614581
   three -0.862495 0.024580
   two 0.049851 1.185429
```
In [60]: df.groupby('A', as_index=False).sum()

 A B C D
0 bar one 0.254161 1.511763
1 bar three 0.215897 0.990582
2 bar two -0.077118 1.211526
3 foo one -0.983776 1.614581
4 foo three -0.862495 0.024580
5 foo two 0.049851 1.185429

Note that you could use the `reset_index` DataFrame function to achieve the same result as the column names are stored in the resulting MultiIndex:

In [61]: df.groupby(['A', 'B']).sum().reset_index()

Out[61]:
 A B C D
0 bar one 0.254161 1.511763
1 bar three 0.215897 0.990582
2 bar two -0.077118 1.211526
3 foo one -0.983776 1.614581
4 foo three -0.862495 0.024580
5 foo two 0.049851 1.185429

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size method. It returns a Series whose index are the group names and whose values are the sizes of each group.

In [62]: grouped.size()

Out[62]:
A B
bar one 1
 three 1
 two 1
foo one 2
 three 1
 two 2
dtype: int64

In [63]: grouped.describe()

Out[63]:
 C
count mean std min 25% 50% 75% max
0 1.0 0.254161 NaN 0.254161 0.254161 0.254161 0.254161
1 1.0 0.215897 NaN 0.215897 0.215897 0.215897 0.215897
2 1.0 -0.077118 NaN -0.077118 -0.077118 -0.077118 -0.077118
3 2.0 -0.491888 NaN -0.575247 -0.533567 -0.491888 -0.450209 -0.408530
4 1.0 -0.862495 NaN -0.862495 -0.862495 -0.862495 -0.862495 -0.862495
5 2.0 0.024925 NaN 1.652692 -0.559389 0.024925 0.609240 1.193555

 D
count mean std min 25% 50% 75% max
0 1.0 1.511763 NaN 1.511763 1.511763 1.511763 1.511763
1 1.0 -0.990582 NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582

16.4. Aggregation
Note: Aggregation functions will not return the groups that you are aggregating over if they are named columns, when as_index=True, the default. The grouped columns will be the indices of the returned object.

Passing as_index=False will return the groups that you are aggregating over, if they are named columns.

Aggregating functions are ones that reduce the dimension of the returned objects, for example: mean, sum, size, count, std, var, sem, describe, first, last, nth, min, max. This is what happens when you do for example DataFrame.sum() and get back a Series.

nth can act as a reducer or a filter, see here

16.4.1 Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

```
In [64]: grouped = df.groupby('A')
In [65]: grouped['C'].agg([np.sum, np.mean, np.std])
Out[65]:
       sum    mean   std
    A
  bar 0.392940 0.130980 0.181231
  foo -1.796421 -0.359284 0.912265
```

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```
In [66]: grouped.agg([np.sum, np.mean, np.std])
Out[66]:
       C       D
              sum    mean   std    sum    mean   std
    A
  bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330
  foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785
```

The resulting aggregations are named for the functions themselves. If you need to rename, then you can add in a chained operation for a Series like this:

```
in [67]: (grouped['C'].agg([np.sum, np.mean, np.std])
       ....: .rename(columns={'sum': 'foo',
       ....:                    'mean': 'bar',
       ....:                    'std': 'baz'}))
       ....: )
       ....:
Out[67]:
       foo     bar     baz
    A
  bar 0.392940 0.130980 0.181231
  foo -1.796421 -0.359284 0.912265
```
For a grouped DataFrame, you can rename in a similar manner:

```python
In [68]: (grouped.agg([np.sum, np.mean, np.std])
       ....: .rename(columns={'sum': 'foo',
       ....:         'mean': 'bar',
       ....:         'std': 'baz'})
       ....: )
Out[68]:
       C     D
      foo   bar   baz   foo   bar   baz
A  bar  0.392940  0.130980  0.181231  1.732707  0.577569  1.366330
   foo -1.796421 -0.359284  0.912265  2.824590  0.564918  0.884785
```

16.4.2 Applying different functions to DataFrame columns

By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```python
In [69]: grouped.agg({'C': np.sum, 'D': lambda x: np.std(x, ddof=1)})
Out[69]:
     C     D
A  bar  0.392940  1.366330
   foo -1.796421  0.884785
```

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or available via dispatching:

```python
In [70]: grouped.agg({'C': 'sum', 'D': 'std'})
Out[70]:
     C     D
A  bar  0.392940  1.366330
   foo -1.796421  0.884785
```

Note: If you pass a dict to `aggregate`, the ordering of the output columns is non-deterministic. If you want to be sure the output columns will be in a specific order, you can use an `OrderedDict`. Compare the output of the following two commands:

```python
In [71]: grouped.agg({'D': 'std', 'C': 'mean'})
Out[71]:
     D     C
A  bar  1.366330  0.130980
   foo  0.884785 -0.359284
```

```python
In [72]: grouped.agg(OrderedDict([('D', 'std'), ('C', 'mean')]))
```

16.4. Aggregation 727
16.4.3 Cython-optimized aggregation functions

Some common aggregations, currently only `sum`, `mean`, `std`, and `sem`, have optimized Cython implementations:

```python
In [73]: df.groupby('A').sum()
```

```markdown
Out[73]:

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>0.392940</td>
</tr>
<tr>
<td>foo</td>
<td>-1.796421</td>
</tr>
</tbody>
</table>
```

```python
In [74]: df.groupby(['A', 'B']).mean()
```

```markdown
\---

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>three</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
<tr>
<td>foo</td>
<td>one</td>
</tr>
<tr>
<td></td>
<td>three</td>
</tr>
<tr>
<td></td>
<td>two</td>
</tr>
</tbody>
</table>
```

Of course `sum` and `mean` are implemented on pandas objects, so the above code would work even without the special versions via dispatching (see below).

16.5 Transformation

The `transform` method returns an object that is indexed the same (same size) as the one being grouped. The transform function must:

- Return a result that is either the same size as the group chunk or broadcastable to the size of the group chunk (e.g., a scalar, `grouped.transform(lambda x: x.iloc[-1])`).
- Operate column-by-column on the group chunk. The transform is applied to the first group chunk using `chunk.apply`.
- Not perform in-place operations on the group chunk. Group chunks should be treated as immutable, and changes to a group chunk may produce unexpected results. For example, when using `fillna`, `inplace` must be `False` (`grouped.transform(lambda x: x.fillna(inplace=False))`).
- (Optionally) operates on the entire group chunk. If this is supported, a fast path is used starting from the second chunk.

For example, suppose we wished to standardize the data within each group:

```python
In [75]: index = pd.date_range('10/1/1999', periods=1100)
In [76]: ts = pd.Series(np.random.normal(0.5, 2, 1100), index)
In [77]: ts = ts.rolling(window=100, min_periods=100).mean().dropna()
```
In [78]: ts.head()
Out[78]:
2000-01-08 0.779333
2000-01-09 0.778852
2000-01-10 0.786476
2000-01-11 0.782797
2000-01-12 0.798110
Freq: D, dtype: float64

In [79]: ts.tail()
Out[79]:
2002-09-30 0.660294
2002-10-01 0.631095
2002-10-02 0.673601
2002-10-03 0.709213
2002-10-04 0.719369
Freq: D, dtype: float64

In [80]: key = lambda x: x.year
In [81]: zscore = lambda x: (x - x.mean()) / x.std()
In [82]: transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily check:

Original Data
In [83]: grouped = ts.groupby(key)

In [84]: grouped.mean()
Out[84]:
2000 0.442441
2001 0.526246
2002 0.459365
dtype: float64

In [85]: grouped.std()
Out[85]:
2000 0.131752
2001 0.210945
2002 0.128753
dtype: float64

Transformed Data
In [86]: grouped_trans = transformed.groupby(key)

In [87]: grouped_trans.mean()
Out[87]:
2000 1.168208e-15
2001 1.454544e-15
2002 1.726657e-15
dtype: float64

In [88]: grouped_trans.std()
Out[88]:

16.5. Transformation
We can also visually compare the original and transformed data sets.

```python
In [89]: compare = pd.DataFrame({'Original': ts, 'Transformed': transformed})

In [90]: compare.plot()
Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0x129175208>
```

Transformation functions that have lower dimension outputs are broadcast to match the shape of the input array.

```python
In [91]: data_range = lambda x: x.max() - x.min()

In [92]: ts.groupby(key).transform(data_range)
Out[92]:
       2000-01-08 0.623893
       2000-01-09 0.623893
       2000-01-10 0.623893
       2000-01-11 0.623893
       2000-01-12 0.623893
       2000-01-13 0.623893
       2000-01-14 0.623893
          ...  
       2002-09-28 0.558275
       2002-09-29 0.558275
       2002-09-30 0.558275
```
Alternatively the built-in methods can be used to produce the same outputs:

```python
In [93]: ts.groupby(key).transform('max') - ts.groupby(key).transform('min')
Out[93]:
2000-01-08  0.623893
2000-01-09  0.623893
2000-01-10  0.623893
2000-01-11  0.623893
2000-01-12  0.623893
2000-01-13  0.623893
2000-01-14  0.623893
...
2000-09-28  0.558275
2000-09-29  0.558275
2000-09-30  0.558275
2000-10-01  0.558275
2000-10-02  0.558275
2000-10-03  0.558275
2000-10-04  0.558275
Freq: D, Length: 1001, dtype: float64
```

Another common data transform is to replace missing data with the group mean.

```python
In [94]: data_df
Out[94]:
       A     B     C
0  1.539708 -1.166480  0.533026
1  1.302092  0.505754   NaN
2 -0.371983  1.104803 -0.651520
3 -1.309622  1.118697 -1.161657
4 -1.924296 -0.396437  0.812436
5  0.815643  0.367816 -0.469478
6 -0.030651  1.376106 -0.645129
...  ...  ...  ...  ...
993 0.012359  0.554602 -1.976159
994 0.042312 -1.628835  1.013822
995 -0.093110  0.683847 -0.774753
996 -0.185043  1.438572   NaN
997 -0.394469  0.642343  0.011374
998 -1.174126  1.857148   NaN
999  0.234564  0.517098  0.393534
[1000 rows x 3 columns]
```

```python
In [95]: countries = np.array(['US', 'UK', 'GR', 'JP'])
In [96]: key = countries[np.random.randint(0, 4, 1000)]
In [97]: grouped = data_df.groupby(key)

# Non-NA count in each group
In [98]: grouped.count()
```

16.5. Transformation
We can verify that the group means have not changed in the transformed data and that the transformed data contains no NAs.

```python
In [101]: grouped_trans = transformed.groupby(key)

In [102]: grouped.mean()  # original group means
Out[102]:
          A     B     C
GR -0.098371 -0.015420  0.068053
JP  0.069025  0.023100 -0.077324
UK  0.034069 -0.052580 -0.116525
US  0.058664 -0.020399  0.028603

In [103]: grouped_trans.mean()  # transformation did not change group means
          A     B     C
GR -0.098371 -0.015420  0.068053
JP  0.069025  0.023100 -0.077324
UK  0.034069 -0.052580 -0.116525
US  0.058664 -0.020399  0.028603

In [104]: grouped.count()  # original has some missing data points
          A     B     C
GR  209  217  189
JP  240  255  217
UK  216  231  193
US  239  250  217

In [105]: grouped_trans.count()  # counts after transformation
          A     B     C
GR  228  228  228
JP  267  267  267
UK  247  247  247
US  258  258  258

In [106]: grouped_trans.size()  # Verify non-NA count equals group size
          GR  JP  UK  US
228  267  247  258
```
dtype: int64

Note: Some functions when applied to a groupby object will automatically transform the input, returning an object of the same shape as the original. Passing `as_index=False` will not affect these transformation methods.

For example: `fillna`, `ffill`, `bfill`, `shift`.

```
In [107]: grouped(ffill)
Out[107]:
   A    B    C
0  1.539708 -1.166480  0.533026
1  1.302092 -0.505754  0.533026
2 -0.371983  1.104803 -0.651520
3 -1.309622  1.118697 -1.161657
4 -1.924296  0.396437  0.812436
5  0.815643  0.367816 -0.469478
6 -0.030651  1.376106 -0.645129
   ...   ...   ...
993  0.012359  0.554602 -1.976159
994  0.042312 -1.628835  1.013822
995 -0.093110  0.683847 -0.774753
996 -0.185043  1.438572 -0.774753
997 -0.394469 -0.642343  0.011374
998 -1.174126  1.857148 -0.774753
999  0.234564  0.517098  0.393534
[1000 rows x 3 columns]
```

16.5.1 New syntax to window and resample operations

New in version 0.18.1.

Working with the resample, expanding or rolling operations on the groupby level used to require the application of helper functions. However, now it is possible to use `resample()`, `expanding()` and `rolling()` as methods on groupbys.

The example below will apply the `rolling()` method on the samples of the column B based on the groups of column A.

```
                        'B': np.arange(20)})

In [109]: df_re
Out[109]:
   A  B
0  1  0
1  1  1
2  1  2
3  1  3
4  1  4
5  1  5
6  1  6
   ... ...
13  5  13
```

16.5. Transformation
In

```python
df_re.groupby('A').rolling(4).B.mean()
```

Out:

```
     A  B
  0  NaN  NaN
  1  NaN  NaN
  2  NaN  1.5
  3  2.5  3.5
  4  4.5  
   ... ...
 13 11.5 ...
 14 12.5 ...
 15 13.5 ...
 16 14.5 ...
 17 15.5 ...
 18 16.5 ...
 19 17.5 
```

Name: B, Length: 20, dtype: float64

The `expanding()` method will accumulate a given operation (e.g., `sum()` in the example) for all the members of each particular group.

In

```python
df_re.groupby('A').expanding().sum()
```

Out:

```
     A   B
  0  NaN NaN
  1  NaN  1.0
  2  NaN  2.0
  3  1.5  3.0
  4  2.5  4.0
  5  3.5  5.0
  6  4.5  6.0
   ... ...
 13 11.5 13.5
 14 12.5 14.5
 15 13.5 15.5
 16 14.5 16.5
 17 15.5 17.5
 18 16.5 18.5
 19 17.5 19.5
```

[20 rows x 2 columns]

Suppose you want to use the `resample()` method to get a daily frequency in each group of your dataframe and wish to complete the missing values with the `ffill()` method.
In [112]: df_re = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
 periods=4,
 freq='W'),
 'group': [1, 1, 2, 2],
 'val': [5, 6, 7, 8]}).set_index('date')

In [113]: df_re
Out[113]:
 val
date group
2016-01-03 1 5
2016-01-10 1 6
2016-01-17 2 7
2016-01-24 2 8

In [114]: df_re.groupby('group').resample('1D').ffill()
Out[114]:
 group date val
 1 2016-01-03 1 5
 2016-01-04 1 5
 2016-01-05 1 5
 2016-01-06 1 5
 2016-01-07 1 5
 2016-01-08 1 5
 2016-01-09 1 5
 2016-01-10 1 6
 2016-01-11 1 6
 2016-01-12 1 6
 2016-01-13 1 6
 2016-01-14 1 6
 2016-01-15 1 6
 2016-01-16 1 6
 2016-01-17 1 7
 2016-01-18 1 7
 2016-01-19 1 7
 2016-01-20 1 7
 2016-01-21 1 7
 2016-01-22 1 7
 2016-01-23 1 7
 2016-01-24 1 8
 2 2016-01-18 2 7
 2016-01-19 2 7
 2016-01-20 2 7
 2016-01-21 2 7
 2016-01-22 2 7
 2016-01-23 2 7
 2016-01-24 2 8

[16 rows x 2 columns]

16.6 Filtration

New in version 0.12.

The `filter` method returns a subset of the original object. Suppose we want to take only elements that belong to
groups with a group sum greater than 2.

In [115]: sf = pd.Series([1, 1, 2, 3, 3])

In [116]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[116]:
3 3
4 3
5 3
dtype: int64

The argument of `filter` must be a function that, applied to the group as a whole, returns `True` or `False`.

16.6. Filtration
Another useful operation is filtering out elements that belong to groups with only a couple members.

```
In [117]: dff = pd.DataFrame({'A': np.arange(8), 'B': list('aabbbbcc'))

In [118]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[118]:
   A  B
0  2 b
1  3 b
2  4 b
3  5 b
```

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

```
In [119]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[119]:
   A  B
0 NaN NaN
1 NaN NaN
2  2.0 b
3  3.0 b
4  4.0 b
5  5.0 b
6 NaN NaN
7 NaN NaN
```

For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.

```
In [120]: dff['C'] = np.arange(8)

In [121]: dff.groupby('B').filter(lambda x: len(x['C']) > 2)
Out[121]:
   A  B  C
0  0 a  0
1  1 a  1
2  2 b  2
3  3 b  3
4  4 b  4
5  5 b  5
```

Note: Some functions when applied to a groupby object will act as a filter on the input, returning a reduced shape of the original (and potentially eliminating groups), but with the index unchanged. Passing `as_index=False` will not affect these transformation methods.

For example: `head`, `tail`.

```
In [122]: dff.groupby('B').head(2)
Out[122]:
   A  B  C
0  0 a  0
1  1 a  1
2  2 b  2
```

736 Chapter 16. Group By: split-apply-combine
16.7 Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group. This is pretty easy to do by passing lambda functions:

```
In [123]: grouped = df.groupby('A')
In [124]: grouped.agg(lambda x: x.std())
Out[124]:
   C    D
A
  bar 0.181231 1.366330
  foo 0.912265 0.884785
```

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

```
In [125]: grouped.std()
Out[125]:
   C    D
A
  bar 0.181231 1.366330
  foo 0.912265 0.884785
```

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed arguments and invokes the function with any arguments on each group (in the above example, the `std` function). The results are then combined together much in the style of `agg` and `transform` (it actually uses `apply` to infer the gluing, documented next). This enables some operations to be carried out rather succinctly:

```
In [126]: tsdf = pd.DataFrame(np.random.randn(1000, 3),
                      index=pd.date_range('1/1/2000', periods=1000),
                      columns=['A', 'B', 'C'])
......:
In [127]: tsdf.iloc[::2] = np.nan
In [128]: grouped = tsdf.groupby(lambda x: x.year)
In [129]: grouped.fillna(method='pad')
Out[129]:
   A    B    C
2000-01-01 NaN  NaN  NaN
2000-01-02 -0.353501 -0.080957 -0.876864
2000-01-03 -0.353501 -0.080957 -0.876864
2000-01-04 0.050976 0.044273 -0.559849
2000-01-05 0.050976 0.044273 -0.559849
2000-01-06 0.030091 0.186460 -0.680149
2000-01-07 0.030091 0.186460 -0.680149
......:  ...
2002-09-20 2.310215 0.157482 -0.064476
2002-09-21 2.310215 0.157482 -0.064476
2002-09-22 0.005011 0.053897 -1.026922
2002-09-23 0.005011 0.053897 -1.026922
2002-09-24 -0.456542 -1.849051 1.559856
2002-09-25 -0.456542 -1.849051 1.559856
2002-09-26 1.123162 0.354660 1.128135
```

16.7. Dispatching to instance methods
In this example, we chopped the collection of time series into yearly chunks then independently called `fillna` on the groups.

New in version 0.14.1.

The `nlargest` and `nsmallest` methods work on `Series` style groupbys:

```python
In [130]: s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
In [131]: g = pd.Series(list('abababab'))
In [132]: gb = s.groupby(g)
In [133]: gb.nlargest(3)
Out[133]:
   a  4  19.0
        0  9.0
        2  7.0
   b  1  8.0
        3  5.0
        7  3.3
dtype: float64

In [134]: gb.nsmallest(3)
Out[134]:
   a  6  4.2
        2  7.0
        0  9.0
   b  5  1.0
        7  3.3
        3  5.0
dtype: float64
```

16.8 Flexible apply

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply want `GroupBy` to infer how to combine the results. For these, use the `apply` function, which can be substituted for both `aggregate` and `transform` in many standard use cases. However, `apply` can handle some exceptional use cases, for example:

```python
In [135]: df
Out[135]:
   A    B      C      D
0  foo  one -0.575247  1.346061
1  bar  one  0.254161  1.511763
2  foo  two -1.143704  1.627081
3  bar  three  0.215897 -0.990582
4  foo  two  1.193555 -0.441652
5  bar  two  0.077118  1.211526
6  foo  one  0.408530  0.268520
7  foo  three  0.862495  0.024580

In [136]: grouped = df.groupby('A')
```
could also just call .describe()

In [137]: grouped['C'].apply(lambda x: x.describe())

Out[137]:

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>count</td>
<td>3.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>0.130980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>0.181231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.077118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.069390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.215897</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>0.235029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>0.235029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>-0.359284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>0.912265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-1.143704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-0.862495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-0.575247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>-0.408530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>1.193555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name: C, Length: 16, dtype: float64

The dimension of the returned result can also change:

In [138]: grouped = df.groupby('A')['C']

In [139]: def f(group):
 : return pd.DataFrame({'original' : group,
 : 'demeaned' : group - group.mean()})

In [140]: grouped.apply(f)

Out[140]:

<table>
<thead>
<tr>
<th></th>
<th>demeaned</th>
<th>original</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.215962</td>
<td>-0.575247</td>
</tr>
<tr>
<td>1</td>
<td>0.123181</td>
<td>0.254161</td>
</tr>
<tr>
<td>2</td>
<td>-0.784420</td>
<td>-1.143704</td>
</tr>
<tr>
<td>3</td>
<td>0.084917</td>
<td>0.215897</td>
</tr>
<tr>
<td>4</td>
<td>1.552839</td>
<td>1.193555</td>
</tr>
<tr>
<td>5</td>
<td>-0.208098</td>
<td>-0.077118</td>
</tr>
<tr>
<td>6</td>
<td>-0.049245</td>
<td>-0.408530</td>
</tr>
<tr>
<td>7</td>
<td>-0.503211</td>
<td>-0.862495</td>
</tr>
</tbody>
</table>

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

In [141]: def f(x):
 : return pd.Series([x, x**2], index = ['x', 'x^2'])

In [142]: s

Out[142]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.0</td>
<td>81.0</td>
</tr>
<tr>
<td>1</td>
<td>8.0</td>
<td>64.0</td>
</tr>
<tr>
<td>2</td>
<td>7.0</td>
<td>49.0</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>25.0</td>
</tr>
<tr>
<td>4</td>
<td>19.0</td>
<td>361.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to it. So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the output as well as set the indices.

Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

16.9 Other useful features

16.9.1 Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:
Suppose we wish to compute the standard deviation grouped by the A column. There is a slight problem, namely that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any problems:

```
In [147]: df.groupby('A').std()
Out[147]:
       C    D
A
bar 0.181231 1.366330
foo 0.912265 0.884785
```

16.9.2 NA and NaT group handling

If there are any NaN or NaT values in the grouping key, these will be automatically excluded. So there will never be an “NA group” or “NaT group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway (and supporting it was an implementation headache).

16.9.3 Grouping with ordered factors

Categorical variables represented as instance of pandas’s `Categorical` class can be used as group keys. If so, the order of the levels will be preserved:

```
In [148]: data = pd.Series(np.random.randn(100))
In [149]: factor = pd.qcut(data, [0, .25, .5, .75, 1.])
In [150]: data.groupby(factor).mean()
Out[150]:
(2.618, -0.684]  -1.331461
(-0.684, -0.0232]  -0.272816
(-0.0232, 0.541]   0.263607
(0.541, 2.369]   1.166038
```

16.9.4 Grouping with a Grouper specification

You may need to specify a bit more data to properly group. You can use the `pd.Grouper` to provide this local control.

```
In [151]: import datetime
In [152]: df = pd.DataFrame({
    'Branch' : 'A A A A A A A B'.split(),
    'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
    'Quantity': [1,3,5,1,8,1,9,3],
    'Date' : [
        datetime.datetime(2013,1,1,13,0),
        datetime.datetime(2013,1,1,13,5),
        datetime.datetime(2013,10,1,20,0),
    ]
})
```

16.9. Other useful features
Groupby a specific column with the desired frequency. This is like resampling.

```
In [154]: df.groupby({pd.Grouper(freq='1M', key='Date'), 'Buyer'}).sum()
```

```
Out[154]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-31</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2013-10-31</td>
<td>Carl</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
<tr>
<td>2013-12-31</td>
<td>Carl</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
</tbody>
</table>
```

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.

```
In [155]: df = df.set_index('Date')
```

```
In [156]: df['Date'] = df.index + pd.offsets.MonthEnd(2)
```

```
In [157]: df.groupby({pd.Grouper(freq='6M', key='Date'), 'Buyer'}).sum()
```

```
Out[157]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-02-28</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-02-28</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>
```

```
In [158]: df.groupby({pd.Grouper(freq='6M', level='Date'), 'Buyer'}).sum()
```

```
Out[158]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-31</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-01-31</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>
```
16.9.5 Taking the first rows of each group

Just like for a DataFrame or Series you can call head and tail on a groupby:

```
In [159]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [160]: df
Out[160]:
   A  B
0  1  2
1  1  4
2  5  6

In [161]: g = df.groupby('A')

In [162]: g.head(1)
Out[162]:
   A  B
0  1  2
2  5  6

In [163]: g.tail(1)
Out[163]:
   A  B
1  1  4
2  5  6
```

This shows the first or last n rows from each group.

Warning: Before 0.14.0 this was implemented with a fall-through apply, so the result would incorrectly respect the as_index flag:

```
>>> g.head(1):  # was equivalent to g.apply(lambda x: x.head(1))
   A  B
  A
  1  0  1  2
  5  2  5  6
```

16.9.6 Taking the nth row of each group

To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a single row (or no row) per group if you pass an int for n:

```
In [164]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [165]: g = df.groupby('A')

In [166]: g.nth(0)
Out[166]:
   B
  A
  1  NaN
  5  6.0

In [167]: g.nth(-1)
```
If you want to select the nth not-null item, use the dropna kwarg. For a DataFrame this should be either 'any' or 'all' just like you would pass to dropna, for a Series this just needs to be truthy.

```python
# nth(0) is the same as g.first()
In [169]: g.nth(0, dropna='any')
Out[169]:
       B
    A
1  4.0
5  6.0

In [170]: g.first()
Out[170]:
       B
    A
1  4.0
5  6.0

# nth(-1) is the same as g.last()      # NaNs denote group exhausted when using dropna
In [171]: g.nth(-1, dropna='any')
Out[171]:
       B
    A
1  4.0
5  6.0

In [172]: g.last()
Out[172]:
       B
    A
1  4.0
5  6.0

In [173]: g.B.nth(0, dropna=True)
Out[173]:
       A
Name: B, dtype: float64
```

As with other methods, passing `as_index=False`, will achieve a filtration, which returns the grouped row.
In [174]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [175]: g = df.groupby('A', as_index=False)

In [176]: g.nth(0)
Out[176]:
 A B
0 1 NaN
2 5 6.0

In [177]: g.nth(-1)
Out[177]:
 A B
1 1 4.0
2 5 6.0

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.

In [178]: business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')

In [179]: df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])

get the first, 4th, and last date index for each month
In [180]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[180]:
 a b
2014 4 1 1
 4 1 1
 4 1 1
 5 1 1
 5 1 1
 6 1 1
 6 1 1
 6 1 1

16.9.7 Enumerate group items

New in version 0.13.0.

To see the order in which each row appears within its group, use the cumcount method:

In [181]: df = pd.DataFrame(list('aaabba'), columns=['A'])

In [182]: df.groupby('A').cumcount()
Out[182]:
 A
0 a
1 a
2 a
3 b
4 b
5 a

In [183]: df.groupby('A').cumcount()
Out[183]:
 0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64

In [184]: df.groupby('A').cumcount(ascending=False) # kwarg only

\rightarrow
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64

16.9.8 Plotting

Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame may differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.

In [185]: np.random.seed(1234)
In [186]: df = pd.DataFrame(np.random.randn(50, 2))
In [187]: df['g'] = np.random.choice(['A', 'B'], size=50)
In [188]: df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:

In [189]: df.groupby('g').boxplot()

Out[189]:
A Axes(0.1,0.15;0.363636x0.75)
B Axes(0.536364,0.15;0.363636x0.75)
dtype: object
The result of calling `boxplot` is a dictionary whose keys are the values of our grouping column `g` (“A” and “B”). The values of the resulting dictionary can be controlled by the `return_type` keyword of `boxplot`. See the visualization documentation for more.

Warning: For historical reasons, `df.groupby("g").boxplot()` is not equivalent to `df.boxplot(by="g")`. See [here](#) for an explanation.

16.10 Examples

16.10.1 Regrouping by factor

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

```python
def = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})

In [190]: df.groupby(df.sum(), axis=1).sum()
Out[192]:
```

16.10. Examples 747
16.10.2 Groupby by Indexer to ‘resample’ data

Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples.

In order to resample to work on indices that are non-datetimelike, the following procedure can be utilized.

In the following examples, \texttt{df.index // 5} returns a binary array which is used to determine what gets selected for the groupby operation.

\textbf{Note:} The below example shows how we can downsample by consolidation of samples into fewer samples. Here by using \texttt{df.index // 5}, we are aggregating the samples in bins. By applying \texttt{std()} function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples.

\begin{verbatim}
In [193]: df = pd.DataFrame(np.random.randn(10,2))
In [194]: df
Out[194]:
 0 1
0 0.832423 0.114059
1 -1.218203 -0.890593
2 0.165445 -1.127470
3 -1.192185 0.818644
4 0.237185 -0.336384
5 0.694727 0.750161
6 -0.247055 0.645433
7 -1.366120 0.313160
8 -0.205207 -0.089987
9 0.186062 1.314182

In [195]: df.index // 5
\texttt{…}
Out[195]:
\texttt{Int64Index([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype='int64')}

In [196]: df.groupby(df.index // 5).std()
\texttt{…}
Out[196]:
 0 1
0 0.955154 0.783648
1 0.788428 0.467576
\end{verbatim}

16.10.3 Returning a Series to propagate names

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the column index name will be used as the name of the inserted column:
In [197]: df = pd.DataFrame({
 ...: 'a': [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2],
 ...: 'b': [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
 ...: 'c': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
 ...: 'd': [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1],
 ...: })

In [198]: def compute_metrics(x):
 ...: result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
 ...: return pd.Series(result, name='metrics')

In [199]: result = df.groupby('a').apply(compute_metrics)

In [200]: result
Out[200]:
 metrics b_sum c_mean
a
0 2.0 0.5
1 2.0 0.5
2 2.0 0.5

In [201]: result.stack()
Out[201]:
 a metrics
0 b_sum 2.0 c_mean 0.5
1 b_sum 2.0 c_mean 0.5
2 b_sum 2.0 c_mean 0.5
dtype: float64
CHAPTER
SEVENTEEN

MERGE, JOIN, AND CONCATENATE

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

17.1 Concatenating objects

The `concat` function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of `concat` and what it can do, here is a simple example:

```python
In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 
                      'B': ['B0', 'B1', 'B2', 'B3'], 
                      'C': ['C0', 'C1', 'C2', 'C3'], 
                      'D': ['D0', 'D1', 'D2', 'D3'], 
                      index=[0, 1, 2, 3])

In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 
                      'B': ['B4', 'B5', 'B6', 'B7'], 
                      'C': ['C4', 'C5', 'C6', 'C7'], 
                      'D': ['D4', 'D5', 'D6', 'D7'], 
                      index=[4, 5, 6, 7])

In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], 
                      'B': ['B8', 'B9', 'B10', 'B11'], 
                      'C': ['C8', 'C9', 'C10', 'C11'], 
                      'D': ['D8', 'D9', 'D10', 'D11'], 
                      index=[8, 9, 10, 11])

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)
```
Like its sibling function on ndarrays, `numpy.concatenate`, `pandas.concat` takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”:

```python
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
```

- **objs**: a sequence or mapping of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.
- **axis**: {0, 1, ...}, default 0. The axis to concatenate along.
- **join**: {'inner', 'outer'}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner for intersection.
- **ignore_index**: boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.
- **join_axes**: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic.
- **keys**: sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples.
- **levels**: list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.
- **names**: list, default None. Names for the levels in the resulting hierarchical index.
- **verify_integrity**: boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation.
• `copy`: boolean, default True. If False, do not copy data unnecessarily.

Without a little bit of context and example many of these arguments don’t make much sense. Let’s take the above example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this using the `keys` argument:

```python
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
```

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a **hierarchical index**. This means that we can now do stuff like select out each chunk by key:

```python
In [7]: result.loc['y']
```

```
Out[7]:
A  B  C  D
--- --- --- ---
 4  A4 B4 C4 D4
 5  A5 B5 C5 D5
 6  A6 B6 C6 D6
 7  A7 B7 C7 D7
```

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

Note: It is worth noting however, that `concat` (and therefore `append`) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.

```python
frames = [ process_your_file(f) for f in files ]
result = pd.concat(frames)
```

17.1. Concatenating objects
17.1.1 Set logic on the other axes

When gluing together multiple DataFrames (or Panels or...), for example, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in three ways:

- Take the (sorted) union of them all, `join='outer'`. This is the default option as it results in zero information loss.
- Take the intersection, `join='inner'`.
- Use a specific index (in the case of DataFrame) or indexes (in the case of Panel or future higher dimensional objects), i.e. the `join_axes` argument.

Here is an example of each of these methods. First, the default `join='outer'` behavior:

```
In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
                        ...: 'D': ['D2', 'D3', 'D6', 'D7'],
                        ...: 'F': ['F2', 'F3', 'F6', 'F7'],
                        ...: index=[2, 3, 6, 7])

In [9]: result = pd.concat([df1, df4], axis=1)
```

<table>
<thead>
<tr>
<th>df1</th>
<th>df4</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>A0</td>
<td>B0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>B2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B3</td>
</tr>
</tbody>
</table>

Note that the row indexes have been unioned and sorted. Here is the same thing with `join='inner'`:

```
In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
```

<table>
<thead>
<tr>
<th>df1</th>
<th>df4</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>A0</td>
<td>B0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>B2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B3</td>
</tr>
</tbody>
</table>

Lastly, suppose we just wanted to reuse the *exact index* from the original DataFrame:
In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

![concatenate](image)

17.1.2 Concatenating using `append`

A useful shortcut to `concat` are the `append` instance methods on `Series` and `DataFrame`. These methods actually predated `concat`. They concatenate along `axis=0`, namely the index:

In [12]: result = df1.append(df2)

![append](image)

In the case of `DataFrame`, the indexes must be disjoint but the columns do not need to be:

In [13]: result = df1.append(df4)

![append](image)

17.1. Concatenating objects
append may take multiple objects to concatenate:

\[
\text{In [14]: result = df1.append([df2, df3])}
\]
17.1.3 Ignoring indexes on the concatenation axis

For DataFrames which don’t have a meaningful index, you may wish to append them and ignore the fact that they may have overlapping indexes:

To do this, use the `ignore_index` argument:

```python
In [15]: result = pd.concat([df1, df4], ignore_index=True)
```

This is also a valid argument to `DataFrame.append`:

```python
In [16]: result = df1.append(df4, ignore_index=True)
```
17.1.4 Concatenating with mixed ndims

You can concatenate a mix of Series and DataFrames. The Series will be transformed to DataFrames with the column name as the name of the Series.

In [17]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')

In [18]: result = pd.concat([df1, s1], axis=1)

If unnamed Series are passed they will be numbered consecutively.

In [19]: s2 = pd.Series(['_0', '_1', '_2', '_3'])

In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)

Passing `ignore_index=True` will drop all name references.

In [21]: result = pd.concat([df1, s1], axis=1, ignore_index=True)
17.1.5 More concatenating with group keys

A fairly common use of the `keys` argument is to override the column names when creating a new DataFrame based on existing Series. Notice how the default behaviour consists on letting the resulting DataFrame inherits the parent Series’ name, when these existed.

```python
In [22]: s3 = pd.Series([0, 1, 2, 3], name='foo')
In [23]: s4 = pd.Series([0, 1, 2, 3])
In [24]: s5 = pd.Series([0, 1, 4, 5])
In [25]: pd.concat([s3, s4, s5], axis=1)
Out[25]:
      foo  0  1
     0  0  0  0
     1  1  1  1
     2  2  2  4
     3  3  3  5
```

Through the `keys` argument we can override the existing column names.

```python
In [26]: pd.concat([s3, s4, s5], axis=1, keys=['red','blue','yellow'])
Out[26]:
          red  blue  yellow
     0  0  0  0
     1  1  1  1
     2  2  2  4
     3  3  3  5
```

Let’s consider now a variation on the very first example presented:

```python
In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
```
You can also pass a dict to `concat` in which case the dict keys will be used for the `keys` argument (unless other keys are specified):

```python
In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}
In [29]: result = pd.concat(pieces)
```
In [30]: result = pd.concat(pieces, keys=['z', 'y'])

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:

df1

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A0</td>
<td>B0</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
<td>D1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>B2</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B3</td>
<td>D3</td>
</tr>
</tbody>
</table>

Result

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A0</td>
<td>B0</td>
<td>D0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
<td>D1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>B2</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B3</td>
<td>D3</td>
</tr>
</tbody>
</table>

df2

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A4</td>
<td>B4</td>
<td>D4</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>B5</td>
<td>D5</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>B6</td>
<td>D6</td>
</tr>
<tr>
<td>7</td>
<td>A7</td>
<td>B7</td>
<td>D7</td>
</tr>
</tbody>
</table>

df3

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>A8</td>
<td>B8</td>
<td>D8</td>
</tr>
<tr>
<td>9</td>
<td>A9</td>
<td>B9</td>
<td>D9</td>
</tr>
<tr>
<td>10</td>
<td>A10</td>
<td>B10</td>
<td>D10</td>
</tr>
<tr>
<td>11</td>
<td>A11</td>
<td>B11</td>
<td>D11</td>
</tr>
</tbody>
</table>

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:
If you wish to specify other levels (as will occasionally be the case), you can do so using the `levels` argument:

```python
In [32]: result = pd.concat(pieces, keys=['x', 'y', 'z'],
                           levels=[['z', 'y', 'x', 'w']])
```

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful.

17.1.6 Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by passing a Series or dict to `append`, which returns a new DataFrame as above.

```python
In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
In [35]: result = df1.append(s2, ignore_index=True)
```
You should use `ignore_index` with this method to instruct DataFrame to discard its index. If you wish to preserve the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

```python
In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
           {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]

In [37]: result = df1.append(dicts, ignore_index=True)
```

17.2 Database-style DataFrame joining/merging

`pandas` has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better) than other open source implementations (like `base::merge.data.frame` in R). The reason for this is careful algorithmic design and internal layout of the data in DataFrame.

See the *cookbook* for some advanced strategies.
Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL.

pandas provides a single function, `merge`, as the entry point for all standard database join operations between DataFrame objects:

```python
def merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False)
```

- **left**: A DataFrame object
- **right**: Another DataFrame object
- **on**: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and `left_index` and `right_index` are `False`, the intersection of the columns in the DataFrames will be inferred to be the join keys
- **left_on**: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **right_on**: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **left_index**: If `True`, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame
- **right_index**: Same usage as `left_index` for the right DataFrame
- **how**: One of 'left', 'right', 'outer', 'inner'. Defaults to 'inner'. See below for more detailed description of each method
- **sort**: Sort the result DataFrame by the join keys in lexicographical order. Defaults to `True`, setting to `False` will improve performance substantially in many cases
- **suffixes**: A tuple of string suffixes to apply to overlapping columns. Defaults to `('_x', '_y')`
- **copy**: Always copy data (default `True`) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.
- **indicator**: Add a column to the output DataFrame called `_merge` with information on the source of each row. `_merge` is Categorical-type and takes on a value of `left_only` for observations whose merge key only appears in 'left' DataFrame, `right_only` for observations whose merge key only appears in 'right' DataFrame, and `both` if the observation’s merge key is found in both.

New in version 0.17.0.

The return type will be the same as `left`. If `left` is a DataFrame and `right` is a subclass of DataFrame, the return type will still be DataFrame.

merge is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related DataFrame.join method, uses merge internally for the index-on-index (by default) and column(s)-on-index join. If you are joining on index only, you may wish to use DataFrame.join to save yourself some typing.

17.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very
important to understand:

- **one-to-one** joins: for example when joining two DataFrame objects on their indexes (which must contain unique values)
- **many-to-one** joins: for example when joining an index (unique) to one or more columns in a DataFrame
- **many-to-many** joins: joining columns on columns.

Note: When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded.

It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the **Cartesian product** of the associated data. Here is a very basic example with one unique key combination:

```python
In [38]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})
...
In [39]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})
...
In [40]: result = pd.merge(left, right, on='key')
```

Here is a more complicated example with multiple join keys:

```python
In [41]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                      'key2': ['K0', 'K1', 'K0', 'K1'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})
...
In [42]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                       'key2': ['K0', 'K0', 'K0', 'K0'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})
...
In [43]: result = pd.merge(left, right, on=['key1', 'key2'])
```
The `how` argument to `merge` specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be `Na`. Here is a summary of the `how` options and their SQL equivalent names:

<table>
<thead>
<tr>
<th>Merge method</th>
<th>SQL Join Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>LEFT OUTER JOIN</td>
<td>Use keys from left frame only</td>
</tr>
<tr>
<td>right</td>
<td>RIGHT OUTER JOIN</td>
<td>Use keys from right frame only</td>
</tr>
<tr>
<td>outer</td>
<td>FULL OUTER JOIN</td>
<td>Use union of keys from both frames</td>
</tr>
<tr>
<td>inner</td>
<td>INNER JOIN</td>
<td>Use intersection of keys from both frames</td>
</tr>
</tbody>
</table>

```
In [44]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])
```

```
In [45]: result = pd.merge(left, right, how='right', on=['key1', 'key2'])
```
In [46]: result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, key1, key2</td>
<td>C, D, key1, key2</td>
<td>A, B, key1, key2</td>
</tr>
<tr>
<td>0 A0 B0 K0 K0</td>
<td>0 C0 D0 K1 K0</td>
<td>0 A0 B0 K0 K0</td>
</tr>
<tr>
<td>1 A1 B1 K0 K1</td>
<td>1 C1 D1 K1 K0</td>
<td>1 A1 B1 K0 K1</td>
</tr>
<tr>
<td>2 A2 B2 K1 K0</td>
<td>2 C2 D2 K1 K0</td>
<td>2 A2 B2 K1 K0</td>
</tr>
<tr>
<td>3 A3 B3 K0 K1</td>
<td>3 C3 D3 K1 K0</td>
<td>3 A3 B3 K0 K1</td>
</tr>
<tr>
<td>NaN NaN K2 K3</td>
<td>NaN NaN K2 K3</td>
<td>NaN NaN K2 K3</td>
</tr>
</tbody>
</table>

In [47]: result = pd.merge(left, right, how='inner', on=['key1', 'key2'])

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, key1, key2</td>
<td>C, D, key1, key2</td>
<td>A, B, key1, key2</td>
</tr>
<tr>
<td>0 A0 B0 K0 K0</td>
<td>0 C0 D0 K1 K0</td>
<td>0 A0 B0 K0 K0</td>
</tr>
<tr>
<td>1 A1 B1 K0 K1</td>
<td>1 C1 D1 K1 K0</td>
<td>1 A1 B1 K0 K1</td>
</tr>
<tr>
<td>2 A2 B2 K1 K0</td>
<td>2 C2 D2 K1 K0</td>
<td>2 A2 B2 K1 K0</td>
</tr>
<tr>
<td>3 A3 B3 K0 K1</td>
<td>3 C3 D3 K1 K0</td>
<td>3 A3 B3 K0 K1</td>
</tr>
<tr>
<td>NaN NaN K2 K3</td>
<td>NaN NaN K2 K3</td>
<td>NaN NaN K2 K3</td>
</tr>
</tbody>
</table>

Here is another example with duplicate join keys in DataFrames:

In [48]: left = pd.DataFrame({'A' : [1,2], 'B' : [2, 2]})

In [49]: right = pd.DataFrame({'A' : [4,5,6], 'B': [2,2,2]})

In [50]: result = pd.merge(left, right, on='B', how='outer')

<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>A, B</td>
<td>A, B</td>
</tr>
<tr>
<td>0 1 2</td>
<td>0 4 2</td>
<td>0 1 2</td>
</tr>
<tr>
<td>1 2 2</td>
<td>1 5 2</td>
<td>1 1 2</td>
</tr>
<tr>
<td>2 0 2</td>
<td>2 0 2</td>
<td>2 1 2</td>
</tr>
<tr>
<td>3 2 2</td>
<td>3 2 2</td>
<td>3 2 2</td>
</tr>
<tr>
<td>4 2 2</td>
<td>4 2 2</td>
<td>4 2 2</td>
</tr>
<tr>
<td>5 2 2</td>
<td>5 2 2</td>
<td>5 2 2</td>
</tr>
</tbody>
</table>
Warning: Joining / merging on duplicate keys can cause a returned frame that is the multiplication of the row dimensions, may result in memory overflow. It is the user’s responsibility to manage duplicate values in keys before joining large DataFrames.

17.2.2 The merge indicator

New in version 0.17.0.

merge now accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Origin</th>
<th>_merge value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge key only in 'left' frame</td>
<td>left_only</td>
<td></td>
</tr>
<tr>
<td>Merge key only in 'right' frame</td>
<td>right_only</td>
<td></td>
</tr>
<tr>
<td>Merge key in both frames</td>
<td>both</td>
<td></td>
</tr>
</tbody>
</table>

In [51]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
In [52]: df2 = pd.DataFrame({'col1': [1, 2, 2], 'col_right':[2, 2, 2]})
In [53]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[53]:
<table>
<thead>
<tr>
<th>col1</th>
<th>col_left</th>
<th>col_right</th>
<th>_merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>NaN</td>
<td>left_only</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>2.0</td>
<td>both</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
</tbody>
</table>

The indicator argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.

In [54]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[54]:
<table>
<thead>
<tr>
<th>col1</th>
<th>col_left</th>
<th>col_right</th>
<th>indicator_column</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>NaN</td>
<td>left_only</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>2.0</td>
<td>both</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
</tbody>
</table>

17.2.3 Merge Dtypes

New in version 0.19.0.

Merging will preserve the dtype of the join keys.

In [55]: left = pd.DataFrame({"key": [1], "v1": [10]})
In [56]: left
Out[56]:
<table>
<thead>
<tr>
<th>key</th>
<th>v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
In [57]: right = pd.DataFrame({"key": [1, 2], "v1": [20, 30]})
We are able to preserve the join keys

```
In [58]: right
Out[58]:
   key  v1
0   1  20
1   2  30
```

Of course if you have missing values that are introduced, then the resulting dtype will be upcast.

```
In [59]: pd.merge(left, right, how='outer')
Out[59]:
   key  v1
0   1  10
1   1  20
2   2  30
```

```
In [60]: pd.merge(left, right, how='outer').dtypes
Out[60]:
key   int64
v1    int64
dtype: object
```

New in version 0.20.0.

Merging will preserve category dtypes of the mergands. See also the section on **categoricals**

The left frame.

```
In [61]: X = pd.Series(np.random.choice(['foo', 'bar'], size=(10,)))
In [62]: X = X.astype('category', categories=['foo', 'bar'])
In [63]: left = pd.DataFrame({'X': X, 'Y': np.random.choice(['one', 'two', 'three'], size=(10,))})
```

```
In [64]: left
Out[64]:
     X   Y
0   bar  one
1   foo  one
2   foo  three
3   bar  three
4   foo  one
```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>three</td>
<td>2</td>
</tr>
<tr>
<td>bar</td>
<td>three</td>
<td>2</td>
</tr>
<tr>
<td>bar</td>
<td>three</td>
<td>2</td>
</tr>
<tr>
<td>foo</td>
<td>three</td>
<td>2</td>
</tr>
<tr>
<td>foo</td>
<td>three</td>
<td>2</td>
</tr>
</tbody>
</table>

In [67]: left.dtypes

X category
Y object
dtype: object

The right frame.

In [68]: right = pd.DataFrame({'X': pd.Series(['foo', 'bar']).astype('category',
 categories=['foo', 'bar']),
 'Z': [1, 2]})

In [69]: right

Out[69]:
X Z
0 foo 1
1 bar 2

In [70]: right.dtypes

X category
Z int64
dtype: object

The merged result

In [71]: result = pd.merge(left, right, how='outer')

In [72]: result

Out[72]:
X Y Z
0 bar one 2
1 bar three 2
2 bar one 2
3 bar three 2
4 bar two 2
5 bar three 2
6 foo one 1
7 foo three 1
8 foo one 1
9 foo three 1

In [73]: result.dtypes

X category
Y object
Z int64
dtype: object
Note: The category dtypes must be exactly the same, meaning the same categories and the ordered attribute. Otherwise the result will coerce to object dtype.

Note: Merging on category dtypes that are the same can be quite performant compared to object dtype merging.

17.2.4 Joining on index

DataFrame.join is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example:

```
In [74]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                          'B': ['B0', 'B1', 'B2'],
                          'index':['K0', 'K1', 'K2']})

In [75]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                          'D': ['D0', 'D2', 'D3'],
                          'index':['K0', 'K2', 'K3']})

In [76]: result = left.join(right)
```

```
left  right  Result
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>C3</td>
<td>D3</td>
</tr>
</tbody>
</table>
```

```
In [77]: result = left.join(right, how='outer')
```

```
left  right  Result
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>K0</td>
<td>K0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>K1</td>
<td>K1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>K2</td>
<td>K2</td>
<td>C2</td>
<td>D2</td>
</tr>
</tbody>
</table>
```

```
In [78]: result = left.join(right, how='inner')
```

```
left  right  Result
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>K0</td>
<td>K0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td>K1</td>
<td>K1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>K2</td>
<td>K2</td>
<td>C2</td>
<td>D2</td>
</tr>
</tbody>
</table>
```

17.2. Database-style DataFrame joining/merging
The data alignment here is on the indexes (row labels). This same behavior can be achieved using `merge` plus additional arguments instructing it to use the indexes:

```
In [79]: result = pd.merge(left, right, left_index=True, right_index=True, how='outer')
```

```
In [80]: result = pd.merge(left, right, left_index=True, right_index=True, how='inner');
```

17.2.5 Joining key columns on an index

`join` takes an optional `on` argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent:

```
left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True, how='left', sort=False)
```
Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the DataFrame’s is already indexed by the join key), using `join` may be more convenient. Here is a simple example:

```python
In [81]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3'],
                        'key': ['K0', 'K1', 'K0', 'K1']})

In [82]: right = pd.DataFrame({'C': ['C0', 'C1'],
                           'D': ['D0', 'D1']},
                          index=['K0', 'K1'])

In [83]: result = left.join(right, on='key')

In [84]: result = pd.merge(left, right, left_on='key', right_index=True,
how='left', sort=False);
```

To join on multiple keys, the passed DataFrame must have a `MultiIndex`:

```python
In [85]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3'],
                        'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1']})

In [86]: index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'),
                                          ('K2', 'K0'), ('K2', 'K1')])

In [87]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                           'C': ['C0', 'C1', 'C2', 'C3']})
```

17.2. Database-style DataFrame joining/merging
Now this can be joined by passing the two key column names:

```python
In [88]: result = left.join(right, on=['key1', 'key2'])
```

The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed:

```python
In [89]: result = left.join(right, on=['key1', 'key2'], how='inner')
```

As you can see, this drops any rows where there was no match.

17.2.6 Joining a single Index to a Multi-index

New in version 0.14.0.

You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

```python
In [90]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                         'B': ['B0', 'B1', 'B2'],
                         index=pd.Index(['K0', 'K1', 'K2'], name='key'))

In [91]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
                                         ('K2', 'Y2'), ('K3', 'Y3')])
```

774 Chapter 17. Merge, join, and concatenate
In [92]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
....: 'D': ['D0', 'D1', 'D2', 'D3']},
....: index=index)

In [93]: result = left.join(right, how='inner')

This is equivalent but less verbose and more memory efficient / faster than this.

In [94]: result = pd.merge(left.reset_index(), right.reset_index(),
....: on=['key'], how='inner').set_index(['key', 'Y'])

17.2.7 Joining with two multi-indexes

This is not Implemented via join at-the-moment, however it can be done using the following.

In [95]: index = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
....: ('K1', 'X2')],
....: names=['key', 'X'])

In [96]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
....: 'B': ['B0', 'B1', 'B2']},
....: index=index)
17.2.8 Overlapping value columns

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrames to disambiguate the result columns:

In [98]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [99]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [100]: result = pd.merge(left, right, on='k')

In [101]: result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])
DataFrame.join has `lsuffix` and `rsuffix` arguments which behave similarly.

```
In [102]: left = left.set_index('k')
In [103]: right = right.set_index('k')
In [104]: result = left.join(right, lsuffix='_l', rsuffix='_r')
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>k0</td>
<td>1</td>
<td>k0</td>
</tr>
<tr>
<td>k1</td>
<td>2</td>
<td>k0</td>
</tr>
<tr>
<td>k2</td>
<td>3</td>
<td>k3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17.2.9 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame.join to join them together on their indexes. The same is true for Panel.join.

```
In [105]: right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])
In [106]: result = left.join([right, right2])
```

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>k0</td>
<td>1</td>
<td>k0</td>
<td>4</td>
<td>k0</td>
<td>1</td>
</tr>
<tr>
<td>k1</td>
<td>2</td>
<td>k0</td>
<td>5</td>
<td>k1</td>
<td>2</td>
</tr>
<tr>
<td>k2</td>
<td>3</td>
<td>k3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k2</td>
</tr>
</tbody>
</table>

17.2.10 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to "patch" values in one object from values for matching indices in the other. Here is an example:

```
In [107]: df1 = pd.DataFrame([np.nan, 3., 5.], [-4.6, np.nan, np.nan],
                     [np.nan, 7., np.nan])
```

```
In [108]: df1
Out[108]:
   0  1  2
0  NaN 3. 5.0
1 -4.6 NaN NaN
2  NaN 7.0 NaN
```

17.2. Database-style DataFrame joining/merging
In [108]:
 ...: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.1, 1.6, 4]],
 ...: index=[1, 2])
 ...:

For this, use the `combine_first` method:

In [109]:
 ...: result = df1.combine_first(df2)

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related
method, `update`, alters non-NA values inplace:

In [110]:
 ...: df1.update(df2)

17.3 Timeseries friendly merging

17.3.1 Merging Ordered Data

A `merge_ordered()` function allows combining time series and other ordered data. In particular it has an optional
`fill_method` keyword to fill/interpolate missing data:

In [111]:
 ...: left = pd.DataFrame({'k': ['K0', 'K1', 'K1', 'K2'],
 ...: 'lv': [1, 2, 3, 4],
 ...: 's': ['a', 'b', 'c', 'd']})
 ...:
In [112]:
 ...: right = pd.DataFrame({'k': ['K1', 'K2', 'K4'],
 ...: 'rv': [1, 2, 3]})
 ...:
17.3.2 Merging AsOf

New in version 0.19.0.

A merge_asof() is similar to an ordered left-join except that we match on nearest key rather than equal keys. For each row in the left DataFrame, we select the last row in the right DataFrame whose on key is less than the left’s key. Both DataFrames must be sorted by the key.

Optionally an asof merge can perform a group-wise merge. This matches the by key equally, in addition to the nearest match on the on key.

For example, we might have trades and quotes and we want to asof merge them.

```
In [114]: trades = pd.DataFrame(
    ....:     'time': pd.to_datetime(['20160525 13:30:00.023',
    ....:       '20160525 13:30:00.023',
    ....:       '20160525 13:30:00.030',
    ....:       '20160525 13:30:00.038',
    ....:       '20160525 13:30:00.041',
    ....:       '20160525 13:30:00.048',
    ....:       '20160525 13:30:00.048'],
    ....:     'ticker': ['MSFT', 'MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL', 'MSFT', 'MSFT'],
    ....:     'price': [51.95, 51.95, 720.77, 720.92, 98.00, 720.77, 720.92, 98.00],
    ....:     'quantity': [75, 155, 100, 100, 100, 100, 100, 100],
    ....:     columns=['time', 'ticker', 'price', 'quantity'])

In [115]: quotes = pd.DataFrame(
    ....:     'time': pd.to_datetime(['20160525 13:30:00.023',
    ....:       '20160525 13:30:00.023',
    ....:       '20160525 13:30:00.030',
    ....:       '20160525 13:30:00.038',
    ....:       '20160525 13:30:00.041',
    ....:       '20160525 13:30:00.048',
    ....:       '20160525 13:30:00.048'],
    ....:     'ticker': ['GOOG', 'MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL', 'GOOG', 'MSFT'],
    ....:     'price': [51.95, 51.95, 720.77, 720.92, 98.00, 720.77, 720.92, 98.00],
    ....:     columns=['time', 'ticker', 'price', 'quantity'])
```
In [116]: trades
Out[116]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
</tr>
</tbody>
</table>

In [117]: quotes

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.030</td>
<td>MSFT</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.041</td>
<td>MSFT</td>
<td>51.99</td>
<td>52.00</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.049</td>
<td>AAPL</td>
<td>97.99</td>
<td>98.01</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.072</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.88</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.075</td>
<td>MSFT</td>
<td>52.01</td>
<td>52.03</td>
</tr>
</tbody>
</table>

By default we are taking the asof of the quotes.

In [118]: pd.merge_asof(trades, quotes,
 on='time',
 by='ticker')

Out[118]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

We only asof within 2ms between the quote time and the trade time.

In [119]: pd.merge_asof(trades, quotes,
 on='time',
 by='ticker',
 tolerance=pd.Timedelta('2ms'))

Out[119]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. Note that though we exclude the exact matches (of the quotes), prior quotes DO propagate to that point in time.

```python
In [120]: pd.merge_asof(trades, quotes,
       .....:     on='time',
       .....:     by='ticker',
       .....:     tolerance=pd.Timedelta('10ms'),
       .....:     allow_exact_matches=False)
```

```plaintext
Out[120]:
     time  ticker  price  quantity  bid    ask
0 2016-05-25 13:30:00.023  MSFT  51.95       75  NaN   NaN
1 2016-05-25 13:30:00.038  MSFT  51.95      155 51.97 51.98
2 2016-05-25 13:30:00.048  GOOG  720.77     100  NaN   NaN
3 2016-05-25 13:30:00.048  GOOG  720.92     100  NaN   NaN
4 2016-05-25 13:30:00.048  AAPL  98.00     100  NaN   NaN
```
18.1 Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

```python
In [1]: df
Out[1]:
     date variable  value
0  2000-01-03      A  0.469112
1  2000-01-04      A -0.282863
2  2000-01-05      A -1.509059
3  2000-01-03      B -1.135632
4  2000-01-04      B  1.212112
5  2000-01-05      B -0.173215
6  2000-01-03      C  0.119209
7  2000-01-04      C -1.044236
8  2000-01-05      C -0.861849
9  2000-01-03      D -2.104569
10 2000-01-04      D -0.494929
11 2000-01-05      D  1.071804
```

For the curious here is how the above DataFrame was created:

```python
import pandas.util.testing as tm
N = 3
def unpivot(frame):
    N, K = frame.shape
    data = {'value' : frame.values.ravel('F'),
            'variable' : np.asarray(frame.columns).repeat(N),
            'date' : np.tile(np.asarray(frame.index), K)}
    return pd.DataFrame(data, columns=['date', 'variable', 'value'])

df = unpivot(tm.makeTimeDataFrame())
```

To select out everything for variable A we could do:

```python
In [2]: df[df['variable'] == 'A']
Out[2]:
     date variable  value
0  2000-01-03      A  0.469112
1  2000-01-04      A -0.282863
2  2000-01-05      A -1.509059
```

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:
If the `values` argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to `pivot`, then the resulting “pivoted” DataFrame will have *hierarchical columns* whose topmost level indicates the respective value column:

You of course can then select subsets from the pivoted DataFrame:

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

18.2 Reshaping by stacking and unstacking

Closely related to the `pivot` function are the related `stack` and `unstack` functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on *hierarchical indexing*). Here are essentially what these functions do:

- **stack**: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
- **unstack**: inverse operation from `stack`: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

```
In [8]: tuples = list(zip(*[["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
                         ["one", "two", "one", "two", "one", "two", "one", "two"]]))

In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]
```

```
In [12]: df2
Out[12]:
           A           B
    first second
  bar   one  0.721555 -0.706771
         two -1.039575  0.271860
  baz   one -0.424972  0.567020
         two  0.276232 -1.087401
```

The `stack` function “compresses” a level in the DataFrame’s columns to produce either:

- A Series, in the case of a simple column Index
- A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

```
In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]:
           first second
            A     B
bar one   A  0.721555
         B -0.706771
         two A -1.039575
               B  0.271860
baz one   A -0.424972
         B  0.567020
         two A  0.276232
               B -1.087401
dtype: float64
```

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of `stack` is `unstack`, which by default unstacks the last level:

```
In [15]: stacked.unstack()
Out[15]:
           A           B
    first second
  bar   one  0.721555 -0.706771
         two -1.039575  0.271860
  baz   one -0.424972  0.567020
         two  0.276232 -1.087401
```

18.2. Reshaping by stacking and unstacking
If the indexes have names, you can use the level names instead of specifying the level numbers:

```
In [17]: stacked.unstack('second')
```

```
Out[17]:
first  second  one  two
       bar    A  0.721555 -1.039575
            B -0.706771  0.271860
       baz    A -0.424972  0.276232
            B  0.567020 -1.087401
```

Notice that the `stack` and `unstack` methods implicitly sort the index levels involved. Hence a call to `stack` and then `unstack`, or vice versa, will result in a `sorted` copy of the original DataFrame or Series:

```
In [19]: index = pd.MultiIndex.from_product([[2,1], ['a', 'b']])
```

```
In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
```

```
In [21]: df
```

```
Out[21]:
   A
2  a  -0.370647
   b  -1.157892
1  a  -1.344312
   b   0.844885
```

```
In [22]: all(df.unstack().stack() == df.sort_index())
```

```
Out[22]:
   True
```

while the above code will raise a `TypeError` if the call to `sort_index` is removed.

18.2.1 Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.
In [23]: columns = pd.MultiIndex.from_tuples(
....: (['A', 'cat', 'long'), ('B', 'cat', 'long'),
....: (['A', 'dog', 'short'), ('B', 'dog', 'short')
....:),
....: names=['exp', 'animal', 'hair_length']
....:)

In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)

In [25]: df
Out[25]:
exp A B A B
animal cat cat dog dog
hair_length long long short short
0 1.075770 -0.109050 1.643563 -1.469388
1 0.357021 -0.674600 -1.776904 -0.968914
2 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length'])

In [26]: df.stack(level=[1, 2])

The list of levels can contain either level names or level numbers (but not a mixture of the two).

df.stack(level=['animal', 'hair_length'])
from above is equivalent to:

In [27]: df.stack(level=[1, 2])

Out[27]:
exp A B
animal hair_length
0 cat long 1.075770 -0.109050
 dog short 1.643563 -1.469388
1 cat long 0.357021 -0.674600
 dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738
 dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543
 dog short -0.006154 -0.923061

18.2.2 Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sort_index, of course). Here is a more complex example:
As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

```python
In [33]: df2.stack('exp')
Out[33]:
animal       cat   dog
first second exp
bar  one   0.895717  2.565646
  two   -1.206412 -0.805244
baz  one   0.410835 -0.827317
  two   -1.413681 -0.569605
foo  one  -1.413681  1.024180
  two   -2.006747 -0.875906
qux  one  -1.226825  0.769804
  two  -0.727707 -2.211372
```

```python
In [34]: df2.stack('animal')
```

```
→
exp     A     B
first second animal
bar  one  cat  0.895717 -1.206412
dog  2.565646  0.805244
two  cat  1.431256 -1.170299
dog -0.226169  1.340309
baz  one  cat  0.410835  0.132003
dog -0.827317  0.813850
two  cat  1.024180  1.607920
dog  0.974466 -2.211372
foo  one  cat -1.413681  1.024180
dog  0.569605  1.607920
```

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:
Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN.

```
In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]

In [36]: df3
Out[36]:
exp B
animal dog cat
first second
bar one 0.805244 -1.206412
  two 1.340309 -1.170299
foo one 1.607920  1.024180
qux two  0.769804 -1.281247

In [37]: df3.unstack()
...

Out[37]:
exp B
animal dog cat
second one two one two
first bar 0.805244 1.340309 -1.206412 -1.170299
foo 1.607920 NaN 1.024180 NaN
qux NaN 0.769804 NaN -1.281247
```

Alternatively, unstack takes an optional fill_value argument, for specifying the value of missing data.

```
In [38]: df3.unstack(fill_value=-1e9)
Out[38]:
exp B
animal dog cat
second one two one two
first
  bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
  foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
qux -1.000000e+09  7.698036e-01 -1.000000e+09 -1.281247e+00
```

18.2.3 With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

```
In [39]: df[:3].unstack(0)
Out[39]:
exp A B A
animal cat dog cat dog
first
  bar 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646
  two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169
```

18.2. Reshaping by stacking and unstacking
18.3 Reshaping by Melt

The top-level :func:`melt` and :func:`DataFrame.melt` functions are useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are "unpivoted" to the row axis, leaving just two non-identifier columns, "variable" and "value". The names of those columns can be customized by supplying the ``var_name`` and ``value_name`` parameters.

For instance,

```python
In [41]: cheese = pd.DataFrame({
                          'first' : ['John', 'Mary'],
                          'last' : ['Doe', 'Bo'],
                          'height': [5.5, 6.0],
                          'weight': [130, 150])

In [42]: cheese
```

```
  first  height  last  weight
  0      John    5.5     Doe   130
  1     Mary     6.0     Bo    150
```

```python
In [43]: cheese.melt(id_vars=['first', 'last'])
```

```
  first  height  last  weight
  0      John    5.5     Doe   130
  1     Mary     6.0     Bo    150
```

first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')

Out[44]:
first last quantity value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

Another way to transform is to use the wide_to_long panel data convenience function.

In [45]:
dft = pd.DataFrame({
 "A1970": {0: "a", 1: "b", 2: "c"},
 "B1970": {0: 2.5, 1: 1.2, 2: .7},
 "A1980": {0: 3.2, 1: 1.3, 2: .1},
 "X" : dict(zip(range(3), np.random.randn(3)))
 })

In [46]:
dft["id"] = dft.index

In [47]:
dft
Out[47]:
0 a d 2.5 3.2 -0.12 0
1 b e 1.2 1.3 -0.09 1
2 c f 0.7 0.1 0.69 2

In [48]:
pd.wide_to_long(dft, ["A", "B"], i="id", j="year")

Out[48]:
 X A B
id year
0 1970 -0.12 a 2.5
1 1970 -0.09 b 1.2
2 1970 0.69 c 0.7
0 1980 -0.12 d 3.2
1 1980 -0.09 e 1.3
2 1980 0.69 f 0.1

18.4 Combining with stats and GroupBy

It should be no shock that combining pivot/stack/unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

In [49]:
df
Out[49]:
 exp A B A
animal cat dog cat dog
Chapter 18. Reshaping and Pivot Tables

```python
In [50]: df.stack().mean(1).unstack()
animal  cat   dog
<table>
<thead>
<tr>
<th></th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>-0.155347</td>
<td>1.685445</td>
</tr>
<tr>
<td></td>
<td>0.130479</td>
<td>0.557070</td>
</tr>
<tr>
<td>baz</td>
<td>0.271419</td>
<td>-0.006733</td>
</tr>
<tr>
<td></td>
<td>0.526830</td>
<td>-1.312207</td>
</tr>
<tr>
<td>foo</td>
<td>-0.194750</td>
<td>1.088763</td>
</tr>
<tr>
<td></td>
<td>0.925186</td>
<td>-2.109060</td>
</tr>
<tr>
<td>qux</td>
<td>0.067976</td>
<td>-0.648927</td>
</tr>
<tr>
<td></td>
<td>-1.254036</td>
<td>0.021048</td>
</tr>
</tbody>
</table>

# same result, another way
In [51]: df.groupby(level=1, axis=1).mean()
animal  cat   dog
<table>
<thead>
<tr>
<th></th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>-0.155347</td>
<td>1.685445</td>
</tr>
<tr>
<td></td>
<td>0.130479</td>
<td>0.557070</td>
</tr>
<tr>
<td>baz</td>
<td>0.271419</td>
<td>-0.006733</td>
</tr>
<tr>
<td></td>
<td>0.526830</td>
<td>-1.312207</td>
</tr>
<tr>
<td>foo</td>
<td>-0.194750</td>
<td>1.088763</td>
</tr>
<tr>
<td></td>
<td>0.925186</td>
<td>-2.109060</td>
</tr>
<tr>
<td>qux</td>
<td>0.067976</td>
<td>-0.648927</td>
</tr>
<tr>
<td></td>
<td>-1.254036</td>
<td>0.021048</td>
</tr>
</tbody>
</table>

In [52]: df.stack().groupby(level=1).mean()
animal  cat   dog
<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>first</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cat</td>
<td>0.060843</td>
<td>0.018596</td>
</tr>
<tr>
<td></td>
<td>dog</td>
<td>-0.413580</td>
<td>0.232430</td>
</tr>
<tr>
<td></td>
<td>second</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>one</td>
<td>0.071448</td>
<td>0.455513</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>-0.424186</td>
<td>-0.204486</td>
</tr>
</tbody>
</table>

In [53]: df.mean().unstack(0)
animal  exp   A       B
|      | cat   | 0.060843 | 0.018596 |
|      | dog   | -0.413580 | 0.232430 |
```
18.5 Pivot tables

While pivot provides general purpose pivoting of DataFrames with various data types (strings, numerics, etc.), Pandas also provides the pivot_table function for pivoting with aggregation of numeric data.

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies.

It takes a number of arguments:

- **data**: A DataFrame object
- **values**: a column or a list of columns to aggregate
- **index**: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- **columns**: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- **aggfunc**: function to use for aggregation, defaulting to numpy.mean

Consider a data set like this:

```python
In [54]: import datetime
In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
                      'B': ['A', 'B', 'C'] * 8,
                      'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                      'D': np.random.randn(24),
                      'E': np.random.randn(24),
                      'F': [datetime.datetime(2013, i, 1)
                            for i in range(1, 13)] +
                            [datetime.datetime(2013, i, 15) for i in range(1, 13)])
In [56]: df
Out[56]:
   A   B   C      D      E       F
0  one  A   foo  0.341734 -0.317441 2013-01-01
1  one  B    foo  0.959726 -1.236269 2013-02-01
2  two  C    foo -1.110336  0.896171 2013-03-01
3  three  A   bar -0.619976 -0.487602 2013-04-01
4   one  B    bar  0.149748 -0.082240 2013-05-01
5   one  C    bar -0.732339 -2.182937 2013-06-01
6   two  A    foo  0.687738  0.380396 2013-07-01
... ...... ...... ...... ...... ...... ...
17  one  C    bar -0.345352  0.206053 2013-06-15
18  two  A    foo  1.314232 -0.251905 2013-07-15
19  three  B    foo  0.690579 -2.213588 2013-08-15
20   one  C    foo  0.995761  1.063327 2013-09-15
21   one  A    bar  2.396780  1.266143 2013-10-15
22  two  B    bar  0.014871  0.299368 2013-11-15
23  three  C    bar  3.357427 -0.863838 2013-12-15
[24 rows x 6 columns]
```

We can produce pivot tables from this data very easily:
```
in [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])

Out[57]:

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>one</td>
<td>A</td>
<td>1.120915</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.338421</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-0.538846</td>
</tr>
<tr>
<td>three</td>
<td>A</td>
<td>-1.181568</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.588783</td>
</tr>
<tr>
<td>two</td>
<td>A</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.158248</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>NaN</td>
</tr>
</tbody>
</table>

In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.241830</td>
<td>-1.028115</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>-0.676843</td>
<td>0.005518</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>-1.077692</td>
<td>1.399070</td>
</tr>
</tbody>
</table>

In [59]: pd.pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>C</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>one</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>2.241830</td>
<td>-1.028115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>-0.676843</td>
<td>0.005518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>-1.077692</td>
<td>1.399070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>-0.043211</td>
<td>1.922577</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>-1.103384</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1.495717</td>
<td>-0.263660</td>
</tr>
</tbody>
</table>

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the `values` column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

```
in [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])

Out[60]:

```
```
Also, you can use `Grouper` for index and columns keywords. For detail of `Grouper`, see *Grouping with a Grouper specification*.

```python
In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C')
```

Out[61]:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>bar</td>
<td>foo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-31</td>
<td>NaN</td>
<td>-0.514058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-02-28</td>
<td>NaN</td>
<td>0.002759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-03-31</td>
<td>NaN</td>
<td>0.176180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-04-30</td>
<td>-1.181568</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-05-31</td>
<td>-0.338421</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-06-30</td>
<td>-0.538846</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-07-31</td>
<td>NaN</td>
<td>1.000985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-08-31</td>
<td>NaN</td>
<td>0.433512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-09-30</td>
<td>NaN</td>
<td>0.699535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-10-31</td>
<td>1.120915</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-11-30</td>
<td>0.158248</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-12-31</td>
<td>0.588783</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can render a nice output of the table omitting the missing values by calling `to_string` if you wish:

```python
In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
In [63]: print(table.to_string(na_rep=''))
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>bar</td>
<td>foo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>one</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.120915</td>
<td>-0.514058</td>
<td>1.393057</td>
<td>-0.021605</td>
<td></td>
</tr>
<tr>
<td>-0.338421</td>
<td>0.002759</td>
<td>0.684140</td>
<td>-0.551692</td>
<td></td>
</tr>
<tr>
<td>-0.538846</td>
<td>0.699535</td>
<td>-0.988442</td>
<td>0.747859</td>
<td></td>
</tr>
<tr>
<td>-1.181568</td>
<td>0.961289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>three</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.433512</td>
<td>-0.131830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.588783</td>
<td>-0.097147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.176180</td>
<td>0.064245</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that `pivot_table` is also available as an instance method on DataFrame.

18.5.1 Adding margins

If you pass `margins=True` to `pivot_table`, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

```python
In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
```

Out[64]:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>bar</td>
<td>foo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.102230</td>
<td>-0.021605</td>
<td>0.684140</td>
<td>-0.551692</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td>0.747859</td>
<td></td>
</tr>
</tbody>
</table>

18.5. Pivot tables
18.6 Cross tabulations

Use the `crosstab` function to compute a cross-tabulation of two (or more) factors. By default `crosstab` computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments:

- **index**: array-like, values to group by in the rows
- **columns**: array-like, values to group by in the columns
- **values**: array-like, optional, array of values to aggregate according to the factors
- **aggfunc**: function, optional, If no values array is passed, computes a frequency table
- **rownames**: sequence, default None, must match number of row arrays passed
- **colnames**: sequence, default None, if passed, must match number of column arrays passed
- **margins**: boolean, default False, Add row/column margins (subtotals)
- **normalize**: boolean, {'all', 'index', 'columns'}, or {0,1}, default False. Normalize by dividing all values by the sum of values.

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified.

For example:

```
In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'

In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)

In [67]: b = np.array([one, one, two, one, two, one], dtype=object)

In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)

In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
```

```
Out[69]:
     b   c
a one
dull 0  been
shiny 0  been
one 1  been
two 0  been
```

If `crosstab` receives only two Series, it will provide a frequency table.
In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4], 'C': [1, 1, np.nan, 1, 1]})

In [71]: df
Out[71]:
 A B C
0 1 3 1.0
1 2 3 1.0
2 2 4 NaN
3 2 4 1.0
4 2 4 1.0

In [72]: pd.crosstab(df.A, df.B)

Out[72]:
 3 4
A
1 1 0
2 1 3

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.

In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])

In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])

In [75]: pd.crosstab(foo, bar)
Out[75]:
 col_0 d e
row_0
a 1 0
b 0 1
c 0 0

18.6.1 Normalization

New in version 0.18.1.

Frequency tables can also be normalized to show percentages rather than counts using the normalize argument:

In [76]: pd.crosstab(df.A, df.B, normalize=True)
Out[76]:
 B 3 4
A
1 0.2 0.0
2 0.2 0.6

normalize can also normalize values within each row or within each column:

In [77]: pd.crosstab(df.A, df.B, normalize='columns')
Out[77]:
 B 3 4
A
1 0.5 0.0
2 0.5 1.0
crosstab can also be passed a third Series and an aggregation function (aggfunc) that will be applied to the values of the third Series within each group defined by the first two Series:

```
In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
Out[78]:
         B  3  4
    A
1   1.0  NaN
2   1.0  2.0
```

18.6.2 Adding Margins

Finally, one can also add margins or normalize this output.

```
In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True, margins=True)
```

```
In [79]:
Out[79]:
         B  3  4  All
    A
1   0.25 0.0  0.25
2   0.25 0.5  0.75
All 0.50 0.5  1.00
```

18.7 Tiling

The `cut` function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

```
In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
In [81]: pd.cut(ages, bins=3)
```

```
[(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60.0], (43.333, 60.0)]
Categories (3, interval[float64]): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60.0]}
```

If the `bins` keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

```
In [82]: c = pd.cut(ages, bins=3)
In [83]: c
```

```
[(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70)]
Categories (3, interval[int64]): [(0, 18] < (18, 35] < (35, 70]}
```

New in version 0.20.0.

If the `bins` keyword is an `IntervalIndex`, then these will be used to bin the passed data.

```
pd.cut([25, 20, 50], bins=c.categories)
```
18.8 Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s:

```
In [84]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})
In [85]: pd.get_dummies(df['key'])
```

```
Out[85]:
a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
```

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

```
In [86]: dummies = pd.get_dummies(df['key'], prefix='key')
In [87]: dummies
```

```
Out[87]:
key_a key_b key_c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
```

```
In [88]: df[['data1']].join(dummies)
```

```
        data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0
```

This function is often used along with discretization functions like `cut`:

```
In [89]: values = np.random.randn(10)
In [90]: values
```

```
Out[90]:
array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,
        0.0824, -0.0558, 0.5366])
```

```
In [91]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
In [92]: pd.get_dummies(pd.cut(values, bins))
```

```
Out[92]:
(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
0 0 0 0 1 0 0
1 0 0 0 0 0 0
```
See also `Series.str.get_dummies`.

New in version 0.15.0.

`get_dummies()` also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with `object` or `categorical` dtype) are encoded as dummy variables.

```
In [93]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
                          'C': [1, 2, 3]})

In [94]: pd.get_dummies(df)
Out[94]:
   C  A_a  A_b  B_b  B_c
0  1    1    0    0    1
1  2    0    1    0    1
2  3    1    0    1    0
```

All non-object columns are included untouched in the output.

You can control the columns that are encoded with the `columns` keyword.

```
In [95]: pd.get_dummies(df, columns=['A'])
Out[95]:
   B  C  A_a  A_b
0  c  1    1    0
1  c  2    0    1
2  b  3    1    0
```

Notice that the `B` column is still included in the output, it just hasn’t been encoded. You can drop `B` before calling `get_dummies` if you don’t want to include it in the output.

As with the Series version, you can pass values for the `prefix` and `prefix_sep` parameters. By default the column name is used as the prefix, and '_' as the prefix separator. You can specify `prefix` and `prefix_sep` in 3 ways:

- **string**: Use the same value for `prefix` or `prefix_sep` for each column to be encoded
- **list**: Must be the same length as the number of columns being encoded.
- **dict**: Mapping column name to prefix

```
In [96]: simple = pd.get_dummies(df, prefix='new_prefix')

In [97]: simple
Out[97]:
   C  new_prefix_a  new_prefix_b  new_prefix_b  new_prefix_c
0  1             1              0              0          1
1  2              0              1              0          1
2  3              1              0              1          0
```

```
In [98]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])

In [99]: from_list
Out[99]:
   C  from_A  from_B
0  1          1
1  2          0
2  3          1
```
In [99]: from_list
Out[99]:
 C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

In [100]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})

In [101]: from_dict
Out[101]:
 C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

New in version 0.18.0.

Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the result to statistical models. You can switch to this mode by turn on drop_first.

In [102]: s = pd.Series(list('abcaa'))

In [103]: pd.get_dummies(s)
Out[103]:
 a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0

In [104]: pd.get_dummies(s, drop_first=True)

 b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0

When a column contains only one level, it will be omitted in the result.

In [105]: df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')})

In [106]: pd.get_dummies(df)
Out[106]:
 A_a B_a B_b B_c
0 1 1 0 0
1 1 0 1 0
2 1 1 0 0
3 1 0 1 0
4 1 0 0 1

In [107]: pd.get_dummies(df, drop_first=True)

 B_b B_c
0 1 0
1 0 1
2 1 0
3 0 1
4 0 0
18.9 Factorizing values

To encode 1-d values as an enumerated type use factorize:

```python
In [108]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])

In [109]: x
Out[109]:
0     A
1     A
2   NaN
3     B
4  3.14
5  inf
dtype: object

In [110]: labels, uniques = pd.factorize(x)

In [111]: labels
Out[111]:
array([ 0, 0, -1, 1, 2, 3])

In [112]: uniques
Out[112]: Index(['A', 'B', 3.14, inf'], dtype='object')
```

Note that `factorize` is similar to `numpy.unique`, but differs in its handling of NaN:

```python
Note: The following `numpy.unique` will fail under Python 3 with a `TypeError` because of an ordering bug. See also Here

In [2]: pd.factorize(x, sort=True)
Out[2]:
(array([ 2, 2, -1, 3, 0, 1]), Index([3.14, inf, u'A', u'B'], dtype='object'))

In [3]: np.unique(x, return_inverse=True)[::-1]
Out[3]:
(array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
```

Note: If you just want to handle one column as a categorical variable (like R’s factor), you can use `df['cat_col'] = pd.Categorical(df['col'])` or `df['cat_col'] = df['col'].astype('category')`. For full docs on `Categorical`, see the [Categorical introduction](#) and the [API documentation](#). This feature was introduced in version 0.15.
pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis space. Using the NumPy datetime64 and timedelta64 dtypes, we have consolidated a large number of features from other Python libraries like scikits.timeseries as well as created a tremendous amount of new functionality for manipulating time series data.

In working with time series data, we will frequently seek to:
- generate sequences of fixed-frequency dates and time spans
- conform or convert time series to a particular frequency
- compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.

Create a range of dates:

```python
# 72 hours starting with midnight Jan 1st, 2011
In [1]: rng = pd.date_range('1/1/2011', periods=72, freq='H')
In [2]: rng[:5]
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 01:00:00',
              '2011-01-01 02:00:00', '2011-01-01 03:00:00',
              '2011-01-01 04:00:00'], dtype='datetime64[ns]', freq='H')
```

Index pandas objects with dates:

```python
In [3]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [4]: ts.head()
Out[4]:
2011-01-01 00:00:00  0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00  1.212112
Freq: H, dtype: float64
```

Change frequency and fill gaps:

```python
# to 45 minute frequency and forward fill
In [5]: converted = ts.asfreq('45Min', method='pad')
```
In [6]: converted.head()
Out[6]:
2011-01-01 00:00:00 0.469112
2011-01-01 00:45:00 0.469112
2011-01-01 01:30:00 -0.282863
2011-01-01 02:15:00 -1.509059
2011-01-01 03:00:00 -1.135632
Freq: 45T, dtype: float64

Resample:

Daily means
In [7]: ts.resample('D').mean()
Out[7]:
2011-01-01 -0.319569
2011-01-02 -0.337703
2011-01-03 0.117258
Freq: D, dtype: float64

19.1 Overview

Following table shows the type of time-related classes pandas can handle and how to create them.

<table>
<thead>
<tr>
<th>Class</th>
<th>Remarks</th>
<th>How to create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Represents a single time stamp</td>
<td>to_datetime, Timestamp</td>
</tr>
<tr>
<td>DatetimeIndex</td>
<td>Index of Timestamp</td>
<td>to_datetime, date_range, DatetimeIndex</td>
</tr>
<tr>
<td>Period</td>
<td>Represents a single time span</td>
<td>Period</td>
</tr>
<tr>
<td>PeriodIndex</td>
<td>Index of Period</td>
<td>period_range, PeriodIndex</td>
</tr>
</tbody>
</table>

19.2 Time Stamps vs. Time Spans

Time-stamped data is the most basic type of timeseries data that associates values with points in time. For pandas objects it means using the points in time.

In [8]: pd.Timestamp(datetime(2012, 5, 1))
Out[8]: Timestamp('2012-05-01 00:00:00')

In [9]: pd.Timestamp('2012-05-01')
Out[9]: Timestamp('2012-05-01 00:00:00')

In [10]: pd.Timestamp(2012, 5, 1)
Out[10]: Timestamp('2012-05-01 00:00:00')

However, in many cases it is more natural to associate things like change variables with a time span instead. The span represented by Period can be specified explicitly, or inferred from datetime string format.

For example:

In [11]: pd.Period('2011-01')
Out[11]: Period('2011-01', 'M')
Timestamp and Period can be the index. Lists of Timestamp and Period are automatically coerced to DatetimeIndex and PeriodIndex respectively.

```
       →Timestamp('2012-05-03')]
In [14]: ts = pd.Series(np.random.randn(3), dates)
In [15]: type(ts.index)
Out[15]: pandas.core.indexes.datetimes.DatetimeIndex
In [16]: ts.index
Out[16]: DatetimeIndex(['2012-05-
       →01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
In [17]: ts
Out[17]:
2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03  0.545952
dtype: float64
In [18]: periods = [pd.Period('2012-01'), pd.Period('2012-02'), pd.Period('2012-03')]
In [19]: ts = pd.Series(np.random.randn(3), periods)
In [20]: type(ts.index)
Out[20]: pandas.core.indexes.period.PeriodIndex
In [21]: ts.index
Out[21]: PeriodIndex(['2012-01',
       →'2012-02', '2012-03'], dtype='period[M]', freq='M')
In [22]: ts
Out[22]:
2012-01  -1.219217
2012-02  -1.226825
2012-03   0.769804
Freq: M, dtype: float64
```

pandas allows you to capture both representations and convert between them. Under the hood, pandas represents timestamps using instances of Timestamp and sequences of timestamps using instances of DatetimeIndex. For regular time spans, pandas uses Period objects for scalar values and PeriodIndex for sequences of spans. Better support for irregular intervals with arbitrary start and end points are forth-coming in future releases.

19.3 Converting to Timestamps

To convert a Series or list-like object of date-like objects e.g. strings, epochs, or a mixture, you can use the `to_datetime` function. When passed a Series, this returns a Series (with the same index), while a list-like is converted to a DatetimeIndex:
In [23]: pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))
Out[23]:
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]

In [24]: pd.to_datetime(['2005/11/23', '2010.12.31'])
Out[24]:
\\\→ DatetimeIndex(['2005-11-23', '2010-12-31'], dtype='datetime64[ns]', freq=None)

If you use dates which start with the day first (i.e. European style), you can pass the dayfirst flag:

In [25]: pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
Out[25]:
\\\→ DatetimeIndex(['2012-01-04 10:00:00'], dtype='datetime64[ns]', freq=None)

In [26]: pd.to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
\\\→ DatetimeIndex(['2012-01-14', '2012-01-14'], dtype='datetime64[ns]', freq=None)

Warning: You see in the above example that dayfirst isn’t strict, so if a date can’t be parsed with the day being first it will be parsed as if dayfirst were False.

Note: Specifying a format argument will potentially speed up the conversion considerably and on versions later then 0.13.0 explicitly specifying a format string of ‘%Y%m%d’ takes a faster path still.

If you pass a single string to to_datetime, it returns single Timestamp. Also, Timestamp can accept the string input. Note that Timestamp doesn’t accept string parsing option like dayfirst or format, use to_datetime if these are required.

In [27]: pd.to_datetime('2010/11/12')
Out[27]: Timestamp('2010-11-12 00:00:00')

In [28]: pd.Timestamp('2010/11/12')
Out[28]: Timestamp('2010-11-12 00:00:00')

New in version 0.18.1.
You can also pass a DataFrame of integer or string columns to assemble into a Series of Timestamps.

In [29]: df = pd.DataFrame({'year': [2015, 2016],
 'month': [2, 3],
 'day': [4, 5],
 'hour': [2, 3]})
 : :
In [30]: pd.to_datetime(df)
Out[30]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.
In [31]: pd.to_datetime(df[['year', 'month', 'day']])
Out[31]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

pd.to_datetime looks for standard designations of the datetime component in the column names, including:

- **required**: year, month, day
- **optional**: hour, minute, second, millisecond, microsecond, nanosecond

19.3.1 Invalid Data

Note: In version 0.17.0, the default for `to_datetime` is now errors='raise', rather than errors='ignore'. This means that invalid parsing will raise rather that return the original input as in previous versions.

Pass errors='coerce' to convert invalid data to NaT (not a time):

Raise when unparseable, this is the default

In [2]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ValueError: Unknown string format

Return the original input when unparseable

In [4]: pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Out[4]: array(['2009/07/31', 'asd'], dtype=object)

Return NaT for input when unparseable

In [6]: pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
Out[6]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)

19.3.2 Epoch Timestamps

It’s also possible to convert integer or float epoch times. The default unit for these is nanoseconds (since these are how Timestamps are stored). However, often epochs are stored in another unit which can be specified. These are computed from the starting point specified by the Origin Parameter.

Typical epoch stored units

In [32]: pd.to_datetime([1349720105, 1349806505, 1349892905,: 1349979305, 1350065705], unit='s')
Out[32]: DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',: '2012-10-12 18:15:05'], dtype='datetime64[ns]', freq=None)

In [33]: pd.to_datetime([1349720105100, 1349720105200, 1349720105300,: 1349720105400, 1349720105500], unit='ms')

19.3. Converting to Timestamps
Note: Epoch times will be rounded to the nearest nanosecond.

Warning: Conversion of float epoch times can lead to inaccurate and unexpected results. Python floats have about 15 digits precision in decimal. Rounding during conversion from float to high precision Timestamp is unavoidable. The only way to achieve exact precision is to use a fixed-width types (e.g. an int64).

19.3.3 From Timestamps to Epoch

To invert the operation from above, namely, to convert from a Timestamp to a ‘unix’ epoch:

We convert the DatetimeIndex to an int64 array, then divide by the conversion unit.

19.3.4 Using the Origin Parameter

New in version 0.20.0.

Using the origin parameter, one can specify an alternative starting point for creation of a DatetimeIndex.
The default is set at `origin='unix'`, which defaults to `1970-01-01 00:00:00`. Commonly called ‘unix epoch’ or POSIX time.

```
In [40]: pd.to_datetime([1, 2, 3], unit='D')
Out[40]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)
```

19.4 Generating Ranges of Timestamps

To generate an index with time stamps, you can use either the DatetimeIndex or Index constructor and pass in a list of datetime objects:

```
In [41]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
# Note the frequency information
In [42]: index = pd.DatetimeIndex(dates)
```

```
In [43]: index
Out[43]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
```

```
In [44]: index = pd.Index(dates)
In [45]: index
Out[45]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
```

Practically, this becomes very cumbersome because we often need a very long index with a large number of timestamps. If we need timestamps on a regular frequency, we can use the pandas functions `date_range` and `bdate_range` to create timestamp indexes.

```
In [46]: index = pd.date_range('2000-1-1', periods=1000, freq='M')
```

```
In [47]: index
 '2000-09-30', '2000-10-31',
 ...'
 '2082-07-31', '2082-08-31', '2082-09-30', '2082-10-31',
 '2082-11-30', '2082-12-31', '2083-01-31', '2083-02-28',
 '2083-03-31', '2083-04-30'],
dtype='datetime64[ns]', length=1000, freq='M')
```

```
In [48]: index = pd.bdate_range('2012-1-1', periods=250)
```

```
In [49]: index
Out[49]: DatetimeIndex(['2012-01-02', '2012-01-03', '2012-01-04', '2012-01-05',
 '2012-01-06', '2012-01-09', '2012-01-10', '2012-01-11',
 '2012-01-12', '2012-01-13',
 ...'
 '2012-12-03', '2012-12-04', '2012-12-05', '2012-12-06',
 '2012-12-07', '2012-12-10', '2012-12-11', '2012-12-12',
 ...'
 '2012-12-24', '2012-12-25', '2012-12-26', '2012-12-27',
 '2012-12-28', '2012-12-29', '2012-12-30'],
dtype='datetime64[ns]', length=250, freq=None)
```
Convenience functions like `date_range` and `bdate_range` utilize a variety of frequency aliases. The default frequency for `date_range` is a calendar day while the default for `bdate_range` is a business day.

```python
In [50]: start = datetime(2011, 1, 1)
In [51]: end = datetime(2012, 1, 1)
In [52]: rng = pd.date_range(start, end)
In [53]: rng
```

```
Out[53]:
    '2011-01-09', '2011-01-10', ...
    '2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
    '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
    '2011-12-31', '2012-01-01'],
dtype='datetime64[ns]', length=366, freq='D')
```

```python
In [54]: rng = pd.bdate_range(start, end)
In [55]: rng
```

```
Out[55]:
    '2011-01-13', '2011-01-14', ...
    '2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
    '2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
    '2011-12-29', '2011-12-30'],
dtype='datetime64[ns]', length=260, freq='B')
```

date_range and bdate_range make it easy to generate a range of dates using various combinations of parameters like `start`, `end`, `periods`, and `freq`:

```python
In [56]: pd.date_range(start, end, freq='BM')
Out [56]:
```

```
dtype='datetime64[ns]', freq='BM')
```

```python
In [57]: pd.date_range(start, end, freq='W')
```

```
---
```

```python
In [60]:
```

```
---
```
```
The start and end dates are strictly inclusive. So it will not generate any dates outside of those dates if specified.

### 19.5 Timestamp limitations

Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit integer is limited to approximately 584 years:

```python
In [60]: pd.Timestamp.min
Out[60]: Timestamp('1677-09-21 00:12:43.145225')
```

```python
In [61]: pd.Timestamp.max
```

See [here](#) for ways to represent data outside these bound.

### 19.6 Indexing

One of the main uses for `DatetimeIndex` is as an index for pandas objects. The `DatetimeIndex` class contains many time-series related optimizations:

- A large range of dates for various offsets are pre-computed and cached under the hood in order to make generating subsequent date ranges very fast (just have to grab a slice)
- Fast shifting using the `shift` and `tshift` method on pandas objects
- Unioning of overlapping `DatetimeIndex` objects with the same frequency is very fast (important for fast data alignment)
- Quick access to date fields via properties such as `year`, `month`, etc.
- Regularization functions like `snap` and very fast `asof` logic

DatetimeIndex objects have all the basic functionality of regular Index objects and a smorgasbord of advanced timeseries-specific methods for easy frequency processing.

See also:

Reindexing methods

**Note:** While pandas does not force you to have a sorted date index, some of these methods may have unexpected or incorrect behavior if the dates are unsorted. So please be careful.

DatetimeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing, etc.

```python
In [62]: rng = pd.date_range(start, end, freq='BM')
In [63]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [64]: ts.index
dtype='datetime64[ns]', freq='BM')
```

```python
In [65]: ts[:5].index
'2011-05-31'], dtype='datetime64[ns]', freq='BM')
```

```python
In [66]: ts[::2].index
'2011-09-30', '2011-11-30'], dtype='datetime64[ns]', freq='2BM')
```

### 19.6.1 Partial String Indexing

You can pass in dates and strings that parse to dates as indexing parameters:

```python
In [67]: ts['1/31/2011']
Out[67]: -1.2812473076599531
```

```python
In [68]: ts[datetime(2011, 12, 25):]
Out[68]: 2011-12-30 0.687738
Freq: BM, dtype: float64
```

```python
In [69]: ts['10/31/2011':'12/31/2011']
```

812 Chapter 19. Time Series / Date functionality
To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

```
In [70]: ts['2011']
Out[70]:
2011-01-31 -1.281247
2011-02-28 -0.727707
2011-03-31 -0.121306
2011-04-29 -0.097883
2011-05-31 0.695775
2011-06-30 0.341734
2011-07-29 0.959726
2011-08-31 -1.110336
2011-09-30 -0.619976
2011-10-31 0.695775
Freq: BM, dtype: float64
```

```
In [71]: ts['2011-6']
Out[71]:
2011-06-30 0.341734
Freq: BM, dtype: float64
```

This type of slicing will work on a DataFrame with a `DateTimeIndex` as well. Since the partial string selection is a form of label slicing, the endpoints will be included. This would include matching times on an included date. Here's an example:

```
In [72]: dft = pd.DataFrame(randn(100000,1),
 columns=['A'],
 index=pd.date_range('20130101',periods=100000,freq='T'))

In [73]: dft
Out[73]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 1.252450
2013-01-01 00:06:00 -0.954208
...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669
[100000 rows x 1 columns]
```
In [74]: dft['2013']

\[ \begin{array}{cccc}
2013-01-01 & 00:00:00 & 0.176444 \\
2013-01-01 & 00:01:00 & 0.403310 \\
2013-01-01 & 00:02:00 & -0.154951 \\
2013-01-01 & 00:03:00 & 0.301624 \\
2013-01-01 & 00:04:00 & -2.179861 \\
2013-01-01 & 00:05:00 & -1.369849 \\
2013-01-01 & 00:06:00 & -0.954208 \\
\cdots & \cdots & \cdots \\
2013-03-11 & 10:33:00 & -0.293083 \\
2013-03-11 & 10:34:00 & -0.059881 \\
2013-03-11 & 10:35:00 & 1.252450 \\
2013-03-11 & 10:36:00 & 0.046611 \\
2013-03-11 & 10:37:00 & 0.059478 \\
2013-03-11 & 10:38:00 & -0.286539 \\
2013-03-11 & 10:39:00 & 0.841669 \\
\end{array} \]

[100000 rows x 1 columns]

This starts on the very first time in the month, and includes the last date & time for the month

In [75]: dft['2013-1':'2013-2']

Out[75]:

\[ \begin{array}{cccc}
2013-01-01 & 00:00:00 & 0.176444 \\
2013-01-01 & 00:01:00 & 0.403310 \\
2013-01-01 & 00:02:00 & -0.154951 \\
2013-01-01 & 00:03:00 & 0.301624 \\
2013-01-01 & 00:04:00 & -2.179861 \\
2013-01-01 & 00:05:00 & -1.369849 \\
2013-01-01 & 00:06:00 & -0.954208 \\
\cdots & \cdots & \cdots \\
2013-02-28 & 23:53:00 & 0.103114 \\
2013-02-28 & 23:54:00 & -1.303422 \\
2013-02-28 & 23:55:00 & 0.451943 \\
2013-02-28 & 23:56:00 & 0.220534 \\
2013-02-28 & 23:57:00 & -1.624220 \\
2013-02-28 & 23:58:00 & 0.093915 \\
2013-02-28 & 23:59:00 & -1.087454 \\
\end{array} \]

[84960 rows x 1 columns]

This specifies a stop time that includes all of the times on the last day

In [76]: dft['2013-1':'2013-2-28']

Out[76]:

\[ \begin{array}{cccc}
2013-01-01 & 00:00:00 & 0.176444 \\
2013-01-01 & 00:01:00 & 0.403310 \\
2013-01-01 & 00:02:00 & -0.154951 \\
2013-01-01 & 00:03:00 & 0.301624 \\
2013-01-01 & 00:04:00 & -2.179861 \\
2013-01-01 & 00:05:00 & -1.369849 \\
2013-01-01 & 00:06:00 & -0.954208 \\
\cdots & \cdots & \cdots \\
2013-02-28 & 23:53:00 & 0.103114 \\
2013-02-28 & 23:54:00 & -1.303422 \\
2013-02-28 & 23:55:00 & 0.451943 \\
2013-02-28 & 23:56:00 & 0.220534 \\
2013-02-28 & 23:57:00 & -1.624220 \\
2013-02-28 & 23:58:00 & 0.093915 \\
2013-02-28 & 23:59:00 & -1.087454 \\
\end{array} \]

[84960 rows x 1 columns]
This specifies an exact stop time (and is not the same as the above)

In [77]: dft['2013-1':'2013-2-28 00:00:00']
Out[77]:
A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00  2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
... ...
2013-02-27 23:54:00  0.897051
2013-02-27 23:55:00 -0.309230
2013-02-27 23:56:00  1.944713
2013-02-27 23:57:00  0.369265
2013-02-27 23:58:00  0.053071
2013-02-27 23:59:00 -0.019734
2013-02-28 00:00:00  1.388189
[83521 rows x 1 columns]

We are stopping on the included end-point as it is part of the index

In [78]: dft['2013-1-15':'2013-1-15 12:30:00']
Out[78]:
A
2013-01-15 00:00:00  0.501288
2013-01-15 00:01:00 -0.605198
2013-01-15 00:02:00  0.215146
2013-01-15 00:03:00  0.924732
2013-01-15 00:04:00 -2.228519
2013-01-15 00:05:00  1.517331
2013-01-15 00:06:00 -1.188774
... ...
2013-01-15 12:24:00  1.358314
2013-01-15 12:25:00 -0.737727
2013-01-15 12:26:00  1.838323
2013-01-15 12:27:00 -0.774090
2013-01-15 12:28:00  0.622261
2013-01-15 12:29:00 -0.631649
2013-01-15 12:30:00  0.193284
[751 rows x 1 columns]

New in version 0.18.0.
DatetimeIndex Partial String Indexing also works on DataFrames with a `MultiIndex`. For example:

```python
In [79]: dft2 = pd.DataFrame(np.random.randn(20, 1),
 columns=['A'],
 index=pd.MultiIndex.from_product([pd.date_range('20130101',
 periods=10,
 freq='12H'),
 ['a', 'b']]))

In [80]: dft2
Out[80]:
 A
2013-01-01 00:00:00 a 0.314352
 b 1.013007
2013-01-01 12:00:00 a -0.778425
 b 0.000324
2013-01-02 00:00:00 a 1.266857
 b -0.765077
2013-01-02 12:00:00 a -0.350067
 b 0.049352

2013-01-04 00:00:00 a 0.200714
 b -0.522707
2013-01-04 12:00:00 a 0.221936
 b 0.024301
2013-01-05 00:00:00 a -1.025173
 b 2.032454
2013-01-05 12:00:00 a -0.667996
 b 0.149867
[20 rows x 1 columns]

In [81]: dft2.loc['2013-01-05']
 A
2013-01-05 00:00:00 a -1.256173
 b 2.324544
2013-01-05 12:00:00 a -1.067396
 b -0.660996

In [82]: idx = pd.IndexSlice

In [83]: dft2 = dft2.swaplevel(0, 1).sort_index()

In [84]: dft2.loc[idx[:, '2013-01-05'], :]
Out[84]:
 A
2013-01-05 00:00:00 a -1.256173
 b 2.324544
2013-01-05 12:00:00 a -1.067396
 b -0.660996
```

---

**Chapter 19. Time Series / Date functionality**
19.6.2 Slice vs. exact match

Changed in version 0.20.0.

The same string used as an indexing parameter can be treated either as a slice or as an exact match depending on the resolution of an index. If the string is less accurate than the index, it will be treated as a slice, otherwise as an exact match.

For example, let us consider `Series` object which index has minute resolution.

```
In [85]: series_minute = pd.Series([1, 2, 3],
....: pd.DatetimeIndex(['2011-12-31 23:59:00',
....: '2012-01-01 00:00:00',
....: '2012-01-01 00:02:00']))
.....:

In [86]: series_minute.index.resolution
Out[86]: 'minute'
```

A timestamp string less accurate than a minute gives a `Series` object.

```
In [87]: series_minute['2011-12-31 23']
Out[87]:
2011-12-31 23:59:00 1
Name: 2011-12-31 23:59:00, dtype: int64
```

A timestamp string with minute resolution (or more accurate), gives a scalar instead, i.e. it is not casted to a slice.

```
In [88]: series_minute['2011-12-31 23:59']
Out[88]: 1

In [89]: series_minute['2011-12-31 23:59:00']
Out[89]: 1
```

If index resolution is second, then, the minute-accurate timestamp gives a `Series`.

```
In [90]: series_second = pd.Series([1, 2, 3],
....: pd.DatetimeIndex(['2011-12-31 23:59:59',
....: '2012-01-01 00:00:00',
....: '2012-01-01 00:00:01']))
....:

In [91]: series_second.index.resolution
Out[91]: 'second'

In [92]: series_second['2011-12-31 23:59']
Out[92]:
2011-12-31 23:59:59 1
Name: 2011-12-31 23:59:59, dtype: int64
```

If the timestamp string is treated as a slice, it can be used to index `DataFrame` with [] as well.

```
In [93]: dft_minute = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]},
....: index=series_minute.index)
....:

In [94]: dft_minute['2011-12-31 23']
Out[94]:
```

19.6. Indexing
Warning: However if the string is treated as an exact match, the selection in DataFrame’s [] will be column-wise and not row-wise, see Indexing Basics. For example dft_minute['2011-12-31 23:59'] will raise KeyError as '2012-12-31 23:59' has the same resolution as index and there is no column with such name:

To always have unambiguous selection, whether the row is treated as a slice or a single selection, use .loc.

Note also that DatetimeIndex resolution cannot be less precise than day.

19.6.3 Exact Indexing

As discussed in previous section, indexing a DateTimeIndex with a partial string depends on the “accuracy” of the period, in other words how specific the interval is in relation to the resolution of the index. In contrast, indexing with Timestamp or datetime objects is exact, because the objects have exact meaning. These also follow the semantics of including both endpoints.

These Timestamp and datetime objects have exact hours, minutes, and seconds, even though they were not explicitly specified (they are 0).
19.6.4 Truncating & Fancy Indexing

A `truncate` convenience function is provided that is equivalent to slicing:

```
In [101]: ts.truncate(before='10/31/2011', after='12/31/2011')
Out[101]:
2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64
```

Even complicated fancy indexing that breaks the DatetimeIndex’s frequency regularity will result in a DatetimeIndex (but frequency is lost):

```
In [102]: ts[[0, 2, 6]].index
Out[102]: DatetimeIndex(['2011-01-31', '2011-03-31', '2011-07-29'], dtype=datetime64[ns], freq=None)
```

19.7 Time/Date Components

There are several time/date properties that one can access from `Timestamp` or a collection of timestamps like a DatetimeIndex.

```
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>month</td>
<td>The month of the datetime</td>
</tr>
<tr>
<td>day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>hour</td>
<td>The hour of the datetime</td>
</tr>
<tr>
<td>minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>date</td>
<td>Returns datetime.date (does not contain timezone information)</td>
</tr>
<tr>
<td>time</td>
<td>Returns datetime.time (does not contain timezone information)</td>
</tr>
<tr>
<td>dayofyear</td>
<td>The ordinal day of year</td>
</tr>
<tr>
<td>weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>dayofweek</td>
<td>The number of the day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday</td>
<td>The number of the day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday_name</td>
<td>The name of the day in a week (ex: Friday)</td>
</tr>
<tr>
<td>quarter</td>
<td>Quarter of the date: Jan-Mar = 1, Apr-Jun = 2, etc.</td>
</tr>
<tr>
<td>days_in_month</td>
<td>The number of days in the month of the datetime</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_leap_year</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
</tbody>
</table>

Furthermore, if you have a Series with datetimelike values, then you can access these properties via the .dt accessor, see the docs

19.8 DateOffset objects

In the preceding examples, we created DatetimeIndex objects at various frequencies by passing in frequency strings like ‘M’, ‘W’, and ‘BM’ to the freq keyword. Under the hood, these frequency strings are being translated into an instance of pandas DateOffset, which represents a regular frequency increment. Specific offset logic like “month”, “business day”, or “one hour” is represented in its various subclasses.

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateOffset</td>
<td>Generic offset class, defaults to 1 calendar day</td>
</tr>
<tr>
<td>BDay</td>
<td>business day (weekday)</td>
</tr>
<tr>
<td>CDay</td>
<td>custom business day (experimental)</td>
</tr>
<tr>
<td>Week</td>
<td>one week, optionally anchored on a day of the week</td>
</tr>
<tr>
<td>WeekOfMonth</td>
<td>the x-th day of the y-th week of each month</td>
</tr>
<tr>
<td>LastWeekOfMonth</td>
<td>the x-th day of the last week of each month</td>
</tr>
<tr>
<td>MonthEnd</td>
<td>calendar month end</td>
</tr>
<tr>
<td>MonthBegin</td>
<td>calendar month begin</td>
</tr>
<tr>
<td>BMonthEnd</td>
<td>business month end</td>
</tr>
<tr>
<td>BMonthBegin</td>
<td>business month begin</td>
</tr>
<tr>
<td>CBMonthEnd</td>
<td>custom business month end</td>
</tr>
<tr>
<td>CBMonthBegin</td>
<td>custom business month begin</td>
</tr>
</tbody>
</table>

Continued on next page
The basic `DateOffset` takes the same arguments as `dateutil.relativedelta`, which works like:

```python
In [103]: d = datetime(2008, 8, 18, 9, 0)
In [104]: d + relativedelta(months=4, days=5)
Out[104]: datetime.datetime(2008, 12, 23, 9, 0)
```

We could have done the same thing with `DateOffset`:

```python
In [105]: from pandas.tseries.offsets import *
In [106]: d + DateOffset(months=4, days=5)
Out[106]: Timestamp('2008-12-23 09:00:00')
```

The key features of a `DateOffset` object are:

- it can be added / subtracted to/from a datetime object to obtain a shifted date
- it can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times
- it has `rollforward` and `rollback` methods for moving a date forward or backward to the next or previous "offset date"

Subclasses of `DateOffset` define the `apply` function which dictates custom date increment logic, such as adding business days:

```python
class BDay(DateOffset):
    """DateOffset increments between business days""
    def apply(self, other):
        ...
```

```python
In [107]: d - 5 * BDay()
Out[107]: Timestamp('2008-08-11 09:00:00')
```

Table 19.1 – continued from previous page

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemiMonthEnd</td>
<td>15th (or other day_of_month) and calendar month end</td>
</tr>
<tr>
<td>SemiMonthBegin</td>
<td>15th (or other day_of_month) and calendar month begin</td>
</tr>
<tr>
<td>QuarterEnd</td>
<td>calendar quarter end</td>
</tr>
<tr>
<td>QuarterBegin</td>
<td>calendar quarter begin</td>
</tr>
<tr>
<td>BQuarterEnd</td>
<td>business quarter end</td>
</tr>
<tr>
<td>BQuarterBegin</td>
<td>business quarter begin</td>
</tr>
<tr>
<td>FY5253Quarter</td>
<td>retail (aka 52-53 week) quarter</td>
</tr>
<tr>
<td>YearEnd</td>
<td>calendar year end</td>
</tr>
<tr>
<td>YearBegin</td>
<td>calendar year begin</td>
</tr>
<tr>
<td>BYearEnd</td>
<td>business year end</td>
</tr>
<tr>
<td>BYearBegin</td>
<td>business year begin</td>
</tr>
<tr>
<td>FY5253</td>
<td>retail (aka 52-53 week) year</td>
</tr>
<tr>
<td>BusinessHour</td>
<td>business hour</td>
</tr>
<tr>
<td>CustomBusinessHour</td>
<td>custom business hour</td>
</tr>
<tr>
<td>Hour</td>
<td>one hour</td>
</tr>
<tr>
<td>Minute</td>
<td>one minute</td>
</tr>
<tr>
<td>Second</td>
<td>one second</td>
</tr>
<tr>
<td>Milli</td>
<td>one millisecond</td>
</tr>
<tr>
<td>Micro</td>
<td>one microsecond</td>
</tr>
<tr>
<td>Nano</td>
<td>one nanosecond</td>
</tr>
</tbody>
</table>
The `rollforward` and `rollback` methods do exactly what you would expect:

```python
In [109]: d
Out[109]: datetime.datetime(2008, 8, 18, 9, 0)
In [110]: offset = BMonthEnd()
In [111]: offset.rollforward(d)
Out[111]: Timestamp('2008-08-29 09:00:00')
In [112]: offset.rollback(d)
Out[112]: Timestamp('2008-07-31 09:00:00')
```

It’s definitely worth exploring the `pandas.tseries.offsets` module and the various docstrings for the classes. These operations (apply, `rollforward` and `rollback`) preserve time (hour, minute, etc) information by default. To reset time, use `normalize=True` keyword when creating the offset instance. If `normalize=True`, result is normalized after the function is applied.

```python
In [113]: day = Day()
In [114]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[114]: Timestamp('2014-01-02 09:00:00')
In [115]: day = Day(normalize=True)
In [116]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[116]: Timestamp('2014-01-02 00:00:00')
In [117]: hour = Hour()
In [118]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[118]: Timestamp('2014-01-01 23:00:00')
In [119]: hour = Hour(normalize=True)
In [120]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[120]: Timestamp('2014-01-01 00:00:00')
In [121]: hour.apply(pd.Timestamp('2014-01-01 23:00'))
Out[121]: Timestamp('2014-01-02 00:00:00')
```

19.8.1 Parametric offsets

Some of the offsets can be “parameterized” when created to result in different behaviors. For example, the `Week` offset for generating weekly data accepts a `weekday` parameter which results in the generated dates always lying on a particular day of the week:

```python
In [122]: d
Out[122]: datetime.datetime(2008, 8, 18, 9, 0)
In [123]: d + Week()
```
normalize option will be effective for addition and subtraction.

Another example is parameterizing YearEnd with the specific ending month:

19.8.2 Using offsets with Series/DatetimeIndex

Offsets can be used with either a Series or DatetimeIndex to apply the offset to each element.
In [136]: s - DateOffset(months=2)
 ⎯───
 0 2011-11-01
 1 2011-11-02
 2 2011-11-03
dtype: datetime64[ns]

If the offset class maps directly to a Timedelta (Day, Hour, Minute, Second, Micro, Milli, Nano) it can be used exactly like a Timedelta - see the Timedelta section for more examples.

In [137]: s - Day(2)
Out[137]:
 0 2011-12-30
 1 2011-12-31
 2 2012-01-01
dtype: datetime64[ns]

In [138]: td = s - pd.Series(pd.date_range('2011-12-29', '2011-12-31'))

In [139]: td
Out[139]:
 0 3 days
 1 3 days
 2 3 days
dtype: timedelta64[ns]

In [140]: td + Minute(15)
 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Out[140]:
 0 3 days 00:15:00
 1 3 days 00:15:00
 2 3 days 00:15:00
dtype: timedelta64[ns]

Note that some offsets (such as BQuarterEnd) do not have a vectorized implementation. They can still be used but may calculate significantly slower and will show a PerformanceWarning

In [141]: rng + BQuarterEnd()
Out[141]: DatetimeIndex(['2012-03-30', '2012-03-30', '2012-03-30'], dtype='datetime64[ns]', freq=None)

19.8.3 Custom Business Days

The CDay or CustomBusinessDay class provides a parametric BusinessDay class which can be used to create customized business day calendars which account for local holidays and local weekend conventions.

As an interesting example, let’s look at Egypt where a Friday-Saturday weekend is observed.

In [142]: from pandas.tseries.offsets import CustomBusinessDay

In [143]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

They also observe International Workers' Day so let's
add that for a couple of years
In [144]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]
In [145]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [146]: dt = datetime(2013, 4, 30)

In [147]: dt + 2 * bday_egypt
Out[147]: Timestamp('2013-05-05 00:00:00')

Let’s map to the weekday names

In [148]: dts = pd.date_range(dt, periods=5, freq=bday_egypt)

In [149]: pd.Series(dts.weekday, dts).map(pd.Series('Mon Tue Wed Thu Fri Sat Sun'.split()))
Out[149]:
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object

Holiday calendars can be used to provide the list of holidays. See the holiday calendar section for more information.

In [150]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [151]: bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

Friday before MLK Day
In [152]: dt = datetime(2014, 1, 17)

Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [153]: dt + bday_us
Out[153]: Timestamp('2014-01-21 00:00:00')

Monthly offsets that respect a certain holiday calendar can be defined in the usual way.

In [154]: from pandas.tseries.offsets import CustomBusinessMonthBegin

In [155]: bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

Skip new years
In [156]: dt = datetime(2013, 12, 17)

In [157]: dt + bmth_us
Out[157]: Timestamp('2014-01-02 00:00:00')

Define date index with custom offset
In [158]: pd.DatetimeIndex(start='20100101', end='20120101', freq=bmth_us)
\n\n\nDatetimeIndex(['2010-01-04', '2010-02-01', '2010-03-01', '2010-04-01',
 '2010-05-03', '2010-06-01', '2010-07-01', '2010-08-02',
 '2010-09-01', '2010-10-01', '2010-11-01', '2010-12-01',
 '2011-01-03', '2011-02-01', '2011-03-01', '2011-04-01',
 '2011-09-01', '2011-10-03', '2011-11-01', '2011-12-01'],
dtype='datetime64[ns]', freq='CBMS')
Note: The frequency string ‘C’ is used to indicate that a CustomBusinessDay DateOffset is used, it is important to note that since CustomBusinessDay is a parameterised type, instances of CustomBusinessDay may differ and this is not detectable from the ‘C’ frequency string. The user therefore needs to ensure that the ‘C’ frequency string is used consistently within the user’s application.

19.8.4 Business Hour

The BusinessHour class provides a business hour representation on BusinessDay, allowing to use specific start and end times.

By default, BusinessHour uses 9:00 - 17:00 as business hours. Adding BusinessHour will increment Timestamp by hourly. If target Timestamp is out of business hours, move to the next business hour then increment it. If the result exceeds the business hours end, remaining is added to the next business day.

```
In [159]: bh = BusinessHour()
In [160]: bh
Out[160]: <BusinessHour: BH=09:00-17:00>

# 2014-08-01 is Friday
In [161]: pd.Timestamp('2014-08-01 10:00').weekday()
Out[161]: 4

In [162]: pd.Timestamp('2014-08-01 10:00') + bh
Out[162]: Timestamp('2014-08-01 11:00:00')

# Below example is the same as: pd.Timestamp('2014-08-01 09:00') + bh
In [163]: pd.Timestamp('2014-08-01 08:00') + bh
Out[163]: Timestamp('2014-08-01 10:00:00')

# If the results is on the end time, move to the next business day
In [164]: pd.Timestamp('2014-08-01 16:00') + bh
Out[164]: Timestamp('2014-08-04 09:00:00')

# Remainings are added to the next day
In [165]: pd.Timestamp('2014-08-01 16:30') + bh
Out[165]: Timestamp('2014-08-04 09:30:00')

# Adding 2 business hours
In [166]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(2)
Out[166]: Timestamp('2014-08-01 12:00:00')

# Subtracting 3 business hours
In [167]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(-3)
Out[167]: Timestamp('2014-07-31 15:00:00')
```

Also, you can specify start and end time by keywords. Argument must be str which has hour:minute representation or datetime.time instance. Specifying seconds, microseconds and nanoseconds as business hour results in ValueError.
In [168]: bh = BusinessHour(start='11:00', end=time(20, 0))

In [169]: bh
Out[169]: <BusinessHour: BH=11:00-20:00>

In [170]: pd.Timestamp('2014-08-01 13:00') + bh
Out[170]: Timestamp('2014-08-01 14:00:00')

In [171]: pd.Timestamp('2014-08-01 09:00') + bh
Out[171]: Timestamp('2014-08-01 12:00:00')

In [172]: pd.Timestamp('2014-08-01 18:00') + bh
Out[172]: Timestamp('2014-08-01 19:00:00')

Passing start time later than end represents midnight business hour. In this case, business hour exceeds midnight and overlap to the next day. Valid business hours are distinguished by whether it started from valid BusinessDay.

In [173]: bh = BusinessHour(start='17:00', end='09:00')

In [174]: bh
Out[174]: <BusinessHour: BH=17:00-09:00>

In [175]: pd.Timestamp('2014-08-01 17:00') + bh
Out[175]: Timestamp('2014-08-01 18:00:00')

In [176]: pd.Timestamp('2014-08-01 23:00') + bh
Out[176]: Timestamp('2014-08-02 00:00:00')

Although 2014-08-02 is Saturday,
it is valid because it starts from 08-01 (Friday).
In [177]: pd.Timestamp('2014-08-02 04:00') + bh
Out[177]: Timestamp('2014-08-02 05:00:00')

Although 2014-08-04 is Monday,
it is out of business hours because it starts from 08-03 (Sunday).
In [178]: pd.Timestamp('2014-08-04 04:00') + bh
Out[178]: Timestamp('2014-08-04 18:00:00')

Applying BusinessHour.rollforward and rollback to out of business hours results in the next business hour start or previous day’s end. Different from other offsets, BusinessHour.rollforward may output different results from apply by definition.

This is because one day’s business hour end is equal to next day’s business hour start. For example, under the default business hours (9:00 - 17:00), there is no gap (0 minutes) between 2014-08-01 17:00 and 2014-08-04 09:00.

This adjusts a Timestamp to business hour edge
In [179]: BusinessHour().rollback(pd.Timestamp('2014-08-02 15:00'))
Out[179]: Timestamp('2014-08-01 17:00:00')

In [180]: BusinessHour().rollforward(pd.Timestamp('2014-08-02 15:00'))
Out[180]: Timestamp('2014-08-04 09:00:00')

19.8. DateOffset objects
BusinessHour regards Saturday and Sunday as holidays. To use arbitrary holidays, you can use CustomBusinessHour offset, see Custom Business Hour:

19.8.5 Custom Business Hour

New in version 0.18.1.

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to specify arbitrary holidays. CustomBusinessHour works as the same as BusinessHour except that it skips specified custom holidays.

```python
In [184]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [185]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
# Friday before MLK Day
In [186]: dt = datetime(2014, 1, 17, 15)
In [187]: dt + bhour_us
Out[187]: Timestamp('2014-01-17 16:00:00')
# Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [188]: dt + bhour_us * 2
Out[188]: Timestamp('2014-01-21 09:00:00')
```

You can use keyword arguments supported by either BusinessHour and CustomBusinessDay.

```python
In [189]: bhour_mon = CustomBusinessHour(start='10:00', weekmask='Tue Wed Thu Fri')
# Monday is skipped because it's a holiday, business hour starts from 10:00
In [190]: dt + bhour_mon * 2
Out[190]: Timestamp('2014-01-21 10:00:00')
```

19.8.6 Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset aliases (referred to as time rules prior to v0.8.0).
19.8.7 Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

```python
In [191]: pd.date_range(start, periods=5, freq='B')
Out[191]:
               '2011-01-07'],
           dtype='datetime64[ns]', freq='B')
```

```python
In [192]: pd.date_range(start, periods=5, freq=BDay())
```

You can combine together day and intraday offsets:

```python
In [193]: pd.date_range(start, periods=10, freq='2h20min')
Out[193]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 02:20:00',
               '2011-01-01 04:40:00', '2011-01-01 07:00:00',
               '2011-01-01 09:20:00', '2011-01-01 11:40:00',
               '2011-01-01 14:00:00', '2011-01-01 16:20:00',
               '2011-01-01 18:40:00'],
           dtype='datetime64[ns]', freq='2h20min')
```
For some frequencies you can specify an anchoring suffix:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-SUN</td>
<td>weekly frequency (sundays). Same as 'W'</td>
</tr>
<tr>
<td>W-MON</td>
<td>weekly frequency (mondays)</td>
</tr>
<tr>
<td>W-TUE</td>
<td>weekly frequency (tuesdays)</td>
</tr>
<tr>
<td>W-WED</td>
<td>weekly frequency (wednesdays)</td>
</tr>
<tr>
<td>W-THU</td>
<td>weekly frequency (thursdays)</td>
</tr>
<tr>
<td>W-FRI</td>
<td>weekly frequency (fridays)</td>
</tr>
<tr>
<td>W-SAT</td>
<td>weekly frequency (saturdays)</td>
</tr>
<tr>
<td>(B)Q(S)-DEC</td>
<td>quarterly frequency, year ends in December. Same as 'Q'</td>
</tr>
<tr>
<td>(B)Q(S)-JAN</td>
<td>quarterly frequency, year ends in January</td>
</tr>
<tr>
<td>(B)Q(S)-FEB</td>
<td>quarterly frequency, year ends in February</td>
</tr>
<tr>
<td>(B)Q(S)-MAR</td>
<td>quarterly frequency, year ends in March</td>
</tr>
<tr>
<td>(B)Q(S)-APR</td>
<td>quarterly frequency, year ends in April</td>
</tr>
<tr>
<td>(B)Q(S)-MAY</td>
<td>quarterly frequency, year ends in May</td>
</tr>
<tr>
<td>(B)Q(S)-JUN</td>
<td>quarterly frequency, year ends in June</td>
</tr>
<tr>
<td>(B)Q(S)-JUL</td>
<td>quarterly frequency, year ends in July</td>
</tr>
<tr>
<td>(B)Q(S)-AUG</td>
<td>quarterly frequency, year ends in August</td>
</tr>
<tr>
<td>(B)Q(S)-SEP</td>
<td>quarterly frequency, year ends in September</td>
</tr>
<tr>
<td>(B)Q(S)-OCT</td>
<td>quarterly frequency, year ends in October</td>
</tr>
<tr>
<td>(B)Q(S)-NOV</td>
<td>quarterly frequency, year ends in November</td>
</tr>
<tr>
<td>(B)A(S)-DEC</td>
<td>annual frequency, anchored end of December. Same as 'A'</td>
</tr>
<tr>
<td>(B)A(S)-JAN</td>
<td>annual frequency, anchored end of January</td>
</tr>
<tr>
<td>(B)A(S)-FEB</td>
<td>annual frequency, anchored end of February</td>
</tr>
<tr>
<td>(B)A(S)-MAR</td>
<td>annual frequency, anchored end of March</td>
</tr>
<tr>
<td>(B)A(S)-APR</td>
<td>annual frequency, anchored end of April</td>
</tr>
<tr>
<td>(B)A(S)-MAY</td>
<td>annual frequency, anchored end of May</td>
</tr>
<tr>
<td>(B)A(S)-JUN</td>
<td>annual frequency, anchored end of June</td>
</tr>
<tr>
<td>(B)A(S)-JUL</td>
<td>annual frequency, anchored end of July</td>
</tr>
<tr>
<td>(B)A(S)-AUG</td>
<td>annual frequency, anchored end of August</td>
</tr>
<tr>
<td>(B)A(S)-SEP</td>
<td>annual frequency, anchored end of September</td>
</tr>
<tr>
<td>(B)A(S)-OCT</td>
<td>annual frequency, anchored end of October</td>
</tr>
<tr>
<td>(B)A(S)-NOV</td>
<td>annual frequency, anchored end of November</td>
</tr>
</tbody>
</table>

These can be used as arguments to `date_range`, `bdate_range`, constructors for `DatetimeIndex`, as well as
various other timeseries-related functions in pandas.

19.8.9 Anchored Offset Semantics

For those offsets that are anchored to the start or end of specific frequency (MonthEnd, MonthBegin, WeekEnd, etc) the following rules apply to rolling forward and backwards.

When \(n \) is not 0, if the given date is not on an anchor point, it snapped to the next(previous) anchor point, and moved \(|n| - 1\) additional steps forwards or backwards.

```
In [195]: pd.Timestamp('2014-01-02') + MonthBegin(n=1)
Out[195]: Timestamp('2014-02-01 00:00:00')

In [196]: pd.Timestamp('2014-01-02') + MonthEnd(n=1)
Out[196]: Timestamp('2014-01-31 00:00:00')

In [197]: pd.Timestamp('2014-01-02') - MonthBegin(n=1)
Out[197]: Timestamp('2014-01-01 00:00:00')

In [198]: pd.Timestamp('2014-01-02') - MonthEnd(n=1)
Out[198]: Timestamp('2013-12-31 00:00:00')

In [199]: pd.Timestamp('2014-01-01') + MonthBegin(n=4)
Out[199]: Timestamp('2014-05-01 00:00:00')

In [200]: pd.Timestamp('2014-01-31') - MonthBegin(n=4)
Out[200]: Timestamp('2013-10-01 00:00:00')
```

If the given date is on an anchor point, it is moved \(|n|\) points forwards or backwards.

```
In [201]: pd.Timestamp('2014-01-01') + MonthBegin(n=1)
Out[201]: Timestamp('2014-02-01 00:00:00')

In [202]: pd.Timestamp('2014-01-31') + MonthEnd(n=1)
Out[202]: Timestamp('2014-02-28 00:00:00')

In [203]: pd.Timestamp('2014-01-01') - MonthBegin(n=1)
Out[203]: Timestamp('2013-12-01 00:00:00')

In [204]: pd.Timestamp('2014-01-31') - MonthEnd(n=1)
Out[204]: Timestamp('2013-12-31 00:00:00')

In [205]: pd.Timestamp('2014-01-01') + MonthBegin(n=4)
Out[205]: Timestamp('2014-05-01 00:00:00')

In [206]: pd.Timestamp('2014-01-31') - MonthBegin(n=4)
Out[206]: Timestamp('2013-10-01 00:00:00')
```

For the case when \(n = 0 \), the date is not moved if on an anchor point, otherwise it is rolled forward to the next anchor point.
19.8.10 Holidays / Holiday Calendars

Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar class. Further, start_date and end_date class attributes determine over what date range holidays are generated. These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all calendar subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an example for developing other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest_workday</td>
<td>move Saturday to Friday and Sunday to Monday</td>
</tr>
<tr>
<td>sunday_to_monday</td>
<td>move Sunday to following Monday</td>
</tr>
<tr>
<td>next_monday_or_tuesday</td>
<td>move Saturday to Monday and Sunday/Monday to Tuesday</td>
</tr>
<tr>
<td>previous_friday</td>
<td>move Saturday and Sunday to previous Friday</td>
</tr>
<tr>
<td>next_monday</td>
<td>move Saturday and Sunday to following Monday</td>
</tr>
</tbody>
</table>

An example of how holidays and holiday calendars are defined:

```python
In [211]: from pandas.tseries.holiday import Holiday, USMemorialDay,
.....: AbstractHolidayCalendar, nearest_workday, MO

In [212]: class ExampleCalendar(AbstractHolidayCalendar):
.....:     rules = [
.....:         USMemorialDay,
.....:         Holiday('July 4th', month=7, day=4, observance=nearest_workday),
.....:         Holiday('Columbus Day', month=10, day=1,
.....:         offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
.....:     ]

In [213]: cal = ExampleCalendar()
```

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July
For example, the below defines a custom business day offset using the ExampleCalendar. Like any other offset, it can be used to create a DatetimeIndex or added to datetime or Timestamp objects.

```python
In [215]: from pandas.tseries.offsets import CDay
In [216]: pd.DatetimeIndex(start='7/1/2012', end='7/10/2012',
                             freq=CDay(calendar=cal)).to_pydatetime()
Out[216]:
array([datetime.datetime(2012, 7, 2, 0, 0),
       datetime.datetime(2012, 7, 3, 0, 0),
       datetime.datetime(2012, 7, 5, 0, 0),
       datetime.datetime(2012, 7, 6, 0, 0),
       datetime.datetime(2012, 7, 9, 0, 0),
       datetime.datetime(2012, 7, 10, 0, 0)], dtype=object)
```

```python
In [217]: offset = CustomBusinessDay(calendar=cal)
In [218]: datetime(2012, 5, 25) + offset
Out[218]: Timestamp('2012-05-29 00:00:00')
```

```python
In [219]: datetime(2012, 7, 3) + offset
Out[219]: Timestamp('2012-07-05 00:00:00')
```

```python
In [220]: datetime(2012, 7, 3) + 2 * offset
Out[220]: Timestamp('2012-07-06 00:00:00')
```

```python
In [221]: datetime(2012, 7, 6) + offset
Out[221]: Timestamp('2012-07-09 00:00:00')
```

Ranges are defined by the `start_date` and `end_date` class attributes of AbstractHolidayCalendar. The defaults are below.

```python
In [222]: AbstractHolidayCalendar.start_date
Out[222]: Timestamp('1970-01-01 00:00:00')
```

```python
In [223]: AbstractHolidayCalendar.end_date
Out[223]: Timestamp('2030-12-31 00:00:00')
```

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.

```python
In [224]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)
In [225]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)
```

```python
In [226]: cal.holidays()
Out[226]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype='datetime64[ns]', freq=None)
```

Every calendar class is accessible by name using the `get_calendar` function which returns a holiday class instance. Any imported calendar class will automatically be available by this function. Also, HolidayCalendarFactory provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.
19.9 Time series-related instance methods

19.9.1 Shifting / lagging

One may want to *shift* or *lag* the values in a time series back and forward in time. The method for this is `shift`, which is available on all of the pandas objects.

```python
In [232]: ts = ts[:5]

In [233]: ts.shift(1)
Out[233]:
2011-01-31 NaN
2011-02-28 -1.281247
2011-03-31 -0.727707
2011-04-29 -0.121306
2011-05-31 -0.097883
Freq: BM, dtype: float64
```

The shift method accepts an `freq` argument which can accept a `DateOffset` class or other `timedelta`-like object or also a `offset alias`:

```python
In [234]: ts.shift(5, freq=offsets.BDay())
Out[234]:
2011-02-07 -1.281247
2011-03-07 -0.727707
2011-04-07 -0.121306
2011-05-06 -0.097883
2011-06-07  0.695775
dtype: float64
```

```python
In [235]: ts.shift(5, freq='BM')
```
Rather than changing the alignment of the data and the index, DataFrame and Series objects also have a `tshift` convenience method that changes all the dates in the index by a specified number of offsets:

```python
In [236]: ts.tshift(5, freq='D')
Out[236]:
2011-02-05  -1.281247
2011-03-05   -0.727707
2011-04-05   -0.121306
2011-05-04    0.695775
2011-06-05   0.695775
Freq: B, dtype: float64
```

Note that with `tshift`, the leading entry is no longer NaN because the data is not being realigned.

19.9.2 Frequency conversion

The primary function for changing frequencies is the `asfreq` function. For a DatetimeIndex, this is basically just a thin, but convenient wrapper around `reindex` which generates a `date_range` and calls `reindex`.

```python
In [237]: dr = pd.date_range('1/1/2010', periods=3, freq=3 * offsets.BDay())
In [238]: ts = pd.Series(randn(3), index=dr)
In [239]: ts
Out[239]:
2010-01-01  0.532005
2010-01-06  0.544874
2010-01-11  -1.001788
Freq: 3B, dtype: float64
In [240]: ts.asfreq(BDay())
```

`asfreq` provides a further convenience so you can specify an interpolation method for any gaps that may appear after the frequency conversion:

```python
In [241]: ts.asfreq(BDay(), method='pad')
```

19.9. Time series-related instance methods
19.9.3 Filling forward / backward

Related to `asfreq` and `reindex` is the `fillna` function documented in the `missing data section`.

19.9.4 Converting to Python datetimes

`DatetimeIndex` can be converted to an array of Python native `datetime.datetime` objects using the `to_pydatetime` method.

19.10 Resampling

```
Warning: The interface to `.resample` has changed in 0.18.0 to be more groupby-like and hence more flexible. See the `whatsnew docs` for a comparison with prior versions.
```

Pandas has a simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

`.resample()` is a time-based groupby, followed by a reduction method on each of its groups. See some `cookbook examples` for some advanced strategies

Starting in version 0.18.1, the `resample()` function can be used directly from `DataFrameGroupBy` objects, see the `groupby docs`.

```
Note: `.resample()` is similar to using a `.rolling()` operation with a time-based offset, see a discussion `here`
```

19.10.1 Basics

```
In [242]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [243]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [244]: ts.resample('5Min').sum()
Out[244]:
2012-01-01  24390
Freq: 5T, dtype: int64
```
The `resample` function is very flexible and allows you to specify many different parameters to control the frequency conversion and resampling operation.

The `how` parameter can be a function name or numpy array function that takes an array and produces aggregated values:

```python
In [245]: ts.resample('5Min').mean()
Out[245]:
2012-01-01  243.9
Freq: 5T, dtype: float64

In [246]: ts.resample('5Min').ohlc()
Out[246]:
open  high  low  close
2012-01-01  161  495   1  245

In [247]: ts.resample('5Min').max()
Out[247]:
2012-01-01  495
Freq: 5T, dtype: int64
```

Any function available via `dispatching` can be given to the `how` parameter by name, including `sum`, `mean`, `std`, `sem`, `max`, `min`, `median`, `first`, `last`, `ohlc`.

For downsampling, `closed` can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

```python
In [248]: ts.resample('5Min', closed='right').mean()
Out[248]:
2011-12-31  161.000000
2012-01-01  244.737374
Freq: 5T, dtype: float64

In [249]: ts.resample('5Min', closed='left').mean()
Out[249]:
2012-01-01  243.9
Freq: 5T, dtype: float64

In [250]: ts.resample('5Min', label='left', loffset='1s').mean()  
Out[250]:
2012-01-01  243.9
Freq: 5T, dtype: float64
```

Parameters like `label` and `loffset` are used to manipulate the resulting labels. `label` specifies whether the result is labeled with the beginning or the end of the interval. `loffset` performs a time adjustment on the output labels.

```python
In [251]: ts.resample('5Min').mean()  
Out[251]:
2012-01-01  243.9
Freq: 5T, dtype: float64

In [252]: ts.resample('5Min', label='left', loffset='1s').mean()  
Out[252]:
2012-01-01  243.9
Freq: 5T, dtype: float64
```

The `axis` parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.
kind can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from time-stamp and time-span representations. By default resample retains the input representation.

convention can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency periods are converted to higher frequency periods.

19.10.2 Up Sampling

For upsampling, you can specify a way to upsample and the limit parameter to interpolate over the gaps that are created:

```
# from secondly to every 250 milliseconds
In [253]: ts[:2].resample('250L').asfreq()
Out[253]:
2012-01-01 00:00:00.000 161.0
2012-01-01 00:00:00.250 NaN
2012-01-01 00:00:00.500 NaN
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 199.0
Freq: 250L, dtype: float64

In [254]: ts[:2].resample('250L').ffill()
Out[254]:
2012-01-01 00:00:00.000 161
2012-01-01 00:00:00.250 161
2012-01-01 00:00:00.500 161
2012-01-01 00:00:00.750 161
2012-01-01 00:00:01.000 199
Freq: 250L, dtype: int64

In [255]: ts[:2].resample('250L').ffill(limit=2)
Out[255]:
2012-01-01 00:00:00.000 161.0
2012-01-01 00:00:00.250 161.0
2012-01-01 00:00:00.500 161.0
2012-01-01 00:00:00.750 NaN
2012-01-01 00:00:01.000 199.0
Freq: 250L, dtype: float64
```

19.10.3 Sparse Resampling

Sparse timeseries are ones where you have a lot fewer points relative to the amount of time you are looking to resample. Naively upsampling a sparse series can potentially generate lots of intermediate values. When you don’t want to use a method to fill these values, e.g. fill_method is None, then intermediate values will be filled with NaN.

Since resample is a time-based groupby, the following is a method to efficiently resample only the groups that are not all NaN

```
In [256]: rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')
In [257]: ts = pd.Series(range(100), index=rng)
```

If we want to resample to the full range of the series
We can instead only resample those groups where we have points as follows:

```python
In [259]: from functools import partial
In [260]: from pandas.tseries.frequencies import to_offset
In [261]: def round(t, freq):
   ....:     freq = to_offset(freq)
   ....:     return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)
   ....:
In [262]: ts.groupby(partial(round, freq='3T')).sum()
```

```
Out[262]:
2014-01-01  0
2014-01-02  1
2014-01-03  2
2014-01-04  3
2014-01-05  4
2014-01-06  5
2014-01-07  6
   ...
2014-04-04  93
2014-04-05  94
2014-04-06  95
2014-04-07  96
2014-04-08  97
2014-04-09  98
2014-04-10  99
Length: 100, dtype: int64
```

19.10.4 Aggregation

Similar to the aggregating API, groupby API, and the window functions API, a Resampler can be selectively resampled.

Resampling a DataFrame, the default will be to act on all columns with the same function.
pandas: powerful Python data analysis toolkit, Release 0.20.1

In [263]: df = pd.DataFrame(np.random.randn(1000, 3),
 index=pd.date_range('1/1/2012', freq='S', periods=1000),
 columns=['A', 'B', 'C'])

In [264]: r = df.resample('3T')

In [265]: r.mean()
Out[265]:
 A B C
2012-01-01 00:00:00 -0.220339 0.034854 -0.073757
2012-01-01 00:03:00 0.037070 0.040013 0.053754
2012-01-01 00:06:00 -0.041597 -0.144562 -0.007614
2012-01-01 00:09:00 0.043127 -0.076432 -0.032570
2012-01-01 00:12:00 -0.027609 0.054618 0.056878
2012-01-01 00:15:00 -0.014181 0.043958 0.077734

We can select a specific column or columns using standard getitem.

In [266]: r['A'].mean()
Out[266]:
 2012-01-01 00:00:00 -0.220339
 2012-01-01 00:03:00 0.037070
 2012-01-01 00:06:00 -0.041597
 2012-01-01 00:09:00 0.043127
 2012-01-01 00:12:00 -0.027609
 2012-01-01 00:15:00 -0.014181
Freq: 3T, Name: A, dtype: float64

In [267]: r[['A','B']].mean()

 2012-01-01 00:00:00 -0.220339 0.034854
 2012-01-01 00:03:00 0.037070 0.040013
 2012-01-01 00:06:00 -0.041597 -0.144562
 2012-01-01 00:09:00 0.043127 -0.076432
 2012-01-01 00:12:00 -0.027609 0.054618
 2012-01-01 00:15:00 -0.014181 0.043958
Freq: 3T, Name: A, B, dtypes: float64

You can pass a list or dict of functions to do aggregation with, outputting a DataFrame:

In [268]: r['A'].agg([np.sum, np.mean, np.std])
Out[268]:
 sum mean std
2012-01-01 00:00:00 -39.660974 -0.220339 1.033912
2012-01-01 00:03:00 6.672559 0.037070 0.971503
2012-01-01 00:06:00 -7.487453 -0.041597 1.018418
2012-01-01 00:09:00 7.762901 0.043127 1.025842
2012-01-01 00:12:00 -4.969624 -0.027609 0.961649
2012-01-01 00:15:00 -1.418119 -0.014181 0.978847

On a resampled DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

In [269]: r.agg([np.sum, np.mean])
Out[269]:
 A B C
2012-01-01 00:00:00 -39.660974 -0.220339 1.033912
2012-01-01 00:03:00 6.672559 0.037070 0.971503
2012-01-01 00:06:00 -7.487453 -0.041597 1.018418
2012-01-01 00:09:00 7.762901 0.043127 1.025842
2012-01-01 00:12:00 -4.969624 -0.027609 0.961649
2012-01-01 00:15:00 -1.418119 -0.014181 0.978847
By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```python
In [270]: r.agg({'A' : np.sum,  
       'B' : lambda x: np.std(x, ddof=1)})
Out[270]:
           A        B
2012-01-01 00:00:00 -39.660974  1.004756
2012-01-01 00:03:00    6.672559  0.963559
2012-01-01 00:06:00  -7.487453  0.950766
2012-01-01 00:09:00    7.762901  0.949182
2012-01-01 00:12:00  -4.969624  1.093736
2012-01-01 00:15:00 -1.418119  1.028869
```

The function names can also be strings. In order for a string to be valid it must be implemented on the Resampled object.

```python
In [271]: r.agg({'A' : 'sum', 'B' : 'std'})
Out[271]:
           A        B
2012-01-01 00:00:00 -39.660974  1.004756
2012-01-01 00:03:00    6.672559  0.963559
2012-01-01 00:06:00  -7.487453  0.950766
2012-01-01 00:09:00    7.762901  0.949182
2012-01-01 00:12:00  -4.969624  1.093736
2012-01-01 00:15:00 -1.418119  1.028869
```

Furthermore, you can also specify multiple aggregation functions for each column separately.

```python
In [272]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std']})
Out[272]:
           A       B
        sum     std mean     std
2012-01-01 00:00:00 -39.660974 0.034854  1.004756
2012-01-01 00:03:00    6.672559  0.971503  0.040013  0.963559
2012-01-01 00:06:00  -7.487453  1.018418 -0.144562  0.950766
2012-01-01 00:09:00    7.762901  1.025842 -0.076432  0.949182
2012-01-01 00:12:00  -4.969624  0.961649  0.054618  1.093736
2012-01-01 00:15:00 -1.418119  0.978847  0.043958  1.028869
```

If a DataFrame does not have a datetimelike index, but instead you want to resample based on datetimelike column

19.10. Resampling
in the frame, it can passed to the on keyword.

```python
In [273]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
                      'a': np.arange(5),
                      index=pd.MultiIndex.from_arrays([
                        [1,2,3,4,5],
                        pd.date_range('2015-01-01', freq='W', periods=5)],
                      names=['v','d']))

In [274]: df
Out[274]:
   a     date
  v   d
1 0 2015-01-04
2 1 2015-01-11
3 2 2015-01-18
4 3 2015-01-25
5 4 2015-02-01

In [275]: df.resample('M', on='date').sum()
   a
  date
2015-01-31  6
2015-02-28  4
```

Similarly, if you instead want to resample by a datetimelike level of MultiIndex, its name or location can be passed to the level keyword.

```python
In [276]: df.resample('M', level='d').sum()
Out[276]:
   a
  d
2015-01-31  6
2015-02-28  4
```

19.11 Time Span Representation

Regular intervals of time are represented by `Period` objects in pandas while sequences of `Period` objects are collected in a `PeriodIndex`, which can be created with the convenience function `period_range`.

19.11.1 Period

A `Period` represents a span of time (e.g., a day, a month, a quarter, etc). You can specify the span via `freq` keyword using a frequency alias like below. Because `freq` represents a span of `Period`, it cannot be negative like “-3D”.

```python
In [277]: pd.Period('2012', freq='A-DEC')
Out[277]: Period('2012', 'A-DEC')

In [278]: pd.Period('2012-1-1', freq='D')
Out[278]: Period('2012-01-01', 'D')
```
Adding and subtracting integers from periods shifts the period by its own frequency. Arithmetic is not allowed between `Period` with different `freq` (span).

If `Period` `freq` is daily or higher (D, H, T, S, L, U, N), offsets and `timedelta`-like can be added if the result can have the same freq. Otherwise, `ValueError` will be raised.
ValueError: Input has different freq from Period(freq=H)

If `Period` has other freqs, only the same offsets can be added. Otherwise, `ValueError` will be raised.

```python
In [292]: p = pd.Period('2014-07', freq='M')
In [293]: p + MonthEnd(3)
Out[293]: Period('2014-10', 'M')
```

```python
In [1]: p + MonthBegin(3)
Traceback...
ValueError: Input has different freq from Period(freq=M)
```

Taking the difference of `Period` instances with the same frequency will return the number of frequency units between them:

```python
Out[294]: 10
```

19.11.2 PeriodIndex and `period_range`

Regular sequences of `Period` objects can be collected in a `PeriodIndex`, which can be constructed using the `period_range` convenience function:

```python
In [295]: prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')
In [296]: prng
          '2012-01'],
         dtype='period[M]', freq='M')
```

The `PeriodIndex` constructor can also be used directly:

```python
In [297]: pd.PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[297]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')
```

Passing multiplied frequency outputs a sequence of `Period` which has multiplied span.

```python
In [298]: pd.PeriodIndex(start='2014-01', freq='3M', periods=4)
˓→', freq='3M')
```

Just like `DatetimeIndex`, a `PeriodIndex` can also be used to index pandas objects:

```python
In [299]: ps = pd.Series(np.random.randn(len(prng)), prng)
In [300]: ps
Out[300]:
2011-01   -1.022670
2011-02    1.371155
2011-03    1.035277
```

844 Chapter 19. Time Series / Date functionality
PeriodIndex supports addition and subtraction with the same rule as Period.

```python
In [303]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')

In [304]: idx + Hour(2)
```

PeriodIndex has its own dtype named period, refer to Period Dtypes.

19.11.3 Period Dtypes

New in version 0.19.0.

PeriodIndex has a custom period dtype. This is a pandas extension dtype similar to the timezone aware dtype (datetime64[ns, tz]).

The period dtype holds the freq attribute and is represented with period[freq] like period[D] or period[M], using frequency strings.

```python
In [307]: pi = pd.period_range('2016-01-01', periods=3, freq='M')
```

19.11. Time Span Representation
The `period` dtype can be used in `.astype(...)`. It allows one to change the freq of a `PeriodIndex` like `.asfreq()` and convert a `DatetimeIndex` to `PeriodIndex` like `.to_period()`:

```python
# change monthly freq to daily freq
In [310]: pi.astype('period[D]')
Out[310]:
   PeriodIndex(['2016-01-31', '2016-02-29', '2016-03-31'],
             dtype='period[D]', freq='D')

# convert to DatetimeIndex
In [311]: pi.astype('datetime64[ns]')
Out[311]:
   DatetimeIndex(['2016-01-01', '2016-02-01', '2016-03-01'],
                   dtype='datetime64[ns]', freq='MS')

# convert to PeriodIndex
In [312]: dti = pd.date_range('2011-01-01', freq='M', periods=3)

In [313]: dti
Out[313]:
   DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31'],
                  dtype='datetime64[ns]', freq='M')

In [314]: dti.astype('period[M]')
Out[314]:
   PeriodIndex(['2011-01', '2011-02', '2011-03'],
               dtype='period[M]', freq='M')
```

19.11.4 PeriodIndex Partial String Indexing

You can pass in dates and strings to `Series` and `DataFrame` with `PeriodIndex`, in the same manner as `DatetimeIndex`. For details, refer to `DatetimeIndex Partial String Indexing`.

```python
In [315]: ps['2011-01']
Out[315]:
2011-01   -1.022669594890105
Freq: M, dtype: float64

In [316]: ps[datetime(2011, 12, 25):]
Out[316]:
2011-12   0.492003
2012-01   0.193420
Freq: M, dtype: float64

In [317]: ps['10/31/2011':'12/31/2011']
Out[317]:
   2011-10   -0.310466
   2011-11    0.543957
   2011-12    0.492003
Freq: M, dtype: float64
```

Passing a string representing a lower frequency than `PeriodIndex` returns partial sliced data.

```python
In [318]: ps['2011']
Out[318]:
   2011-01   -1.022670
```
<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>02</td>
<td>1.371155</td>
</tr>
<tr>
<td>2011</td>
<td>03</td>
<td>1.035277</td>
</tr>
<tr>
<td>2011</td>
<td>04</td>
<td>1.694400</td>
</tr>
<tr>
<td>2011</td>
<td>05</td>
<td>-1.659733</td>
</tr>
<tr>
<td>2011</td>
<td>06</td>
<td>0.511432</td>
</tr>
<tr>
<td>2011</td>
<td>07</td>
<td>0.433176</td>
</tr>
<tr>
<td>2011</td>
<td>08</td>
<td>-0.317955</td>
</tr>
<tr>
<td>2011</td>
<td>09</td>
<td>-0.51714</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
<td>-0.310466</td>
</tr>
<tr>
<td>2011</td>
<td>11</td>
<td>0.543957</td>
</tr>
<tr>
<td>2011</td>
<td>12</td>
<td>0.492003</td>
</tr>
</tbody>
</table>

Freq: M, dtype: float64

In [319]: dfp = pd.DataFrame(np.random.randn(600,1),
.....: columns=['A'],
.....: index=pd.period_range('2013-01-01 9:00', periods=600,
→ freq='T'))

In [320]: dfp

Out[320]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 09:00</td>
<td>0.197720</td>
</tr>
<tr>
<td>2013-01-01 09:01</td>
<td>-0.284769</td>
</tr>
<tr>
<td>2013-01-01 09:02</td>
<td>0.061491</td>
</tr>
<tr>
<td>2013-01-01 09:03</td>
<td>1.630257</td>
</tr>
<tr>
<td>2013-01-01 09:04</td>
<td>2.042442</td>
</tr>
<tr>
<td>2013-01-01 09:05</td>
<td>-0.804392</td>
</tr>
<tr>
<td>2013-01-01 09:06</td>
<td>0.212760</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 18:53</td>
<td>0.150586</td>
</tr>
<tr>
<td>2013-01-01 18:54</td>
<td>-0.679569</td>
</tr>
<tr>
<td>2013-01-01 18:55</td>
<td>-0.910216</td>
</tr>
<tr>
<td>2013-01-01 18:56</td>
<td>-0.413168</td>
</tr>
<tr>
<td>2013-01-01 18:57</td>
<td>-0.247752</td>
</tr>
<tr>
<td>2013-01-01 18:58</td>
<td>1.590875</td>
</tr>
<tr>
<td>2013-01-01 18:59</td>
<td>-2.005294</td>
</tr>
</tbody>
</table>

[600 rows x 1 columns]

In [321]: dfp['2013-01-01 10H']

Out[321]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 10:00</td>
<td>-0.569936</td>
</tr>
<tr>
<td>2013-01-01 10:01</td>
<td>-1.179183</td>
</tr>
<tr>
<td>2013-01-01 10:02</td>
<td>-0.838602</td>
</tr>
<tr>
<td>2013-01-01 10:03</td>
<td>-1.727539</td>
</tr>
<tr>
<td>2013-01-01 10:04</td>
<td>1.334027</td>
</tr>
<tr>
<td>2013-01-01 10:05</td>
<td>0.417423</td>
</tr>
<tr>
<td>2013-01-01 10:06</td>
<td>-0.221189</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 10:53</td>
<td>-0.375925</td>
</tr>
<tr>
<td>2013-01-01 10:54</td>
<td>0.212750</td>
</tr>
<tr>
<td>2013-01-01 10:55</td>
<td>-0.592417</td>
</tr>
<tr>
<td>2013-01-01 10:56</td>
<td>-0.466064</td>
</tr>
<tr>
<td>2013-01-01 10:57</td>
<td>-1.715347</td>
</tr>
<tr>
<td>2013-01-01 10:58</td>
<td>-0.634913</td>
</tr>
</tbody>
</table>

19.11. Time Span Representation 847
As with DatetimeIndex, the endpoints will be included in the result. The example below slices data starting from 10:00 to 11:59.

```
In [322]: dfp['2013-01-01 10H':'2013-01-01 11H']
Out[322]:
   A
2013-01-01 10:00 -0.569936
2013-01-01 10:01 -1.179183
2013-01-01 10:02 -0.838602
2013-01-01 10:03 -1.727539
2013-01-01 10:04  1.334027
2013-01-01 10:05  0.417423
2013-01-01 10:06  0.221189
... ...                          ...
2013-01-01 11:53  0.616198
2013-01-01 11:54  2.843156
2013-01-01 11:55  0.572537
2013-01-01 11:56  1.709706
2013-01-01 11:57 - 0.205490
2013-01-01 11:58  1.759719
2013-01-01 11:59 -1.181485
[120 rows x 1 columns]
```

19.11.5 Frequency Conversion and Resampling with PeriodIndex

The frequency of Period and PeriodIndex can be converted via the asfreq method. Let's start with the fiscal year 2011, ending in December:

```
In [323]: p = pd.Period('2011', freq='A-DEC')
In [324]: p
Out[324]: Period('2011', 'A-DEC')
```

We can convert it to a monthly frequency. Using the how parameter, we can specify whether to return the starting or ending month:

```
In [325]: p.asfreq('M', how='start')
Out[325]: Period('2011-01', 'M')
In [326]: p.asfreq('M', how='end')
Out[326]: Period('2011-12', 'M')
```

The shorthands 's' and 'e' are provided for convenience:

```
In [327]: p.asfreq('M', 's')
Out[327]: Period('2011-01', 'M')
In [328]: p.asfreq('M', 'e')
Out[328]: Period('2011-12', 'M')
```
Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns
the super-period that includes the input period:

```python
In [329]: p = pd.Period('2011-12', freq='M')
In [330]: p.asfreq('A-NOV')
Out[330]: Period('2012', 'A-NOV')
```

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December
2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful
for working with various quarterly data common to economics, business, and other fields. Many organizations define
quarters relative to the month in which their fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010
or a few months into 2011. Via anchored frequencies, pandas works for all quarterly frequencies Q-JAN through
Q-DEC.

Q-DEC define regular calendar quarters:

```python
In [331]: p = pd.Period('2012Q1', freq='Q-DEC')
In [332]: p.asfreq('D', 's')
Out[332]: Period('2012-01-01', 'D')
In [333]: p.asfreq('D', 'e')
Out[333]: Period('2012-03-31', 'D')
```

Q-MAR defines fiscal year end in March:

```python
In [334]: p = pd.Period('2011Q4', freq='Q-MAR')
In [335]: p.asfreq('D', 's')
Out[335]: Period('2011-01-01', 'D')
In [336]: p.asfreq('D', 'e')
Out[336]: Period('2011-03-31', 'D')
```

19.12 Converting between Representations

Timestamped data can be converted to PeriodIndex-ed data using to_period and vice-versa using
to_timestamp:

```python
In [337]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [338]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [339]: ts
Out[339]:
2012-01-31   2.167674
2012-02-29  -1.505130
2012-03-31   1.005802
2012-04-30   0.481525
2012-05-31  -0.352151
Freq: M, dtype: float64
In [340]: ps = ts.to_period()
In [341]: ps
```

19.12. Converting between Representations
Remember that 's' and 'e' can be used to return the timestamps at the start or end of the period:

```python
In [343]: ps.to_timestamp('D', how='s')
Out[343]:
2012-01-01 2.167674
2012-02-01 -1.505130
2012-03-01 1.005802
2012-04-01 0.481525
2012-05-01 -0.352151
Freq: MS, dtype: float64
```

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

```python
In [344]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [345]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [346]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [347]: ts.head()
Out[347]:
1990-03-01 09:00 -0.608988
1990-06-01 09:00  0.412294
1990-09-01 09:00 -0.715938
1990-12-01 09:00  1.297773
1991-03-01 09:00 -2.260765
Freq: H, dtype: float64
```

19.13 Representing out-of-bounds spans

If you have data that is outside of the Timestamp bounds, see Timestamp limitations, then you can use a PeriodIndex and/or Series of Periods to do computations.

```python
In [348]: span = pd.period_range('1215-01-01', '1381-01-01', freq='D')
```
In [349]: span
Out[349]:
PeriodIndex(['1215-01-01', '1215-01-02', '1215-01-03', '1215-01-04',
 '1215-01-05', '1215-01-06', '1215-01-07', '1215-01-08',
 '1215-01-09', '1215-01-10',
 '1380-12-23', '1380-12-24', '1380-12-25', '1380-12-26',
 '1380-12-27', '1380-12-28', '1380-12-29', '1380-12-30',
 '1380-12-31', '1381-01-01'],
dtype='period[D]', length=60632, freq='D')

To convert from a int64 based YYYYMMDD representation.

In [350]: s = pd.Series([20121231, 20141130, 99991231])

In [351]: s
Out[351]:
0 20121231
1 20141130
2 99991231
dtype: int64

In [352]: def conv(x):
 : return pd.Period(year = x // 10000, month = x//100 % 100, day = x%100,
 freq='D')
 :

In [353]: s.apply(conv)
Out[353]:
0 2012-12-31
1 2014-11-30
2 9999-12-31
dtype: object

In [354]: s.apply(conv)[2]
Out[354]: Period('9999-12-31', 'D')

These can easily be converted to a PeriodIndex

In [355]: span = pd.PeriodIndex(s.apply(conv))

In [356]: span
Out[356]: PeriodIndex(['2012-12-31', '2014-11-30', '9999-12-31'],
 dtype='period[D]', freq='D')

19.14 Time Zone Handling

Pandas provides rich support for working with timestamps in different time zones using pytz and dateutil libraries. dateutil support is new in 0.14.1 and currently only supported for fixed offset and tzfile zones. The default library is pytz. Support for dateutil is provided for compatibility with other applications e.g. if you use dateutil in other python packages.
19.14.1 Working with Time Zones

By default, pandas objects are time zone unaware:

```
In [357]: rng = pd.date_range('3/6/2012 00:00', periods=15, freq='D')
In [358]: rng.tz is None
Out[358]: True
```

To supply the time zone, you can use the `tz` keyword to `date_range` and other functions. Dateutil time zone strings are distinguished from `pytz` time zones by starting with `dateutil/`.

- In `pytz` you can find a list of common (and less common) time zones using `from pytz import common_timezones, all_timezones`.

- `dateutil` uses the OS time zones so there isn’t a fixed list available. For common zones, the names are the same as `pytz`.

```
# pytz
In [359]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
...:   tz='Europe/London')
In [360]: rng_pytz.tz
Out[360]: <DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>

# dateutil
In [361]: rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
...:   tz='dateutil/Europe/London')
In [362]: rng_dateutil.tz
Out[362]: tzfile('/usr/share/zoneinfo/Europe/London')

# dateutil - utc special case
In [363]: rng_utc = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
...:   tz=dateutil.tz.tzutc())
In [364]: rng_utc.tz
Out[364]: tzutc()
```

Note that the UTC timezone is a special case in `dateutil` and should be constructed explicitly as an instance of `dateutil.tz.tzutc`. You can also construct other timezones explicitly first, which gives you more control over which time zone is used:

```
# pytz
In [365]: tz_pytz = pytz.timezone('Europe/London')
In [366]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
...:   tz=tz_pytz)
In [367]: rng_pytz.tz == tz_pytz
Out[367]: True

# dateutil
In [368]: tz_dateutil = dateutil.tz.gettz('Europe/London')
In [369]: rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
...:   tz=tz_dateutil)
In [370]: rng_dateutil.tz
Out[370]: tzfile('/usr/share/zoneinfo/Europe/London')
```
Timestamps, like Python's `datetime.datetime` object can be either time zone naive or time zone aware. Naive time series and DatetimeIndex objects can be localized using `tz_localize`:

```python
In [371]: ts = pd.Series(np.random.randn(len(rng)), rng)
In [372]: ts_utc = ts.ts.localize('UTC')
In [373]: ts_utc
Out[373]:
2012-03-06 00:00:00+00:00    0.679135
2012-03-07 00:00:00+00:00    0.345668
2012-03-08 00:00:00+00:00   -1.143903
2012-03-09 00:00:00+00:00    0.487087
2012-03-10 00:00:00+00:00   -1.421073
2012-03-11 00:00:00+00:00   -0.327463
2012-03-12 00:00:00+00:00    0.169899
2012-03-13 00:00:00+00:00    0.867568
2012-03-14 00:00:00+00:00   -0.834122
2012-03-15 00:00:00+00:00   -1.698494
2012-03-16 00:00:00+00:00    0.974717
2012-03-17 00:00:00+00:00    0.966771
2012-03-18 00:00:00+00:00   -0.754168
2012-03-19 00:00:00+00:00   -1.434246
2012-03-20 00:00:00+00:00    0.848935
Freq: D, dtype: float64
```

Again, you can explicitly construct the timezone object first. You can use the `tz_convert` method to convert pandas objects to convert tz-aware data to another time zone:

```
In [374]: ts_utc.tz_convert('US/Eastern')
Out[374]:
2012-03-05 19:00:00-05:00    0.679135
2012-03-06 19:00:00-05:00    0.345668
2012-03-07 19:00:00-05:00   -1.143903
2012-03-08 19:00:00-05:00    0.487087
2012-03-09 19:00:00-05:00   -1.421073
2012-03-10 19:00:00-05:00   -0.327463
2012-03-11 20:00:00-04:00    0.169899
2012-03-12 20:00:00-04:00    0.867568
2012-03-13 20:00:00-04:00   -0.834122
2012-03-14 20:00:00-04:00   -1.698494
2012-03-15 20:00:00-04:00    0.974717
2012-03-16 20:00:00-04:00    0.966771
2012-03-17 20:00:00-04:00   -0.754168
2012-03-18 20:00:00-04:00   -1.434246
2012-03-19 20:00:00-04:00    0.848935
Freq: D, dtype: float64
```
Warning: Be wary of conversions between libraries. For some zones `pytz` and `dateutil` have different definitions of the zone. This is more of a problem for unusual timezones than for ‘standard’ zones like US/Eastern.

Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal. This may cause problems when working with stored data that is localized using one version and operated on with a different version. See here for how to handle such a situation.

Warning: It is incorrect to pass a timezone directly into the `datetime.datetime` constructor (e.g., `datetime.datetime(2011, 1, 1, tz=timezone('US/Eastern'))`). Instead, the datetime needs to be localized using the the localize method on the timezone.

Under the hood, all timestamps are stored in UTC. Scalar values from a `DatetimeIndex` with a time zone will have their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still considered to be equal even if they are in different time zones:

```python
In [375]: rng_eastern = rng_utc.tz_convert('US/Eastern')
In [376]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')
In [377]: rng_eastern[5]
Out[377]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')
In [378]: rng_berlin[5]  #Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')
```

Like `Series`, `DataFrame`, and `DatetimeIndex`, `Timestamp`'s can be converted to other time zones using `tz_convert`:

```python
In [380]: rng_eastern[5]
Out[380]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')
In [381]: rng_berlin[5]  #Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')
In [382]: rng_eastern[5].tz_convert('Europe/Berlin')
```

Localization of Timestamp functions just like `DatetimeIndex` and `Series`:

```python
In [383]: rng[5]
Out[383]: Timestamp('2012-03-11 00:00:00', freq='D')
In [384]: rng[5].tz_localize('Asia/Shanghai')
```
Operations between Series in different time zones will yield UTC Series, aligning the data on the UTC timestamps:

```python
In [385]: eastern = ts_utc.tz_convert('US/Eastern')
In [386]: berlin = ts_utc.tz_convert('Europe/Berlin')
In [387]: result = eastern + berlin
```

```python
In [388]: result
```

```
Out[388]:
2012-03-06 00:00:00+00:00 1.358269
2012-03-07 00:00:00+00:00 0.691336
2012-03-08 00:00:00+00:00 -2.287805
2012-03-09 00:00:00+00:00 0.974174
2012-03-10 00:00:00+00:00 -2.842146
2012-03-11 00:00:00+00:00 -0.654926
2012-03-12 00:00:00+00:00 0.339798
2012-03-13 00:00:00+00:00 1.735136
2012-03-14 00:00:00+00:00 -1.668245
2012-03-15 00:00:00+00:00 -3.396988
2012-03-16 00:00:00+00:00 1.949435
2012-03-17 00:00:00+00:00 1.933541
2012-03-18 00:00:00+00:00 -1.508335
2012-03-19 00:00:00+00:00 -2.868493
2012-03-20 00:00:00+00:00 1.697870
Freq: D, dtype: float64
```

```python
In [389]: result.index
```

```
Out[389]:
\[...
Datetimexx([...'2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09',
'2012-03-10', '2012-03-11', '2012-03-12', '2012-03-13',
'2012-03-14', '2012-03-15', '2012-03-16', '2012-03-17',
'2012-03-18', '2012-03-19', '2012-03-20'],
dtype='datetime64[ns, UTC]', freq='D')
```

To remove timezone from tz-aware DatetimeIndex, use `tz_localize(None)` or `tz_convert(None)`. `tz_localize(None)` will remove timezone holding local time representations. `tz_convert(None)` will remove timezone after converting to UTC time.

```python
In [390]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz="US/Eastern")
```

```python
In [391]: didx
```

```
Out[391]:
Datetimexx([...'2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
'2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
'2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
'2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
'2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', freq='H')
```

```python
In [392]: didx.tz_localize(None)
```

```
Out[392]:
Datetimexx([...'2014-08-01 09:00:00', '2014-08-01 10:00:00',
'2014-08-01 11:00:00', '2014-08-01 12:00:00',
```

19.14. Time Zone Handling
In [393]: didx.tz_convert(None)

Out[393]:

In [394]: didx.tz_convert('UTC').tz_localize(None)

tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)

19.14.2 Ambiguous Times when Localizing

In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often happens when reading files or database records that simply duplicate the hours. Passing `ambiguous='infer'` (infer_dst argument in prior releases) into `tz_localize` will attempt to determine the right offset. Below the top example will fail as it contains ambiguous times and the bottom will infer the right offset.

In [395]: rng_hourly = pd.DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
 :
 '11/06/2011 01:00', '11/06/2011 02:00',
 :
 '11/06/2011 03:00'])

This will fail as there are ambiguous times

In [2]: rng_hourly.tz_localize('US/Eastern')

AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try...
...using the 'ambiguous' argument

Infer the ambiguous times

In [396]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')

In [397]: rng_hourly_eastern.tolist()

Out[397]:

[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]
In addition to ‘infer’, there are several other arguments supported. Passing an array-like of bools or 0s/1s where True represents a DST hour and False a non-DST hour, allows for distinguishing more than one DST transition (e.g., if you have multiple records in a database each with their own DST transition). Or passing ‘NaT’ will fill in transition times with not-a-time values. These methods are available in the DatetimeIndex constructor as well as tz_localize.

```
In [398]: rng_hourly_dst = np.array([1, 1, 0, 0, 0])

In [399]: rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
Out[399]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [400]: rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
...

[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 NaT,
 NaT,
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [401]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')

In [402]: didx
Out[402]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
 '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
 '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
 '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
 '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', freq='H')

In [403]: didx.tz_localize(None)
...

DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
 '2014-08-01 11:00:00', '2014-08-01 12:00:00',
 '2014-08-01 13:00:00', '2014-08-01 14:00:00',
 '2014-08-01 15:00:00', '2014-08-01 16:00:00',
 '2014-08-01 17:00:00', '2014-08-01 18:00:00'],
dtype='datetime64[ns]', freq='H')

In [404]: didx.tz_convert(None)
...

DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
 '2014-08-01 15:00:00', '2014-08-01 16:00:00',
 '2014-08-01 17:00:00', '2014-08-01 18:00:00'],
dtype='datetime64[ns]', freq='H')

# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [405]: didx.tz_convert('UTC').tz_localize(None)
```
19.14.3 TZ aware Dtypes

New in version 0.17.0.

Series/DatetimeIndex with a timezone naive value are represented with a dtype of datetime64[ns].

```python
In [406]: s_naive = pd.Series(pd.date_range('20130101', periods=3))
In [407]: s_naive
Out[407]:
0  2013-01-01
1  2013-01-02
2  2013-01-03
dtype: datetime64[ns]
```

Series/DatetimeIndex with a timezone aware value are represented with a dtype of datetime64[ns, tz].

```python
In [408]: s_aware = pd.Series(pd.date_range('20130101', periods=3, tz='US/Eastern'))
In [409]: s_aware
Out[409]:
0  2013-01-01 00:00:00-05:00
1  2013-01-02 00:00:00-05:00
2  2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
```

Both of these Series can be manipulated via the `.dt` accessor, see here.

For example, to localize and convert a naive stamp to timezone aware.

```python
In [410]: s_naive.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[410]:
0  2012-12-31 19:00:00-05:00
1  2013-01-01 19:00:00-05:00
2  2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]
```

Further more you can `.astype(...)` timezone aware (and naive). This operation is effectively a localize AND convert on a naive stamp, and a convert on an aware stamp.

```python
# localize and convert a naive timezone
In [411]: s_naive.astype('datetime64[ns, US/Eastern]')
Out[411]:
0  2012-12-31 19:00:00-05:00
1  2013-01-01 19:00:00-05:00
2  2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]
```
```python
# make an aware tz naive
In [412]: s_aware.astype('datetime64[ns]')

\n 0  2013-01-01 05:00:00
1  2013-01-02 05:00:00
2  2013-01-03 05:00:00
dtype: datetime64[ns]

# convert to a new timezone
In [413]: s_aware.astype('datetime64[ns, CET]')

\n 0  2013-01-01 06:00:00+01:00
1  2013-01-02 06:00:00+01:00
2  2013-01-03 06:00:00+01:00
dtype: datetime64[ns, CET]

**Note:** Using the `.values` accessor on a `Series`, returns a numpy array of the data. These values are converted to UTC, as numpy does not currently support timezones (even though it is printing in the local timezone!).

```python
In [414]: s_naive.values
Out[414]:
array(['2013-01-01T00:00:00.000000000', '2013-01-02T00:00:00.000000000', '2013-01-03T00:00:00.000000000'], dtype='datetime64[ns]')
```

```python
In [415]: s_aware.values
Out[415]:
array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
```

Further note that once converted to a numpy array these would lose the tz tenor.

```python
In [416]: pd.Series(s_aware.values)
Out[416]:
 0 2013-01-01 05:00:00
 1 2013-01-02 05:00:00
 2 2013-01-03 05:00:00
dtype: datetime64[ns]
```

However, these can be easily converted

```python
In [417]: pd.Series(s_aware.values).dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[417]:
 0 2013-01-01 00:00:00-05:00
 1 2013-01-02 00:00:00-05:00
 2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
```
Note: Starting in v0.15.0, we introduce a new scalar type `Timedelta`, which is a subclass of `datetime.timedelta`, and behaves in a similar manner, but allows compatibility with `np.timedelta64` types as well as a host of custom representation, parsing, and attributes.

Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be both positive and negative.

### 20.1 Parsing

You can construct a `Timedelta` scalar through various arguments:

```python
strings
In [1]: pd.Timedelta('1 days')
Out[1]: Timedelta('1 days 00:00:00')

In [2]: pd.Timedelta('1 days 00:00:00')
\Out[2]: Timedelta('1 days 00:00:00')

In [3]: pd.Timedelta('1 days 2 hours')
\Out[3]: Timedelta('1 days 02:00:00')

In [4]: pd.Timedelta('-1 days 2 min 3us')
\Out[4]: Timedelta('-2 days +23:57:59.999997')

like datetime.timedelta
note: these MUST be specified as keyword arguments
In [5]: pd.Timedelta(days=1, seconds=1)
\Out[5]: Timedelta('1 days 00:00:01')

integers with a unit
In [6]: pd.Timedelta(1, unit='d')
\Out[6]: Timedelta('1 days 00:00:00')

from a datetime.timedelta/np.timedelta64
In [7]: pd.Timedelta(datetime.timedelta(days=1, seconds=1))
\Out[7]: Timedelta('1 days 00:00:01')
```
In [8]: pd.Timedelta(np.timedelta64(1, 'ms'))
Timedelta('0 days 00:00:00.001000')

# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [9]: pd.Timedelta('-1us')
Timedelta('-1 days +23:59:59.999999')

# a NaT
In [10]: pd.Timedelta('nan')
NaT

In [11]: pd.Timedelta('nat')
NaT

DateOffsets (Day, Hour, Minute, Second, Milli, Micro, Nano) can also be used in construction.

In [12]: pd.Timedelta(Second(2))
Timedelta('0 days 00:00:02')

Further, operations among the scalars yield another scalar Timedelta.

In [13]: pd.Timedelta(Day(2)) + pd.Timedelta(Second(2)) + pd.Timedelta('00:00:00.000123')
Timedelta('2 days 00:00:02.000123')

20.1.1 to_timedelta

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.

The arguments to pd.to_timedelta are now (arg, unit='ns', box=True), previously were (arg, box=True, unit='ns') as these are more logical.

Using the top-level pd.to_timedelta, you can convert a scalar, array, list, or Series from a recognized timedelta format/value into a Timedelta type. It will construct Series if the input is a Series, a scalar if the input is scalar-like, otherwise will output a TimedeltaIndex.

You can parse a single string to a Timedelta:

In [14]: pd.to_timedelta('1 days 06:05:01.00003')
Timedelta('1 days 06:05:01.000030')

In [15]: pd.to_timedelta('15.5us')
Timedelta('0 days 00:00:00.000015')

or a list/array of strings:
In [16]: pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
Out[16]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
       dtype='timedelta64[ns]', freq=None)

The `unit` keyword argument specifies the unit of the Timedelta:

In [17]: pd.to_timedelta(np.arange(5), unit='s')
Out[17]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'],
       dtype='timedelta64[ns]', freq=None)

In [18]: pd.to_timedelta(np.arange(5), unit='d')
Out[18]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
       dtype='timedelta64[ns]', freq=None)

20.1.2 Timedelta limitations

Pandas represents Timedeltas in nanosecond resolution using 64 bit integers. As such, the 64 bit integer limits determine the Timedelta limits.

In [19]: pd.Timedelta.min
Out[19]: Timedelta('-106752 days +00:12:43.145224')

In [20]: pd.Timedelta.max
Out[20]: Timedelta('106751 days +23:47:16.854775')

20.2 Operations

You can operate on Series/DataFrames and construct timedelta64[ns] Series through subtraction operations on datetime64[ns] Series, or Timestamps.

In [21]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
In [22]: td = pd.Series([pd.Timedelta(days=i) for i in range(3)])
In [23]: df = pd.DataFrame(dict(A = s, B = td))
In [24]: df
Out[24]:
         A      B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [25]: df['C'] = df['A'] + df['B']
In [26]: df
Out[26]:
         A      B      C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05

20.2. Operations
Operations with scalars from a `timedelta64[ns]` series:

In [33]: y = s - s[0]

In [34]: y
Out[34]:
0   0 days
1   1 days
2   2 days
Series of timedeltas with NaT values are supported:

```python
In [35]: y = s - s.shift()
In [36]: y
Out[36]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]
```

Elements can be set to NaT using np.nan analogously to datetimes:

```python
In [37]: y[1] = np.nan
In [38]: y
Out[38]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]
```

Operands can also appear in a reversed order (a singular object operated with a Series):

```python
In [39]: s.max() - s
Out[39]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [40]: pd.Timestamp('2011, 1, 1, 3, 5') - s
Out[40]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [41]: pd.Series(pd.date_range('2012-1-2', periods=3, freq='D')) + s
```

```
2012-01-01 00:05:00
2012-01-02 00:05:00
2012-01-03 00:05:00
dtype: datetime64[ns]
```

min, max and the corresponding idxmin, idxmax operations are supported on frames:

```python
In [42]: A = s - pd.Timestamp('20120101') - pd.Timedelta('00:05:05')
In [43]: B = s - pd.Series(pd.date_range('2012-1-2', periods=3, freq='D'))
In [44]: df = pd.DataFrame(dict(A=A, B=B))
In [45]: df
Out[45]:
```

20.2. Operations
```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1 days</td>
<td>+23:54:55</td>
</tr>
<tr>
<td>1</td>
<td>0 days</td>
<td>23:54:55</td>
</tr>
<tr>
<td>2</td>
<td>1 days</td>
<td>23:54:55</td>
</tr>
</tbody>
</table>

In [46]: df.min()

→
A -1 days +23:54:55
B -1 days +00:00:00
dtype: timedelta64[ns]

In [47]: df.min(axis=1)

→
0 -1 days
1 -1 days
2 -1 days
dtype: timedelta64[ns]

In [48]: df.idxmin()

→
A 0
B 0
dtype: int64

In [49]: df.idxmax()

→
A 2
B 0
dtype: int64
```

min, max, idxmin, idxmax operations are supported on Series as well. A scalar result will be a Timedelta.

```
In [50]: df.min().max()
Out[50]: Timedelta('-1 days +23:54:55')

In [51]: df.min(axis=1).min()
Out[51]: Timedelta('-1 days +00:00:00')

In [52]: df.min().idxmax()
Out[52]: 'A'

In [53]: df.min(axis=1).idxmin()
Out[53]: 0
```

You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

```
In [54]: y.fillna(0)
Out[54]:
0 0 days
1 0 days
2 1 days
dtype: timedelta64[ns]
```
You can also negate, multiply and use :meth:`abs` on Timedeltas:

```python
In [57]: tdl = pd.Timedelta('-1 days 2 hours 3 seconds')
In [58]: tdl
Out[58]: Timedelta('-2 days +21:59:57')
In [59]: -1 * tdl
Out[59]: Timedelta('1 days 02:00:03')
In [60]: - tdl
Out[60]: Timedelta('1 days 02:00:03')
In [61]: abs(tdl)
Out[61]: Timedelta('1 days 02:00:03')
```

## 20.3 Reductions

Numeric reduction operation for :class:`timedelta64[ns]` will return :class:`Timedelta` objects. As usual :class:`NaT` are skipped during evaluation.

```python
In [62]: y2 = pd.Series(pd.to_timedelta(['-1 days +00:00:05', 'nat', '-1 days +00:00:05', '1 days']))
In [63]: y2
Out[63]:
0 -1 days +00:00:05
1 NaT
2 -1 days +00:00:05
3 1 days
dtype: timedelta64[ns]
In [64]: y2.mean()
Out[64]: Timedelta('-1 days +16:00:03.333333')
In [65]: y2.median()
```
20.4 Frequency Conversion

New in version 0.13.

Timedelta Series, TimedeltaIndex, and Timedelta scalars can be converted to other ‘frequencies’ by dividing by another timedelta, or by astyping to a specific timedelta type. These operations yield Series and propagate NaT -> nan. Note that division by the numpy scalar is true division, while astyping is equivalent of floor division.

```python
In [68]: td = pd.Series(pd.date_range('20130101', periods=4)) -
 : pd.Series(pd.date_range('20121201', periods=4))
 :

In [69]: td[2] += datetime.timedelta(minutes=5, seconds=3)
In [70]: td[3] = np.nan
In [71]: td
Out[71]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 NaT
dtype: timedelta64[ns]

to days
In [72]: td / np.timedelta64(1, 'D')

0 31.000000
1 31.000000
2 31.003507
3 NaN
dtype: float64

In [73]: td.astype('timedelta64[D]')

0 31.0
1 31.0
2 31.0
3 NaN
dtype: float64

to seconds
In [74]: td / np.timedelta64(1, 's')
```
```
In [75]: td.astype('timedelta64[s]')
```
```
0 2678400.0
1 2678400.0
2 2678703.0
3 NaN
dtype: float64
```

```
In [76]: td / np.timedelta64(1, 'M')
```
```
0 1.018501
1 1.018501
2 1.018617
3 NaN
dtype: float64
```

Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series yields another `timedelta64[ns]` dtypes Series.

```
In [77]: td * -1
Out[77]:
0 -31 days 00:00:00
1 -31 days 00:00:00
2 -32 days 23:54:57
3 NaN
dtype: timedelta64[ns]
```

```
In [78]: td * pd.Series([1, 2, 3, 4])
```
```
0 31 days 00:00:00
1 62 days 00:00:00
2 93 days 00:15:09
3 NaN
dtype: timedelta64[ns]
```

### 20.5 Attributes

You can access various components of the `Timedelta` or `TimedeltaIndex` directly using the attributes `days, seconds, microseconds, nanoseconds`. These are identical to the values returned by `datetime.timedelta`, in that, for example, the `.seconds` attribute represents the number of seconds $\geq 0$ and $< 1$ day. These are signed according to whether the `Timedelta` is signed.

These operations can also be directly accessed via the `.dt` property of the `Series` as well.
Note: Note that the attributes are NOT the displayed values of the Timedelta. Use .components to retrieve the displayed values.

For a Series:

```python
In [79]: td.dt.days
Out[79]:
0 31.0
1 31.0
2 31.0
3 NaN
dtype: float64

In [80]: td.dt.seconds
Out[80]:
0 0.0
1 0.0
2 303.0
3 NaN
dtype: float64
```

You can access the value of the fields for a scalar Timedelta directly.

```python
In [81]: tds = pd.Timedelta('31 days 5 min 3 sec')

In [82]: tds.days
Out[82]:
31

In [83]: tds.seconds
Out[83]:
303

In [84]: (-tds).seconds
Out[84]:
86097
```

You can use the .components property to access a reduced form of the timedelta. This returns a DataFrame indexed similarly to the Series. These are the displayed values of the Timedelta.

```python
In [85]: td.dt.components
Out[85]:
 days hours minutes seconds milliseconds microseconds nanoseconds
0 31.0 0.0 0.0 0.0 0.0 0.0 0.0
1 31.0 0.0 0.0 0.0 0.0 0.0 0.0
2 31.0 0.0 5.0 3.0 0.0 0.0 0.0
3 NaN NaN NaN NaN NaN NaN NaN

In [86]: td.dt.components.seconds
Out[86]:
 →
0 0.0
1 0.0
2 3.0
3 NaN
Name: seconds, dtype: float64
```

You can convert a Timedelta to an ISO 8601 Duration string with the .isoformat method

New in version 0.20.0.
In [87]: pd.Timedelta(days=6, minutes=50, seconds=3,
    ....:     milliseconds=10, microseconds=10,
    ....:     nanoseconds=12).isoformat()
    ....:
Out[87]: 'P6DT0H50M3.010010012S'

20.6 TimedeltaIndex

New in version 0.15.0.

To generate an index with time delta, you can use either the TimedeltaIndex or the timedelta_range constructor.

Using TimedeltaIndex you can pass string-like, Timedelta, timedelta, or np.timedelta64 objects. Passing np.nan/pd.NaT/nat will represent missing values.

In [88]: pd.TimedeltaIndex(['1 days', '1 days, 00:00:05',
    ....:     np.timedelta64(2,'D'), datetime.timedelta(days=2,
    →seconds=2)])
    ....:
Out[88]: TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
    '2 days 00:00:02'],
    dtype='timedelta64[ns]', freq=None)

Similarly to date_range, you can construct regular ranges of a TimedeltaIndex:

In [89]: pd.timedelta_range(start='1 days', periods=5, freq='D')
Out[89]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')

In [90]: pd.timedelta_range(start='1 days', end='2 days', freq='30T')

TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
    '1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
    '1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
    '1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
    '1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
    '1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
    '1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
    '1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
    '1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
    '1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
    '1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
    '1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
    '1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
    '1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
    '1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
    '1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
    '2 days 00:00:00'],
    dtype='timedelta64[ns]', freq='30T')
20.6.1 Using the TimedeltaIndex

Similarly to other of the datetime-like indices, DatetimeIndex and PeriodIndex, you can use TimedeltaIndex as the index of pandas objects.

```python
In [91]: s = pd.Series(np.arange(100),
 index=pd.timedelta_range('1 days', periods=100, freq='h'))

In [92]: s
Out[92]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6
 ...
4 days 21:00:00 93
4 days 22:00:00 94
4 days 23:00:00 95
5 days 00:00:00 96
5 days 01:00:00 97
5 days 02:00:00 98
5 days 03:00:00 99
Freq: H, Length: 100, dtype: int64
```

Selections work similarly, with coercion on string-likes and slices:

```python
In [93]: s['1 day':'2 day']
Out[93]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6
 ...
2 days 17:00:00 41
2 days 18:00:00 42
2 days 19:00:00 43
2 days 20:00:00 44
2 days 21:00:00 45
2 days 22:00:00 46
2 days 23:00:00 47
Freq: H, Length: 48, dtype: int64
```

Furthermore you can use partial string selection and the range will be inferred:

```python
In [94]: s['1 day 01:00:00']
Out[94]:
1 days 01:00:00 1

In [95]: s[pd.Timedelta('1 day 1h')]
Out[95]:
```
20.6.2 Operations

Finally, the combination of `TimedeltaIndex` with `DatetimeIndex` allow certain combination operations that are NaT preserving:

```python
In [97]: tdi = pd.TimedeltaIndex(['1 days', pd.NaT, '2 days'])
In [98]: tdi.tolist()
Out[98]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [99]: dti = pd.date_range('20130101', periods=3)
In [100]: dti.tolist()
Out[100]: [Timestamp('2013-01-01 00:00:00', freq='D'),
 Timestamp('2013-01-02 00:00:00', freq='D'),
 Timestamp('2013-01-03 00:00:00', freq='D')]
In [101]: (dti + tdi).tolist()
→[Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [102]: (dti - tdi).tolist()
→[Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]
```

20.6.3 Conversions

Similarly to frequency conversion on a `Series` above, you can convert these indices to yield another `Index`.

```python
In [103]: tdi / np.timedelta64(1, 's')
Out[103]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
In [104]: tdi.astype('timedelta64[s]')
Out[104]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
```

Scalars type ops work as well. These can potentially return a different type of index.

```python
adding or timedelta and date -> datelike
In [105]: tdi + pd.Timestamp('20130101')
Out[105]: DatetimeIndex(['2013-01-02', 'NaT', '2013-01-03'], dtype='datetime64[ns]',
 →freq=None)
```
20.7 Resampling

Similar to timeseries resampling, we can resample with a TimedeltaIndex.

```
In [110]: s.resample('D').mean()
Out[110]:
 1 days 11.5
 2 days 35.5
 3 days 59.5
 4 days 83.5
 5 days 97.5
Freq: D, dtype: float64
```
CATEGORICAL DATA

New in version 0.15.

Note: While there was pandas.Categorical in earlier versions, the ability to use categorical data in Series and DataFrame is new.

This is an introduction to pandas categorical data type, including a short comparison with R’s factor.

Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.

All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.

The categorical data type is useful in the following cases:

- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.

- The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.

- As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

See also the API docs on categoricals.

21.1 Object Creation

Categorical Series or columns in a DataFrame can be created in several ways:

By specifying dtype="category" when constructing a Series:

```
In [1]: s = pd.Series(["a","b","c","a"], dtype="category")
```

```
In [2]: s
Out [2]:
0 a
```
By converting an existing *Series* or column to a category dtype:

```python
In [3]: df = pd.DataFrame({"A": ["a","b","c","a"]})
In [4]: df["B"] = df["A"].astype('category')
In [5]: df
Out[5]:
 A B
0 a a
1 b b
2 c c
3 a a
```

By using some special functions:

```python
In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})
In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
 value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9
```

See *documentation* for `cut()`.

By passing a *pandas.Categorical* object to a *Series* or assigning it to a *DataFrame*.

```python
In [10]: raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"], ordered=False)
 :
 :
In [11]: s = pd.Series(raw_cat)
In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
```
Pandas is a powerful Python data analysis toolkit. Release 0.20.1 includes new features for handling categorical data.

Categorical data has a specific **category dtype**:

```python
df = pd.DataFrame({"A": ["a", "b", "c", "a"]})
df["B"] = raw_cat
```

```plaintext
In [13]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})
In [14]: df["B"] = raw_cat
```

```
In [15]: df
Out[15]:
 A B
0 a NaN
1 b b
2 c c
3 a NaN
```

You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to `astype()`:

```python
s = pd.Series(["a", "b", "c", "a"])
s_cat = s.astype("category", categories=["b", "c", "d"], ordered=False)
```

```plaintext
In [16]: s = pd.Series(["a", "b", "c", "a"])
In [17]: s_cat = s.astype("category", categories=["b", "c", "d"], ordered=False)
In [18]: s_cat
Out[18]:
 0 1
 NaN b
 2 c NaN
```

```plaintext
dtype: category
Categories (3, object): [b, c, d]
```

Note: In contrast to R’s `factor` function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.

Note: In contrast to R’s `factor` function, there is currently no way to assign/change labels at creation time. Use `categories` to change the categories after creation time.

To get back to the original Series or `numpy` array, use `Series.astype(original_dtype)` or `np.asarray(categorical)`:

```python
s = pd.Series(["a", "b", "c", "a"])
```

```plaintext
In [20]: s = pd.Series(["a", "b", "c", "a"])
```

```
In [21]: s
Out[21]:
 0 a
 1 b
```

21.1. Object Creation
In [22]: s2 = s.astype('category')

In [23]: s2
Out[23]:
0  a
1  b
2  c
3  a

dtype: category
Categories (3, object): [a, b, c]

In [24]: s2.astype(str)
Out[24]:
0  a
1  b
2  c
3  a

dtype: object

In [25]: np.asarray(s2)
array(['a', 'b', 'c', 'a'], dtype=object)

If you have already codes and categories, you can use the from_codes() constructor to save the factorize step during normal constructor mode:

In [26]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5])

In [27]: s = pd.Series(pd.Categorical.from_codes(splitter, categories=['train', 'test']))

21.2 Description

Using .describe() on categorical data will produce similar output to a Series or DataFrame of type string.

In [28]: cat = pd.Categorical(['a', 'c', 'c', np.nan], categories=['b', 'a', 'c'])

In [29]: df = pd.DataFrame({'cat':cat, 's':['a', 'c', 'c', np.nan]})

In [30]: df.describe()
Out[30]:

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>unique</th>
<th>top</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3</td>
<td>2</td>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>3</td>
<td>2</td>
<td>c</td>
<td>2</td>
</tr>
</tbody>
</table>

In [31]: df['cat'].describe()
21.3 Working with categories

Categorical data has a categories and an ordered property, which list their possible values and whether the ordering matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don’t manually specify categories and ordering, they are inferred from the passed in values.

```
In [32]: s = pd.Series(["a","b","c","a"], dtype="category")
In [33]: s.cat.categories
Out[33]: Index(['a', 'b', 'c'], dtype='object')
In [34]: s.cat.ordered
Out[34]: False
```

It’s also possible to pass in the categories in a specific order:

```
In [35]: s = pd.Series(pd.Categorical(["a","b","c","a"], categories=["c","b","a"]))
In [36]: s.cat.categories
Out[36]: Index(['c', 'b', 'a'], dtype='object')
In [37]: s.cat.ordered
Out[37]: False
```

**Note:** New categorical data are NOT automatically ordered. You must explicitly pass ordered=True to indicate an ordered Categorical.

**Note:** The result of Series.unique() is not always the same as Series.cat.categories, because Series.unique() has a couple of guarantees, namely that it returns categories in the order of appearance, and it only includes values that are actually present.

```
In [38]: s = pd.Series(list('babc')).astype('category', categories=list('abcd'))
In [39]: s
Out[39]:
 0 b
 1 a
 2 b
 3 c
dtype: category
Categories (4, object): [a, b, c, d]

categories
In [40]: s.cat.categories
Out[40]: Index(['a', 'b', 'c', 'd'], dtype='object')
```
21.3.1 Renaming categories

Renaming categories is done by assigning new values to the `Series.cat.categories` property or by using the `Categorical.rename_categories()` method:

```python
uniques
In [41]: s.unique()

Out[41]:
→ [b, a, c]
Categories (3, object): [b, a, c]
```

```python
21.3.1 Renaming categories

Renaming categories is done by assigning new values to the `Series.cat.categories` property or by using the `Categorical.rename_categories()` method:

```python
In [42]: s = pd.Series(["a","b","c","a"], dtype="category")

In [43]: s
Out[43]:
0   a
1   b
2   c
3   a
dtype: category
Categories (3, object): [a, b, c]

In [44]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]

In [45]: s
Out[45]:
0   Group a
1   Group b
2   Group c
3   Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]

In [46]: s.cat.rename_categories([1,2,3])

```

```python
Out[46]:
0   1
1   2
2   3
3   1
dtype: category
Categories (3, int64): [1, 2, 3]
```

Note: In contrast to R’s `factor`, categorical data can have categories of other types than string.

Note: Be aware that assigning new categories is an inplace operations, while most other operation under `Series.cat` per default return a new Series of dtype `category`.

Categories must be unique or a `ValueError` is raised:
21.3.2 Appending new categories

Appending categories can be done by using the `Categorical.add_categories()` method:

```
In [49]: s = s.cat.add_categories([4])
```

```
In [50]: s.cat.categories
Out[50]: Index(['Group a', 'Group b', 'Group c', 4], dtype='object')
```

```
In [51]: s
Out[51]:
0   Group a
1   Group b
2   Group c
3   Group a
dtype: category
Categories (4, object): [Group a, Group b, Group c, 4]
```

21.3.3 Removing categories

Removing categories can be done by using the `Categorical.remove_categories()` method. Values which are removed are replaced by `np.nan`:

```
In [52]: s = s.cat.remove_categories([4])
```

```
In [53]: s
Out[53]:
0   Group a
1   Group b
2   Group c
3   Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]
```

21.3.4 Removing unused categories

Removing unused categories can also be done:
21.3.5 Setting categories

If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use `Categorical.set_categories()`.

```
In [57]: s = pd.Series(["one","two","four", "-"], dtype="category")

In [58]: s
Out[58]:
0   one
1   two
2   four
3     
 dtype: category
Categories (4, object): [-, four, one, two]

In [59]: s = s.cat.set_categories(["one","two","three","four"])

In [60]: s
Out[60]:
0   one
1   two
2   four
3  NaN
 dtype: category
Categories (4, object): [one, two, three, four]
```

Note: Be aware that `Categorical.set_categories()` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpy's S1 dtype and python strings). This can result in surprising behaviour!
21.4 Sorting and Order

Warning: The default for construction has changed in v0.16.0 to `ordered=False`, from the prior implicit `ordered=True`.

If categorical data is ordered (`s.cat.ordered == True`), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, `.min()/ .max()` will raise a `TypeError`.

```python
In [61]: s = pd.Series(pd.Categorical(["a","b","c","a"], ordered=False))
In [62]: s.sort_values(inplace=True)
In [63]: s = pd.Series(["a","b","c","a"]).astype('category', ordered=True)
In [64]: s.sort_values(inplace=True)
In [65]: s
Out[65]:
0   a
3   a
1   b
2   c
dtype: category
Categories (3, object): [a < b < c]
In [66]: s.min(), s.max()
Out[66]:
('a', 'c')
```

You can set categorical data to be ordered by using `as_ordered()` or unordered by using `as_unordered()`. These will by default return a *new* object.

```python
In [67]: s.cat.as_ordered()
Out[67]:
0   a
3   a
1   b
2   c
dtype: category
Categories (3, object): [a < b < c]
In [68]: s.cat.as_unordered()
Out[68]:
0   a
3   a
1   b
2   c
dtype: category
Categories (3, object): [a, b, c]
```

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:
In [69]: s = pd.Series([1,2,3,1], dtype="category")

In [70]: s = s.cat.set_categories([2,3,1], ordered=True)

In [71]: s
Out[71]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [72]: s.sort_values(inplace=True)

In [73]: s
Out[73]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [74]: s.min(), s.max()
Out[74]: ˓→(2, 1)

21.4.1 Reordering

Reordering the categories is possible via the Categorical.reorder_categories() and the Categorical.set_categories() methods. For Categorical.reorder_categories(), all old categories must be included in the new categories and no new categories are allowed. This will necessarily make the sort order the same as the categories order.

In [75]: s = pd.Series([1,2,3,1], dtype="category")

In [76]: s = s.cat.reorder_categories([2,3,1], ordered=True)

In [77]: s
Out[77]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [78]: s.sort_values(inplace=True)

In [79]: s
Out[79]:
1 2
2 3
0 1
3 1
Note: Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the Series, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the Series are changed.

Note: If the Categorical is not ordered, Series.min() and Series.max() will raise TypeError. Numeric operations like +, -, *, / and operations based on them (e.g. Series.median(), which would need to compute the mean between two values if the length of an array is even) do not work and raise a TypeError.

21.4.2 Multi Column Sorting

A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns. The ordering of the categorical is determined by the categories of that column.

Reordering the categories changes a future sort.

21.4. Sorting and Order
21.5 Comparisons

Comparing categorical data with other objects is possible in three cases:

- comparing equality (== and !=) to a list-like object (list, Series, array, ...) of the same length as the categorical data.
- all comparisons (==, ! =, >, >=, <, and <=) of categorical data to another categorical Series, when ordered=True and the categories are the same.
- all comparisons of a categorical data to a scalar.

All other comparisons, especially “non-equality” comparisons of two categoricals with different categories or a categorical with any list-like object, will raise a TypeError.

Note: Any “non-equality” comparisons of categorical data with a Series, np.array, list or categorical data with different categories or ordering will raise an TypeError because custom categories ordering could be interpreted in two ways: one with taking into account the ordering and one without.

```python
In [85]: cat = pd.Series([1, 2, 3]).astype("category", categories=[3, 2, 1], ordered=True)
In [86]: cat_base = pd.Series([2, 2, 2]).astype("category", categories=[3, 2, 1], ordered=True)
In [87]: cat_base2 = pd.Series([2, 2, 2]).astype("category", ordered=True)
In [88]: cat
Out[88]:
     0  1
   1  2
   2  3
 dtype: category
Categories (3, int64): [3 < 2 < 1]
In [89]: cat_base
   →
     0  2
   1  2
   2  2
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [90]: cat_base2
   →
     0  2
   1  2
   2  2
dtype: category
Categories (1, int64): [2]
```
Comparing to a categorical with the same categories and ordering or to a scalar works:

```python
In [91]: cat > cat_base
Out[91]:
0   True
1   False
2  False
dtype: bool

In [92]: cat > 2
Out[92]:
0   True
1   False
2  False
dtype: bool
```

Equality comparisons work with any list-like object of same length and scalars:

```python
In [93]: cat == cat_base
Out[93]:
0  False
1   True
2  False
dtype: bool

In [94]: cat == np.array([1,2,3])
Out[94]:
0   True
1   True
2   True
dtype: bool

In [95]: cat == 2
```

This doesn’t work because the categories are not the same:

```python
In [96]: try:
   ....:   cat > cat_base2
   ....:   except TypeError as e:
   ....:       print("TypeError: " + str(e))
   ....:
TypeError: Categoricals can only be compared if 'categories' are the same
```

If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values:

```python
In [97]: base = np.array([1,2,3])

In [98]: try:
   ....:   cat > base
   ....:   except TypeError as e:
   ....:       print("TypeError: " + str(e))
   ....:
```

21.5. Comparisons
21.6 Operations

Apart from `Series.min()`, `Series.max()` and `Series.mode()`, the following operations are possible with categorical data:

Series methods like `Series.value_counts()` will use all categories, even if some categories are not present in the data:

```python
In [100]: s = pd.Series(pd.Categorical(["a","b","c","c"], categories=['c','a','b','d']))

In [101]: s.value_counts()
Out[101]:
   c    2
   b    1
   a    1
   d    0
dtype: int64
```

`Groupby` will also show “unused” categories:

```python
In [102]: cats = pd.Categorical(["a","b","b","b","c","c","c"], categories=['a','b','c','d'])

In [103]: df = pd.DataFrame({'cats':cats,'values':[1,2,2,2,3,4,5]})

In [104]: df.groupby("cats").mean()
Out[104]:
            values
          cats
   a     1.0
   b     2.0
   c     4.0
   d       NaN

In [105]: cats2 = pd.Categorical(["a","a","b","b"], categories=['a','b','c'])

In [106]: df2 = pd.DataFrame({'cats':cats2,'B':['c','d','c','d'],'values':[1,2,3,4]})

In [107]: df2.groupby(["cats","B"]).mean()
Out[107]:
        values
      cats  B
   a   c     1.0
        d     2.0
   b   c     3.0
        d     4.0
   c   c   NaN
   d   NaN
```

```
Pivot tables:

```python
In [108]: raw_cat = pd.Categorical(["a","a","b","b"], categories=["a","b","c"])
In [109]: df = pd.DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})
In [110]: pd.pivot_table(df, values='values', index=['A', 'B'])
Out[110]:
 values
A B
a c 1.0
 d 2.0
b c 3.0
 d 4.0
c c NaN
 d NaN
```

### 21.7 Data munging

The optimized pandas data access methods `.loc`, `.iloc`, `.at`, and `.iat`, work as normal. The only difference is the return type (for getting) and that only values already in `categories` can be assigned.

#### 21.7.1 Getting

If the slicing operation returns either a `DataFrame` or a column of type `Series`, the `category` dtype is preserved.

```python
In [111]: idx = pd.Index(["h","i","j","k","l","m","n",])
In [112]: cats = pd.Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)
In [113]: values= [1,2,2,2,3,4,5]
In [114]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx)
In [115]: df.iloc[2:4,:]
Out[115]:
 cats values
j b 2
k b 2
In [116]: df.iloc[2:4,:].dtypes
Out[116]:
 cats category
 values int64
dtype: object
In [117]: df.loc["h":"j","cats"]
```

21.7. Data munging
An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype object:

```python
get the complete "h" row as a Series
In [119]: df.loc["h", :]
Out[119]:
 cats values
 a 1
Name: h, dtype: object
```

Returning a single item from categorical data will also return the value, not a categorical of length “1”.

```python
In [120]: df.iat[0,0]
Out[120]: 'a'
In [121]: df["cats"].cat.categories = ["x","y","z"]
In [122]: df.at["h","cats"] # returns a string
Out[122]: 'x'
```

**Note:** This is a difference to R’s `factor` function, where `factor(c(1,2,3))[1]` returns a single value `factor`.

To get a single value `Series` of type `category` pass in a list with a single value:

```python
In [123]: df.loc["h","cats"]
Out[123]:
 h x
Name: cats, dtype: category
Categories (3, object): [x, y, z]
```

## 21.7.2 String and datetime accessors

New in version 0.17.1.

The accessors `.dt` and `.str` will work if the `s.cat.categories` are of an appropriate type:

```python
In [124]: str_s = pd.Series(list('aabb'))
In [125]: str_cat = str_s.astype('category')
In [126]: str_cat
Out[126]:
 0 a
 1 a
 2 b
```
```python
In [127]: str_cat.str.contains("a")
Out[127]:
 0 True
 1 True
 2 False
 3 False
 dtype: bool

In [128]: date_s = pd.Series(pd.date_range('1/1/2015', periods=5))

In [129]: date_cat = date_s.astype('category')

In [130]: date_cat
Out[130]:
0 2015-01-01
1 2015-01-02
2 2015-01-03
3 2015-01-04
4 2015-01-05
 dtype: category
 categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-01-05]

In [131]: date_cat.dt.day
Out[131]:
 0 1
 1 2
 2 3
 3 4
 4 5
 dtype: int64
```

**Note:** The returned Series (or DataFrame) is of the same type as if you used the `str.<method>/.dt.<method>` on a Series of that type (and not of type category!).

That means, that the returned values from methods and properties on the accessors of a `Series` and the returned values from methods and properties on the accessors of this `Series` transformed to one of type `category` will be equal:

```python
In [132]: ret_s = str_s.str.contains("a")

In [133]: ret_cat = str_cat.str.contains("a")

In [134]: ret_s.dtype == ret_cat.dtype
Out[134]: True

In [135]: ret_s == ret_cat
Out[135]:
 0 True
 1 True
```

21.7. Data munging
Note: The work is done on the categories and then a new Series is constructed. This has some performance implication if you have a Series of type string, where lots of elements are repeated (i.e. the number of unique elements in the Series is a lot smaller than the length of the Series). In this case it can be faster to convert the original Series to one of type category and use .str.<method> or .dt.<property> on that.

21.7.3 Setting

Setting values in a categorical column (or Series) works as long as the value is included in the categories:

```
In [136]: idx = pd.Index(["h","i","j","k","l","m","n"])
In [137]: cats = pd.Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])
In [138]: values = [1,1,1,1,1,1,1]
In [139]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx)
In [140]: df.iloc[2:4,:] = [["b",2],["b",2]]
```

```
Out[140]:
 cats values
 h a 1
 i a 1
 j b 2
 k b 2
 l a 1
 m a 1
 n a 1
```

```
In [142]: try:
 ...: df.iloc[2:4,:] = [["c",3],["c",3]]
 : except ValueError as e:
 ...: print("ValueError: " + str(e))
 :
```

```
Cannot setitem on a Categorical with a new category, set the categories first
```

Setting values by assigning categorical data will also check that the categories match:

```
In [143]: df.loc["j":"k","cats"] = pd.Categorical(["a","a"], categories=["a","b"])
In [144]: df
```

```
Out[144]:
 cats values
 h a 1
 i a 1
 j a 2
 k a 2
 l a 1
```
Assigning a `Categorical` to parts of a column of other types will use the values:

```python
In [146]: df = pd.DataFrame({"a": [1,1,1,1,1], "b": ["a","a","a","a","a"]})
In [147]: df.loc[1:2,"a"] = pd.Categorical(["b","b"], categories=["a","b"])
In [148]: df.loc[2:3,"b"] = pd.Categorical(["b","b"], categories=["a","b"])
In [149]: df
Out[149]:
 a b
0 1 a
1 1 b
2 2 b
3 3 b
4 4 a
```

21.7.4 Merging

You can concat two `DataFrames` containing categorical data together, but the categories of these categoricals need to be the same:

```python
In [151]: cat = pd.Series(["a","b"], dtype="category")
In [152]: vals = [1,2]
In [153]: df = pd.DataFrame({"cats":cat, "vals":vals})
In [154]: res = pd.concat([df, df])
In [155]: res
Out[155]:
 cats vals
0 a 1
1 b 2
0 a 1
1 b 2
```
In [156]: res.dtypes
cats    category
vals    int64  
dtype: object

In this case the categories are not the same and so an error is raised:

In [157]: df_different = df.copy()

In [158]: df_different["cats"].cat.categories = ["c","d"]

In [159]: try:
    ....: pd.concat([df,df_different])
    ....: except ValueError as e:
    ....:     print("ValueError: " + str(e))
    ....:

The same applies to df.append(df_different).

See also the section on merge dtypes for notes about preserving merge dtypes and performance.

### 21.7.5 Unioning

New in version 0.19.0.

If you want to combine categoricals that do not necessarily have the same categories, the union_categoricals function will combine a list-like of categoricals. The new categories will be the union of the categories being combined.

In [160]: from pandas.api.types import union_categoricals

In [161]: a = pd.Categorical(["b", "c"], ordered=True)

In [162]: b = pd.Categorical(["a", "b"], ordered=True)

In [163]: union_categoricals([a, b])
Out[163]:
[a, b, c]
Categories (3, object): [b, c, a]

By default, the resulting categories will be ordered as they appear in the data. If you want the categories to be lexsorted, use sort_categories=True argument.

In [164]: union_categoricals([a, b], sort_categories=True)
Out[164]:
[a, b, c]
Categories (3, object): [a, b, c]

union_categoricals also works with the “easy” case of combining two categoricals of the same categories and order information (e.g. what you could also append for).

In [165]: a = pd.Categorical(["a", "b"], ordered=True)

In [166]: b = pd.Categorical(["a", "b", "a"], ordered=True)

In [167]: union_categoricals([a, b])
Out[167]:
[a, b, a]
The below raises `TypeError` because the categories are ordered and not identical.

```python
In [1]: a = pd.Categorical(["a", "b"], ordered=True)
In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same
```

New in version 0.20.0.

Ordered categoricals with different categories or orderings can be combined by using the `ignore_ordered=True` argument.

```python
In [168]: a = pd.Categorical(["a", "b", "c"], ordered=True)
In [169]: b = pd.Categorical(["c", "b", "a"], ordered=True)
In [170]: union_categoricals([a, b], ignore_order=True)
Out[170]:
[a, b, c, c, b, a]
Categories (3, object): [a, b, c]
```

`union_categoricals` also works with a `CategoricalIndex`, or `Series` containing categorical data, but note that the resulting array will always be a plain `Categorical`

```python
In [171]: a = pd.Series(["b", "c"], dtype='category')
In [172]: b = pd.Series(["a", "b"], dtype='category')
In [173]: union_categoricals([a, b])
Out[173]:
[b, c, a, b]
Categories (3, object): [b, c, a]
```

Note: `union_categoricals` may recode the integer codes for categories when combining categoricals. This is likely what you want, but if you are relying on the exact numbering of the categories, be aware.

```python
In [174]: c1 = pd.Categorical(["b", "c"])
In [175]: c2 = pd.Categorical(["a", "b"])
In [176]: c1
Out[176]:
[b, c]
Categories (2, object): [b, c]

"b" is coded to 0
In [177]: c1.codes
\[0\]
Out[177]: array([0, 1], dtype=int8)
In [178]: c2
\[0\]
Out[178]:
[a, b]
```

21.7. Data munging
21.7.6 Concatenation

This section describes concatenations specific to category dtype. See Concatenating objects for general description.

By default, Series or DataFrame concatenation which contains the same categories results in category dtype, otherwise results in object dtype. Use .astype or union_categoricals to get category result.

```python
same categories
In [183]: s1 = pd.Series(['a', 'b'], dtype='category')

In [184]: s2 = pd.Series(['a', 'b', 'a'], dtype='category')

In [185]: pd.concat([s1, s2])
Out[185]:
 0 a
 1 b
 0 a
 1 b
 2 a
dtype: category
Categories (2, object): [a, b]

different categories
In [186]: s3 = pd.Series(['b', 'c'], dtype='category')

In [187]: pd.concat([s1, s3])
Out[187]:
 0 a
 1 b
 0 b
 1 c
dtype: object

In [188]: pd.concat([s1, s3]).astype('category')
Out[188]:
 0 a
```
Following table summarizes the results of `Categoricals` related concatenations.

<table>
<thead>
<tr>
<th>arg1</th>
<th>arg2</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>category</td>
<td>category (identical categories)</td>
<td>category</td>
</tr>
<tr>
<td>category</td>
<td>category (different categories, both not ordered)</td>
<td>object (dtype is inferred)</td>
</tr>
<tr>
<td>category</td>
<td>category (different categories, either one is ordered)</td>
<td>object (dtype is inferred)</td>
</tr>
<tr>
<td>category</td>
<td>not category</td>
<td>object (dtype is inferred)</td>
</tr>
</tbody>
</table>

## 21.8 Getting Data In/Out

New in version 0.15.2.

Writing data (`Series`, `Frames`) to a HDF store that contains a `category` dtype was implemented in 0.15.2. See [here](#) for an example and caveats.

Writing data to and reading data from Stata format files was implemented in 0.15.2. See [here](#) for an example and caveats.

Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to `category` and assign the right categories and categories ordering.
The same holds for writing to a SQL database with `to_sql`.

## 21.9 Missing Data

pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the Missing Data section.

Missing values should not be included in the Categorical's categories, only in the values. Instead, it is understood that NaN is different, and is always a possibility. When working with the Categorical’s codes, missing values will always have a code of -1.

```python
In [203]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category")
only two categories

In [204]: s
Out[204]:
0 a
```
Methods for working with missing data, e.g. `isnull()`, `fillna()`, `dropna()`, all work normally:

```python
In [206]: s = pd.Series(["a", "b", np.nan], dtype="category")

In [207]: s
Out[207]:
0 a
1 b
2 NaN
dtype: category
Categories (2, object): [a, b]

In [208]: pd.isnull(s)
Out[208]:
0 False
1 False
2 True
dtype: bool

In [209]: s.fillna("a")
```

21.10 Differences to R's `factor`

The following differences to R's `factor` functions can be observed:

- R's `levels` are named `categories`
- R's `levels` are always of type string, while categories in pandas can be of any dtype.
- It's not possible to specify labels at creation time. Use `s.cat.rename_categories(new_labels)` afterwards.
- In contrast to R's `factor` function, using categorical data as the sole input to create a new categorical series will not remove unused categories but create a new categorical series which is equal to the passed in one!
• R allows for missing values to be included in its levels (pandas’ categories). Pandas does not allow NaN categories, but missing values can still be in the values.

21.11 Gotchas

21.11.1 Memory Usage

The memory usage of a Categorical is proportional to the number of categories times the length of the data. In contrast, an object dtype is a constant times the length of the data.

```
In [210]: s = pd.Series(['foo','bar']*1000)
object dtype
In [211]: s.nbytes
Out[211]: 16000

category dtype
In [212]: s.astype('category').nbytes
Out[212]: 2016
```

Note: If the number of categories approaches the length of the data, the Categorical will use nearly the same or more memory than an equivalent object dtype representation.

```
In [213]: s = pd.Series(['foo%04d' % i for i in range(2000)])
object dtype
In [214]: s.nbytes
Out[214]: 16000

category dtype
In [215]: s.astype('category').nbytes
Out[215]: 20000
```

21.11.2 Old style constructor usage

In earlier versions than pandas 0.15, a Categorical could be constructed by passing in precomputed codes (called then labels) instead of values with categories. The codes were interpreted as pointers to the categories with -1 as NaN. This type of constructor usage is replaced by the special constructor Categorical.from_codes().

Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the current pandas version, resulting in subtle bugs:

```python
>>> cat = pd.Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
array([2, 3], dtype=int64)
>>> # new version
>>> cat.get_values()
array([1, 2], dtype=int64)
```
**Warning:** If you used *Categoricals* with older versions of pandas, please audit your code before upgrading and change your code to use the `from_codes()` constructor.

### 21.11.3 *Categorical* is not a *numpy* array

Currently, categorical data and the underlying *Categorical* is implemented as a python object and not as a low-level *numpy* array dtype. This leads to some problems.

*numpy* itself doesn’t know about the new *dtype*:

```
In [216]: try:
 : np.dtype("category")
 : except TypeError as e:
 : print("TypeError: " + str(e))
 :
TypeError: data type "category" not understood
```

```
In [217]: dtype = pd.Categorical(["a"]).dtype
In [218]: try:
 : np.dtype(dtype)
 : except TypeError as e:
 : print("TypeError: " + str(e))
 :
TypeError: data type not understood
```

Dtype comparisons work:

```
In [219]: dtype == np.str_
Out[219]: False
```

```
In [220]: np.str_ == dtype

```

To check if a Series contains Categorical data, with pandas 0.16 or later, use `hasattr(s, 'cat')`:

```
In [221]: hasattr(pd.Series(["a"], dtype='category'), 'cat')
Out[221]: True
```

```
In [222]: hasattr(pd.Series(["a"], 'cat')

```

Using *numpy* functions on a *Series* of type *category* should not work as *Categoricals* are not numeric data (even in the case that `.categories` is numeric).

```
In [223]: s = pd.Series(pd.Categorical([1,2,3,4]))
In [224]: try:
 : np.sum(s)
 : except TypeError as e:
 : print("TypeError: " + str(e))
 :
TypeError: Categorical cannot perform the operation sum
```
21.11.4 dtype in apply

Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a Series of object dtype (same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object.

```python
In [225]: df = pd.DataFrame({"a": [1, 2, 3, 4],
 : "b": ["a", "b", "c", "d"],
 : "cats": pd.Categorical([1, 2, 3, 2])})

In [226]: df.apply(lambda row: type(row["cats"]), axis=1)
Out[226]:
0 <class 'int'>
1 <class 'int'>
2 <class 'int'>
3 <class 'int'>
dtype: object

In [227]: df.apply(lambda col: col.dtype, axis=0)
Out[227]:
˓→
a object
b object
cats object
dtype: object
```

21.11.5 Categorical Index

New in version 0.16.1.

A new CategoricalIndex index type is introduced in version 0.16.1. See the advanced indexing docs for a more detailed explanation.

Setting the index, will create a CategoricalIndex

```python
In [228]: cats = pd.Categorical([1, 2, 3, 4], categories=[4, 2, 3, 1])

In [229]: strings = ["a", "b", "c", "d"]

In [230]: values = [4, 2, 3, 1]

In [231]: df = pd.DataFrame({"strings": strings, "values": values}, index=cats)

In [232]: df.index
Out[232]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False,
˓→dtype='category')

This now sorts by the categories order
In [233]: df.sort_index()
˓→
```
In previous versions (<0.16.1) there is no index of type `category`, so setting the index to categorical column will convert the categorical data to a “normal” dtype first and therefore remove any custom ordering of the categories.

### 21.11.6 Side Effects

Constructing a `Series` from a `Categorical` will not copy the input `Categorical`. This means that changes to the `Series` will in most cases change the original `Categorical`:

```python
In [234]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])
In [235]: s = pd.Series(cat, name="cat")
In [236]: cat
Out[236]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [237]: s.iloc[0:2] = 10
In [238]: cat
Out[238]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [239]: df = pd.DataFrame(s)
In [240]: df["cat"].cat.categories = [1,2,3,4,5]
In [241]: cat
Out[241]:
[5, 5, 3, 5]
Categories (5, int64): [1, 2, 3, 4, 5]
```

Use `copy=True` to prevent such a behaviour or simply don’t reuse `Categoricals`:

```python
In [242]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])
In [243]: s = pd.Series(cat, name="cat", copy=True)
In [244]: cat
Out[244]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
In [245]: s.iloc[0:2] = 10
In [246]: cat
Out[246]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
```
Note: This also happens in some cases when you supply a *numpy* array instead of a *Categorical*: using an int array (e.g. `np.array([1,2,3,4])`) will exhibit the same behaviour, while using a string array (e.g. `np.array(['a','b','c','a'])`) will not.
We use the standard convention for referencing the matplotlib API:

```
In [1]: import matplotlib.pyplot as plt
```

The plots in this document are made using matplotlib’s ggplot style (new in version 1.4):

```
import matplotlib
matplotlib.style.use('ggplot')
```

We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization libraries that go beyond the basics documented here.

**Note:** All calls to `np.random` are seeded with 123456.

### 22.1 Basic Plotting: `plot`

See the cookbook for some advanced strategies

The `plot` method on Series and DataFrame is just a simple wrapper around `plt.plot()`:

```
In [2]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [3]: ts = ts.cumsum()
In [4]: ts.plot()
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x127e39b70>
```
If the index consists of dates, it calls `gcf().autofmt_xdate()` to try to format the x-axis nicely as per above.

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```python
In [5]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
In [6]: df = df.cumsum()
In [7]: plt.figure(); df.plot();
```
You can plot one column versus another using the `x` and `y` keywords in `plot()`:

```python
In [8]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()
In [9]: df3['A'] = pd.Series(list(range(len(df))))
In [10]: df3.plot(x='A', y='B')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x12d3d4710>
```
22.2 Other Plots

Plotting methods allow for a handful of plot styles other than the default Line plot. These methods can be provided as the `kind` keyword argument to `plot()`. These include:

- `bar` or `barh` for bar plots
- `hist` for histogram
- `box` for boxplot
- `kde` or `density` for density plots
- `area` for area plots
- `scatter` for scatter plots
- `hexbin` for hexagonal bin plots
- `pie` for pie plots

For example, a bar plot can be created the following way:

```python
In [11]: plt.figure();
```
New in version 0.17.0.

You can also create these other plots using the methods `DataFrame.plot.<kind>` instead of providing the `kind` keyword argument. This makes it easier to discover plot methods and the specific arguments they use:

```python
In [13]: df = pd.DataFrame()
In [14]: df.plot.<TAB>
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line
> df.plot.scatter
 df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
```

In addition to these `kind`s, there are the `DataFrame.hist()`, and `DataFrame.boxplot()` methods, which use a separate interface.

Finally, there are several plotting functions in `pandas.plotting` that take a `Series` or `DataFrame` as an argument. These include:

- **Scatter Matrix**
- **Andrews Curves**
- **Parallel Coordinates**
- **Lag Plot**
- **Autocorrelation Plot**
- **Bootstrap Plot**
• RadViz

Plots may also be adorned with errorbars or tables.

22.2.1 Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

In [15]: plt.figure();

In [16]: df.iloc[5].plot.bar(); plt.axhline(0, color='k')
Out[16]: <matplotlib.lines.Line2D at 0x12aa79f28>

Calling a DataFrame’s plot.bar() method produces a multiple bar plot:

In [17]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [18]: df2.plot.bar();
To produce a stacked bar plot, pass `stacked=True`:

```python
In [19]: df2.plot.bar(stacked=True);
```
To get horizontal bar plots, use the `barh` method:

```python
In [20]: df2.plot.barh(stacked=True);
```

![Horizontal Bar Plot](image)

### 22.2.2 Histograms

New in version 0.15.0.

Histogram can be drawn by using the `DataFrame.plot.hist()` and `Series.plot.hist()` methods.

```python
In [21]: df4 = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000),
 'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])

In [22]: plt.figure();

In [23]: df4.plot.hist(alpha=0.5)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1321820b8>
```
Histogram can be stacked by `stacked=True`. Bin size can be changed by `bins` keyword.

```python
In [24]: plt.figure();

In [25]: df4.plot.hist(stacked=True, bins=20)
Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x12f5e7a90>
```
You can pass other keywords supported by matplotlib hist. For example, horizontal and cumulative histogram can be drawn by `orientation='horizontal'` and `cumulative='True'`.

```python
In [26]: plt.figure();
In [27]: df4['a'].plot.hist(orientation='horizontal', cumulative=True)
Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x12faa8048>
```
See the `hist` method and the `matplotlib hist` documentation for more.

The existing interface `DataFrame.hist` to plot histogram still can be used.

```
In [28]: plt.figure();
In [29]: df['A'].diff().hist()
Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x1285dceb8>
```
pandas: powerful Python data analysis toolkit, Release 0.20.1

`DataFrame.hist()` plots the histograms of the columns on multiple subplots:

```
In [30]: plt.figure()
Out[30]: <matplotlib.figure.Figure at 0x12f415f28>

In [31]: df.diff().hist(color='k', alpha=0.5, bins=50)
```

```
Out[31]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x12e470cc0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12e526a20>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x12dc906d8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12de2f860>]], dtype=object)
```
New in version 0.10.0.

The `by` keyword can be specified to plot grouped histograms:

```python
In [32]: data = pd.Series(np.random.randn(1000))

In [33]: data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4))
Out[33]:
```

```
array([[[<matplotlib.axes._subplots.AxesSubplot object at 0x12de7f3c8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12879ee80>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x127f27cc0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x127ea6ac8>]], dtype=object)
```
22.2.3 Box Plots

New in version 0.15.0.

Boxplot can be drawn calling `Series.plot.box()` and `DataFrame.plot.box()`, or `DataFrame.boxplot()` to visualize the distribution of values within each column.

For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

```python
In [34]: df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
In [35]: df.plot.box()
Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x12dd1bcf8>
```
Boxplot can be colorized by passing `color` keyword. You can pass a `dict` whose keys are `boxes`, `whiskers`, `medians` and `caps`. If some keys are missing in the `dict`, default colors are used for the corresponding artists. Also, boxplot has `sym` keyword to specify fliers style.

When you pass other type of arguments via `color` keyword, it will be directly passed to matplotlib for all the `boxes`, `whiskers`, `medians` and `caps` colorization.

The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn artists by passing `return_type`.

```python
In [36]: color = dict(boxes='DarkGreen', whiskers='DarkOrange',
 medians='DarkBlue', caps='Gray')

In [37]: df.plot.box(color=color, sym='r+')
Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x11f69fe80>
```
Also, you can pass other keywords supported by matplotlib boxplot. For example, horizontal and custom-positioned boxplot can be drawn by `vert=False` and `positions` keywords.

```
In [38]: df.plot.box(vert=False, positions=[1, 4, 5, 6, 8])
Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x127835dd8>
```
See the `boxplot` method and the matplotlib boxplot documentation for more.
The existing interface `DataFrame.boxplot` to plot boxplot still can be used.

```
In [39]: df = pd.DataFrame(np.random.rand(10, 5))
In [40]: plt.figure();
In [41]: bp = df.boxplot()
```
You can create a stratified boxplot using the `by` keyword argument to create groupings. For instance,

```python
In [42]: df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'])
In [43]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [44]: plt.figure();
In [45]: bp = df.boxplot(by='X')
```
You can also pass a subset of columns to plot, as well as group by multiple columns:

```
In [46]: df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
In [47]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [48]: df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
In [49]: plt.figure();
In [50]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
```
Warning: The default changed from 'dict' to 'axes' in version 0.19.0.

In boxplot, the return type can be controlled by the return_type, keyword. The valid choices are {'axes', 'dict', 'both', None}. Faceting, created by DataFrame.boxplot with the by keyword, will affect the output type as well:

<table>
<thead>
<tr>
<th>return_type=</th>
<th>Faceted</th>
<th>Output type</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No</td>
<td>axes</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>2-D ndarray of axes</td>
</tr>
<tr>
<td>'axes'</td>
<td>No</td>
<td>axes</td>
</tr>
<tr>
<td>'axes'</td>
<td>Yes</td>
<td>Series of axes</td>
</tr>
<tr>
<td>'dict'</td>
<td>No</td>
<td>dict of artists</td>
</tr>
<tr>
<td>'dict'</td>
<td>Yes</td>
<td>Series of dicts of artists</td>
</tr>
<tr>
<td>'both'</td>
<td>No</td>
<td>namedtuple</td>
</tr>
<tr>
<td>'both'</td>
<td>Yes</td>
<td>Series of namedtuples</td>
</tr>
</tbody>
</table>

Groupby.boxplot always returns a Series of return_type.

```
In [51]: np.random.seed(1234)
In [52]: df_box = pd.DataFrame(np.random.randn(50, 2))
In [53]: df_box['g'] = np.random.choice(['A', 'B'], size=50)
In [54]: df_box.loc[df_box['g'] == 'B', 1] += 3
```
In [55]: bp = df_box.boxplot(by='g')

Boxplot grouped by g

Compare to:

In [56]: bp = df_box.groupby('g').boxplot()
22.2.4 Area Plot

New in version 0.14.

You can create area plots with `Series.plot.area()` and `DataFrame.plot.area()`. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use `dataframe.dropna()` or `dataframe.fillna()` before calling `plot`.

```
In [57]: df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
In [58]: df.plot.area();
```
To produce an unstacked plot, pass `stacked=False`. Alpha value is set to 0.5 unless otherwise specified:

```python
In [59]: df.plot.area(stacked=False);
```
22.2.5 Scatter Plot

New in version 0.13.

Scatter plot can be drawn by using the `DataFrame.plot.scatter()` method. Scatter plot requires numeric columns for x and y axis. These can be specified by x and y keywords each.

```
In [60]: df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
In [61]: df.plot.scatter(x='a', y='b');
```
To plot multiple column groups in a single axes, repeat `plot` method specifying target `ax`. It is recommended to specify `color` and `label` keywords to distinguish each groups.

```
In [62]: ax = df.plot.scatter(x='a', y='b', color='DarkBlue', label='Group 1');
In [63]: df.plot.scatter(x='c', y='d', color='DarkGreen', label='Group 2', ax=ax);
```
The keyword `c` may be given as the name of a column to provide colors for each point:

```python
In [64]: df.plot.scatter(x='a', y='b', c='c', s=50);
```
You can pass other keywords supported by matplotlib `scatter`. Below example shows a bubble chart using a dataframe column values as bubble size.

```
In [65]: df.plot.scatter(x='a', y='b', s=df['c']*200);
```
See the `scatter` method and the `matplotlib scatter` documentation for more.

### 22.2.6 Hexagonal Bin Plot

New in version 0.14.

You can create hexagonal bin plots with `DataFrame.plot.hexbin()`. Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually.

```
In [66]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [67]: df['b'] = df['b'] + np.arange(1000)
In [68]: df.plot.hexbin(x='a', y='b', gridsize=25)
```

Out[68]: `<matplotlib.axes._subplots.AxesSubplot at 0x12dc19630>`
A useful keyword argument is `gridsize`; it controls the number of hexagons in the x-direction, and defaults to 100. A larger `gridsize` means more, smaller bins.

By default, a histogram of the counts around each \((x, y)\) point is computed. You can specify alternative aggregations by passing values to the `C` and `reduce_C_function` arguments. `C` specifies the value at each \((x, y)\) point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`). In this example the positions are given by columns `a` and `b`, while the value is given by column `z`. The bins are aggregated with numpy’s `max` function.

```python
In [69]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [70]: df['b'] = df['b'] = df['b'] + np.arange(1000)
In [71]: df['z'] = np.random.uniform(0, 3, 1000)
In [72]: df.plot.hexbin(x='a', y='b', C='z', reduce_C_function=np.max, : gridsize=25)
 :
Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x1286e5e10>
```
See the \texttt{hexbin} method and the matplotlib \texttt{hexbin} documentation for more.

### 22.2.7 Pie plot

New in version 0.14.

You can create a pie plot with \texttt{DataFrame.plot.pie()} or \texttt{Series.plot.pie()}. If your data includes any NaN, they will be automatically filled with 0. A \texttt{ValueError} will be raised if there are any negative values in your data.

```python
In [73]: series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')

In [74]: series.plot.pie(figsize=(6, 6))
Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0x12a0f30f0>
```
For pie plots it’s best to use square figures, one’s with an equal aspect ratio. You can create the figure with equal width and height, or force the aspect ratio to be equal after plotting by calling `ax.set_aspect('equal')` on the returned axes object.

Note that pie plot with `DataFrame` requires that you either specify a target column by the `y` argument or `subplots=True`. When `y` is specified, pie plot of selected column will be drawn. If `subplots=True` is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify `legend=False` to hide it.

```python
In [75]: df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'],
 columns=['x', 'y'])

In [76]: df.plot.pie(subplots=True, figsize=(8, 4))
Out[76]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x128972390>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12d847860>], dtype=object)
```
You can use the labels and colors keywords to specify the labels and colors of each wedge.

**Warning:** Most pandas plots use the label and color arguments (note the lack of “s” on those). To be consistent with `matplotlib.pyplot.pie()` you must use labels and colors.

If you want to hide wedge labels, specify labels=None. If fontsize is specified, the value will be applied to wedge labels. Also, other keywords supported by `matplotlib.pyplot.pie()` can be used.

```python
In [77]: series.plot.pie(labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
 autopct='%.2f', fontsize=20, figsize=(6, 6))
...:
Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0x1289873c8>
```
If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

```python
In [78]: series = pd.Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')
In [79]: series.plot.pie(figsize=(6, 6))
Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x128973470>
```
Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are dropped, left out, or filled depending on the plot type.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>NaN Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Leave gaps at NaNs</td>
</tr>
<tr>
<td>Line (stacked)</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Bar</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Scatter</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Histogram</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Box</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Area</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>KDE</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Hexbin</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Pie</td>
<td>Fill 0’s</td>
</tr>
</tbody>
</table>

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using `fillna()` or `dropna()` before plotting.

See the matplotlib pie documentation for more.

### 22.3 Plotting with Missing Data

Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are dropped, left out, or filled depending on the plot type.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>NaN Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Leave gaps at NaNs</td>
</tr>
<tr>
<td>Line (stacked)</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Bar</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Scatter</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Histogram</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Box</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Area</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>KDE</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Hexbin</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Pie</td>
<td>Fill 0’s</td>
</tr>
</tbody>
</table>

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using `fillna()` or `dropna()` before plotting.
22.4 Plotting Tools

These functions can be imported from pandas.plotting and take a *Series* or *DataFrame* as an argument.

22.4.1 Scatter Matrix Plot

New in version 0.7.3.

You can create a scatter plot matrix using the `scatter_matrix` method in `pandas.plotting`:

```python
In [80]: from pandas.plotting import scatter_matrix

In [81]: df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])

In [82]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
```

```
Out[82]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1149c0f98>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12dee38d0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12f7c06a0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x127fc57b8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x12e478f98>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12e478ef0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x130159a20>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x129aac860>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x1232aacf8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x11fa44be0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x112411518>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x121019ac8>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x1231140ef0>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x1231140ef8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x12007d438>]], dtype=object)
```
**22.4.2 Density Plot**

New in version 0.8.0.

You can create density plots using the `Series.plot.kde()` and `DataFrame.plot.kde()` methods.

```python
In [83]: ser = pd.Series(np.random.randn(1000))
In [84]: ser.plot.kde()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x12e445be0>
```
Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.

Note: The “Iris” dataset is available here.

```python
In [85]: from pandas.plotting import andrews_curves

In [86]: data = pd.read_csv('data/iris.data')

In [87]: plt.figure()
Out[87]: <matplotlib.figure.Figure at 0x12d805c50>

In [88]: andrews_curves(data, 'Name')
```

22.4. Plotting Tools 941
22.4.4 Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.

```python
In [90]: from pandas.plotting import parallel_coordinates

In [91]: data = pd.read_csv('data/iris.data')

In [92]: parallel_coordinates(data, 'Name')
```

![Parallel Coordinates Plot](image-url)
22.4.5 Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.

```
In [93]: from pandas.plotting import lag_plot

In [94]: plt.figure()
Out[94]: <matplotlib.figure.Figure at 0x12e4757f0>

In [95]: data = pd.Series(0.1 * np.random.rand(1000) +
 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))

In [96]: lag_plot(data)
Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0x12d764dd8>
```
22.4.6 Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.

```
In [97]: from pandas.plotting import autocorrelation_plot

In [98]: plt.figure()
Out[98]: <matplotlib.figure.Figure at 0x12d7a6470>

In [99]: data = pd.Series(0.7 * np.random.rand(1000) +
 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))

In [100]: autocorrelation_plot(data)
Out[100]: <matplotlib.axes._subplots.AxesSubplot at 0x129fe8fd0>
```
22.4.7 Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.

In [101]: from pandas.plotting import bootstrap_plot

In [102]: data = pd.Series(np.random.rand(1000))

In [103]: bootstrap_plot(data, size=50, samples=500, color='grey')
Out[103]: <matplotlib.figure.Figure at 0x123fd0320>
22.4.8 RadViz

RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.

Note: The “Iris” dataset is available here.

```
In [104]: from pandas.plotting import radviz
In [105]: data = pd.read_csv('data/iris.data')
In [106]: plt.figure()
Out[106]: <matplotlib.figure.Figure at 0x127137c18>
In [107]: radviz(data, 'Name')
```

22.5 Plot Formatting

Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:

```
In [108]: plt.figure(); ts.plot(style='k--', label='Series');
```
For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling, beyond what pandas provides.

### 22.5.1 Controlling the Legend

You may set the legend argument to False to hide the legend, which is shown by default.

```
In [109]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
In [110]: df = df.cumsum()
In [111]: df.plot(legend=False)
Out[111]: <matplotlib.axes._subplots.AxesSubplot at 0x12d7a6a20>
```
22.5.2 Scales

You may pass `logy` to get a log-scale Y axis.

```
In [112]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [113]: ts = np.exp(ts.cumsum())

In [114]: ts.plot(logy=True)
Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0x128798cf8>
```
See also the `logx` and `loglog` keyword arguments.

### 22.5.3 Plotting on a Secondary Y-axis

To plot data on a secondary y-axis, use the `secondary_y` keyword:

```python
In [115]: df.A.plot()
Out[115]: <matplotlib.axes._subplots.AxesSubplot at 0x123ef6e10>

In [116]: df.B.plot(secondary_y=True, style='g')
```

See the diagram for an example of plotting data on a secondary y-axis.
To plot some columns in a DataFrame, give the column names to the `secondary_y` keyword:

```
In [117]: plt.figure()
Out[117]: <matplotlib.figure.Figure at 0x132eb6ba8>

In [118]: ax = df.plot(secondary_y=['A', 'B'])

In [119]: ax.set_ylabel('CD scale')
Out[119]: <matplotlib.text.Text at 0x12087a860>

In [120]: ax.right_ax.set_ylabel('AB scale')
```

22.5. Plot Formatting
Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off the automatic marking, use the `mark_right=False` keyword:

```python
In [121]: plt.figure()
Out[121]: <matplotlib.figure.Figure at 0x12742a908>

In [122]: df.plot(secondary_y=['A', 'B'], mark_right=False)
```

```python
Out[122]: <matplotlib.axes._subplots.AxesSubplot at 0x132e86080>
```
pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where pandas cannot infer the frequency information (e.g., in an externally created `twinx`), you can choose to suppress this behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labelling is performed:

```python
In [123]: plt.figure()
Out[123]: <matplotlib.figure.Figure at 0x12741a3c8>
In [124]: df.A.plot()
```

22.5.4 Suppressing Tick Resolution Adjustment
Using the `x_compat` parameter, you can suppress this behavior:

```python
In [125]: plt.figure()
Out[125]: <matplotlib.figure.Figure at 0x127ee3a20>

In [126]: df.A.plot(x_compat=True)
```
If you have more than one plot that needs to be suppressed, the `use` method in `pandas.plotting.plot_params` can be used in a `with statement`:

```python
In [127]: plt.figure()
Out[127]: <matplotlib.figure.Figure at 0x127eb9780>

In [128]: with pd.plotting.plot_params.use('x_compat', True):
 : df.A.plot(color='r')
 : df.B.plot(color='g')
 : df.C.plot(color='b')
 :
```
22.5.5 Automatic Date Tick Adjustment

New in version 0.20.0.

TimedeltaIndex now uses the native matplotlib tick locator methods, it is useful to call the automatic date tick adjustment from matplotlib for figures whose ticklabels overlap.

See the autofmt_xdate method and the matplotlib documentation for more.

22.5.6 Subplots

Each Series in a DataFrame can be plotted on a different axis with the subplots keyword:

```
In [129]: df.plot(subplots=True, figsize=(6, 6));
```
22.5.7 Using Layout and Targeting Multiple Axes

The layout of subplots can be specified by `layout` keyword. It can accept `(rows, columns)`. The `layout` keyword can be used in `hist` and `boxplot` also. If input is invalid, `ValueError` will be raised.

The number of axes which can be contained by rows x columns specified by `layout` must be larger than the number of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a numpy array’s `reshape` method, you can use `-1` for one dimension to automatically calculate the number of rows or columns needed, given the other.

```python
In [130]: df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);
```
The above example is identical to using

```
In [131]: df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);
```

The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2).

Also, you can pass multiple axes created beforehand as list-like via `ax` keyword. This allows to use more complicated layout. The passed axes must be the same number as the subplots being drawn.

When multiple axes are passed via `ax` keyword, `layout`, `sharex` and `sharey` keywords don’t affect to the output. You should explicitly pass `sharex=False` and `sharey=False`, otherwise you will see a warning.

```
In [132]: fig, axes = plt.subplots(4, 4, figsize=(6, 6));
In [133]: plt.subplots_adjust(wspace=0.5, hspace=0.5);
In [134]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
In [135]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
In [136]: df.plot(subplots=True, ax=target1, legend=False, sharex=False,
 sharey=False);
In [137]: (-df).plot(subplots=True, ax=target2, legend=False, sharex=False,
 sharey=False);
```
Another option is passing an `ax` argument to `Series.plot()` to plot on a particular axis:

```python
In [138]: fig, axes = plt.subplots(nrows=2, ncols=2)
In [139]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');
In [140]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');
In [141]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');
In [142]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');
```
22.5.8 Plotting With Error Bars

New in version 0.14.

Plotting with error bars is now supported in the `DataFrame.plot()` and `Series.plot()` methods.

Horizontal and vertical error bars can be supplied to the `xerr` and `yerr` keyword arguments to `plot()`. The error values can be specified using a variety of formats.

- As a DataFrame or dict of errors with column names matching the `columns` attribute of the plotting DataFrame or matching the `name` attribute of the Series.
- As a str indicating which of the columns of plotting DataFrame contain the error values.
- As raw values (list, tuple, or np.ndarray). Must be the same length as the plotting DataFrame/Series.

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a M length Series, a Mx2 array should be provided indicating lower and upper (or left and right) errors. For a MxN DataFrame, asymmetrical errors should be in a Mx2xN array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.

```python
Generate the data
In [143]: ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'foo', 'foo', 'bar'], names=['letter', 'word'])

In [144]: df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4], 'data2': [6, 5, 7, 5, 6, 5]})
```
In [145]: gp3 = df3.groupby(level=('letter', 'word'))

In [146]: means = gp3.mean()

In [147]: errors = gp3.std()

In [148]: means

Out[148]:
    data1  data2
letter word
a   bar  3.5  6.0
     foo  2.5  5.5
b   bar  2.5  5.5
     foo  3.0  4.5

In [149]: errors

Out[149]:
    data1  data2
letter word
a   bar  0.707107  1.414214
     foo  0.707107  0.707107
b   bar  0.707107  0.707107
     foo  1.414214  0.707107

# Plot
In [150]: fig, ax = plt.subplots()

In [151]: means.plot.bar(yerr=errors, ax=ax)

Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0x11f9c0208>
22.5.9 Plotting Tables

New in version 0.14.

Plotting with matplotlib table is now supported in `DataFrame.plot()` and `Series.plot()` with a `table` keyword. The `table` keyword can accept `bool`, `DataFrame` or `Series`. The simple way to draw a table is to specify `table=True`. Data will be transposed to meet matplotlib's default layout.

```python
In [152]: fig, ax = plt.subplots(1, 1)
In [153]: df = pd.DataFrame(np.random.rand(5, 3), columns=['a', 'b', 'c'])
In [154]: ax.get_xaxis().set_visible(False) # Hide Ticks
In [155]: df.plot(table=True, ax=ax)
Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x122b872e8>
```
Also, you can pass different *DataFrame* or *Series* for `table` keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.

```
In [156]: fig, ax = plt.subplots(1, 1)

In [157]: ax.get_xaxis().set_visible(False) # Hide Ticks

In [158]: df.plot(table=np.round(df.T, 2), ax=ax)
```

```
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0x12e993e80>
```
Finally, there is a helper function `pandas.plotting.table` to create a table from `DataFrame` and `Series`, and add it to an `matplotlib.Axes`. This function can accept keywords which `matplotlib` table has.

```
In [159]: from pandas.plotting import table

In [160]: fig, ax = plt.subplots(1, 1)

In [161]: table(ax, np.round(df.describe(), 2), loc='upper right', colWidths=[0.2, 0.2, 0.2])

Out[161]: <matplotlib.table.Table at 0x1238fcf98>

In [162]: df.plot(ax=ax, ylim=(0, 2), legend=None)
```

```
\| 0 | 1 | 2 | 3 | 4 |
\---|-----|-----|-----|-----|
 a | 0.13| 0.9 | 0.45| 0.54| 0.13|
 b | 0.97| 0.38| 0.84| 0.37| 0.86|
 c | 0.26| 0.34| 0.12| 0.45| 0.82|
```
22.5.10 Colormaps

A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the `colormap=` argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here.

As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.

To use the cubehelix colormap, we can simply pass 'cubehelix' to `colormap=`

```
In [163]: df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index)
In [164]: df = df.cumsum()
In [165]: plt.figure()
Out[165]: <matplotlib.figure.Figure at 0x12e6caa90>
In [166]: df.plot(colormap='cubehelix')
```

Note: You can get table instances on the axes using `axes.tables` property for further decorations. See the matplotlib table documentation for more.
or we can pass the colormap itself

In [167]: from matplotlib import cm

In [168]: plt.figure()
Out[168]: <matplotlib.figure.Figure at 0x12377b828>

In [169]: df.plot(colormap=cm.cubehelix)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\n
Out[169]: <matplotlib.axes._subplots.AxesSubplot at 0x10b493b70>
Colormaps can also be used other plot types, like bar charts:

```python
In [170]: dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs)
In [171]: dd = dd.cumsum()
In [172]: plt.figure()
Out[172]: <matplotlib.figure.Figure at 0x1238fca90>
In [173]: dd.plot.bar(colormap='Greens')
```

```
\[\text{Out}[173]: <matplotlib.axes._subplots.AxesSubplot at 0x122a30d30>\]
```
Parallel coordinates charts:

```
In [174]: plt.figure()
Out[174]: <matplotlib.figure.Figure at 0x12e3247b8>

In [175]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
```
Andrews curves charts:

```python
In [176]: plt.figure()
Out[176]: <matplotlib.figure.Figure at 0x122a301d0>

In [177]: andrews_curves(data, 'Name', colormap='winter')
```

```python
Out[177]: <matplotlib.axes._subplots.AxesSubplot at 0x123cea518>
```
22.6 Plotting directly with matplotlib

In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts.

pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.

Note: The speed up for large data sets only applies to pandas 0.14.0 and later.

```
In [178]: price = pd.Series(np.random.randn(150).cumsum(),
 index=pd.date_range('2000-1-1', periods=150, freq='B'))

In [179]: ma = price.rolling(20).mean()
In [180]: mstd = price.rolling(20).std()
In [181]: plt.figure()
Out[181]: <matplotlib.figure.Figure at 0x123ccbdd8>

In [182]: plt.plot(price.index, price, 'k')
```

Out[182]: [<matplotlib.lines.Line2D at 0x12477def0>]

...
22.7 Trellis plotting interface

**Warning:** The `rplot` trellis plotting interface has been removed. Please use external packages like `seaborn` for similar but more refined functionality and refer to our 0.18.1 documentation [here](#) for how to convert to using it.
New in version 0.17.1

Provisional: This is a new feature and still under development. We’ll be adding features and possibly making breaking changes in future releases. We’d love to hear your feedback.

This document is written as a Jupyter Notebook, and can be viewed or downloaded here.

You can apply conditional formatting, the visual styling of a DataFrame depending on the data within, by using the DataFrame.style property. This is a property that returns a Styler object, which has useful methods for formatting and displaying DataFrames.

The styling is accomplished using CSS. You write “style functions” that take scalars, DataFrames or Series, and return like-indexed DataFrames or Series with CSS "attribute: value" pairs for the values. These functions can be incrementally passed to the Styler which collects the styles before rendering.

23.1 Building Styles

Pass your style functions into one of the following methods:

- Styler.applymap: elementwise
- Styler.apply: column-/row-/table-wise

Both of those methods take a function (and some other keyword arguments) and applies your function to the DataFrame in a certain way. Styler.applymap works through the DataFrame elementwise. Styler.apply passes each column or row into your DataFrame one-at-a-time or the entire table at once, depending on the axis keyword argument. For columnwise use axis=0, rowwise use axis=1, and for the entire table at once use axis=None.

For Styler.applymap your function should take a scalar and return a single string with the CSS attribute-value pair.

For Styler.apply your function should take a Series or DataFrame (depending on the axis parameter), and return a Series or DataFrame with an identical shape where each value is a string with a CSS attribute-value pair.

Let’s see some examples.

In [2]: import pandas as pd
   import numpy as np

   np.random.seed(24)
   df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
   df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))], axis=1)
   df.iloc[0, 2] = np.nan

Here’s a boring example of rendering a DataFrame, without any (visible) styles:
In [3]: df.style

Out[3]: <pandas.io.formats.style.Styler at 0x1187d6b38>

Note: The DataFrame.style attribute is a property that returns a Styler object. Styler has a _repr_html_ method defined on it so they are rendered automatically. If you want the actual HTML back for further processing or for writing to file call the .render() method which returns a string.

The above output looks very similar to the standard DataFrame HTML representation. But we’ve done some work behind the scenes to attach CSS classes to each cell. We can view these by calling the .render method.

In [4]: df.style.highlight_null().render().split('\n')[:10]

Out[4]: ['<style type="text/css" >', ' #T_ad6bb706_31b6_11e7_9571_186590cd1c87row0_col2 {', ' background-color: red;', ' }</style> ', '<table id="T_ad6bb706_31b6_11e7_9571_186590cd1c87" > ', '<thead> <tr> ', '<th class="blank level0" ></th> ', '<th class="col_heading level0 col0" >A</th> ', '<th class="col_heading level0 col1" >B</th> ', '<th class="col_heading level0 col2" >C</th> '
]

The row0_col2 is the identifier for that particular cell. We’ve also prepended each row/column identifier with a UUID unique to each DataFrame so that the style from one doesn’t collide with the styling from another within the same notebook or page (you can set the uuid if you’d like to tie together the styling of two DataFrames).

When writing style functions, you take care of producing the CSS attribute / value pairs you want. Pandas matches those up with the CSS classes that identify each cell.

Let’s write a simple style function that will color negative numbers red and positive numbers black.

In [5]: def color_negative_red(val):
    """
    Takes a scalar and returns a string with
    the css property 'color: red' for negative
    strings, black otherwise.
    ""
    color = 'red' if val < 0 else 'black'
    return 'color: %s' % color

In this case, the cell’s style depends only on it’s own value. That means we should use the Styler.applymap method which works elementwise.

In [6]: s = df.style.applymap(color_negative_red)

Out[6]: <pandas.io.formats.style.Styler at 0x1189dda20>

Notice the similarity with the standard df.applymap, which operates on DataFrames elementwise. We want you to be able to reuse your existing knowledge of how to interact with DataFrames.

Notice also that our function returned a string containing the CSS attribute and value, separated by a colon just like in a <style> tag. This will be a common theme.

Finally, the input shapes matched. Styler.applymap calls the function on each scalar input, and the function returns a scalar output.

Now suppose you wanted to highlight the maximum value in each column. We can’t use .applymap anymore since that operated elementwise. Instead, we’ll turn to .apply which operates columnwise (or rowwise using the axis keyword). Later on we’ll see that something like highlight_max is already defined on Styler so you wouldn’t need to write this yourself.
In [7]: def highlight_max(s):
   ...:     '''
   ...:     highlight the maximum in a Series yellow.
   ...:     '''
   ...:     is_max = s == s.max()
   ...:     return ['background-color: yellow' if v else '' for v in is_max]

In [8]: df.style.apply(highlight_max)
Out[8]: <pandas.io.formats.style.Styler at 0x118a07fd0>

In this case the input is a Series, one column at a time. Notice that the output shape of highlight_max matches the input shape, an array with len(s) items.

We encourage you to use method chains to build up a style piecewise, before finally rendering at the end of the chain.

In [9]: df.style.
   ...:     applymap(color_negative_red).
   ...:     apply(highlight_max)
Out[9]: <pandas.io.formats.style.Styler at 0x118a07438>

Above we used Styler.apply to pass in each column one at a time.

Debugging Tip: If you’re having trouble writing your style function, try just passing it into DataFrame.apply. Internally, Styler.apply uses DataFrame.apply so the result should be the same.

What if you wanted to highlight just the maximum value in the entire table? Use .apply(function, axis=None) to indicate that your function wants the entire table, not one column or row at a time. Let’s try that next.

We’ll rewrite our highlight-max to handle either Series (from .apply(axis=0 or 1)) or DataFrames (from .apply(axis=None)). We’ll also allow the color to be adjustable, to demonstrate that .apply, and .applymap pass along keyword arguments.

In [10]: def highlight_max(data, color='yellow'):
   ...:     '''
   ...:     highlight the maximum in a Series or DataFrame
   ...:     '''
   ...:     attr = 'background-color: {}'.format(color)
   ...:     if data.ndim == 1:  # Series from .apply(axis=0) or axis=1
   ...:         is_max = data == data.max()
   ...:         return [attr if v else '' for v in is_max]
   ...:     else:  # from .apply(axis=None)
   ...:         is_max = data == data.max().max()
   ...:         return pd.DataFrame(np.where(is_max, attr, ''),
   ...:             index=data.index, columns=data.columns)

When using Styler.apply(func, axis=None), the function must return a DataFrame with the same index and column labels.

In [11]: df.style.apply(highlight_max, color='darkorange', axis=None)
Out[11]: <pandas.io.formats.style.Styler at 0x118a076a0>

23.1.1 Building Styles Summary

Style functions should return strings with one or more CSS attribute: value delimited by semicolons. Use
- Styler.applymap(func) for elementwise styles
- Styler.apply(func, axis=0) for columnwise styles
- Styler.apply(func, axis=1) for rowwise styles
Styler.apply(func, axis=None) for tablewise styles

And crucially the input and output shapes of func must match. If x is the input then func(x).shape == x.shape.

23.2 Finer Control: Slicing

Both Styler.apply, and Styler.applymap accept a subset keyword. This allows you to apply styles to specific rows or columns, without having to code that logic into your style function.

The value passed to subset behaves similar to slicing a DataFrame.

- A scalar is treated as a column label
- A list (or series or numpy array)
- A tuple is treated as (row_indexer, column_indexer)

Consider using pd.IndexSlice to construct the tuple for the last one.

```python
In [12]: df.style.apply(highlight_max, subset=['B', 'C', 'D'])
Out[12]: <pandas.io.formats.style.Styler at 0x118a075c0>
```

For row and column slicing, any valid indexer to .loc will work.

```python
In [13]: df.style.applymap(color_negative_red, subset=pd.IndexSlice[2:5, ['B', 'D']])
Out[13]: <pandas.io.formats.style.Styler at 0x118a07b70>
```

Only label-based slicing is supported right now, not positional.

If your style function uses a subset or axis keyword argument, consider wrapping your function in a functools.partial, partialing out that keyword.

```python
my_func2 = functools.partial(my_func, subset=42)
```

23.3 Finer Control: Display Values

We distinguish the display value from the actual value in Styler. To control the display value, the text is printed in each cell, use Styler.format. Cells can be formatted according to a format spec string or a callable that takes a single value and returns a string.

```python
In [14]: df.style.format("{:.2%}"")
Out[14]: <pandas.io.formats.style.Styler at 0x118a07470>
```

Use a dictionary to format specific columns.

```python
In [15]: df.style.format({'B': "{:0<4.0f}", 'D': '{:+.2f}'})
Out[15]: <pandas.io.formats.style.Styler at 0x118a07390>
```

Or pass in a callable (or dictionary of callables) for more flexible handling.

```python
In [16]: df.style.format({'B': lambda x: "±{:.2f}".format(abs(x))})
Out[16]: <pandas.io.formats.style.Styler at 0x118a07940>
```
23.4 Builtin Styles

Finally, we expect certain styling functions to be common enough that we’ve included a few “built-in” to the Styler, so you don’t have to write them yourself.

In [17]: df.style.highlight_null(null_color='red')
Out[17]: <pandas.io.formats.style.Styler at 0x118a071d0>

You can create “heatmaps” with the `background_gradient` method. These require matplotlib, and we’ll use Seaborn to get a nice colormap.

In [18]: import seaborn as sns

    cm = sns.light_palette("green", as_cmap=True)
    s = df.style.background_gradient(cmap=cm)

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-18-21d716029213> in <module>()
      1 import seaborn as sns
      2
      3 cm = sns.light_palette("green", as_cmap=True)
      4 s = df.style.background_gradient(cmap=cm)
ModuleNotFoundError: No module named 'seaborn'

Styler.background_gradient takes the keyword arguments low and high. Roughly speaking these extend the range of your data by low and high percent so that when we convert the colors, the colormap’s entire range isn’t used. This is useful so that you can actually read the text still.

In [19]: # Uses the full color range
df.loc[:4].style.background_gradient(cmap='viridis')
cbook._putmask(xa, xa < 0.0, -1)
Out[19]: <pandas.io.formats.style.Styler at 0x118a10a58>

In [20]: # Compress the color range
    (df.loc[:4]
     .style
     .background_gradient(cmap='viridis', low=.5, high=0)
     .highlight_null("red"))
cbook._putmask(xa, xa < 0.0, -1)
Out[20]: <pandas.io.formats.style.Styler at 0x118a10f60>

There’s also `.highlight_min` and `.highlight_max`.

In [21]: df.style.highlight_max(axis=0)
Out[21]: <pandas.io.formats.style.Styler at 0x118a106d8>

Use Styler.set_properties when the style doesn’t actually depend on the values.

In [22]: df.style.set_properties(**{
    'background-color': 'black',
    'color': 'lawngreen',
    'border-color': 'white'})
23.4.1 Bar charts

You can include “bar charts” in your DataFrame.

```
In [23]: df.style.bar(subset=['A', 'B'], color='d65f5f')
Out[23]: <pandas.io.formats.style.Styler at 0x118b22b70>
```

New in version 0.20.0 is the ability to customize further the bar chart: You can now have the `df.style.bar` be centered on zero or midpoint value (in addition to the already existing way of having the min value at the left side of the cell), and you can pass a list of `[color_negative, color_positive]`.

Here’s how you can change the above with the new `align='mid'` option:

```
In [24]: df.style.bar(subset=['A', 'B'], align='mid', color=['d65f5f', '5fba7d'])
Out[24]: <pandas.io.formats.style.Styler at 0x118b227b8>
```

The following example aims to give a highlight of the behavior of the new align options:

```
In [25]: import pandas as pd
from IPython.display import HTML

Test series
test1 = pd.Series([-100,-60,-30,-20], name='All Negative')
test2 = pd.Series([10,20,50,100], name='All Positive')
test3 = pd.Series([-10,-5,0,90], name='Both Pos and Neg')

head = ''
<table>
<thead>
 <th>Align</th>
 <th>All Negative</th>
 <th>All Positive</th>
 <th>Both Pos and Neg</th>
</thead>
<tbody>
 for align in aligns:
 row = '<tr><th>{}</th>'.format(align)
 for serie in [test1,test2,test3]:
 s = serie.copy()
 s.name=''
 row += '<td>{}</td>'.format(s.to_frame().style.bar(align=align,
 color=['d65f5f', '5fba7d'],
 width=100).render())
 row += '</tr>'
 head += row

 head+= ''
</tbody>
</table>''''

HTML(head)
```
23.5 Sharing Styles

Say you have a lovely style built up for a DataFrame, and now you want to apply the same style to a second DataFrame. Export the style with `df1.style.export`, and import it on the second DataFrame with `df1.style.set`

```python
In [26]: df2 = -df

style1 = df.style.applymap(color_negative_red)

In [27]: style2 = df2.style

style2.use(style1.export())
```

Notice that you’re able share the styles even though they’re data aware. The styles are re-evaluated on the new DataFrame they’ve been used upon.

23.6 Other Options

You’ve seen a few methods for data-driven styling. `Styler` also provides a few other options for styles that don’t depend on the data.

- precision
- captions
- table-wide styles

Each of these can be specified in two ways:

- A keyword argument to `Styler.__init__`
- A call to one of the `.set_` methods, e.g. `.set_caption`

The best method to use depends on the context. Use the `Styler` constructor when building many styled DataFrames that should all share the same properties. For interactive use, the `.set_` methods are more convenient.

23.6.1 Precision

You can control the precision of floats using pandas’ regular `display.precision` option.

```python
In [28]: with pd.option_context('display.precision', 2):
 ...:
 html = (df.style
 .applymap(color_negative_red)
 .apply(highlight_max))
 ...:

Out[28]: <pandas.io.formats.style.Styler at 0x11a962f98>
```

Or through a `set_precision` method.
In [29]: df.style\
   .applymap(color_negative_red)\
   .apply(highlight_max)\
   .set_precision(2)

Out[29]: <pandas.io.formats.style.Styler at 0x118b87208>

Setting the precision only affects the printed number; the full-precision values are always passed to your style functions. You can always use df.round(2).style if you’d prefer to round from the start.

### 23.6.2 Captions

Regular table captions can be added in a few ways.

In [30]: df.style.set_caption('Colormaps, with a caption.')\
   .background_gradient(cmap=cm)

---

NameError Traceback (most recent call last)
<ipython-input-30-1c18b6874409> in <module>()
----> 1 df.style.set_caption('Colormaps, with a caption.') .background_gradient(cmap=cm)
NameError: name 'cm' is not defined

### 23.6.3 Table Styles

The next option you have are “table styles”. These are styles that apply to the table as a whole, but don’t look at the data. Certain stylings, including pseudo-selectors like :hover can only be used this way.

In [31]: from IPython.display import HTML
def hover(hover_color="ffff99"):\
    return dict(selector="tr:hover",\
                props=[("background-color", "$s" % hover_color)])

styles = [\
    hover(),\
    dict(selector="th", props=[("font-size", "150%"),\n                               ("text-align", "center")]),\
    dict(selector="caption", props=[("caption-side", "bottom")])\
]

html = (df.style.set_table_styles(styles)\
         .set_caption("Hover to highlight."))

Out[31]: <pandas.io.formats.style.Styler at 0x118b87cf8>

table_styles should be a list of dictionaries. Each dictionary should have the selector and props keys. The value for selector should be a valid CSS selector. Recall that all the styles are already attached to an id, unique to each Styler. This selector is in addition to that id. The value for props should be a list of tuples of ('attribute', 'value').

table_styles are extremely flexible, but not as fun to type out by hand. We hope to collect some useful ones either in pandas, or preferable in a new package that builds on top the tools here.

### 23.6.4 CSS Classes

Certain CSS classes are attached to cells.
• Index and Column names include `index_name` and `level<k>` where `k` is its level in a MultiIndex
• Index label cells include `row_heading`
• `row<n>` where `n` is the numeric position of the row
• `level<k>` where `k` is the level in a MultiIndex
• Column label cells include `col_heading`
• `col<n>` where `n` is the numeric position of the column
• `level<k>` where `k` is the level in a MultiIndex
• Blank cells include `blank`
• Data cells include `data`

23.6.5 Limitations

• DataFrame only (use `Series.to_frame().style`)
• The index and columns must be unique
• No large repr, and performance isn’t great; this is intended for summary DataFrames
• You can only style the values, not the index or columns
• You can only apply styles, you can’t insert new HTML entities

Some of these will be addressed in the future.

23.6.6 Terms

• Style function: a function that’s passed into `Styler.apply` or `Styler.applymap` and returns values like ‘css attribute: value’
• Builtin style functions: style functions that are methods on `Styler`
• table style: a dictionary with the two keys `selector` and `props`. `selector` is the CSS selector that `props` will apply to. `props` is a list of `(attribute, value)` tuples. A list of table styles passed into `Styler`

23.7 Fun stuff

Here are a few interesting examples.

`Styler` interacts pretty well with widgets. If you’re viewing this online instead of running the notebook yourself, you’re missing out on interactively adjusting the color palette.

```
In [32]: from IPython.html import widgets
@widgets.interact
def f(h_neg=(0, 359, 1), h_pos=(0, 359), s=(0., 99.9), l=(0., 99.9)):
 return df.style.background_gradient(
 cmap=sns.palettes.diverging_palette(h_neg=h_neg, h_pos=h_pos, s=s, l=l, as_cmap=True)
)
```
23.8 Export to Excel

New in version 0.20.0

Experimental: This is a new feature and still under development. We’ll be adding features and possibly making breaking changes in future releases. We’d love to hear your feedback.

Some support is available for exporting styled DataFrames to Excel worksheets using the OpenPyXL engine. CSS2.2 properties handled include:
• background-color
• border-style, border-width, border-color and their {top, right, bottom, left variants}
• color
• font-family
• font-style
• font-weight
• text-align
• text-decoration
• vertical-align
• white-space: nowrap

Only CSS2 named colors and hex colors of the form #rgb or #rrggbb are currently supported.

In [35]: df.style.\napplymap(color_negative_red).\napply(highlight_max).\nto_excel('styled.xlsx', engine='openpyxl')

A screenshot of the output:

![Excel spreadsheet with styled DataFrame](image)

Fig. 23.1: Excel spreadsheet with styled DataFrame

### 23.9 Extensibility

The core of pandas is, and will remain, its “high-performance, easy-to-use data structures”. With that in mind, we hope that DataFrame.style accomplishes two goals

- Provide an API that is pleasing to use interactively and is “good enough” for many tasks
• Provide the foundations for dedicated libraries to build on
If you build a great library on top of this, let us know and we’ll link to it.

23.9.1 Subclassing

If the default template doesn’t quite suit your needs, you can subclass Styler and extend or override the template. We’ll show an example of extending the default template to insert a custom header before each table.

In [36]: from jinja2 import Environment, ChoiceLoader, FileSystemLoader
   from IPython.display import HTML
   from pandas.io.formats.style import Styler

In [37]: %mkdir templates
mkdir: templates: File exists

This next cell writes the custom template. We extend the template html.tpl, which comes with pandas.

In [38]: %file templates/myhtml.tpl
   {% extends "html.tpl" %}
   {% block table %}
      <h1>{{ table_title|default("My Table") }}</h1>
      {{ super() }}
   {% endblock table %}

Overwriting templates/myhtml.tpl

Now that we’ve created a template, we need to set up a subclass of Styler that knows about it.

In [39]: class MyStyler(Styler):
   env = Environment(
      loader=ChoiceLoader([
         FileSystemLoader("templates"), # contains ours
         Styler.loader, # the default
      ])
   )
   template = env.get_template("myhtml.tpl")

Notice that we include the original loader in our environment’s loader. That’s because we extend the original template, so the Jinja environment needs to be able to find it.

Now we can use that custom styler. It’s __init__ takes a DataFrame.

In [40]: MyStyler(df)
Out[40]: <__main__.MyStyler at 0x11b5634a8>

Our custom template accepts a table_title keyword. We can provide the value in the .render method.

In [41]: HTML(MyStyler(df).render(table_title="Extending Example"))
Out[41]: <IPython.core.display.HTML object>

For convenience, we provide the Styler.from_custom_template method that does the same as the custom subclass.

In [42]: EasyStyler = Styler.from_custom_template("templates", "myhtml.tpl")
   EasyStyler(df)
Out[42]: <pandas.io.formats.style.Styler.from_custom_template.<locals>.MyStyler at 0x11b563240>

Here’s the template structure:
In [43]: with open("template_structure.html") as f:
    structure = f.read()

    HTML(structure)

Out[43]: <IPython.core.display.HTML object>

See the template in the GitHub repo for more details.
The pandas I/O API is a set of top level reader functions accessed like `pd.read_csv()` that generally return a pandas object. The corresponding writer functions are object methods that are accessed like `df.to_csv()`.

<table>
<thead>
<tr>
<th>Format Type</th>
<th>Data Description</th>
<th>Reader</th>
<th>Writer</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>CSV</td>
<td><code>read_csv</code></td>
<td><code>to_csv</code></td>
</tr>
<tr>
<td>text</td>
<td>JSON</td>
<td><code>read_json</code></td>
<td><code>to_json</code></td>
</tr>
<tr>
<td>text</td>
<td>HTML</td>
<td><code>read_html</code></td>
<td><code>to_html</code></td>
</tr>
<tr>
<td>text</td>
<td>Local clipboard</td>
<td><code>read_clipboard</code></td>
<td><code>to_clipboard</code></td>
</tr>
<tr>
<td>binary</td>
<td>MS Excel</td>
<td><code>read_excel</code></td>
<td><code>to_excel</code></td>
</tr>
<tr>
<td>binary</td>
<td>HDF5 Format</td>
<td><code>read_hdf</code></td>
<td><code>to_hdf</code></td>
</tr>
<tr>
<td>binary</td>
<td>Feather Format</td>
<td><code>read_feather</code></td>
<td><code>to_feather</code></td>
</tr>
<tr>
<td>binary</td>
<td>Msgpack</td>
<td><code>read_msgpack</code></td>
<td><code>to_msgpack</code></td>
</tr>
<tr>
<td>binary</td>
<td>Stata</td>
<td><code>read_stata</code></td>
<td><code>to_stata</code></td>
</tr>
<tr>
<td>binary</td>
<td>SAS</td>
<td><code>read_sas</code></td>
<td></td>
</tr>
<tr>
<td>binary</td>
<td>Python Pickle Format</td>
<td><code>read_pickle</code></td>
<td><code>to_pickle</code></td>
</tr>
<tr>
<td>SQL</td>
<td>SQL</td>
<td><code>read_sql</code></td>
<td><code>to_sql</code></td>
</tr>
<tr>
<td>SQL</td>
<td>Google Big Query</td>
<td><code>read_gbq</code></td>
<td><code>to_gbq</code></td>
</tr>
</tbody>
</table>

Here is an informal performance comparison for some of these IO methods.

**Note:** For examples that use the `StringIO` class, make sure you import it according to your Python version, i.e. `from StringIO import StringIO` for Python 2 and `from io import StringIO` for Python 3.

### 24.1 CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are `read_csv()` and `read_table()`. They both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the *cookbook* for some advanced strategies.

#### 24.1.1 Parsing options

`read_csv()` and `read_table()` accept the following arguments:

##### 24.1.1.1 Basic

`filepath_or_buffer` [various] Either a path to a file (a `str`, `pathlib.Path`, or `py._path.local.LocalPath`), URL (including http, ftp, and S3 locations), or any object with a `read()` method (such as
an open file or `StringIO`.

**sep** [str, defaults to ', ' for `read_csv()`, \t for `read_table()`] Delimiter to use. If `sep` is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used automatically. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\\r\t'.

**delimiter** [str, default None] Alternative argument name for sep.

**delim_whitespace** [boolean, default False] Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the delimiter. Equivalent to setting `sep='\s+'`. If this option is set to True, nothing should be passed in for the `delimiter` parameter.

New in version 0.18.1: support for the Python parser.

### 24.1.1.2 Column and Index Locations and Names

**header** [int or list of ints, default 'infer'] Row number(s) to use as the column names, and the start of the data. Default behavior is as if `header=0` if no names passed, otherwise as if `header=None`. Explicitly pass `header=0` to be able to replace existing names. The header can be a list of ints that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if `skip_blank_lines=True`, so header=0 denotes the first line of data rather than the first line of the file.

**names** [array-like, default None] List of column names to use. If file contains no header row, then you should explicitly pass `header=None`. Duplicates in this list are not allowed unless `mangle_dupe_cols=True`, which is the default.

**index_col** [int or sequence or False, default None] Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider `index_col=False` to force pandas to not use the first column as the index (row names).

**usecols** [array-like or callable, default None] Return a subset of the columns. If array-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid array-like `usecols` parameter would be [0, 1, 2] or ['foo', 'bar', 'baz'].

If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True:

```python
In [1]: data = 'col1,col2,col3
 ...: na,b,1
 ...: na,b,2
 ...: nc,d,3

In [2]: pd.read_csv(StringIO(data))
Out[2]:
 col1 col2 col3
0 a b 1
1 a b 2
2 c d 3

In [3]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['COL1', 'COL3'])
 ...:
 ...:

Out[3]:
 col1 col3
0 a 1
1 a 2
2 c 3
```
Using this parameter results in much faster parsing time and lower memory usage.

**as_recarray** [boolean, default False] DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the `squeeze` parameter. In addition, as row indices are not available in such a format, the `index_col` parameter will be ignored.

**squeeze** [boolean, default False] If the parsed data only contains one column then return a Series.

**prefix** [str, default None] Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

**mangle_dupe_cols** [boolean, default True] Duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

### 24.1.1.3 General Parsing Configuration

**dtype** [Type name or dict of column -> type, default None] Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (unsupported with engine='python'). Use `str` or `object` to preserve and not interpret dtype.

New in version 0.20.0: support for the Python parser.

**engine** [{'c', 'python'}] Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

**converters** [dict, default None] Dict of functions for converting values in certain columns. Keys can either be integers or column labels.

**true_values** [list, default None] Values to consider as True.

**false_values** [list, default None] Values to consider as False.

**skipinitialspace** [boolean, default False] Skip spaces after delimiter.

**skiprows** [list-like or integer, default None] Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise:

```python
In [4]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'

In [5]: pd.read_csv(StringIO(data))
Out[5]:
 col1 col2 col3
0 a b 1
1 a b 2
2 c d 3

In [6]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0)
```

**skipfooter** [int, default 0] Number of lines at bottom of file to skip (unsupported with engine='c').

**skip_footer** [int, default 0] DEPRECATED: use the `skipfooter` parameter instead, as they are identical

**nrows** [int, default None] Number of rows of file to read. Useful for reading pieces of large files.

---

24.1. CSV & Text files
**low_memory** [boolean, default True] Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

**buffer_lines** [int, default None] DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

**compact_ints** [boolean, default False] DEPRECATED: this argument will be removed in a future version

  If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the use_unsigned parameter.

**use_unsigned** [boolean, default False] DEPRECATED: this argument will be removed in a future version

  If integer columns are being compacted (i.e. compact_ints=True), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

**memory_map** [boolean, default False] If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

### 24.1.1.4 NA and Missing Data Handling

**na_values** [scalar, str, list-like, or dict, default None] Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'NULL', 'NaN', '-NaN', 'nan', '-nan', ''.

**keep_default_na** [boolean, default True] If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to.

**na_filter** [boolean, default True] Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

**verbose** [boolean, default False] Indicate number of NA values placed in non-numeric columns.

**skip_blank_lines** [boolean, default True] If True, skip over blank lines rather than interpreting as NaN values.

### 24.1.1.5 Datetime Handling

**parse_dates** [boolean or list of ints or names or list of lists or dict, default False.]  
- If True -> try parsing the index.
- If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- If {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’. A fast-path exists for iso8601-formatted dates.

**infer_datetime_format** [boolean, default False] If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing.

**keep_date_col** [boolean, default False] If True and parse_dates specifies combining multiple columns then keep the original columns.
date_parser [function, default None] Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst [boolean, default False] DD/MM format dates, international and European format.

24.1.1.6 Iteration

iterator [boolean, default False] Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize [int, default None] Return TextFileReader object for iteration. See iterating and chunking below.

24.1.1.7 Quoting, Compression, and File Format

compression [{'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'] For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip, or xz if filepath_or_buffer is a string ending in '.gz', '.bz2', '.zip', or '.xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands [str, default None] Thousands separator.

decimal [str, default ','] Character to recognize as decimal point. E.g. use ',' for European data.

float_precision [string, default None] Specifies which converter the C engine should use for floating-point values.

The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

lineterminator [str (length 1), default None] Character to break file into lines. Only valid with C parser.

quotechar [str (length 1)] The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting [int or csv.QUOTE_* instance, default 0] Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote [boolean, default True] When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements inside a field as a single quotechar element.

escapechar [str (length 1), default None] One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment [str, default None] Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#empty\na,b,c\n1,2,3' with header=0 will result in 'a,b,c' being treated as the header.

encoding [str, default None] Encoding to use for UTF when reading/writing (e.g. 'utf-8'). List of Python standard encodings.

dialect [str or csv.Dialect instance, default None] If provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.
**tupleize_cols** [boolean, default False] Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns).

### 24.1.1.8 Error Handling

**error_bad_lines** [boolean, default True] Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If `False`, then these “bad lines” will dropped from the DataFrame that is returned. See bad lines below.

**warn_bad_lines** [boolean, default True] If `error_bad_lines` is `False`, and `warn_bad_lines` is `True`, a warning for each “bad line” will be output.

### 24.1.2 Specifying column data types

Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:

```python
In [7]: data = 'a,b,c
1,2,3
4,5,6
7,8,9'

In [8]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [9]: df = pd.read_csv(StringIO(data), dtype=object)

In [10]: df
Out[10]:
 a b c
0 1 2 3
1 4 5 6
2 7 8 9

In [11]: df['a'][0]

Out[11]: '1'

In [12]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64})

In [13]: df.dtypes
Out[13]:
 a int64
 b object
 c float64
dtype: object
```

Fortunately, pandas offers more than one way to ensure that your column(s) contain only one dtype. If you’re unfamiliar with these concepts, you can see [here](#) to learn more about dtypes, and [here](#) to learn more about object conversion in pandas.

For instance, you can use the `converters` argument of `read_csv()`:

```python
In [14]: data = "col_1\n1\n'A'\n4.22"

In [15]: df = pd.read_csv(StringIO(data), converters={'col_1':str})

In [16]: df
```
Or you can use the `to_numeric()` function to coerce the dtypes after reading in the data,

```
In [18]: df2 = pd.read_csv(StringIO(data))
In [19]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce')
In [20]: df2
```

```
Out[20]:
 col_1
0 1.00
1 2.00
2 NaN
3 4.22
```

```
In [21]: df2['col_1'].apply(type).value_counts()
```

```
Out[21]:
<class 'float'> 4
Name: col_1, dtype: int64
```

which would convert all valid parsing to floats, leaving the invalid parsing as NaN.

Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case above, if you wanted to NaN out the data anomalies, then `to_numeric()` is probably your best option. However, if you wanted for all the data to be coerced, no matter the type, then using the `converters` argument of `read_csv()` would certainly be worth trying.

```
New in version 0.20.0: support for the Python parser.
```

The `dtype` option is supported by the 'python' engine

**Note:** In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with mixed dtypes. For example,

```
In [22]: df = pd.DataFrame({'col_1': list(range(500000)) + ['a', 'b'] + list(range(500000))})
In [23]: df.to_csv('foo.csv')
In [24]: mixed_df = pd.read_csv('foo.csv')
In [25]: mixed_df['col_1'].apply(type).value_counts()
```

```
Out[25]:
<class 'int'> 737858
<class 'str'> 262144
```
will result with `mixed_df` containing an `int` dtype for certain chunks of the column, and `str` for others due to the mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a `dtype` of `object`, which is used for columns with mixed dtypes.

### 24.1.3 Specifying Categorical dtype

New in version 0.19.0.

Categorical columns can be parsed directly by specifying `dtype='category'`

```python
In [27]: data = 'col1,col2,col3
a,b,1
a,b,2
c,d,3'

In [28]: pd.read_csv(StringIO(data))
Out[28]:
<table>
<thead>
<tr>
<th></th>
<th>col1</th>
<th>col2</th>
<th>col3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>d</td>
<td>3</td>
</tr>
</tbody>
</table>
```

```python
In [29]: pd.read_csv(StringIO(data)).dtypes
Out[29]:
dtype: object

In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
Out[30]:
dtype: object
```

Individual columns can be parsed as a Categorical using a dict specification

```python
In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
dtype: object
```

**Note:** The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the `to_numeric()` function, or as appropriate, another converter such as `to_datetime()`.
In [32]: df = pd.read_csv(StringIO(data), dtype='category')

In [33]: df.dtypes
Out[33]:
col1    category
col2    category
col3    category
dtype: object

In [34]: df['col3']
Out[34]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [36]: df['col3']
Out[36]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]

24.1.4 Naming and Using Columns

24.1.4.1 Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

In [37]: data = 'a,b,c
1,2,3
4,5,6
7,8,9'

In [38]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [39]: pd.read_csv(StringIO(data))
\\\\a b c
0 1 2 3
1 4 5 6
2 7 8 9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or not to throw away the header row (if any):

In [40]: print(data)
a,b,c
1,2,3
4,5,6

24.1. CSV & Text files 995
In [41]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)

    foo  bar  baz
0   1   2   3
1   4   5   6
2   7   8   9

In [42]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)

    foo  bar  baz
0   a   b   c
1   1   2   3
2   4   5   6
3   7   8   9

If the header is in a row other than the first, pass the row number to header. This will skip the preceding rows:

In [43]: data = 'skip this skip it

a,b,c

1,2,3

4,5,6

7,8,9'

In [44]: pd.read_csv(StringIO(data), header=1)

    a  b  c
0  1  2  3
1  4  5  6
2  7  8  9

24.1.5 Duplicate names parsing

If the file or header contains duplicate names, pandas by default will deduplicate these names so as to prevent data overwrite:

In [45]: data = 'a,b,a

0,1,2

3,4,5'

In [46]: pd.read_csv(StringIO(data))

    a  b  a.1
0  0  1  2
1  3  4  5

There is no more duplicate data because mangle_dupe_cols=True by default, which modifies a series of duplicate columns ‘X’... ‘X’ to become ‘X.0’... ‘X.N’. If mangle_dupe_cols=False, duplicate data can arise:

In [2]: data = 'a,b,a

0,1,2

3,4,5'

In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)

    a  b  a
0  2  1  2
1  5  4  5

To prevent users from encountering this problem with duplicate data, a ValueError exception is raised if mangle_dupe_cols != True:
In [2]: data = 'a,b,a
0,1,2
3,4,5'
In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
... 
ValueError: Setting mangle_dupe_cols=False is not supported yet

24.1.5.1 Filtering columns (usecols)

The `usecols` argument allows you to select any subset of the columns in a file, either using the column names, position numbers or a callable:

New in version 0.20.0: support for callable `usecols` arguments

In [47]: data = 'a,b,c,d
1,2,3,foo
4,5,6,bar
7,8,9,baz'

In [48]: pd.read_csv(StringIO(data))
Out[48]:
   a  b  c  d
0  1  2  3  foo
1  4  5  6  bar
2  7  8  9  baz

In [49]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
Out[49]:
   b  d
0  2  foo
1  5  bar
2  8  baz

In [50]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
Out[50]:
   a  c  d
0  1  3  foo
1  4  6  bar
2  7  9  baz

In [51]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ['A', 'C'])
Out[51]:
   a  c
0  1  3
1  4  6
2  7  9

The `usecols` argument can also be used to specify which columns not to use in the final result:

In [52]: pd.read_csv(StringIO(data), usecols=lambda x: x not in ['a', 'c'])
Out[52]:
   b  d
0  2  foo
1  5  bar
2  8  baz

In this case, the callable is specifying that we exclude the “a” and “c” columns from the output.
24.1.6 Comments and Empty Lines

24.1.6.1 Ignoring line comments and empty lines

If the `comment` parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well. Both of these are API changes introduced in version 0.15.

```python
In [53]: data = 'a,b,c
 \n# commented line
 1,2,3
 4,5,6

In [54]: print(data)
a,b,c
 # commented line
 1,2,3
 4,5,6

In [55]: pd.read_csv(StringIO(data), comment='#')
 Out[55]:
 a b c
 0 1 2 3
 1 4 5 6
```

If `skip_blank_lines=False`, then `read_csv` will not ignore blank lines:

```python
In [56]: data = 'a,b,c
 \n1,2,3
 \n4,5,6

In [57]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[57]:
 a b c
 0 NaN NaN NaN
 1 1.0 2.0 3.0
 2 NaN NaN NaN
 3 NaN NaN NaN
 4 4.0 5.0 6.0
```

**Warning:** The presence of ignored lines might create ambiguities involving line numbers; the parameter `header` uses row numbers (ignoring commented/empty lines), while `skiprows` uses line numbers (including commented/empty lines):

```python
In [58]: data = '#comment
 a,b,c
 A,B,C
 1,2,3

In [59]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[59]:
 A B C
 0 1 2 3

In [60]: data = 'A,B,C
 #comment
 a,b,c
 1,2,3

In [61]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[61]:
 a b c
 0 1 2 3
```

If both `header` and `skiprows` are specified, `header` will be relative to the end of `skiprows`. For example:
24.1.6.2 Comments

Sometimes comments or meta data may be included in a file:

```python
In [65]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome
```

By default, the parser includes the comments in the output:

```python
In [66]: df = pd.read_csv('tmp.csv')
```

```python
In [67]: df
Out[67]:
 ID level category
0 ID123000 x # really unpleasant
1 ID23000 y # wouldn't take his medicine
2 ID1234018 z # awesome
```

We can suppress the comments using the `comment` keyword:

```python
In [68]: df = pd.read_csv('tmp.csv', comment='#')
```

```python
In [69]: df
Out[69]:
 ID level
0 ID123000 x
1 ID23000 y
2 ID1234018 z
```
24.1.7 Dealing with Unicode Data

The `encoding` argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

```
In [70]: data = b'word,length
Träumen,7
Grüße,5'.decode('utf8').encode('latin-1')

In [71]: df = pd.read_csv(BytesIO(data), encoding='latin-1')

In [72]: df
```

```
Out[72]:
word length
0 Träumen 7
1 Grüße 5
```

```
In [73]: df['word'][1]
```

```
Out[73]: 'Grüße'
```

Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without specifying the encoding. Full list of Python standard encodings.

24.1.8 Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

```
In [74]: data = 'a,b,c
4,apple,bat,5.7
8,orange,cow,10'

In [75]: pd.read_csv(StringIO(data))
```

```
Out[75]:
a b c
4 apple bat 5.7
8 orange cow 10.0
```

```
In [76]: data = 'index,a,b,c
4,apple,bat,5.7
8,orange,cow,10'

In [77]: pd.read_csv(StringIO(data), index_col=0)
```

```
Out[77]:
index a b c
4 apple bat 5.7
8 orange cow 10.0
```

Ordinarily, you can achieve this behavior using the `index_col` option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass `index_col=False`:

```
In [78]: data = 'a,b,c
4,apple,bat,
8,orange,cow,'

In [79]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,

In [80]: pd.read_csv(StringIO(data))
```
24.1.9 Date Handling

24.1.9.1 Specifying Date Columns

To better facilitate working with_datetime data, read_csv() and read_table() use the keyword arguments parse_dates and date_parser to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime objects.

The simplest case is to just pass in parse_dates=True:

```python
Use a column as an index, and parse it as dates.
In [82]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)

Out[82]:
 A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5

These are python datetime objects
In [84]: df.index
```

It is often the case that we may want to store date and time data separately, or store various date fields separately. the parse_dates keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to parse_dates, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:

```python
In [85]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [86]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
```
By default the parser removes the component date columns, but you can choose to retain them via the `keep_date_col` keyword:

```
In [88]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
 keep_date_col=True)

In [89]: df
```

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, `parse_dates=[[1, 2]]` indicates that the second and third columns should each be parsed as separate date columns while `parse_dates=[[1, 2]]` means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

```
In [90]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [91]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)

In [92]: df
```

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The `index_col` specification is based off of this new set of columns rather than the original data columns:
In [93]: date_spec = {'nominal': [1, 2], 'actual': [1, 3])

In [94]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
....:                      index_col=0)  # index is the nominal column

In [95]: df

Out[95]:
          actual  0  4
  nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Note: If a column or index contains an unparsable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use `to_datetime()` after `pd.read_csv`.

Note: `read_csv` has a fast_path for parsing datetime strings in iso8601 format, e.g. “2000-01-01T00:01:02+00:00” and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.

Note: When passing a dict as the `parse_dates` argument, the order of the columns prepended is not guaranteed, because `dict` objects do not impose an ordering on their keys. On Python 2.7+ you may use `collections.OrderedDict` instead of a regular `dict` if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with the `index_col` argument, it’s best to specify `index_col` as a column label rather then as an index on the resulting frame.

24.1.9.2 Date Parsing Functions

Finally, the parser allows you to specify a custom `date_parser` function to take full advantage of the flexibility of the date parsing API:

In [96]: import pandas.io.date_converters as conv

In [97]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
....: date_parser=conv.parse_date_time)

In [98]: df

Out[98]:
          nominal actual  0  4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD  0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD  0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Pandas will try to call the `date_parser` function in three different ways. If an exception is raised, the next one is tried:

1. `date_parser` is first called with one or more arrays as arguments, as defined using `parse_dates` (e.g.,
   ```python
date_parser(['2013', '2013'], ['1', '2'])
```)
2. If #1 fails, `date_parser` is called with all the columns concatenated row-wise into a single array (e.g.,
   ```python
date_parser(['2013 1', '2013 2'])
```)
3. If #2 fails, `date_parser` is called once for every row with one or more string arguments from
   the columns indicated with `parse_dates` (e.g., `date_parser('2013', '1')` for the first row,
   `date_parser('2013', '2')` for the second, etc.)

Note that performance-wise, you should try these methods of parsing dates in order:

1. Try to infer the format using `infer_datetime_format=True` (see section below)
2. If you know the format, use `pd.to_datetime()`: `date_parser=lambda x: pd.to_datetime(x, format=...)`
3. If you have a really non-standard format, use a custom `date_parser` function. For optimal performance, this
   should be vectorized, i.e., it should accept arrays as arguments.

You can explore the date parsing functionality in `date_converters.py` and add your own. We would love to turn
this module into a community supported set of date/time parsers. To get you started, `date_converters.py` contains
functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a `generic_parser` function so you can curry it with a function that deals with a single
date rather than the entire array.

### 24.1.9.3 Inferring Datetime Format

If you have `parse_dates` enabled for some or all of your columns, and your datetime strings are all formatted the
same way, you may get a large speed up by setting `infer_datetime_format=True`. If set, pandas will attempt
to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds
have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that
was guessed cannot properly parse the entire column of strings. So in general, `infer_datetime_format` should
not have any negative consequences if enabled.

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)

- “2011230”
- “2011/12/30”
- “2011230 00:00:00”
- “12/30/2011 00:00:00”
- “30/Dec/2011 00:00:00”
- “30/December/2011 00:00:00”

`infer_datetime_format` is sensitive to `dayfirst`. With `dayfirst=True`, it will guess “01/12/2011” to be
December 1st. With `dayfirst=False` (default) it will guess “01/12/2011” to be January 12th.
### 24.1.9.4 International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a `dayfirst` keyword is provided:

```python
In [101]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c

In [102]: pd.read_csv('tmp.csv', parse_dates=[0])
Out[102]:
 date value cat
0 2000-01-06 5 a
1 2000-02-06 10 b
2 2000-03-06 15 c

In [103]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
→
 date value cat
0 2000-06-01 5 a
1 2000-06-02 10 b
2 2000-06-03 15 c
```

### 24.1.10 Specifying method for floating-point conversion

The parameter `float_precision` can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:

```python
In [104]: val = '0.3066101993807095471566981359501369297504425048828125'

In [105]: data = 'a,b,c
1,2,{}'.format(val)

In [106]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val))
Out[106]: 1.1102230246251565e-16

In [107]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val))
Out[107]: 5.5511151231257827e-17

In [108]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(val))
Out[108]: 0.0
```
### 24.1.11 Thousand Separators

For large numbers that have been written with a thousands separator, you can set the `thousands` keyword to a string of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings

```
In [109]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [110]: df = pd.read_csv('tmp.csv', sep='|')
In [111]: df
Out[111]:
 ID level category
0 Patient1 123,000 x
1 Patient2 23,000 y
2 Patient3 1,234,018 z

In [112]: df.level.dtype
\rightarrow dtype('O')
```

The `thousands` keyword allows integers to be parsed correctly

```
In [113]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [114]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')
In [115]: df
Out[115]:
 ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

In [116]: df.level.dtype
\rightarrow dtype('int64')
```

### 24.1.12 NA Values

To control which values are parsed as missing values (which are signified by NaN), specify a string in `na_values`. If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0, 5] are recognized as NaN).

To completely override the default values that are recognized as missing, specify `keep_default_na=False`. The default NaN recognized values are ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/']
A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan']. Although a 0-length string '' is not included in the default NaN values list, it is still treated as a missing value.

```python
default_values, in addition to 5, 5.0 when interpreted as numbers are recognized as NaN.

```python
read_csv(path, keep_default_na=False, na_values=['NA', '0'])
```
only NA and 0 as strings are NaN

```python
read_csv(path, na_values=['Nope'])
```
the default values, in addition to the string "Nope" are recognized as NaN

24.1.13 Infinity

Inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will ignore the case of the value, meaning Inf, will also be parsed as np.inf.

24.1.14 Returning Series

Using the squeeze keyword, the parser will return output with a single column as a Series:

```python
In [117]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018

In [118]: output = pd.read_csv('tmp.csv', squeeze=True)

In [119]: output
Out[119]:
Patient1 123000
Patient2 23000
Patient3 1234018
Name: level, dtype: int64

In [120]: type(output)
```

24.1.15 Boolean values

The common values True, False, TRUE, and FALSE are all recognized as boolean. Sometime you would want to recognize some other values as being boolean. To do this use the `true_values` and `false_values` options:
In [121]: data = 'a,b,c
1,Yes,2
3,No,4'

In [122]: print(data)
a,b,c
1,Yes,2
3,No,4

In [123]: pd.read_csv(StringIO(data))
Out[123]:
 a b c
0 1 Yes 2
1 3 No 4

In [124]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[124]:
 a b c
0 1 True 2
1 3 False 4

24.1.16 Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many will cause an error by default:

In [27]: data = 'a,b,c
1,2,3
4,5,6,7
8,9,10'

In [28]: pd.read_csv(StringIO(data))

ParserError Traceback (most recent call last)
ParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4

You can elect to skip bad lines:

In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4

Out[29]:
 a b c
0 1 2 3
1 4 5 6
2 8 9 10

You can also use the usecols parameter to eliminate extraneous column data that appear in some lines but not others:

In [30]: pd.read_csv(StringIO(data), usecols=[0, 1, 2])

Out[30]:
 a b c
0 1 2 3
1 4 5 6
2 8 9 10

24.1.17 Dialect

The dialect keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a csv.Dialect instance.
Suppose you had data with unenclosed quotes:

```python
In [125]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f
```

By default, `read_csv` uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.

We can get around this using `dialect`:

```python
In [126]: dia = csv.excel()
In [127]: dia.quoting = csv.QUOTE_NONE
In [128]: pd.read_csv(StringIO(data), dialect=dia)
```

All of the dialect options can be specified separately by keyword arguments:

```python
In [129]: data = 'a,b,c~1,2,3~4,5,6'
In [130]: pd.read_csv(StringIO(data), lineterminator='~')
```

Another common dialect option is `skipinitialspace`, to skip any whitespace after a delimiter:

```python
In [131]: data = 'a, b, c\n1, 2, 3\n4, 5, 6'
In [132]: print(data)
a, b, c
1, 2, 3
4, 5, 6
In [133]: pd.read_csv(StringIO(data), skipinitialspace=True)
```

The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.

24.1.18 Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the `escapechar` option:
24.1.19 Files with Fixed Width Columns

While `read_csv` reads delimited data, the `read_fwf()` function works with data files that have known and fixed column widths. The function parameters to `read_fwf` are largely the same as `read_csv` with two extra parameters:

- `colspecs`: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behaviour, if not specified, is to infer.
- `widths`: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

Consider a typical fixed-width data file:

```python
In [137]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
```

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the `read_fwf` function along with the file name:

```python
#Column specifications are a list of half-intervals
In [138]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]

In [139]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)

In [140]: df
Out[140]:
   1     2     3
0  id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
```

Note how the parser automatically picks column names X.<column number> when `header=None` argument is specified. Alternatively, you can supply just the column widths for contiguous columns:

```python
#Widths are a list of integers
In [141]: widths = [6, 14, 13, 10]

In [142]: df = pd.read_fwf('bar.csv', widths=widths, header=None)
```

1010 Chapter 24. IO Tools (Text, CSV, HDF5, ...
In [143]: df
Out[143]:
 0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the columns in the file.

New in version 0.13.0.

By default, `read_fwf` will try to infer the file's `colspecs` by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided `delimiter` (default delimiter is whitespace).

In [144]: df = pd.read_fwf('bar.csv', header=None, index_col=0)

In [145]: df
Out[145]:
 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3

New in version 0.20.0.

`read_fwf` supports the `dtype` parameter for specifying the types of parsed columns to be different from the inferred type.

In [146]: pd.read_fwf('bar.csv', header=None, index_col=0).dtypes
Out[146]:
 1 2 3
dtype: object

In [147]: pd.read_fwf('bar.csv', header=None, dtype={2: 'object'}).dtypes
Out[147]:
 0 1 2 3
dtype: object

24.1.20 Indexes

24.1.20.1 Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:
In [148]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

In [149]: pd.read_csv('foo.csv')
Out[149]:
 A B C
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

In [150]: df = pd.read_csv('foo.csv', parse_dates=True)
In [151]: df.index
Out[151]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)

24.1.20.2 Reading an index with a MultiIndex

Suppose you have data indexed by two columns:

In [152]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",.2,.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2

The index_col argument to read_csv and read_table can take a list of column numbers to turn multiple columns into a MultiIndex for the index of the returned object:

In [153]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
In [154]: df
Out[154]:
 zit xit
 year indiv
1977 A 1.20 0.60
 B 1.50 0.50
By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns. Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing columns, specify tupleize_cols=True.

```
In [156]: from pandas.util.testing import makeCustomDataframe as mkdf
In [157]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [158]: df.to_csv('mi.csv')
In [159]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,
R_l0_g0,R_l0_g1,R0C0,R0C1,R0C2
R_l0_g1,R_l0_g2,R1C0,R1C1,R1C2
R_l0_g2,R_l0_g3,R2C0,R2C1,R2C2
R_l0_g3,R_l0_g4,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g0,R4C0,R4C1,R4C2
```

```
In [160]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1])
```
Starting in 0.13.0, \texttt{read_csv} will be able to interpret a more common format of multi-columns indices.

```python
In [161]: print(open('mi2.csv').read())
,a,a,a,b,c,c
,q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12
```

```python
In [162]: pd.read_csv('mi2.csv',header=[0,1],index_col=0)
```

```
\begin{verbatim}
 a b c 
 q r s t u v 
 one 1 2 3 4 5 6 
 two 7 8 9 10 11 12
\end{verbatim}
```

Note: If an \texttt{index_col} is not specified (e.g. you don’t have an index, or wrote it with \texttt{df.to_csv(..., index=False)}, then any names on the columns index will be lost.

24.1.21 Automatically “sniffing” the delimiter

\texttt{read_csv} is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the \texttt{csv.Sniffer} class of the \texttt{csv} module. For this, you have to specify \texttt{sep=None}.

```python
In [163]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.4691122999071863:-0.28286343286633:-1.509058503173524:-1.135632371017934
1:1.2121120250208506:-0.17321464905330858:0.1192081126963428:-1.0442359667299567
2:-0.8618489633477999:-2.1045692188948086:-0.49492740687813:1.071803807037338
3:0.7215551624433669:-0.7067711336300845:-1.0395749851146963:0.2718598855422986
4:-0.4249723297883753:0.567020349793672:0.2762320192771873:-1.087400691259915
5:0.7636897080883706:0.1136484096888855:-1.4784265524732235:0.5249876671147047
6:0.4047052186802365:0.5770459859204836:-1.7150020161146375:-1.0392684835147725
7:-0.370468582364464:-1.1578922506419993:-1.34340161271667:0.8448851414248841
8:1.075769737155533:-1.0904997528022223:1.6435630703622064:-1.469387955399115
9:0.3570205643309086:-0.6746001037299882:-1.77603716971867:-0.968913812473498
```

```python
In [164]: pd.read_csv('tmp2.sv', sep=None, engine='python')
```

```
\begin{verbatim}
    Unnamed: 0 0 1 2 3
 0  0 0.469112 -0.282863 -1.509059 -1.135632
 1  1 1.212112 -0.173215 0.119209 -1.044236
 2  2 -0.861849 -2.104569 -0.494929 1.071804
 3  3 0.721555 -0.706771 -1.039575 0.271860
 4  4 -0.424972 0.567020 0.276232 -1.087401
 5  5 -0.673690 0.113648 -1.478427 0.524988
 6  6 0.404705 0.577046 -1.715002 -1.039268
\end{verbatim}
```
24.1.22 Reading multiple files to create a single DataFrame

It’s best to use `concat()` to combine multiple files. See the cookbook for an example.

24.1.23 Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:

```python
In [165]: print(open('tmp.sv').read())
|0|1|2|3|
0|0.4691122999071863|-0.2828633443286633|-1.5090585031735124|-1.1356323710171934
1|1.2121120250208506|-0.1732146905330858|0.1920871129693428|-1.0442359662799567
2|-0.861848633477999|-2.1045692188948086|-0.4942927406878131|0.0718038070373383
3|0.7215516224434669|0.7067711336300845|-0.395749811469632|0.2718598854282986
4|-0.4249723298883753|0.56702349793672|0.2762320192771873|0.0874006912859915
5|-0.6736897080883706|0.1136484096888855|-1.4784265524372235|0.5249876671147047
6|0.4047052186802365|0.5770459859204836|-1.7150020161146375|0.392684835174725
7|-0.3706465823644641|-1.157892256419993|1.344311812731667|0.8448851412484881
8|1.0757697837155533|-0.1090497528022223|1.6435630703622064|1.4693879595399115
9|0.3570205641330908|0.6746001037299882|-1.776903716971867|0.9689138124473498
```

```python
In [166]: table = pd.read_table('tmp.sv', sep='|')
```

```python
In [167]: table
Out[167]:
```

By specifying a chunksize to `read_csv` or `read_table`, the return value will be an iterable of type `TextFileReader`:

```python
In [168]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)

In [169]: reader
Out[169]: <pandas.io.parsers.TextFileReader at 0x12992b940>
```

```python
In [170]: for chunk in reader:
   ....:     print(chunk)
   ....:
```

By specifying a chunksize to `read_csv` or `read_table`, the return value will be an iterable of type `TextFileReader`:
Specifying \texttt{iterator=True} will also return the \texttt{TextFileReader} object:

\begin{verbatim}
In [171]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)
In [172]: reader.get_chunk(5)
\end{verbatim}

\begin{verbatim}
Out[172]:
\begin{tabular}{cccc}
 unnamed: 0 & 0 & 1 & 2 & 3 \\
 0 & 0.469112 & -0.282863 & -1.509059 & -1.135632 \\
 1 & 1.212112 & -0.173215 & 0.119209 & -1.044236 \\
 2 & -0.861849 & -2.104569 & -0.494929 & 1.071804 \\
 3 & 0.721555 & -0.706771 & -1.039575 & 0.271860 \\
\end{tabular}
\end{verbatim}

24.1.24 Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as \texttt{engine='c'}, but may fall back to python if C-unsupported options are specified. Currently, C-unsupported options include:

- \texttt{sep} other than a single character (e.g. regex separators)
- \texttt{skipfooter}
- \texttt{sep=None} with \texttt{delim_whitespace=False}

Specifying any of the above options will produce a \texttt{ParserWarning} unless the python engine is selected explicitly using \texttt{engine='python'}.

24.1.25 Reading remote files

You can pass in a URL to a CSV file:

\begin{verbatim}
df = pd.read_csv('https://download.bls.gov/pub/time.series/cu/cu.item', sep='\t')
\end{verbatim}

S3 URLs are handled as well:

\begin{verbatim}
df = pd.read_csv('s3://pandas-test/tips.csv')
\end{verbatim}
24.1.26 Writing out Data

24.1.26.1 Writing to CSV format

The Series and DataFrame objects have an instance method `to_csv` which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

- `path_or_buf`: A string path to the file to write or a StringIO
- `sep`: Field delimiter for the output file (default ",")
- `na_rep`: A string representation of a missing value (default "")
- `float_format`: Format string for floating point numbers
- `cols`: Columns to write (default None)
- `header`: Whether to write out the column names (default True)
- `index`: whether to write row (index) names (default True)
- `index_label`: Column label(s) for index column(s) if desired. If None (default), and `header` and `index` are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
- `mode`: Python write mode, default ‘w’
- `encoding`: a string representing the encoding to use if the contents are non-ASCII, for python versions prior to 3
- `line_terminator`: Character sequence denoting line end (default ‘\n’)
- `quoting`: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set a `float_format` then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numeric
- `quotechar`: Character used to quote fields (default ‘”’)
- `doublequote`: Control quoting of `quotechar` in fields (default True)
- `escapechar`: Character used to escape `sep` and `quotechar` when appropriate (default None)
- `chunksize`: Number of rows to write at a time
- `tupleize_cols`: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable for `read_csv`
- `date_format`: Format string for datetime objects

24.1.26.2 Writing a formatted string

The DataFrame object has an instance method `to_string` which allows control over the string representation of the object. All arguments are optional:

- `buf` default None, for example a StringIO object
- `columns` default None, which columns to write
- `col_space` default None, minimum width of each column.
- `na_rep` default `NaN`, representation of NA value
- `formatters` default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
• float_format default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.
• sparsify default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
• index_names default True, will print the names of the indices
• index default True, will print the index (i.e., row labels)
• header default True, will print the column labels
• justify default left, will print column headers left- or right-justified

The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments. There is also a length argument which, if set to True, will additionally output the length of the Series.

24.2 JSON

Read and write JSON format files and strings.

24.2.1 Writing JSON

A Series or DataFrame can be converted to a valid JSON string. Use to_json with optional parameters:

• path_or_buf: the pathname or buffer to write the output This can be None in which case a JSON string is returned
• orient:
 Series:
 – default is index
 – allowed values are {split, records, index}
 DataFrame
 – default is columns
 – allowed values are {split, records, index, columns, values}

The format of the JSON string

<table>
<thead>
<tr>
<th>Argument</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>split</td>
<td>dict like {index -> [index], columns -> [columns], data -> [values]}</td>
</tr>
<tr>
<td>records</td>
<td>list like [[column -> value], ... , [column -> value]]</td>
</tr>
<tr>
<td>index</td>
<td>dict like {index -> [column -> value]}</td>
</tr>
<tr>
<td>columns</td>
<td>dict like {column -> [index -> value]}</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

• date_format: string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.
• double_precision: The number of decimal places to use when encoding floating point values, default 10.
• force_ascii: force encoded string to be ASCII, default True.
• date_unit: The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or ‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.
• default_handler: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serializable object.
* lines: If records orient, then will write each record per line as json.

Note NaN's, NaT's and None will be converted to null and datetime objects will be converted based on the date_format and date_unit parameters.

```
In [173]: dfj = pd.DataFrame(randn(5, 2), columns=list('AB'))
In [174]: json = dfj.to_json()
In [175]: json
```

```
Out[175]:
"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.061535699,"4":0.8957173022},
"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.3625429925,"3":-0.923060654,"4":0.8052440254}
```

24.2.1.1 Orient Options

There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame and Series:

```
In [176]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
                      columns=list('ABC'), index=list('xyz'))
```

```
In [177]: dfjo
Out[177]:
  A  B  C
x  1  4  7
y  2  5  8
z  3  6  9
```

```
In [178]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D')
In [179]: sjo
Out[179]:
x  15
y  16
Name: D, dtype: int64
```

Column oriented (the default for DataFrame) serializes the data as nested JSON objects with column labels acting as the primary index:

```
In [180]: dfjo.to_json(orient="columns")
Out[180]:
"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'
#
```

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:

```
In [181]: dfjo.to_json(orient="index")
Out[181]:
"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'
In [182]: sjo.to_json(orient="index")
```

```
Out[182]:
"x":15,"y":16,"z":17}
```
Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:

```
In [183]: dfjo.to_json(orient="records")
```

```
In [184]: sjo.to_json(orient="records")
Out[184]: '[15,16,17]
```

Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels are not included:

```
In [185]: dfjo.to_json(orient="values")
Out[185]: '[[1,4,7],[2,5,8],[3,6,9]]'
```

Not available for Series

Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also included for Series:

```
In [186]: dfjo.to_json(orient="split")
Out[186]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}'
```

```
In [187]: sjo.to_json(orient="split")
Out[187]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'
```

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels during round-trip serialization. If you wish to preserve label ordering use the **split** option as it uses ordered containers.

24.2.1.2 Date Handling

Writing in ISO date format

```
In [188]: dfd = pd.DataFrame(randn(5, 2), columns=list('AB'))
In [189]: dfd['date'] = pd.Timestamp('20130101')
In [190]: dfd = dfd.sort_index(1, ascending=False)
In [191]: json = dfd.to_json(date_format='iso')
In [192]: json
```

```
"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":
  "2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00.000Z"},"B":
  {"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":
    -0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.
    4108345112,"4":0.1320031703}}'
```

Writing in ISO date format, with microseconds

```
In [193]: json = dfd.to_json(date_format='iso', date_unit='us')
```

```
"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":
  "2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00.000Z"},"B":
  {"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":
    -0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.
    4108345112,"4":0.1320031703}}'
```
Epoch timestamps, in seconds

Writing to a file, with a date index and a date column

24.2.1.3 Fallback Behavior

If the JSON serializer cannot handle the container contents directly it will fallback in the following manner:

- if the dtype is unsupported (e.g. np.complex) then the default_handler, if provided, will be called for each value, otherwise an exception is raised.

- if an object is unsupported it will attempt the following:
 - check if the object has defined a toDict method and call it. A toDict method should return a dict which will then be JSON serialized.
 - invoke the default_handler if one was provided.
 - convert the object to a dict by traversing its contents. However this will often fail with an OverflowError or give unexpected results.

24.2. JSON
In general the best approach for unsupported objects or dtypes is to provide a default_handler. For example:

```python
DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json()  # raises
RuntimeError: Unhandled numpy dtype 15
```
can be dealt with by specifying a simple default_handler:

```python
In [204]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str)
Out[204]: '{"0":{"0":"(1+0j)"},"1":{"2+0j"},"2":{"1+2j"}}'
```

24.2.2 Reading JSON

Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame if typ is not supplied or is None. To explicitly force Series parsing, pass typ=series

- filepath_or_buffer: a VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
- typ: type of object to recover (series or frame), default ‘frame’
- orient:
 - Series:
 - default is index
 - allowed values are {split, records, index}
 - DataFrame:
 - default is columns
 - allowed values are {split, records, index, columns, values}

The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>dict like {index -> [index], columns -> [columns], data -> [values]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>records</td>
<td>list like [[column -> value], ... , [column -> value]]</td>
</tr>
<tr>
<td>index</td>
<td>dict like {index -> {column -> value}}</td>
</tr>
<tr>
<td>columns</td>
<td>dict like {column -> {index -> value}}</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- dtype: if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, default is True, apply only to the data
- convert_axes: boolean, try to convert the axes to the proper dtypes, default is True
- convert_dates: a list of columns to parse for dates; If True, then try to parse date-like columns, default is True
- keep_default_dates: boolean, default True. If parsing dates, then parse the default date-like columns
- numpy: direct decoding to numpy arrays. default is False; Supports numeric data only, although labels may be non-numeric. Also note that the JSON ordering MUST be the same for each term if numpy=True
- precise_float: boolean, default False. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
• **date_unit**: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively.

• **lines**: reads file as one json object per line.

• **encoding**: The encoding to use to decode py3 bytes.

The parser will raise one of `ValueError/TypeError/AssertionError` if the JSON is not parseable.

If a non-default `orient` was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see [Orient Options](#) for an overview.

24.2.2.1 Data Conversion

The default of `convert_axes=True, dtype=True, and convert_dates=True` will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to `dtype`. `convert_axes` should only be set to `False` if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.

Note: Large integer values may be converted to dates if `convert_dates=True` and the data and/or column labels appear ‘date-like’. The exact threshold depends on the `date_unit` specified. ‘date-like’ means that the column label meets one of the following criteria:

- it ends with '_at'
- it ends with '_time'
- it begins with 'timestamp'
- it is 'modified'
- it is 'date'

Warning: When reading JSON data, automatic coercing into dtypes has some quirks:

- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was float data will be converted to integer if it can be done safely, e.g. a column of 1.
- bool columns will be converted to integer on reconstruction

Thus there are times where you may want to specify specific dtypes via the `dtype` keyword argument.

Reading from a JSON string:

```python
In [205]: pd.read_json(json)
Out[205]:
   A     B       date
0 -1.206412 2.565646 2013-01-01
1  1.431256 1.340309 2013-01-01
2 -1.170299 -0.226169 2013-01-01
3  0.410835 0.813850 2013-01-01
4  0.132003 -0.827317 2013-01-01
```

Reading from a file:
In [206]: pd.read_json('test.json')
Out[206]:
 A B bools date ints
0 2013-01-01 -1.294524 0.413738 True 2013-01-01 0
1 2013-01-02 0.276662 -0.472035 True 2013-01-01 1
2 2013-01-03 -0.013960 -0.362543 True 2013-01-01 2
3 2013-01-04 -0.006154 -0.923061 True 2013-01-01 3
4 2013-01-05 0.895717 0.805244 True 2013-01-01 4

Don’t convert any data (but still convert axes and dates):

In [207]: pd.read_json('test.json', dtype=object).dtypes
Out[207]:
 A B bools date ints
dtype: object

Specify dtypes for conversion:

In [208]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes
Out[208]:
 A B bools date ints
dtype: object

Preserve string indices:

In [209]: si = pd.DataFrame(np.zeros((4, 4)),
 columns=list(range(4)),
 index=[str(i) for i in range(4)])

In [210]: si
Out[210]:
 0 1 2 3
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0

In [211]: si.index
"Index(['0', '1', '2', '3'], dtype='object')"

In [212]: si.columns
"Int64Index([0, 1, 2, 3], dtype='int64')"

In [213]: json = si.to_json()

In [214]: sij = pd.read_json(json, convert_axes=False)
Dates written in nanoseconds need to be read back in nanoseconds:

```python
In [218]: json = df2.to_json(date_unit='ns')
Try to parse timestamps as milliseconds -> Won't Work
In [219]: dfju = pd.read_json(json, date_unit='ms')
In [220]: dfju
```

```
+-----------------+-----------------+-----------------+
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
</tr>
</thead>
<tbody>
<tr>
<td>13569984000000000000 0.413738 True 13569984000000000000 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13570848000000000000 0.276662 -0.472035 True 13569984000000000000 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13571712000000000000 -0.013960 -0.362543 True 13569984000000000000 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13572576000000000000 -0.006154 -0.923061 True 13569984000000000000 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13573440000000000000 0.895717 0.805244 True 13569984000000000000 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Let pandas detect the correct precision

```python
In [221]: dfju = pd.read_json(json)
```

```
+-----------------+-----------------+-----------------+
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 -1.294524 0.413738 True 2013-01-01 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-02 0.276662 -0.472035 True 2013-01-01 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-03 -0.013960 -0.362543 True 2013-01-01 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-04 -0.006154 -0.923061 True 2013-01-01 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-05 0.895717 0.805244 True 2013-01-01 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Or specify that all timestamps are in nanoseconds

```python
In [223]: dfju = pd.read_json(json, date_unit='ns')
```

```
+-----------------+-----------------+-----------------+
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 -1.294524 0.413738 True 2013-01-01 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-02 0.276662 -0.472035 True 2013-01-01 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-03 -0.013960 -0.362543 True 2013-01-01 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-04 -0.006154 -0.923061 True 2013-01-01 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-05 0.895717 0.805244 True 2013-01-01 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
24.2.2.2 The Numpy Parameter

Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.

If numpy=True is passed to read_json an attempt will be made to sniff an appropriate dtype during deserialization and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.

This can provide speedups if you are deserialising a large amount of numeric data:

```python
In [225]: randfloats = np.random.uniform(-100, 1000, 10000)
In [226]: randfloats.shape = (1000, 10)
In [227]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))
In [228]: jsonfloats = dffloats.to_json()
In [229]: timeit pd.read_json(jsonfloats)
100 loops, best of 3: 6.94 ms per loop
In [230]: timeit pd.read_json(jsonfloats, numpy=True)
100 loops, best of 3: 4.46 ms per loop

The speedup is less noticeable for smaller datasets:

```
In [231]: jsonfloats = dffloats.head(100).to_json()
In [232]: timeit pd.read_json(jsonfloats)
100 loops, best of 3: 3.68 ms per loop
In [233]: timeit pd.read_json(jsonfloats, numpy=True)
100 loops, best of 3: 2.99 ms per loop
```

Warning: Direct numpy decoding makes a number of assumptions and may fail or produce unexpected output if these assumptions are not satisfied:

- data is numeric.
- data is uniform. The dtype is sniffed from the first value decoded. A ValueError may be raised, or incorrect output may be produced if this condition is not satisfied.
- labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row / column has been encoded in the same order. This should be satisfied if the data was encoded using to_json but may not be the case if the JSON is from another source.

24.2.3 Normalization

New in version 0.13.0.

pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.

```python
In [234]: from pandas.io.json import json_normalize
```
In [235]: data = [{'state': 'Florida',
......:     'shortname': 'FL',
......:     'info': {
......:         'governor': 'Rick Scott',
......:     },
......:     'counties': [{'name': 'Dade', 'population': 12345},
......:                  {'name': 'Broward', 'population': 40000},
......:                  {'name': 'Palm Beach', 'population': 60000}],
......:     },
......:     {'state': 'Ohio',
......:     'shortname': 'OH',
......:     'info': {
......:         'governor': 'John Kasich',
......:     },
......:     'counties': [{'name': 'Summit', 'population': 1234},
......:                  {'name': 'Cuyahoga', 'population': 1337}]
......: ]

In [236]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor'])
Out[236]:

<table>
<thead>
<tr>
<th>name</th>
<th>population</th>
<th>state</th>
<th>shortname</th>
<th>info.governor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dade</td>
<td>12345</td>
<td>Florida</td>
<td>FL</td>
<td>Rick Scott</td>
</tr>
<tr>
<td>Broward</td>
<td>40000</td>
<td>Florida</td>
<td>FL</td>
<td>Rick Scott</td>
</tr>
<tr>
<td>Palm Beach</td>
<td>60000</td>
<td>Florida</td>
<td>FL</td>
<td>Rick Scott</td>
</tr>
<tr>
<td>Summit</td>
<td>1234</td>
<td>Ohio</td>
<td>OH</td>
<td>John Kasich</td>
</tr>
<tr>
<td>Cuyahoga</td>
<td>1337</td>
<td>Ohio</td>
<td>OH</td>
<td>John Kasich</td>
</tr>
</tbody>
</table>

24.2.4 Line delimited json

New in version 0.19.0.

pandas is able to read and write line-delimited json files that are common in data processing pipelines using Hadoop or Spark.

In [237]: json1 = 
......:     """{
......:         "a":1,"b":2
......:     }
......:     
......:     """

In [238]: df = pd.read_json(json1, lines=True)

In [239]: df
Out[239]:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

In [240]: df.to_json(orient='records', lines=True)

| "a":1,"b":2
| "a":3,"b":4 |

24.2.5 Table Schema

New in version 0.20.0.
**Table Schema** is a spec for describing tabular datasets as a JSON object. The JSON includes information on the field names, types, and other attributes. You can use the `orient` parameter to build a JSON string with two fields, `schema` and `data`.

```python
In [241]: df = pd.DataFrame(
 : {'A': [1, 2, 3],
 : 'B': ['a', 'b', 'c'],
 : 'C': pd.date_range('2016-01-01', freq='d', periods=3),
 : }, index=pd.Index(range(3), name='idx'))

In [242]: df
Out[242]:
A B C
idx
0 1 a 2016-01-01
1 2 b 2016-01-02
2 3 c 2016-01-03

In [243]: df.to_json(orient='table', date_format="iso")
```

The `schema` field contains the `fields` key, which itself contains a list of column name to type pairs, including the Index or MultiIndex (see below for a list of types). The `schema` field also contains a `primaryKey` field if the (Multi)index is unique.

The second field, `data`, contains the serialized data with the `records` orient. The index is included, and any datetimes are ISO 8601 formatted, as required by the Table Schema spec.

The full list of types supported are described in the Table Schema spec. This table shows the mapping from pandas types:

<table>
<thead>
<tr>
<th>Pandas type</th>
<th>Table Schema type</th>
</tr>
</thead>
<tbody>
<tr>
<td>int64</td>
<td>integer</td>
</tr>
<tr>
<td>float64</td>
<td>number</td>
</tr>
<tr>
<td>bool</td>
<td>boolean</td>
</tr>
<tr>
<td>datetime64[ns]</td>
<td>datetime</td>
</tr>
<tr>
<td>timedelta64[ns]</td>
<td>duration</td>
</tr>
<tr>
<td>categorical</td>
<td>any</td>
</tr>
<tr>
<td>object</td>
<td>str</td>
</tr>
</tbody>
</table>

A few notes on the generated table schema:

- The `schema` object contains a `pandas_version` field. This contains the version of pandas’ dialect of the schema, and will be incremented with each revision.
- All dates are converted to UTC when serializing. Even timezone naïve values, which are treated as UTC with an offset of 0.

```python
In [244]: from pandas.io.json import build_table_schema

In [245]: s = pd.Series(pd.date_range('2016', periods=4))

In [246]: build_table_schema(s)
```
• datetimes with a timezone (before serializing), include an additional field `tz` with the time zone name (e.g. 'US/Central').

```python
In [247]: s_tz = pd.Series(pd.date_range('2016', periods=12, tz='US/Central'))
```

```python
In [248]: build_table_schema(s_tz)
```

```
Out[248]:
{'fields': [{'name': 'index', 'type': 'integer'},
 {'name': 'values', 'type': 'datetime', 'tz': 'US/Central'}],
'pandas_version': '0.20.0',
'primaryKey': ['index']}
```

• Periods are converted to timestamps before serialization, and so have the same behavior of being converted to UTC. In addition, periods will contain additional field `freq` with the period’s frequency, e.g. 'A-DEC'

```python
In [249]: s_per = pd.Series(1, index=pd.period_range('2016', freq='A-DEC', periods=4))
```

```python
In [250]: build_table_schema(s_per)
```

```
Out[250]:
{'fields': [{'freq': 'A-DEC', 'name': 'index', 'type': 'datetime'},
 {'name': 'values', 'type': 'integer'}],
'pandas_version': '0.20.0',
'primaryKey': ['index']}
```

• Categoricals use the `any` type and an `enum` constraint listing the set of possible values. Additionally, an ordered field is included

```python
In [251]: s_cat = pd.Series(pd.Categorical(['a', 'b', 'a']))
```

```python
In [252]: build_table_schema(s_cat)
```

```
Out[252]:
{'fields': [{'name': 'index', 'type': 'integer'},
 {'constraints': {'enum': ['a', 'b']},
 'name': 'values',
 'ordered': False,
 'type': 'any'}],
'pandas_version': '0.20.0',
'primaryKey': ['index']}
```

• A `primaryKey` field, containing an array of labels, is included if the index is unique:

```python
In [253]: s_dupe = pd.Series([1, 2], index=[1, 1])
```

```python
In [254]: build_table_schema(s_dupe)
```

```
Out[254]:
{'fields': [{'name': 'index', 'type': 'integer'},
 {'name': 'values', 'type': 'integer'}],
'pandas_version': '0.20.0'}
```
The primaryKey behavior is the same with MultiIndexes, but in this case the primaryKey is an array:

```
In [255]: s_multi = pd.Series(1, index=pd.MultiIndex.from_product([('a', 'b'), (0, 1)]))

In [256]: build_table_schema(s_multi)
Out[256]:
{'fields': [{'name': 'level_0', 'type': 'string'},
 {'name': 'level_1', 'type': 'integer'},
 {'name': 'values', 'type': 'integer'}],
 'pandas_version': '0.20.0',
 'primaryKey': FrozenList(['level_0', 'level_1'])}
```

• The default naming roughly follows these rules:
  – For series, the object.name is used. If that’s none, then the name is values
  – For DataFrames, the stringified version of the column name is used
  – For Index (not MultiIndex), index.name is used, with a fallback to index if that is None.
  – For MultiIndex, mi.names is used. If any level has no name, then level_<i> is used.

_Table Schema: http://specs.frictionlessdata.io/json-table-schema/

24.3 HTML

24.3.1 Reading HTML Content

_Warning:_ We **highly encourage** you to read the *HTML Table Parsing gotchas* below regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.

New in version 0.12.0.

The top-level `read_html()` function can accept an HTML string/file/URL and will parse HTML tables into list of pandas DataFrames. Let’s look at a few examples.

_Note:_ `read_html` returns a list of DataFrame objects, even if there is only a single table contained in the HTML content

Read a URL with no options

```
In [257]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'

In [258]: dfs = pd.read_html(url)

In [259]: dfs
Out[259]:
[Bank Name City ST CERT
 0 First NBC Bank New Orleans LA 58302
 1 Proficio Bank Cottonwood Heights UT 35495]
```
<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitney Bank</td>
<td>April 28, 2017</td>
</tr>
<tr>
<td>Cache Valley Bank</td>
<td>March 3, 2017</td>
</tr>
<tr>
<td>State Bank of Texas</td>
<td>January 27, 2017</td>
</tr>
<tr>
<td>First-Citizens Bank &amp; Trust Company</td>
<td>January 13, 2017</td>
</tr>
<tr>
<td>Today's Bank</td>
<td>September 23, 2016</td>
</tr>
<tr>
<td>United Bank</td>
<td>August 19, 2016</td>
</tr>
<tr>
<td>First-Citizens Bank &amp; Trust Company</td>
<td>May 6, 2016</td>
</tr>
<tr>
<td>Israel Discount Bank of New York</td>
<td>January 11, 2002</td>
</tr>
<tr>
<td>Delta Trust &amp; Bank</td>
<td>September 7, 2001</td>
</tr>
<tr>
<td>Superior Federal, FSB</td>
<td>July 27, 2001</td>
</tr>
<tr>
<td>North Valley Bank</td>
<td>May 3, 2001</td>
</tr>
<tr>
<td>Southern New Hampshire Bank &amp; Trust Company</td>
<td>February 2, 2001</td>
</tr>
<tr>
<td>Banterra Bank of Marion</td>
<td>December 14, 2000</td>
</tr>
<tr>
<td>Bank of the Orient</td>
<td>October 13, 2000</td>
</tr>
</tbody>
</table>

**Note:** The data from the above URL changes every Monday so the resulting data above and the data below may be slightly different.

Read in the content of the file from the above URL and pass it to `read_html` as a string
In [260]: with open(file_path, 'r') as f:
    .....:   dfs = pd.read_html(f.read())
    .....:

In [261]: dfs
Out[261]:

             | Bank Name                  | City    | ST  | CERT |
--- -------------------------|---------------------------------|--------|-----|------|
0             | Banks of Wisconsin d/b/a Bank of Kenosha    | Kenosha | WI | 35386|
1             | Central Arizona Bank               | Scottsdale | AZ | 34527|
2             | Sunrise Bank                        | Valdosta | GA | 58185|
3             | Pisgah Community Bank              | Asheville | NC | 58701|
4             | Douglas County Bank                | Douglasville | GA | 21649|
5             | Parkway Bank                       | Lenoir   | NC | 57158|
6             | Chipola Community Bank             | Marianna | FL | 58034|
..           | ...                               | ...     | ...| ...  |
499          | Hamilton Bank, NAEn Espanol         | Miami    | FL | 24382|
500          | Sinclair National Bank             | Gravette | AR | 34248|
501          | Superior Bank, FSB                 | Hinsdale | IL | 32646|
502          | Malta National Bank                | Malta    | OH | 6629 |
503          | First Alliance Bank & Trust Co.    | Manchester | NH | 34264|
504          | National State Bank of Metropolis  | Metropolis | IL | 3815 |
505          | Bank of Honolulu                   | Honolulu | HI | 21029|

| Acquiring Institution                           | Closing Date | Updated Date |
--- -----------------------------------------------|--------------|--------------|
0 | North Shore Bank, FSB                          | May 31, 2013 | May 31, 2013 |
1 | Western State Bank                             | May 14, 2013 | May 20, 2013 |
2 | Synovus Bank                                   | May 10, 2013 | May 21, 2013 |
3 | Capital Bank, N.A.                             | May 10, 2013 | May 14, 2013 |
4 | Hamilton State Bank                            | April 26, 2013 | May 16, 2013 |
5 | CertusBank, National Association               | April 26, 2013 | May 17, 2013 |
6 | First Federal Bank of Florida                  | April 19, 2013 | May 16, 2013 |
.. | ...                                             | ...          | ...         |
500 | Delta Trust & Bank                             | September 7, 2001 | February 10, 2004 |
502 | North Valley Bank                              | May 3, 2001   | November 18, 2002 |
503 | Southern New Hampshire Bank & Trust            | February 2, 2001 | February 18, 2003 |
504 | Bantera Bank of Marion                         | December 14, 2000 | March 17, 2005 |
505 | Bank of the Orient                             | October 13, 2000 | March 17, 2005 |

[506 rows x 7 columns]

You can even pass in an instance of StringIO if you so desire

In [262]: with open(file_path, 'r') as f:
    .....:   sio = StringIO(f.read())
    .....:

In [263]: dfs = pd.read_html(sio)

In [264]: dfs
Out[264]:

             | Bank Name                  | City    | ST  | CERT |
--- -------------------------|---------------------------------|--------|-----|------|
0             | Banks of Wisconsin d/b/a Bank of Kenosha    | Kenosha | WI | 35386|
1             | Central Arizona Bank               | Scottsdale | AZ | 34527|
2             | Sunrise Bank                        | Valdosta | GA | 58185|
3             | Pisgah Community Bank              | Asheville | NC | 58701|
4             | Douglas County Bank                | Douglasville | GA | 21649|
Note: The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please do not hesitate to report it over on pandas GitHub issues page.

Read a URL and match a table that contains specific text

```python
match = 'Metcalf Bank'
df_list = pd.read_html(url, match=match)
```

Specify a header row (by default `<th>` or `<td>` elements located within a `<thead>` are used to form the column index, if multiple rows are contained within `<thead>` then a multiindex is created); if specified, the header row is taken from the data minus the parsed header elements (`<th>` elements).

```python
dfs = pd.read_html(url, header=0)
```

Specify an index column

```python
dfs = pd.read_html(url, index_col=0)
```

Specify a number of rows to skip

```python
dfs = pd.read_html(url, skiprows=0)
```

Specify a number of rows to skip using a list (`xrange` (Python 2 only) works as well)
**pandas:** powerful Python data analysis toolkit, Release 0.20.1

```python
dfs = pd.read_html(url, skiprows=range(2))
```

Specify an HTML attribute

```python
dfs1 = pd.read_html(url, attrs={'id': 'table'})
dfs2 = pd.read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True
```

Specify values that should be converted to NaN

```python
dfs = pd.read_html(url, na_values=['No Acquirer'])
```

New in version 0.19.

Specify whether to keep the default set of NaN values

```python
dfs = pd.read_html(url, keep_default_na=False)
```

New in version 0.19.

Specify converters for columns. This is useful for numerical text data that has leading zeros. By default columns that
are numerical are cast to numeric types and the leading zeros are lost. To avoid this, we can convert these columns to
strings.

```python
url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code'
dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0, converters={'MNC': str})
```

New in version 0.19.

Use some combination of the above

```python
dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)
```

Read in pandas to_html output (with some loss of floating point precision)

```python
df = pd.DataFrame(randn(2, 2))
s = df.to_html(float_format='{:0.40g}'.format)
dfin = pd.read_html(s, index_col=0)
```

The lxml backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single
parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the
function expects a sequence of strings)

```python
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])
```

or

```python
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')
```

However, if you have bs4 and html5lib installed and pass None or ['lxml', 'bs4'] then the parse will most
likely succeed. Note that as soon as a parse succeeds, the function will return.

```python
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])
```
24.3.2 Writing to HTML files

DataFrame objects have an instance method `to_html` which renders the contents of the DataFrame as an HTML table. The function arguments are as in the method `to_string` described above.

**Note:** Not all of the possible options for DataFrame.to_html are shown here for brevity’s sake. See `to_html()` for the full set of options.

```python
In [265]: df = pd.DataFrame(randn(2, 2))

In [266]: df
Out[266]:
 0 1
0 -0.184744 0.496971
1 -0.856240 1.857977

In [267]: print(df.to_html()) # raw html

```
```html
<\table border="1" class="dataframe">
 <thead>
 <tr style="text-align: right;">
 <th></th>
 <th>0</th>
 <th>1</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>0</th>
 <td>-0.184744</td>
 <td>0.496971</td>
 </tr>
 <tr>
 <th>1</th>
 <td>-0.856240</td>
 <td>1.857977</td>
 </tr>
 </tbody>
</table>
```

**HTML:**
The `columns` argument will limit the columns shown.

```python
In [268]: print(df.to_html(columns=[0]))

```
```html
<\table border="1" class="dataframe">
 <thead>
 <tr style="text-align: right;">
 <th></th>
 <th>0</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>0</th>
 <td>-0.184744</td>
 </tr>
 <tr>
 <th>1</th>
 <td>-0.856240</td>
 </tr>
 </tbody>
</table>
```
**HTML:**

`float_format` takes a Python callable to control the precision of floating point values.

```python
In [269]: print(df.to_html(float_format='{:10f}'.format))
```

```
<table border="1" class="dataframe">
 <thead>
 <tr style="text-align: right;">
 <th></th>
 <th>0</th>
 <th>1</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>0</td>
 <td>-0.1847438576</td>
 <td>0.4969711327</td>
 </tr>
 <tr>
 <td>1</td>
 <td>-0.8562396763</td>
 <td>1.8579766508</td>
 </tr>
 </tbody>
</table>
```

**HTML:**

`bold_rows` will make the row labels bold by default, but you can turn that off.

```python
In [270]: print(df.to_html(bold_rows=False))
```

```
<table border="1" class="dataframe">
 <thead>
 <tr style="text-align: right;">
 <th></th>
 <th>0</th>
 <th>1</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>0</td>
 <td>-0.184744</td>
 <td>0.496971</td>
 </tr>
 <tr>
 <td>1</td>
 <td>-0.856240</td>
 <td>1.857977</td>
 </tr>
 </tbody>
</table>
```
The `classes` argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing 'dataframe' class.

```python
In [271]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class']))
<table border="1" class="dataframe awesome_table_class even_more_awesome_class">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>
</tr>
</tbody>
</table>
```

Finally, the `escape` argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting HTML (by default it is `True`). So to get the HTML without escaped characters pass `escape=False`

```python
In [272]: df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})

Escaped:
```

```python
In [273]: print(df.to_html())
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>&</td>
<td>-0.474063</td>
</tr>
<tr>
<th>1</th>
<td><</td>
<td>-0.230305</td>
</tr>
<tr>
<td>-0.856240</td>
<td>&<</td>
<td>-0.474063</td>
</tr>
</tbody>
</table>
```
Not escaped:

```python
In [274]: print(df.to_html(escape=False))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>&</td>
<td>-0.474063</td>
</tr>
<tr>
<th>1</th>
<td><</td>
<td>-0.230305</td>
</tr>
<tr>
<th>2</th>
<td>></td>
<td>-0.400654</td>
</tr>
</tbody>
</table>
```

Note: Some browsers may not show a difference in the rendering of the previous two HTML tables.

### 24.3.3 HTML Table Parsing Gotchas

There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas io function `read_html`.

**Issues with lxml**

- **Benefits**
  - lxml is very fast
  - lxml requires Cython to install correctly.
- **Drawbacks**
  - lxml does *not* make any guarantees about the results of its parse *unless* it is given strictly valid markup.
– In light of the above, we have chosen to allow you, the user, to use the xml backend, but this backend will use html5lib if xml fails to parse
– It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if xml fails.

Issues with BeautifulSoup4 using lxml as a backend
• The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.

Issues with BeautifulSoup4 using html5lib as a backend
• Benefits
  – html5lib is far more lenient than lxml and consequently deals with real-life markup in a much saner way rather than just, e.g., dropping an element without notifying you.
  – html5lib generates valid HTML5 markup from invalid markup automatically. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition.
  – html5lib is pure Python and requires no additional build steps beyond its own installation.
• Drawbacks
  – The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true.

24.4 Excel files

The read_excel() method can read Excel 2003 (.xls) and Excel 2007+ (.xlsx) files using the xlrd Python module. The to_excel() instance method is used for saving a DataFrame to Excel. Generally the semantics are similar to working with csv data. See the cookbook for some advanced strategies

24.4.1 Reading Excel Files

In the most basic use-case, read_excel takes a path to an Excel file, and the sheetname indicating which sheet to parse.

```python
Returns a DataFrame
read_excel('path_to_file.xls', sheetname='Sheet1')
```

24.4.1.1 ExcelFile class

To facilitate working with multiple sheets from the same file, the ExcelFile class can be used to wrap the file and can be passed into read_excel There will be a performance benefit for reading multiple sheets as the file is read into memory only once.

```python
xlsx = pd.ExcelFile('path_to_file.xls')
df = pd.read_excel(xlsx, 'Sheet1')
```

The ExcelFile class can also be used as a context manager.
with pd.ExcelFile('path_to_file.xls') as xls:
    df1 = pd.read_excel(xls, 'Sheet1')
    df2 = pd.read_excel(xls, 'Sheet2')

The sheet_names property will generate a list of the sheet names in the file.
The primary use-case for an ExcelFile is parsing multiple sheets with different parameters.

data = {}
# For when Sheet1's format differs from Sheet2
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)

Note that if the same parsing parameters are used for all sheets, a list of sheet names can simply be passed to read_excel with no loss in performance.

# using the ExcelFile class
data = {}
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA'])

# equivalent using the read_excel function
data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_values=['NA'])

New in version 0.12.
ExcelFile has been moved to the top level namespace.
New in version 0.17.
read_excel can take an ExcelFile object as input.

### 24.4.1.2 Specifying Sheets

**Note:** The second argument is sheetname, not to be confused with ExcelFile.sheet_names

**Note:** An ExcelFile’s attribute sheet_names provides access to a list of sheets.

- The arguments sheetname allows specifying the sheet or sheets to read.
- The default value for sheetname is 0, indicating to read the first sheet.
- Pass a string to refer to the name of a particular sheet in the workbook.
- Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
- Pass a list of either strings or integers, to return a dictionary of specified sheets.
- Pass a None to return a dictionary of all available sheets.

# Returns a DataFrame
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
Using the sheet index:

```python
Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
```

Using all default values:

```python
Returns a DataFrame
read_excel('path_to_file.xls')
```

Using None to get all sheets:

```python
Returns a dictionary of DataFrames
read_excel('path_to_file.xls', sheetname=None)
```

Using a list to get multiple sheets:

```python
Returns the 1st and 4th sheet, as a dictionary of DataFrames.
read_excel('path_to_file.xls', sheetname=['Sheet1', 3])
```

New in version 0.16.

`read_excel` can read more than one sheet, by setting `sheetname` to either a list of sheet names, a list of sheet positions, or `None` to read all sheets.

New in version 0.13.

Sheets can be specified by sheet index or sheet name, using an integer or string, respectively.

### 24.4.1.3 Reading a MultiIndex

New in version 0.17.

`read_excel` can read a `MultiIndex` index, by passing a list of columns to `index_col` and a `MultiIndex` column by passing a list of rows to `header`. If either the `index` or `columns` have serialized level names those will be read in as well by specifying the rows/columns that make up the levels.

For example, to read in a `MultiIndex` index without names:

```python
In [275]: df = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [5, 6, 7, 8]},
 index=pd.MultiIndex.from_product([['a', 'b'], ['c', 'd']]))
....:
....:
In [276]: df.to_excel('path_to_file.xlsx')
In [277]: df = pd.read_excel('path_to_file.xlsx', index_col=[0, 1])
```

```python
In [278]: df
Out[278]:
 a b
a 1 5
d 2 6
b 3 7
d 4 8
```

If the index has level names, they will parsed as well, using the same parameters.
If the source file has both MultiIndex index and columns, lists specifying each should be passed to `index_col` and `header`.

```python
In [283]: df.columns = pd.MultiIndex.from_product([['a'], ['b', 'd']], names=['c1', 'c2'])
In [284]: df.to_excel('path_to_file.xlsx')
In [285]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1], header=[0,1])
```

```python
In [286]: df
Out[286]:
 c1 c2
 lvl1 lvl2
a a b d
 c 1 5
 d 2 6
b a b d
 c 3 7
 d 4 8
```

**Warning:** Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the `has_index_names` argument must specified to `True`.

### 24.4.1.4 Parsing Specific Columns

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. `read_excel` takes a `parse_cols` keyword to allow you to specify a subset of columns to parse.

If `parse_cols` is an integer, then it is assumed to indicate the last column to be parsed.

```python
read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)
```

If `parse_cols` is a list of integers, then it is assumed to be the file column indices to be parsed.

```python
read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])
```
24.4.1.5 Parsing Dates

Datet ime-like values are normally automatically converted to the appropriate dtype when reading the excel file. But if you have a column of strings that look like dates (but are not actually formatted as dates in excel), you can use the parse_dates keyword to parse those strings to datetimes:

```python
code{read_excel('path_to_file.xls', 'Sheet1', parse_dates=['date_strings'])}
```

24.4.1.6 Cell Converters

It is possible to transform the contents of Excel cells via the converters option. For instance, to convert a column to boolean:

```python
code{read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})}
```

This options handles missing values and treats exceptions in the converters as missing data. Transformations are applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float. You can manually mask missing data to recover integer dtype:

```python
cfun = lambda x: int(x) if x else 1
code{read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})}
```

24.4.1.7 dtype Specifications

New in version 0.20.

As an alternative to converters, the type for an entire column can be specified using the dtype keyword, which takes a dictionary mapping column names to types. To interpret data with no type inference, use the type str or object.

```python
code{read_excel('path_to_file.xls', dtype={'MyInts': 'int64', 'MyText': str})}
```

24.4.2 Writing Excel Files

24.4.2.1 Writing Excel Files to Disk

To write a DataFrame object to a sheet of an Excel file, you can use the to_excel instance method. The arguments are largely the same as to_csv described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame should be written. For example:

```python
code{df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')}
```

Files with a .xls extension will be written using xlwt and those with a .xlsx extension will be written using xlsxwriter (if available) or openpyxl.

The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the index_label will be placed in the second row instead of the first. You can get the previous behaviour by setting the merge_cells option in to_excel() to False:

```python
code{df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)}
```
The Panel class also has a `to_excel` instance method, which writes each DataFrame in the Panel to a separate sheet. In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an `ExcelWriter`.

```python
with ExcelWriter('path_to_file.xlsx') as writer:
 df1.to_excel(writer, sheet_name='Sheet1')
 df2.to_excel(writer, sheet_name='Sheet2')
```

**Note:** Wringing a little more performance out of `read_excel` Internally, Excel stores all numeric data as floats. Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to floats if it doesn’t lose information (1.0 --> 1). You can pass `convert_float=False` to disable this behavior, which may give a slight performance improvement.

### 24.4.2.2 Writing Excel Files to Memory

New in version 0.17.

Pandas supports writing Excel files to buffer-like objects such as `StringIO` or `BytesIO` using `ExcelWriter`. New in version 0.17.

Added support for Openpyxl >= 2.2

```python
Safe import for either Python 2.x or 3.x
try:
 from io import BytesIO
except ImportError:
 from cStringIO import StringIO as BytesIO

bio = BytesIO()

By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')

Save the workbook
writer.save()

Seek to the beginning and read to copy the workbook to a variable in memory
bio.seek(0)
workbook = bio.read()
```

**Note:** `engine` is optional but recommended. Setting the engine determines the version of workbook produced. Setting `engine='xlrd'` will produce an Excel 2003-format workbook (xls). Using either 'openpyxl' or 'xlsxwriter' will produce an Excel 2007-format workbook (xlsx). If omitted, an Excel 2007-formatted workbook is produced.

### 24.4.3 Excel writer engines

New in version 0.13.

pandas chooses an Excel writer via two methods:

1. the `engine` keyword argument
2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx and openpyxl for .xlsm files and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available.

To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to ExcelWriter. The built-in engines are:

- openpyxl: This includes stable support for Openpyxl from 1.6.1. However, it is advised to use version 2.2 and higher, especially when working with styles.
- xlsxwriter
- xlwt

```python
By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

### 24.4.4 Style and Formatting

The look and feel of Excel worksheets created from pandas can be modified using the following parameters on the DataFrame's to_excel method.

- float_format: Format string for floating point numbers (default None)
- freeze_panes: A tuple of two integers representing the bottommost row and rightmost column to freeze. Each of these parameters is one-based, so (1, 1) will freeze the first row and first column (default None)

### 24.5 Clipboard

A handy way to grab data is to use the read_clipboard method, which takes the contents of the clipboard buffer and passes them to the read_table method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>z</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

And then import the data directly to a DataFrame by calling:

```python
clipdf = pd.read_clipboard()
```
The `to_clipboard` method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back.

```python
In [288]: df = pd.DataFrame(randn(5,3))
In [289]: df
Out[289]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
```

```python
In [290]: df.to_clipboard()
In [291]: pd.read_clipboard()
```

```
Out[291]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
```

We can see that we got the same content back, which we had earlier written to the clipboard.

**Note:** You may need to install `xclip` or `xsel` (with gtk or PyQt4 modules) on Linux to use these methods.

### 24.6 Pickling

All pandas objects are equipped with `to_pickle` methods which use Python’s `cPickle` module to save data structures to disk using the pickle format.

```python
In [292]: df
Out[292]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
```

```python
In [293]: df.to_pickle('foo.pkl')
```

![Output](https://via.placeholder.com/150)
The `read_pickle` function in the `pandas` namespace can be used to load any pickled pandas object (or any other pickled object) from file:

```
In [294]: pd.read_pickle('foo.pkl')
Out[294]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
```

**Warning:** Loading pickled data received from untrusted sources can be unsafe. See: [http://docs.python.org/2.7/library/pickle.html](http://docs.python.org/2.7/library/pickle.html)

**Warning:** Several internal refactorings, 0.13 ([Series Refactoring](http://pandas.pydata.org/pandas-docs/stable/whatsnew/0.13.html)), and 0.15 ([Index Refactoring](http://pandas.pydata.org/pandas-docs/stable/whatsnew/0.15.html)), preserve compatibility with pickles created prior to these versions. However, these must be read with `pd.read_pickle`, rather than the default Python `pickle.load`. See this question for a detailed explanation.

### 24.6.1 Compressed pickle files

New in version 0.20.0.

`read_pickle()`, `DataFrame.to_pickle()` and `Series.to_pickle()` can read and write compressed pickle files. The compression types of `gzip`, `bz2`, `xz` are supported for reading and writing. `zip` file supports read only and must contain only one data file to be read in.

The compression type can be an explicit parameter or be inferred from the file extension. If ‘infer’, then use `gzip`, `bz2`, `zip`, or `xz` if filename ends in `.gz`, `.bz2`, `.zip`, or `.xz`, respectively.

```
In [295]: df = pd.DataFrame({
 ...: 'A': np.random.randn(1000),
 ...: 'B': 'foo',
 ...: 'C': pd.date_range('20130101', periods=1000, freq='s')})

In [296]: df
Out[296]:
 A B C
0 0.478412 foo 2013-01-01 00:00:00
1 -0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3 -0.539282 foo 2013-01-01 00:00:03
4 -1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06

993 -1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995 -0.632963 foo 2013-01-01 00:16:35
996 -0.585314 foo 2013-01-01 00:16:36
997 -0.275038 foo 2013-01-01 00:16:37
998 -0.937512 foo 2013-01-01 00:16:38
```

### 24.6. Pickling
Using an explicit compression type

```python
In [297]: df.to_pickle("data.pkl.compress", compression="gzip")
In [298]: rt = pd.read_pickle("data.pkl.compress", compression="gzip")
In [299]: rt
Out[299]:
 A B C
0 0.478412 foo 2013-01-01 00:00:00
1-0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3-0.539282 foo 2013-01-01 00:00:03
4-1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
...
993-1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995-0.632963 foo 2013-01-01 00:16:35
996-0.585314 foo 2013-01-01 00:16:36
997-0.275038 foo 2013-01-01 00:16:37
998-0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
```

Inferring compression type from the extension

```python
In [300]: df.to_pickle("data.pkl.xz", compression="infer")
In [301]: rt = pd.read_pickle("data.pkl.xz", compression="infer")
In [302]: rt
Out[302]:
 A B C
0 0.478412 foo 2013-01-01 00:00:00
1-0.783748 foo 2013-01-01 00:00:01
2 1.403558 foo 2013-01-01 00:00:02
3-0.539282 foo 2013-01-01 00:00:03
4-1.651012 foo 2013-01-01 00:00:04
5 0.692072 foo 2013-01-01 00:00:05
6 1.022171 foo 2013-01-01 00:00:06
...
993-1.613932 foo 2013-01-01 00:16:33
994 1.088104 foo 2013-01-01 00:16:34
995-0.632963 foo 2013-01-01 00:16:35
996-0.585314 foo 2013-01-01 00:16:36
997-0.275038 foo 2013-01-01 00:16:37
998-0.937512 foo 2013-01-01 00:16:38
999 0.632369 foo 2013-01-01 00:16:39
```
The default is to ‘infer

```
In [303]: df.to_pickle("data.pkl.gz")
```

```
In [304]: rt = pd.read_pickle("data.pkl.gz")
```

```
In [305]: rt
```

```
Out[305]:
 A B C
 0 0.478 foo 2013-01-01 00:00:00
 1 -0.7837 foo 2013-01-01 00:00:01
 2 1.4036 foo 2013-01-01 00:00:02
 3 -0.5392 foo 2013-01-01 00:00:03
 4 -1.6511 foo 2013-01-01 00:00:04
 5 0.6920 foo 2013-01-01 00:00:05
 6 1.0222 foo 2013-01-01 00:00:06
...
993 -1.6139 foo 2013-01-01 00:16:33
994 1.0881 foo 2013-01-01 00:16:34
995 -0.6329 foo 2013-01-01 00:16:35
996 -0.5853 foo 2013-01-01 00:16:36
997 -0.2750 foo 2013-01-01 00:16:37
998 -0.9375 foo 2013-01-01 00:16:38
999 0.6324 foo 2013-01-01 00:16:39
[1000 rows x 3 columns]
```

```
In [306]: df["A"].to_pickle("s1.pkl.bz2")
```

```
In [307]: rt = pd.read_pickle("s1.pkl.bz2")
```

```
In [308]: rt
```

```
Out[308]:
 A
 0 0.4784
 1 -0.7837
 2 1.4036
 3 -0.5393
 4 -1.6511
 5 0.6920
 6 1.0222
... ...
993 -1.6139
994 1.0881
995 -0.6329
996 -0.5853
997 -0.2750
998 -0.9375
999 0.6324
Name: A, Length: 1000, dtype: float64
```

## 24.7 msgpack

New in version 0.13.0.

Starting in 0.13.0, pandas is supporting the `msgpack` format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the
Warning: This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

As a result of writing format changes and other issues:

<table>
<thead>
<tr>
<th>Packed with</th>
<th>Can be unpacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-0.17 / Python 2</td>
<td>any</td>
</tr>
<tr>
<td>pre-0.17 / Python 3</td>
<td>any</td>
</tr>
<tr>
<td>0.17 / Python 2</td>
<td>• 0.17 / Python 2</td>
</tr>
<tr>
<td></td>
<td>• &gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.17 / Python 3</td>
<td>&gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.18</td>
<td>&gt;= 0.18</td>
</tr>
</tbody>
</table>

Reading (files packed by older versions) is backward-compatible, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.

```python
In [309]: df = pd.DataFrame(np.random.rand(5,2),columns=list('AB'))
In [310]: df.to_msgpack('foo.msg')
In [311]: pd.read_msgpack('foo.msg')
Out[311]:
 A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359
```

You can pass a list of objects and you will receive them back on deserialization.

```python
In [313]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s)
In [314]: pd.read_msgpack('foo.msg')
Out[314]:
 A B
0 0.170801 0.895366
1 0.838238 0.052592
2 0.664140 0.289750
3 0.449593 0.872087
4 0.983618 0.744359
```

You can pass `iterator=True` to iterate over the unpacked results.
In [315]: for o in pd.read_msgpack('foo.msg', iterator=True):
   ....:     print o
   ....:
File "<ipython-input-315-a0f40395739e>", line 2
    print o
    ^
SyntaxError: Missing parentheses in call to 'print'

You can pass `append=True` to the writer to append to an existing pack

In [316]: df.to_msgpack('foo.msg', append=True)

In [317]: pd.read_msgpack('foo.msg')
Out[317]:
    A    B
0  0.170801  0.895366
1  0.838238  0.052592
2  0.664140  0.289750
3  0.449593  0.872087
4  0.983618  0.744359

Unlike other io methods, `to_msgpack` is available on both a per-object basis, `df.to_msgpack()` and using the top-level `pd.to_msgpack(...)` where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects.

In [318]: pd.to_msgpack('foo2.msg', { 'dict' : [ { 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. }, { 's' : s } ] })

In [319]: pd.read_msgpack('foo2.msg')
Out[319]:
{'dict': ({'df': A    B
        0  0.170801  0.895366
        1  0.838238  0.052592
        2  0.664140  0.289750
        3  0.449593  0.872087
        4  0.983618  0.744359},
         {'string': 'foo'},
         {'scalar': 1.0},
         {'s': 2013-01-01 0.548134
          2013-01-02 0.503447
          2013-01-03 0.348438
          2013-01-04 0.707267
          2013-01-05 0.261656
          Freq: D, dtype: float64})}
24.7.1 Read/Write API

Msgpacks can also be read from and written to strings.

Furthermore you can concatenate the strings to produce a list of the original objects.

24.8 HDF5 (PyTables)

HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies

**Warning:** As of version 0.15.0, pandas requires PyTables >= 3.0.0. Stores written with prior versions of pandas/PyTables >= 2.3 are fully compatible (this was the previous minimum PyTables required version).

**Warning:** There is a PyTables indexing bug which may appear when querying stores using an index. If you see a subset of results being returned, upgrade to PyTables >= 3.2. Stores created previously will need to be rewritten using the updated version.

**Warning:** As of version 0.17.0, HDFStore will not drop rows that have all missing values by default. Previously, if all values (except the index) were missing, HDFStore would not write those rows to disk.

```python
In [322]: store = pd.HDFStore('store.h5')
In [323]: print(store)
<class 'pandas.io.pytables.HDFStore'>
```
Objects can be written to the file just like adding key-value pairs to a dict:

```python
In [324]: np.random.seed(1234)
In [325]: index = pd.date_range('1/1/2000', periods=8)
In [326]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [327]: df = pd.DataFrame(randn(8, 3), index=index,
 columns=['A', 'B', 'C'])
In [328]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=pd.date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

store.put('s', s) is an equivalent method
In [329]: store['s'] = s
In [330]: store['df'] = df
In [331]: store['wp'] = wp

the type of stored data
In [332]: store.root.wp._v_attrs.pandas_type
Out[332]: 'wide'
In [333]: store
```

In a current or later Python session, you can retrieve stored objects:

```python
store.get('df') is an equivalent method
In [334]: store['df']
Out[334]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 -2.021255
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

dotted (attribute) access provides get as well
In [335]: store.df
```
### 24.8.1 Read/Write API

**HDFStore** supports an top-level API using `read_hdf` for reading and `to_hdf` for writing, similar to how `read_csv` and `to_csv` work. (new in 0.11.0)

```
In [342]: df_tl = pd.DataFrame(dict(A=list(range(5)), B=list(range(5))))

In [343]: df_tl.to_hdf('store_tl.h5', 'table', append=True)

In [344]: pd.read_hdf('store_tl.h5', 'table', where = ['index>2'])
```

Out[344]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
As of version 0.17.0, HDFStore will no longer drop rows that are all missing by default. This behavior can be enabled by setting dropna=True.

```python
In [345]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
 'col2':[1, np.nan, np.nan]})

In [346]: df_with_missing
Out[346]:
 col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [347]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
 format = 'table', mode='w')

In [348]: pd.read_hdf('file.h5', 'df_with_missing')
Out[348]:
 col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [349]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
 format = 'table', mode='w', dropna=True)

In [350]: pd.read_hdf('file.h5', 'df_with_missing')
Out[350]:
 col1 col2
0 0.0 1.0
2 2.0 NaN
```

This is also true for the major axis of a Panel:

```python
In [351]: matrix = [[np.nan, np.nan, np.nan],
 [1,np.nan,np.nan],
 [np.nan, np.nan, np.nan]]

In [352]: panel_with_major_axis_all_missing = pd.Panel(matrix,
 items=['Item1', 'Item2','Item3'],
 major_axis=[1,2],
 minor_axis=['A', 'B', 'C'])

In [353]: panel_with_major_axis_all_missing
Out[353]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 2 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 1 to 2
Minor_axis axis: A to C

In [354]: panel_with_major_axis_all_missing.to_hdf('file.h5', 'panel',
 dropna = True,
 format='table',
```
In [355]: reloaded = pd.read_hdf('file.h5', 'panel')

In [356]: reloaded
Out[356]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 1 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 2 to 2
Minor_axis axis: A to C

24.8.2 Fixed Format

Note: This was prior to 0.13.0 the Storer format.

The examples above show storing using put, which write the HDF5 to PyTables in a fixed array format, called the fixed format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table stores. This format is specified by default when using put or to_hdf or by format='fixed' or format='f'

Warning: A fixed format will raise a TypeError if you try to retrieve using a where.

```
pd.DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')
pd.read_hdf('test_fixed.h5','df',where='index>5')
TypeError: cannot pass a where specification when reading a fixed format.
```

this store must be selected in its entirety

24.8.3 Table Format

HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format='table' or format='t' to append or put or to_hdf

New in version 0.13.

This format can be set as an option as well pd.set_option('io.hdf.default_format','table') to enable put/append/to_hdf to by default store in the table format.

```
In [357]: store = pd.HDFStore('store.h5')
In [358]: df1 = df[0:4]
In [359]: df2 = df[4:]
append data (creates a table automatically)
In [360]: store.append('df', df1)
```
In [361]: store.append('df', df2)

In [362]: store
Out[362]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
\n/df   frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

# select the entire object
In [363]: store.select('df')

→ A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

# the type of stored data
In [364]: store.root.df._v_attrs.pandas_type

Note: You can also create a table by passing format='table' or format='t' to a put operation.

24.8.4 Hierarchical Keys

Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/bah), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified with out the leading '/' and are ALWAYS absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove everything in the sub-store and BELOW, so be careful.

In [365]: store.put('foo/bar/bah', df)
In [366]: store.append('food/orange', df)
In [367]: store.append('food/apple', df)
In [368]: store
Out[368]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
\n/df   frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
→[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
→[index])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
→[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
→[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
→[index])
```python
a list of keys are returned
In [369]: store.keys()
\[/'df', '/food/apple', '/food/orange', '/foo/bar/bah']

remove all nodes under this level
In [370]: store.remove('food')
In [371]: store
Out[371]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->
\[index\])
/foo/bar/bah frame (shape->[8,3])

Warning: Hierarchical keys cannot be retrieved as dotted (attribute) access as described above for items stored under the root node.

In [8]: store.foo.bar.bah
AttributeError: 'HDFStore' object has no attribute 'foo'

you can directly access the actual PyTables node but using the root node
In [9]: store.root.foo.bar.bah
Out[9]:
/foo/bar/bah (Group) ''
 children := ['block0_items' (Array), 'block0_values' (Array), 'axis0' (Array),
 'axis1' (Array)]

Instead, use explicit string based keys
In [372]: store['foo/bar/bah']
Out[372]:
A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109
```

24.8.5 Storing Types

24.8.5.1 Storing Mixed Types in a Table

Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent attempts at appending longer strings will raise a `ValueError`. Passing `min_itemsize={'values': size}` as a parameter to append will set a larger minimum for the string columns. Storing floats, strings, ints, bools, `datetime64` are currently supported. For string
columns, passing nan_rep = 'nan' to append will change the default nan representation on disk (which converts to/from np.nan), this defaults to nan.

```
In [373]: df_mixed = pd.DataFrame({
 'A': randn(8),
 'B': randn(8),
 'C': np.array(randn(8), dtype='float32'),
 'string': 'string',
 'int': 1,
 'bool': True,
 'datetime64': pd.Timestamp('20010102')},
 index=list(range(8))
In [374]: df_mixed.loc[df_mixed.index[3:5], ['A', 'B', 'string', 'datetime64']] = np.nan
In [375]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})
In [376]: df_mixed1 = store.select('df_mixed')
In [377]: df_mixed1
```

```
Out[377]:
A B C bool datetime64 int string
0 0.704721 -1.152659 -0.430096 True 2001-01-02 1 string
1 -0.785435 0.631979 0.767369 True 2001-01-02 1 string
2 0.462060 0.039513 0.767369 True 2001-01-02 1 string
3 NaN NaN 0.270836 True NaT 1 NaN
4 NaN NaN 1.391986 True NaT 1 NaN
5 -0.926254 1.321106 0.079842 True 2001-01-02 1 string
6 2.007843 0.152631 -0.399965 True 2001-01-02 1 string
7 0.226963 0.164530 -1.027851 True 2001-01-02 1 string
```

```
In [378]: df_mixed1.get_dtype_counts()
```

```
Out[378]:

bool 1
datetime64[ns] 1
float32 1
float64 2
int64 1
object 1
dtype: int64
```

```
we have provided a minimum string column size
In [379]: store.root.df_mixed.table
```

```
Out[379]:
/df_mixed/table (Table(8,)) ''

description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
 "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
 "values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
 "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
 "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
 "values_block_5": StringCol(itemsize=50, shape=(1,), dflt=b'', pos=6)
}
byteorder := 'little'
chunkshape := (689,)
autoindex := True
```
24.8.5.2 Storing Multi-Index DataFrames

Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames.

In [380]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                       ['one', 'two', 'three']],
                       labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
                       [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
                       names=['foo', 'bar'])

In [381]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
                          columns=['A', 'B', 'C'])

In [382]: df_mi

Out[382]:
          A       B       C
foo bar
  one  -0.584718  0.816594 -0.081947
  two  -0.344766  0.528288 -1.068989
  three -0.511881  0.291205  0.566534
bar one  0.503592  0.285296  0.484288
  two  1.363482 -0.781105 -0.468018
  baz two 1.224574 -1.281108  0.875476
  three -1.710715 -0.450765  0.749164
qux one -0.203933 -0.182175  0.680656
  two -1.818499  0.047072  0.394844
  three -0.248432 -0.617707 -0.682884

In [383]: store.append('df_mi',df_mi)

In [384]: store.select('df_mi')

Out[384]:
          A       B       C
foo bar
  one  -0.584718  0.816594 -0.081947
  two  -0.344766  0.528288 -1.068989
  three -0.511881  0.291205  0.566534
bar one  0.503592  0.285296  0.484288
  two  1.363482 -0.781105 -0.468018
  baz two 1.224574 -1.281108  0.875476
  three -1.710715 -0.450765  0.749164
qux one -0.203933 -0.182175  0.680656
  two -1.818499  0.047072  0.394844
  three -0.248432 -0.617707 -0.682884

# the levels are automatically included as data columns
In [385]: store.select('df_mi', 'foo=bar')

Out[385]:
          A       B       C
foo bar
  one  -0.584718  0.816594 -0.081947
  two  -0.344766  0.528288 -1.068989
  three -0.511881  0.291205  0.566534
bar one  0.503592  0.285296  0.484288
  two  1.363482 -0.781105 -0.468018
  baz two 1.224574 -1.281108  0.875476
  three -1.710715 -0.450765  0.749164
qux one -0.203933 -0.182175  0.680656
  two -1.818499  0.047072  0.394844
  three -0.248432 -0.617707 -0.682884
24.8.6 Querying

24.8.6.1 Querying a Table

**Warning:** This query capabilities have changed substantially starting in 0.13.0. Queries from prior version are accepted (with a `DeprecationWarning`) printed if it's not string-like.

select and delete operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.

A query is specified using the `Term` class under the hood, as a boolean expression.

- **index** and **columns** are supported indexers of a DataFrame
- **major_axis**, **minor_axis**, and **items** are supported indexers of the Panel
- if **data_columns** are specified, these can be used as additional indexers

Valid comparison operators are:

- `=`, `==`, `!`, `>`, `>=`, `<`, `<=`

Valid boolean expressions are combined with:

- `|` : or
- `&` : and
- `( and )` : for grouping

These rules are similar to how boolean expressions are used in pandas for indexing.

**Note:**

- `=` will be automatically expanded to the comparison operator `==`
- `~` is the not operator, but can only be used in very limited circumstances
- If a list/tuple of expressions is passed they will be combined via `&`

The following are valid expressions:

- `'index>=date'`
- `"columns=['A', 'D']"`
- `"columns in ['A', 'D']"`
- `'columns=A'`
- `'columns==A'`
- `"~(columns=['A','B'])"`
- `'index>df.index[3] & string="bar"'`
- `'(index>df.index[3] & index<=df.index[6]) | string="bar"'`
The indexers are on the left-hand side of the sub-expression:

columns, major_axis, ts

The right-hand side of the sub-expression (after a comparison operator) can be:

- functions that will be evaluated, e.g. `Timestamp('2012-02-01')`
- strings, e.g. "bar"
- date-like, e.g. `20130101`, or "20130101"
- lists, e.g. "[A', 'B']"
- variables that are defined in the local names space, e.g. `date`

Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this

```python
string = "HolyMoly'"
store.select('df', 'index == string')
```

instead of this

```python
string = "HolyMoly'"
store.select('df', 'index == $s' % string)
```

The latter will not work and will raise a `SyntaxError`. Note that there’s a single quote followed by a double quote in the `string` variable.

If you must interpolate, use the '%r' format specifier

```python
store.select('df', 'index == $r' % string)
```

which will quote `string`.

Here are some examples:

```python
In [386]: dfq = pd.DataFrame(randn(10, 4), columns=list('ABCD'), index=pd.date_range('20130101', periods=10))
In [387]: store.append('dfq', dfq, format='table', data_columns=True)
```

Use boolean expressions, with in-line function evaluation.

```python
In [388]: store.select('df', "index>pd.Timestamp('20130104') & columns=['A', 'B']")
Out [388]:
 A B
2013-01-05 1.210384 0.797435
2013-01-06 0.850346 1.176812
2013-01-07 0.984188 -0.121728
2013-01-08 0.796595 -0.474021
2013-01-09 -0.804834 -2.123620
2013-01-10 0.334198 0.536784
```

Use and inline column reference
In [389]: store.select('dfq', where="A>0 or C>0")
Out[389]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.436258</td>
<td>-1.703013</td>
<td>0.393711</td>
<td>-0.479324</td>
</tr>
<tr>
<td>1</td>
<td>-0.299016</td>
<td>0.694103</td>
<td>0.678630</td>
<td>0.239556</td>
</tr>
<tr>
<td>2</td>
<td>0.151227</td>
<td>0.816127</td>
<td>1.893534</td>
<td>0.639633</td>
</tr>
<tr>
<td>3</td>
<td>-0.962029</td>
<td>-2.085266</td>
<td>1.930247</td>
<td>-1.735349</td>
</tr>
<tr>
<td>4</td>
<td>1.210384</td>
<td>0.797435</td>
<td>-0.379811</td>
<td>0.702562</td>
</tr>
<tr>
<td>5</td>
<td>0.984188</td>
<td>-0.121728</td>
<td>2.365769</td>
<td>0.496143</td>
</tr>
<tr>
<td>6</td>
<td>0.796595</td>
<td>-0.474021</td>
<td>-0.056696</td>
<td>1.357797</td>
</tr>
<tr>
<td>7</td>
<td>0.334198</td>
<td>0.536784</td>
<td>-0.743830</td>
<td>-0.320204</td>
</tr>
</tbody>
</table>

Works with a Panel as well.

In [390]: store.append('wp', wp)
In [391]: store
Out[391]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],[A,B,C,D])
/foo/bar/bah frame (shape->[8,3])
/wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])

In [392]: store.select('wp', "major_axis>pd.Timestamp('20000102') & minor_axis=['A', 'B']")

Out[392]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

The columns keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a 'columns=list_of_columns_to_filter':

In [393]: store.select('df', "columns=['A', 'B']")
Out[393]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.887163</td>
<td>0.859588</td>
</tr>
<tr>
<td>1</td>
<td>0.015696</td>
<td>-2.242685</td>
</tr>
<tr>
<td>2</td>
<td>0.991946</td>
<td>0.953324</td>
</tr>
<tr>
<td>3</td>
<td>-0.334077</td>
<td>0.002118</td>
</tr>
<tr>
<td>4</td>
<td>0.289092</td>
<td>1.321158</td>
</tr>
<tr>
<td>5</td>
<td>-0.202646</td>
<td>-0.655969</td>
</tr>
<tr>
<td>6</td>
<td>0.553439</td>
<td>1.318152</td>
</tr>
<tr>
<td>7</td>
<td>0.675554</td>
<td>-1.817027</td>
</tr>
</tbody>
</table>
start and stop parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table.

```
this is effectively what the storage of a Panel looks like
In [394]: wp.to_frame()
Out[394]:
 Item1 Item2
major minor
2000-01-01 A 1.058969 0.215269
 B -0.397840 0.841009
 C 0.337438 -1.445810
 D 1.047579 -1.401973
2000-01-02 A 1.045938 -0.100918
 B 0.863717 -0.548242
 C -0.122092 0.144620
...
2000-01-04 B 0.036142 0.307969
 C -2.074978 -0.208499
 D 0.247792 1.033801
2000-01-05 A -0.897157 -2.400454
 B -0.136795 2.030604
 C 0.018289 -1.142631
 D 0.755414 0.211883
[20 rows x 2 columns]
```

# limiting the search
```
In [395]: store.select('wp','major_axis>20000102 & minor_axis=['A','B']", start=0, stop=10)
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
In [398]:
dftd['C'] = dftd['A'] - dftd['B']

In [399]:
dftd

Out[399]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-1 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-2 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-3 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-4 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-5 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-6 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-7 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-8 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-9 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-10 days+23:59:50</td>
<td></td>
</tr>
</tbody>
</table>

In [400]:
store.append('dftd', dftd, data_columns=True)

In [401]:
store.select('dftd','C<'-3.5D')

Out[401]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-5 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-6 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-7 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-8 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-9 days +23:59:50</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 00:00:10</td>
<td>-10 days+23:59:50</td>
<td></td>
</tr>
</tbody>
</table>

24.8.6.3 Indexing

You can create/modify an index for a table with create_table_index after data is already in the table (after and append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select with the indexed dimension as the where.

Note: Indexes are automagically created (starting 0.10.1) on the indexables and any data columns you specify. This behavior can be turned off by passing index=False to append.

we have automagically already created an index (in the first section)
In [402]:
i = store.root.df.table.cols.index.index

In [403]:
i.optlevel, i.kind

Out[403]:
(6, 'medium')

change an index by passing new parameters
In [404]:
store.create_table_index('df', optlevel=9, kind='full')

In [405]:
i = store.root.df.table.cols.index.index

In [406]:
i.optlevel, i.kind

Out[406]:
(9, 'full')

Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.

24.8. HDF5 (PyTables) 1065
```
In [407]: df_1 = pd.DataFrame(randn(10,2),columns=list('AB'))
In [408]: df_2 = pd.DataFrame(randn(10,2),columns=list('AB'))
In [409]: st = pd.HDFStore('appends.h5',mode='w')
In [410]: st.append('df', df_1, data_columns=['B'], index=False)
In [411]: st.append('df', df_2, data_columns=['B'], index=False)
In [412]: st.get_storer('df').table
Out[412]:
/df/table (Table(20,)) ''
    description := {
        "index": Int64Col(shape=(), dflt=0, pos=0),
        "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
        "B": Float64Col(shape=(), dflt=0.0, pos=2)}
    byteorder := 'little'
    chunkshape := (2730,)
```

Then create the index when finished appending.

```
In [413]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full')
In [414]: st.get_storer('df').table
Out[414]:
/df/table (Table(20,)) ''
    description := {
        "index": Int64Col(shape=(), dflt=0, pos=0),
        "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
        "B": Float64Col(shape=(), dflt=0.0, pos=2)}
    byteorder := 'little'
    chunkshape := (2730,)
    autoindex := True
    colindexes := {
        "B": Index(9, full, shuffle, zlib(1)).is_csi=True}
In [415]: st.close()
```

See here for how to create a completely-sorted-index (CSI) on an existing store.

24.8.6.4 Query via Data Columns

You can designate (and index) certain columns that you want to be able to perform queries (other than the *indexable* columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify `data_columns = True` to force all columns to be `data_columns`

```
In [416]: df_dc = df.copy()
In [417]: df_dc['string'] = 'foo'
In [418]: df_dc.loc[df_dc.index[4:6], 'string'] = np.nan
In [419]: df_dc.loc[df_dc.index[7:9], 'string'] = 'bar'
In [420]: df_dc['string2'] = 'cool'
```
In [421]: df_dc.loc[df_dc.index[1:3], ['B', 'C']] = 1.0

In [422]: df_dc

Out[422]:
 A B C string string2
0 2000-01-01 0.887163 -0.636524 foo cool
1 2000-01-02 0.015696 1.000000 foo cool
2 2000-01-03 0.991946 1.000000 foo cool
3 2000-01-04 -0.334077 0.405453 foo cool
4 2000-01-05 0.289092 -1.546906 NaN cool
5 2000-01-06 -0.202646 0.193421 NaN cool
6 2000-01-07 0.553439 -0.469305 foo cool
7 2000-01-08 0.675554 -0.183109 bar cool

on-disk operations
In [423]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2'])

In [424]: store.select('df_dc', where='B>0')

Out[424]:
 A B C string string2
0 2000-01-01 0.887163 -0.636524 foo cool
1 2000-01-02 0.015696 1.000000 foo cool
2 2000-01-03 0.991946 1.000000 foo cool
3 2000-01-04 -0.334077 0.405453 foo cool
4 2000-01-05 0.289092 -1.546906 NaN cool
5 2000-01-06 -0.202646 0.193421 NaN cool
6 2000-01-07 0.553439 -0.469305 foo cool
7 2000-01-08 0.675554 -0.183109 bar cool

getting creative
In [425]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')

In [426]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]

In [427]: store.root.df_dc.table

24.8. HDF5 (PyTables) 1067
There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!)

24.8.6.5 Iterator

Starting in 0.11.0, you can pass, iterator=True or chunksize=number_in_a_chunk to select and select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk.

```python
In [428]: for df in store.select('df', chunksize=3):
....:     print(df)
....:
   A   B   C
2000-01-01  0.887163  0.859588 -0.636524
2000-01-02  0.015696 -2.242685  1.150036
2000-01-03  0.991946  0.953324 -2.021255
    A   B   C
2000-01-04 -0.334077  0.002118  0.405453
2000-01-05  0.289092  1.321158 -1.546906
2000-01-06 -0.202646 -0.655969  0.193421
    A   B   C
2000-01-07  0.553439  1.318152 -0.469305
2000-01-08  0.675554 -1.817027 -0.183109
```

Note: New in version 0.12.0.

You can also use the iterator with `read_hdf` which will open, then automatically close the store when finished iterating.

```python
for df in pd.read_hdf('store.h5','df', chunksize=3):
    print(df)
```

Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.

Here is a recipe for generating a query and using it to create equal sized return chunks.

```python
In [429]: dfeq = pd.DataFrame({'number': np.arange(1,11)})
In [430]: dfeq
Out[430]:
    number
0      1
1      2
```
24.8.6.6 Advanced Queries

Select a Single Column

To retrieve a single indexable or data column, use the method `select_column`. This will, for example, enable you to get the index very quickly. These return a `Series` of the result, indexed by the row number. These do not currently accept the `where` selector.

```
In [436]: store.select_column('df_dc', 'index')
Out[436]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
7 2000-01-08
Name: index, dtype: datetime64[ns]
```

```
In [437]: store.select_column('df_dc', 'string')
```
Selecting coordinates

Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an \texttt{Int64Index} of the resulting locations. These coordinates can also be passed to subsequent \texttt{where} operations.

In [438]: df_coord = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000))

In [439]: store.append('df_coord',df_coord)

In [440]: c = store.select_as_coordinates('df_coord','index>20020101')

In [441]: c.summary()
Out[441]: 'Int64Index: 268 entries, 732 to 999'

In [442]: store.select('df_coord',where=c)

Selecting using a where mask

Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index from an indexing operation. This example selects the months of a datetimeindex which are 5.

In [443]: df_mask = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000))

In [444]: store.append('df_mask',df_mask)

In [445]: c = store.select_column('df_mask','index')

In [446]: where = c[pd.DatetimeIndex(c).month==5].index

In [447]: store.select_column('df_mask',where=where)
In [447]: store.select('df_mask', where=where)
Out[447]:
 0 1
2000-05-01 -1.006245 -0.616759
2000-05-02 0.218940 0.717838
2000-05-03 0.013333 1.348060
2000-05-04 0.662176 -1.050645
2000-05-05 -1.034870 -0.243242
2000-05-06 -0.753366 -1.454329
2000-05-07 -1.022920 -0.476989
...
2002-05-25 -0.509090 -0.389376
2002-05-26 0.150674 1.164337
2002-05-27 -0.332944 0.115181
2002-05-28 -1.048127 -0.605733
2002-05-29 1.418754 -0.442835
2002-05-30 -0.433200 0.835001
2002-05-31 -1.041278 1.401811
[93 rows x 2 columns]

Storer Object

If you want to inspect the stored object, retrieve via get_storer. You could use this programmatically to say get the number of rows in an object.

In [448]: store.get_storer('df_dc').nrows
Out[448]: 8

24.8.6.7 Multiple Table Queries

New in 0.10.1 are the methods append_to_multiple and select_as_multiple, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector table’s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.

The append_to_multiple method splits a given single DataFrame into multiple tables according to d, a dictionary that maps the table names to a list of ‘columns’ you want in that table. If None is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument selector defines which table is the selector table (which you can make queries from). The argument dropna will drop rows from the input DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.Nan, that row will be dropped from all tables.

If dropna is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that entirely np.Nan rows are not written to the HDFStore, so if you choose to call dropna=False, some tables may have more rows than others, and therefore select_as_multiple may not work or it may return unexpected results.

In [449]: df_mt = pd.DataFrame(randn(8, 6), index=pd.date_range('1/1/2000', periods=8), columns=['A', 'B', 'C', 'D', 'E', 'F'])
In [450]: df_mt['foo'] = 'bar'

In [451]: df_mt.loc[df_mt.index[1], ('A', 'B')] = np.nan

you can also create the tables individually
In [452]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None },
.....:
 df_mt, selector='df1_mt')
.....:

In [453]: store
Out[453]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->2,indexers->[index],dc->[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[A,B,C,D])
/dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C])
/foo/bar/bah frame (shape->[8,3])
/wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])

individual tables were created
In [454]: store.select('df1_mt')

A B
2000-01-01 0.714697 0.318215
2000-01-02 NaN NaN
2000-01-03 -0.086919 0.416905
2000-01-04 0.489131 -0.253340
2000-01-05 -0.382952 -0.397373
2000-01-06 0.538116 0.226388
2000-01-07 -2.073479 -0.115926
2000-01-08 -0.695400 0.402493

In [455]: store.select('df2_mt')

C D E F foo

24.8.7 Delete from a Table

You can delete from a table selectively by specifying a `where`. In deleting rows, it is important to understand the `PyTables` deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (`Panel` and `Panel4D`). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the first of the indexables.

Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with dates in the `major_axis` and ids in the `minor_axis`. The data is then interleaved like this:

- date_1 - id_1 - id_2 - .. - id_n
- date_2 - id_1 - .. - id_n

It should be clear that a delete operation on the `major_axis` will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the `minor_axis` will be very expensive. In this case it would almost certainly be faster to rewrite the table using a `where` that selects all but the missing data.

```python
# returns the number of rows deleted
In [457]: store.remove('wp', 'major_axis>20000102')
Out[457]: 12

In [458]: store.select('wp')
```

Warning: Please note that HDF5 **DOES NOT RECLAIM SPACE** in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again, **WILL TEND TO INCREASE THE FILE SIZE**.

To repack and clean the file, use `ptrepack`
24.8.8 Notes & Caveats

24.8.8.1 Compression

PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables.

- Pass `complevel=int` for a compression level (1-9, with 0 being no compression, and the default)
- Pass `complib=lib` where `lib` is any of `zlib`, `bzip2`, `lzo`, `blosc` for whichever compression library you prefer.

HDFStore will use the file based compression scheme if no overriding `complib` or `complevel` options are provided. `blosc` offers very fast compression, and is my most used. Note that `lzo` and `bzip2` may not be installed (by Python) by default.

Compression for all objects within the file

```python
store_compressed = pd.HDFStore('store_compressed.h5', complevel=9, complib='blosc')
```

Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing `complevel=0`

```python
store.append('df', df, complib='zlib', complevel=5)
```

24.8.8.2 ptrepack

PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables utility `ptrepack`. In addition, `ptrepack` can change compression levels after the fact.

```bash
ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
```

Furthermore `ptrepack in.h5 out.h5` will repack the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the `copy` method.

24.8.8.3 Caveats

Warning: HDFStore is not-threadsafe for writing. The underlying PyTables only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the [GH2397](https://github.com/pandas-dev/pandas/issues/2397) for more information.

- If you use locks to manage write access between multiple processes, you may want to use `fsync()` before releasing write locks. For convenience you can use `store.flush(fsync=True)` to do this for you.
- Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended
- Be aware that timezones (e.g., `pytz.timezone('US/Eastern')`) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use `tz_convert` with the updated timezone definition.
Warning: PyTables will show a NaturalNameWarning if a column name cannot be used as an attribute selector. Natural identifiers contain only letters, numbers, and underscores, and may not begin with a number. Other identifiers cannot be used in a where clause and are generally a bad idea.

24.8.9 DataTypes

HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known to work:

<table>
<thead>
<tr>
<th>Type</th>
<th>Represents missing values</th>
</tr>
</thead>
<tbody>
<tr>
<td>floating: float64, float32, float16</td>
<td>np.nan</td>
</tr>
<tr>
<td>integer: int64, int32, int8, uint64, uint32, uint8</td>
<td></td>
</tr>
<tr>
<td>boolean</td>
<td>NaT</td>
</tr>
<tr>
<td>datetime64[ns]</td>
<td>NaT</td>
</tr>
<tr>
<td>timedelta64[ns]</td>
<td>NaT</td>
</tr>
<tr>
<td>categorical: see the section below</td>
<td></td>
</tr>
<tr>
<td>object: strings</td>
<td>np.nan</td>
</tr>
</tbody>
</table>

Unicode columns are not supported, and WILL FAIL.

24.8.9.1 Categorical Data

New in version 0.15.2.

Writing data to a HDFStore that contains a category dtype was implemented in 0.15.2. Queries work the same as if it was an object array. However, the category dtyped data is stored in a more efficient manner.

```python
In [459]: dfcat = pd.DataFrame({'A': pd.Series(list('aabbcdba')).astype('category'),
                           'B': np.random.randn(8)})

In [460]: dfcat
Out[460]:
   A  B
0  a  0.603273
1  a  0.262554
2  b -0.979586
3  b  2.132387
4  c  0.892485
5  d  1.996474
6  b  0.231425
7  a  0.980070

In [461]: dfcat.dtypes
Out[461]:
   A  category
   B  float64

dtype: object
```

In [462]: cstore = pd.HDFStore('cats.h5', mode='w')

In [463]: cstore.append('dfcat', dfcat, format='table', data_columns=['A'])

In [464]: result = cstore.select('dfcat', where='A in [''b''', '''c'']')
In [465]: result
Out[465]:
 A B
2 b -0.979586
3 b 2.132387
4 c 0.892485
6 b 0.231425

In [466]: result.dtypes

 A category
 B float64

Warning: The format of the Categorical is readable by prior versions of pandas (< 0.15.2), but will retrieve the data as an integer based column (e.g. the codes). However, the categories can be retrieved but require the user to select them manually using the explicit meta path.

The data is stored like so:

In [467]: cstore
Out[467]:
<class 'pandas.io.pytables.HDFStore'>
File path: cats.h5
/dfcat frame_table (typ->appendable,nrows->8,ncols->2, indexers->[index],dc->[A])
/dfcat/meta/A/meta series_table (typ->appendable,nrows->4,ncols->1, indexers->[index],dc->[values])

to get the categories
In [468]: cstore.select('dfcat/meta/A/meta')

 0 a
 1 b
 2 c
 3 d
dtype: object

24.8.9.2 String Columns

min_itemsize
The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.

Pass min_itemsize on the first table creation to a-priori specify the minimum length of a particular string column. min_itemsize can be an integer, or a dict mapping a column name to an integer. You can pass values as a key to allow all indexables or data_columns to have this min_itemsize.
Starting in 0.11.0, passing a `min_itemsize` dict will cause all passed columns to be created as `data_columns` automatically.

Note: If you are not passing any `data_columns`, then the `min_itemsize` will be the maximum of the length of any string passed.

```python
In [469]: dfs = pd.DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))
In [470]: dfs
Out[470]:
   A   B
0  foo  bar
1  foo  bar
2  foo  bar
3  foo  bar
4  foo  bar
# A and B have a size of 30
In [471]: store.append('dfs', dfs, min_itemsize = 30)
In [472]: store.get_storer('dfs').table
Out[472]:
  /dfs/table (Table(5,)) ''
  description := {
      "index": Int64Col(shape=(), dflt=0, pos=0),
      "values_block_0": StringCol(itemsize=30, shape=(2,), dflt=b'', pos=1)
  }
  byteorder := 'little'
  chunkshape := (963,)
  autoindex := True
  colindexes := {
      "index": Index(6, medium, shuffle, zlib(1)).is_csi=False
  }

# A is created as a data_column with a size of 30
# B is size is calculated
In [473]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 })
In [474]: store.get_storer('dfs2').table
Out[474]:
  /dfs2/table (Table(5,)) ''
  description := {
      "index": Int64Col(shape=(), dflt=0, pos=0),
      "values_block_0": StringCol(itemsize=3, shape=(1,), dflt=b'', pos=1),
      "A": StringCol(itemsize=30, shape=(), dflt=b'', pos=2)
  }
  byteorder := 'little'
  chunkshape := (1598,)
  autoindex := True
  colindexes := {
      "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
      "A": Index(6, medium, shuffle, zlib(1)).is_csi=False
  }
```

nan_rep

String columns will serialize a np.nan (a missing value) with the `nan_rep` string representation. This defaults to the string value `nan`. You could inadvertently turn an actual `nan` value into a missing value.

```python
In [475]: dfss = pd.DataFrame(dict(A = ['foo','bar','nan']))
```
24.8.10 External Compatibility

HDFStore writes table format objects in specific formats suitable for producing loss-less round trips to pandas objects. For external compatibility, HDFStore can read native PyTables format tables.

It is possible to write an HDFStore object that can easily be imported into R using the rhdf5 library (Package website). Create a table format store like this:
In R this file can be read into a data.frame object using the rhdf5 library. The following example function reads the corresponding column names and data values from the values and assembles them into a data.frame:

```r
# Load values and column names for all datasets from corresponding nodes and # insert them into one data.frame object.
library(rhdf5)
loadhdf5data <- function(h5File) {
    listing <- h5ls(h5File)
    # Find all data nodes, values are stored in *_values and corresponding column # titles in *_items
    data_nodes <- grep("_values", listing$name)
    name_nodes <- grep("_items", listing$name)
    data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep="/")
    name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep="/")
    columns = list()
    for (idx in seq(data_paths)) {
        # NOTE: matrices returned by h5read have to be transposed to obtain # required Fortran order!
        data <- data.frame(t(h5read(h5File, data_paths[idx])))
        names <- t(h5read(h5File, name_paths[idx]))
        entry <- data.frame(data)
        colnames(entry) <- names
        columns <- append(columns, entry)
    }
    data <- data.frame(columns)
    return(data)
}
```

Now you can import the DataFrame into R:

```r
> data = loadhdf5data("transfer.hdf5")
> head(data)
 first  second  class
1 0.4170220047 0.3266449 0
2 0.7203244934 0.5270581 0
3 0.0001143748 0.8859421 1
4 0.3023325726 0.3572698 1
5 0.1467558908 0.9085352 1
6 0.0923385948 0.6233601 1
```

Note: The R function lists the entire HDF5 file's contents and assembles the data.frame object from all matching nodes, so use this only as a starting point if you have stored multiple DataFrame objects to a single HDF5 file.
24.8.11 Backwards Compatibility

0.10.1 of HDFStore can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. HDFStore will issue a warning if you try to use a legacy-format file. You must read in the entire file and write it out using the new format, using the method copy to take advantage of the updates. The group attribute pandas_version contains the version information. copy takes a number of options, please see the docstring.

```python
# a legacy store
In [487]: legacy_store = pd.HDFStore(legacy_file_path, 'r')

In [488]: legacy_store
Out[488]:
<class 'pandas.io.pytables.HDFStore'>
File path: /Users/taugspurger/sandbox/pandas/doc/source/_static/legacy_0.10.h5
  /a     series   (shape->[30])
  /b     frame    (shape->[30,4])
  /df1_mixed frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index])
  /foo/bar wide  (shape->[3,30,4])
  /p1_mixed wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis])
  /p4d_mixed ndim_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis])

# copy (and return the new handle)
In [489]: new_store = legacy_store.copy('store_new.h5')

In [490]: new_store
Out[490]:
<class 'pandas.io.pytables.HDFStore'>
File path: store_new.h5
  /a     series   (shape->[30])
  /b     frame    (shape->[30,4])
  /df1_mixed frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index])
  /foo/bar wide  (shape->[3,30,4])
  /p1_mixed wide_table (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis])
  /p4d_mixed wide_table (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis])

In [491]: new_store.close()
```

24.8.12 Performance

- tables format come with a writing performance penalty as compared to fixed stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis.
You can pass chunksize=<int> to append, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing.

You can pass expectedrows=<int> to the first append, to set the TOTAL number of expected rows that PyTables will expected. This will optimize read/write performance.

Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)

A PerformanceWarning will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions.

24.8.13 Experimental

HDFStore supports Panel4D storage.

```python
In [492]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
                      major_axis=pd.date_range('1/1/2000', periods=5),
                      minor_axis=['A', 'B', 'C', 'D'])

In [493]: p4d = pd.Panel4D({ 'l1' : wp })

In [494]: p4d
Out[494]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: 11 to 11
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

In [495]: store.append('p4d', p4d)

In [496]: store
Out[496]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
  /df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
  /df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
  /df Coord frame_table (typ-> appendable,nrows->1000,ncols->2,indexers->[index])
  /df dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
  /df dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
  /df mi frame_table (typ->appendable,nrows->10,ncols->5,indexers->[index])
  /df mi->[index] frame_table (typ->appendable,nrows->10,ncols->5,indexers->[index])
  /df mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
  /df mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
  /df equal frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index])
  /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index])
```

24.8. HDF5 (PyTables)
These, by default, index the three axes items, major_axis, minor_axis. On an AppendableTable it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. Pass the axes keyword with a list of dimensions (currently must by exactly 1 less than the total dimensions of the object). This cannot be changed after table creation.

```
In [497]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis'])
```

```
In [498]: store.select('p4d2', where='labels=l1 and items=Item1 and minor_axis=A')
```

```
Out [498]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 1 (labels) x 1 (items) x 5 (major_axis) x 1 (minor_axis)
Labels axis: l1 to l1
Items axis: Item1 to Item1
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to A
```

24.9 Feather

New in version 0.20.0.

Feather provides binary columnar serialization for data frames. It is designed to make reading and writing data frames efficient, and to make sharing data across data analysis languages easy.

Feather is designed to faithfully serialize and de-serialize DataFrames, supporting all of the pandas dtypes, including extension dtypes such as categorical and datetime with tz.

Several caveats.

- This is a newer library, and the format, though stable, is not guaranteed to be backward compatible to the earlier versions.
- The format will NOT write an Index, or MultiIndex for the DataFrame and will raise an error if a non-default one is provided. You can simply .reset_index() in order to store the index.
- Duplicate column names and non-string columns names are not supported
- Non supported types include Period and actual python object types. These will raise a helpful error message on an attempt at serialization.

See the Full Documentation
In [499]: df = pd.DataFrame({'a': list('abc'),
 'b': list(range(1, 4)),
 'c': np.arange(3, 6).astype('uint8'),
 'd': np.arange(4.0, 7.0, dtype='float64'),
 'e': [True, False, True],
 'f': pd.Categorical(list('abc')),
 'g': pd.date_range('20130101', periods=3),
 'h': pd.date_range('20130101', periods=3, tz='US/Eastern'),
 'i': pd.date_range('20130101', periods=3, freq='ns')})

In [500]: df
Out[500]:
\| a	b	c	d	e	f	g	h	i \\
\| a | 1 | 3 | 4.0 | True | a | 2013-01-01 00:00:00-05:00 | 2013-01-01 |
\| b | 2 | 4 | 5.0 | False | b | 2013-01-02 00:00:00-05:00 | 2013-01-01 |
\| c | 3 | 5 | 6.0 | True | c | 2013-01-03 00:00:00-05:00 | 2013-01-01 |

In [501]: df.dtypes
Out[501]:
\| a | object \\
\| b | int64 \\
\| c | uint8 \\
\| d | float64 \\
\| e | bool \\
\| f | category \\
\| g | datetime64[ns] \\
\| h | datetime64[ns, US/Eastern] \\
\| i | datetime64[ns] \\

Write to a feather file.

In [502]: df.to_feather('example.feather')

Read from a feather file.

In [503]: result = pd.read_feather('example.feather')

In [504]: result
Out[504]:
\| a	b	c	d	e	f	g	h	i \\
\| a | 1 | 3 | 4.0 | True | a | 2013-01-01 00:00:00-05:00 | 2013-01-01 |
\| b | 2 | 4 | 5.0 | False | b | 2013-01-02 00:00:00-05:00 | 2013-01-01 |
\| c | 3 | 5 | 6.0 | True | c | 2013-01-03 00:00:00-05:00 | 2013-01-01 |

we preserve dtypes
In [505]: result.dtypes
Out[505]:
\| a | object \\
\| b | int64 \\
\| c | uint8 \\
\| d | float64 \\
\| e | bool \\
\| f | category

24.9. Feather
24.10 SQL Queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed. In addition you will need a driver library for your database. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for MySQL. For SQLite this is included in Python’s standard library by default. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs.

New in version 0.14.0.

If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read_sql_table(table_name, con[, schema, ...])</code></td>
<td>Read SQL database table into a DataFrame.</td>
</tr>
<tr>
<td><code>read_sql_query(sql, con[, index_col, ...])</code></td>
<td>Read SQL query into a DataFrame.</td>
</tr>
<tr>
<td><code>read_sql(sql, con[, index_col, ...])</code></td>
<td>Read SQL query or database table into a DataFrame.</td>
</tr>
<tr>
<td><code>DataFrame.to_sql(name, con[, flavor, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
</tbody>
</table>

24.10.1 pandas.read_sql_table

`pandas.read_sql_table(table_name, con[, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None])`

Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections.

Parameters

- **table_name**: string
 - Name of SQL table in database

- **con**: SQLAlchemy connectable (or database string URI)
 - Sqlite DBAPI connection mode not supported

- **schema**: string, default None
 - Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default).

- **index_col**: string or list of strings, optional, default: None
 - Column(s) to set as index(MultiIndex)

- **coerce_float**: boolean, default True
 - Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of \{column_name: format string\} where format string is strftime compatible in case of parsing string times or is one of \{D, s, ns, ms, us\} in case of parsing integer timestamps
- Dict of \{column_name: arg dict\}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns : list, default: None
- List of column names to select from sql table

chunksize : int, default None
- If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame

See also:

read_sql_query Read SQL query into a DataFrame.

Notes

Any datetime values with time zone information will be converted to UTC

24.10.2 pandas.read_sql_query

pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None)

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col parameter to use one of the columns as the index, otherwise default integer index will be used.

Parameters sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed.

con : SQLAlchemy connectable(engine/connection) or database string URI
- or sqlite3 DBAPI2 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col : string or list of strings, optional, default: None
- Column(s) to set as index(MultiIndex)

coerce_float : boolean, default True
- Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used to pass parameters is
database driver dependent. Check your database driver documentation for which of the
five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2,
uses %%(name)s so use params={‘name’ : ‘value’}

parse_dates: list or dict, default: None

- List of column names to parse as dates
- Dict of {column_name: format string} where format string is strftime compat-
 ible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer
timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword
 arguments of pandas.to_datetime() Especially useful with databases without native
 Datetime support, such as SQLite

chunksize: int, default None

If specified, return an iterator where chunksize is the number of rows to include in each
chunk.

Returns DataFrame

See also

read_sql_table Read SQL database table into a DataFrame

read_sql

Notes

Any datetime values with time zone information parsed via the parse_dates parameter will be converted to UTC

24.10.3 pandas.read_sql

pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None,
columns=None, chunksize=None)

Read SQL query or database table into a DataFrame.

Parameters

- **sql**: string SQL query or SQLAlchemy Selectable (select or text object)
 to be executed, or database table name.
- **con**: SQLAlchemy connectable(engine/connection) or database string URI
 or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use
 any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- **index_col**: string or list of strings, optional, default: None
 Column(s) to set as index(MultiIndex)
- **coerce_float**: boolean, default True
 Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to
 floating point, useful for SQL result sets
- **params**: list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}

parse_dates : list or dict, default: None

- List of column names to parse as dates
- Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns : list, default: None

List of column names to select from sql table (only used when reading a table).

chunksize : int, default None

If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame

See also:

read_sql_table Read SQL database table into a DataFrame

read_sql_query Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here.

24.10.4 pandas.DataFrame.to_sql

DataFrame.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)

Write records stored in a DataFrame to a SQL database.

Parameters

- **name** : string
 Name of SQL table
- **con** : SQLAlchemy engine or DBAPI2 connection (legacy mode)

 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **flavor** : ‘sqlite’, default None

 DEPRECATED: this parameter will be removed in a future version, as ‘sqlite’ is the only supported option if SQLAlchemy is not installed.
schema : string, default None

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default 'fail'

- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index : boolean, default True

Write DataFrame index as a column.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the
index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows
will be written at once.

dtype : dict of column name to SQL type, default None

Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy
type, or a string for sqlite3 fallback connection.

Note: The function `read_sql()` is a convenience wrapper around `read_sql_table()` and
`read_sql_query()` (and for backward compatibility) and will delegate to specific function depending on the
provided input (database table name or sql query). Table names do not need to be quoted if they have special charac-
ters.

In the following example, we use the SQLite SQL database engine. You can use a temporary SQLite database where
data are stored in “memory”.

To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database
URI. You only need to create the engine once per database you are connecting to. For more information on
`create_engine()` and the URI formatting, see the examples below and the SQLAlchemy documentation

```python
In [506]: from sqlalchemy import create_engine

# Create your engine.
In [507]: engine = create_engine('sqlite:///::memory:)
```

If you want to manage your own connections you can pass one of those instead:

```python
with engine.connect() as conn, conn.begin():
    data = pd.read_sql_table('data', conn)
```

24.10.5 Writing DataFrames

Assuming the following data is in a DataFrame `data`, we can insert it into the database using `to_sql()`.
With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the \texttt{chunksize} parameter when calling \texttt{to_sql}. For example, the following writes data to the database in batches of 1000 rows at a time:

\begin{verbatim}
In [509]: data.to_sql('data_chunked', engine, chunksize=1000)
\end{verbatim}

24.10.5.1 SQL data types

\texttt{to_sql()} will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype \texttt{object}, pandas will try to infer the data type.

You can always override the default type by specifying the desired SQL type of any of the columns by using the \texttt{dtype} argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy \texttt{String} type instead of the default \texttt{Text} type for string columns:

\begin{verbatim}
In [510]: from sqlalchemy.types import String

In [511]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})
\end{verbatim}

\textbf{Note:} Due to the limited support for timedelta’s in the different database flavors, columns with type \texttt{timedelta64} will be written as integer values as nanoseconds to the database and a warning will be raised.

\textbf{Note:} Columns of category dtype will be converted to the dense representation as you would get with np. asarray(categorical) (e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does \textbf{not} generate a categorical.

24.10.6 Reading Tables

\texttt{read_sql_table()} will read a database table given the table name and optionally a subset of columns to read.

\textbf{Note:} In order to use \texttt{read_sql_table()}, you \textbf{must} have the SQLAlchemy optional dependency installed.

\begin{verbatim}
In [512]: pd.read_sql_table('data', engine)
Out[512]:
 index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 2.57 True
1 1 42 2010-10-19 Y -12.40 False
2 2 63 2010-10-20 Z 5.73 True
\end{verbatim}

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.
In [513]: pd.read_sql_table('data', engine, index_col='id')
Out[513]:

<table>
<thead>
<tr>
<th></th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2010-10-18</td>
<td>X</td>
<td>27.50</td>
</tr>
<tr>
<td>1</td>
<td>2010-10-19</td>
<td>Y</td>
<td>-12.50</td>
</tr>
<tr>
<td>2</td>
<td>2010-10-20</td>
<td>Z</td>
<td>5.73</td>
</tr>
</tbody>
</table>

In [514]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])

<table>
<thead>
<tr>
<th></th>
<th>Col_1</th>
<th>Col_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>27.50</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>-12.50</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>5.73</td>
</tr>
</tbody>
</table>

And you can explicitly force columns to be parsed as dates:

In [515]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[515]:

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>2010-10-18</td>
<td>X</td>
<td>27.50</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>2010-10-19</td>
<td>Y</td>
<td>-12.50</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>2010-10-20</td>
<td>Z</td>
<td>5.73</td>
</tr>
</tbody>
</table>

If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime():

```python
pd.read_sql_table('data', engine, parse_dates=['Date': '%Y-%m-%d'])
pd.read_sql_table('data', engine, parse_dates=['Date': {'format': '%Y-%m-%d %H:%M:%S'}])
```

You can check if a table exists using has_table().

24.10.7 Schema support

New in version 0.15.0.

Reading from and writing to different schema’s is supported through the schema keyword in the read_sql_table() and to_sql() functions. Note however that this depends on the database flavor (sqlite does not have schema’s). For example:

```python
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')
```

24.10.8 Querying

You can query using raw SQL in the read_sql_query() function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.

In [516]: pd.read_sql_query('SELECT * FROM data', engine)
Out[516]:

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td>2010-10-18</td>
<td>X</td>
<td>27.50</td>
</tr>
</tbody>
</table>
Of course, you can specify a more “complex” query.

```python
In [517]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;",
   engine)
Out[517]:
       id  Col_1  Col_2
    0   42      Y   -12.5
```

The `read_sql_query()` function supports a `chunksize` argument. Specifying this will return an iterator through chunks of the query result:

```python
In [518]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))
In [519]: df.to_sql('data_chunks', engine, index=False)
In [520]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine,
   chunksize=5):
    ...:     print(chunk)
    ...:
     a  b  c
 0  0.700399 -0.203394  0.242669
 1  0.201830  0.661020  1.792158
 2 -0.120465 -1.233121 -1.182318
 3 -0.665755 -1.674196  0.825030
 4 -0.498214 -0.310985 -0.001891
   a  b  c
 0  1.396620 -0.861316  0.674712
 1  0.618539 -0.443172  1.810535
 2  1.305727 -0.344987 -0.230840
 3 -2.793085  1.937529  0.366332
 4 -1.044589  2.051173  0.585662
   a  b  c
 0  0.429526 -0.606998  0.106223
 1  1.525680  0.795026 -0.374438
 2  0.134048  1.202055  0.284748
 3  0.262467  0.276499 -0.733272
 4  0.836005  1.543359  0.758806
   a  b  c
 0  0.884909 -0.877282 -0.867787
 1 -1.440876  1.232253 -0.254180
 2  1.399844 -0.781912 -0.437509
 3  0.095425  0.921450  0.060750
 4  0.211125  0.016528  0.177188
```

You can also run a plain query without creating a dataframe with `execute()`. This is useful for queries that don’t return values, such as INSERT. This is functionally equivalent to calling `execute` on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.

```python
from pandas.io import sql
sql.execute("SELECT * FROM table_name", engine)
sql.execute("INSERT INTO table_name VALUES(?, ?, ?)", engine, params=(["id", 1, 12.2, True]))
```
24.10.9 Engine connection examples

To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.

```python
from sqlalchemy import create_engine

engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
engine = create_engine('mssql+pyodbc://mydsn')

# sqlite://<nohostname>/<path>
# where <path> is relative:
engine = create_engine('sqlite:///foo.db')

# or absolute, starting with a slash:
engine = create_engine('sqlite:///absolute/path/to/foo.db')
```

For more information see the examples the SQLAlchemy documentation

24.10.10 Advanced SQLAlchemy queries

You can use SQLAlchemy constructs to describe your query.

Use sqlalchemy.text() to specify query parameters in a backend-neutral way

```python
In [521]: import sqlalchemy as sa
In [522]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'), engine, params={'col1': 'X'})
Out[522]:
```

If you have an SQLAlchemy description of your database you can express where conditions using SQLAlchemy expressions

```python
In [523]: metadata = sa.MetaData()
In [524]: data_table = sa.Table('data', metadata,  
.....:  sa.Column('index', sa.Integer),  
.....:  sa.Column('Date', sa.DateTime),  
.....:  sa.Column('Col_1', sa.String),  
.....:  sa.Column('Col_2', sa.Float),  
.....:  sa.Column('Col_3', sa.Boolean),  
.....:   )
.....:   
In [525]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 == True), engine)
Out[525]:
```

You can combine SQLAlchemy expressions with parameters passed to `read_sql()` using `sqlalchemy.bindparam()`

```python
In [526]: import datetime as dt
In [527]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date'))
In [528]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)})
```

<table>
<thead>
<tr>
<th>index</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
<th>Col_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2010-10-19</td>
<td>Y</td>
<td>-12.50</td>
<td>False</td>
</tr>
<tr>
<td>1</td>
<td>2010-10-20</td>
<td>Z</td>
<td>5.73</td>
<td>True</td>
</tr>
</tbody>
</table>

24.10.11 Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.

You can create connections like so:

```python
import sqlite3
con = sqlite3.connect(':memory:)
```

And then issue the following queries:

```python
data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)
```

24.11 Google BigQuery

Warning: Starting in 0.20.0, pandas has split off Google BigQuery support into the separate package pandas-gbq. You can pip install pandas-gbq to get it.

The `pandas-gbq` package provides functionality to read/write from Google BigQuery.

pandas integrates with this external package. if pandas-gbq is installed, you can use the pandas methods `pd.read_gbq` and `DataFrame.to_gbq`, which will call the respective functions from pandas-gbq.

Full documentation can be found here

24.12 Stata Format

New in version 0.12.0.
24.12.1 Writing to Stata format

The method `to_stata()` will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).

```python
In [529]: df = pd.DataFrame(randn(10, 2), columns=list('AB'))
In [530]: df.to_stata('stata.dta')
```

Stata data files have limited data type support: only strings with 244 or fewer characters, `int8`, `int16`, `int32`, `float32` and `float64` can be stored in .dta files. Additionally, *Stata* reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in *Stata* for a particular data type will retype the variable to the next larger size. For example, `int8` values are restricted to lie between -127 and 100 in *Stata*, and so variables with values above 100 will trigger a conversion to `int16`. `nan` values in floating points data types are stored as the basic missing data type (. in *Stata*).

Note: It is not possible to export missing data values for integer data types.

The *Stata* writer gracefully handles other data types including `int64`, `bool`, `uint8`, `uint16`, `uint32` by casting to the smallest supported type that can represent the data. For example, data with a type of `uint8` will be cast to `int8` if all values are less than 100 (the upper bound for non-missing `int8` data in *Stata*), or, if values are outside of this range, the variable is cast to `int16`.

Warning: Conversion from `int64` to `float64` may result in a loss of precision if `int64` values are larger than 2**53.

Warning: `StataWriter` and `to_stata()` only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write *Stata* dta files with strings longer than 244 characters raises a `ValueError`.

24.12.2 Reading from Stata format

The top-level function `read_stata` will read a dta file and return either a DataFrame or a `StataReader` that can be used to read the file incrementally.

```python
In [531]: pd.read_stata('stata.dta')
Out [531]:
   index  A    B
0   0  -1.116470  0.080927
1   1  -0.186579 -0.056824
2   2   0.492337 -0.680678
3   3  -0.084508 -0.297362
4   4   0.417302  0.784771
5   5   0.955425  0.585910
6   6  2.065783 -1.471157
7   7  -0.830172 -0.880578
8   8  -0.279098  1.622849
9   9   0.013353 -0.694694
```

New in version 0.16.0.
Specifying a chunksize yields a StataReader instance that can be used to read chunksize lines from the file at a time. The StataReader object can be used as an iterator.

```python
In [532]: reader = pd.read_stata('stata.dta', chunksize=3)
In [533]: for df in reader:
    .....:     print(df.shape)
    .....:
(3, 3)
(3, 3)
(3, 3)
(1, 3)
```

For more fine-grained control, use iterator=True and specify chunksize with each call to read().

```python
In [534]: reader = pd.read_stata('stata.dta', iterator=True)
In [535]: chunk1 = reader.read(5)
In [536]: chunk2 = reader.read(5)
```

Currently the index is retrieved as a column.

The parameter convert_categoricals indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function value_labels, which requires read() to be called before use.

The parameter convert_missing indicates whether missing value representations in Stata should be preserved. If False (the default), missing values are represented as np.nan. If True, missing values are represented using StataMissingValue objects, and columns containing missing values will have object data type.

Note: read_stata() and StataReader support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118 (Stata 14).

Note: Setting preserve_dtypes=False will upcast to the standard pandas data types: int64 for all integer types and float64 for floating point data. By default, the Stata data types are preserved when importing.

24.12.2.1 Categorical Data

New in version 0.15.2.

Categorical data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical and information about whether the variable is ordered is lost when exporting.

Warning: Stata only supports string value labels, and so str is called on the categories when exporting data. Exporting Categorical variables with non-string categories produces a warning, and can result a loss of information if the str representations of the categories are not unique.

Labeled data can similarly be imported from Stata data files as Categorical variables using the keyword argument convert_categoricals (True by default). The keyword argument order_categoricals (True by default) determines whether imported Categorical variables are ordered.
Note: When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical variables always use integer data types between -1 and n-1 where n is the number of categories. If the original values in the Stata data file are required, these can be imported by setting convert_categoricals=False, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1, and the smallest original value is assigned 0, the second smallest is assigned 1 and so on until the largest original value is assigned the code n-1.

Note: Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorical with string categories for the values that are labeled and numeric categories for values with no label.

24.13 SAS Formats

New in version 0.17.0.

The top-level function read_sas() can read (but not write) SAS xport (.XPT) and SAS7BDAT (.sas7bdat) format files were added in v0.18.0.

SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated). For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the format codes may allow date variables to be automatically converted to dates. By default the whole file is read and returned as a DataFrame.

Specify a chunksize or use iterator=True to obtain reader objects (XportReader or SAS7BDATReader) for incrementally reading the file. The reader objects also have attributes that contain additional information about the file and its variables.

Read a SAS7BDAT file:

```python
df = pd.read_sas('sas_data.sas7bdat')
```

Obtain an iterator and read an XPORT file 100,000 lines at a time:

```python
rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:
    do_something(chunk)
```

The specification for the xport file format is available from the SAS web site.

No official documentation is available for the SAS7BDAT format.

24.14 Other file formats

pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community.
24.14.1 netCDF

`xarray` provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas.

24.15 Performance Considerations

This is an informal comparison of various IO methods, using pandas 0.13.1.

```
In [1]: df = pd.DataFrame(randn(1000000,2),columns=list('AB'))
In [2]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
 A 1000000 non-null float64
 B 1000000 non-null float64
dtypes: float64(2)
memory usage: 22.9 MB
```

Writing

```
In [14]: %timeit test_sql_write(df)
1 loops, best of 3: 6.24 s per loop
In [15]: %timeit test_hdf_fixed_write(df)
1 loops, best of 3: 237 ms per loop
In [26]: %timeit test_hdf_fixed_write_compress(df)
1 loops, best of 3: 245 ms per loop
In [16]: %timeit test_hdf_table_write(df)
1 loops, best of 3: 901 ms per loop
In [27]: %timeit test_hdf_table_write_compress(df)
1 loops, best of 3: 952 ms per loop
In [17]: %timeit test_csv_write(df)
1 loops, best of 3: 3.44 s per loop
```

Reading

```
In [18]: %timeit test_sql_read()
1 loops, best of 3: 766 ms per loop
In [19]: %timeit test_hdf_fixed_read()
10 loops, best of 3: 19.1 ms per loop
In [28]: %timeit test_hdf_fixed_read_compress()
10 loops, best of 3: 36.3 ms per loop
In [20]: %timeit test_hdf_table_read()
10 loops, best of 3: 39 ms per loop
In [29]: %timeit test_hdf_table_read_compress()
10 loops, best of 3: 60.6 ms per loop
```

24.15. Performance Considerations
In [22]: %timeit test_csv_read()
1 loops, best of 3: 620 ms per loop

Space on disk (in bytes)

<table>
<thead>
<tr>
<th>File</th>
<th>Size</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>test.sql</td>
<td>25843712 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
<tr>
<td>test_fixed.hdf</td>
<td>24007368 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
<tr>
<td>test_fixed_compress.hdf</td>
<td>15580682 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
<tr>
<td>test_table.hdf</td>
<td>24458444 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
<tr>
<td>test_table_compress.hdf</td>
<td>16797283 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
<tr>
<td>test.csv</td>
<td>46152810 B</td>
<td>Apr 8</td>
<td>14:11</td>
</tr>
</tbody>
</table>

And here’s the code

```python
import sqlite3
import os
from pandas.io import sql

df = pd.DataFrame(randn(1000000,2),columns=list('AB'))

def test_sql_write(df):
    if os.path.exists('test.sql'):
        os.remove('test.sql')
    sql_db = sqlite3.connect('test.sql')
    df.to_sql(name='test_table', con=sql_db)
    sql_db.close()

def test_sql_read():
    sql_db = sqlite3.connect('test.sql')
    pd.read_sql_query("select * from test_table", sql_db)
    sql_db.close()

def test_hdf_fixed_write(df):
    df.to_hdf('test_fixed.hdf','test',mode='w')

def test_hdf_fixed_read():
    pd.read_hdf('test_fixed.hdf','test')

def test_hdf_fixed_write_compress(df):
    df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc')

def test_hdf_fixed_read_compress():
    pd.read_hdf('test_fixed_compress.hdf','test')

def test_hdf_table_write(df):
    df.to_hdf('test_table.hdf','test',mode='w',format='table')

def test_hdf_table_read():
    pd.read_hdf('test_table.hdf','test')

def test_hdf_table_write_compress(df):
    df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table')

def test_hdf_table_read_compress():
    pd.read_hdf('test_table_compress.hdf','test')
```
```python
def test_csv_write(df):
    df.to_csv('test.csv', mode='w')

def test_csv_read():
    pd.read_csv('test.csv', index_col=0)
```
25.1 DataReader

The sub-package pandas.io.data is removed in favor of a separately installable pandas-datareader package. This will allow the data modules to be independently updated to your pandas installation. The API for pandas-datareader v0.1.1 is the same as in pandas v0.16.1. (GH8961)

You should replace the imports of the following:

```python
from pandas.io import data, wb
```

With:

```python
from pandas_datareader import data, wb
```
26.1 Cython (Writing C extensions for pandas)

For many use cases writing pandas in pure python and numpy is sufficient. In some computationally heavy applications however, it can be possible to achieve sizeable speed-ups by offloading work to cython.

This tutorial assumes you have refactored as much as possible in python, for example trying to remove for loops and making use of numpy vectorization, it’s always worth optimising in python first.

This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the pure python.

26.1.1 Pure python

We have a DataFrame to which we want to apply a function row-wise.

```python
In [1]: df = pd.DataFrame({'a': np.random.randn(1000),
                      'b': np.random.randn(1000),
                      'N': np.random.randint(100, 1000, (1000)),
                      'x': 'x'});

In [2]: df
```

```
Out[2]:
   N     a         b  x
0  585 0.469112 -0.218470  x
1  841 -0.282863 -0.061645  x
2  251 -1.509059 -0.723780  x
3  972 -1.135632  0.551225  x
4  458 -0.173215  0.837519  x
5  159  0.119209  1.103245  x
       ...   ...       ...   ...
993 190 0.131892  0.290162  x
994 931 0.342097  0.215341  x
995 374 -1.512743  0.874737  x
996 246  0.933753  1.120790  x
997 157 -0.308013  0.198768  x
998 977 -0.079915  1.757555  x
999 770 -1.010589 -1.115680  x
[1000 rows x 4 columns]
```
Here’s the function in pure python:

```python
In [3]: def f(x):
   ...:     return x * (x - 1)
   ...:
In [4]: def integrate_f(a, b, N):
   ...:     s = 0
   ...:     dx = (b - a) / N
   ...:     for i in range(N):
   ...:         s += f(a + i * dx)
   ...:     return s * dx
   ...
```

We achieve our result by using apply (row-wise):

```python
In [7]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
    10 loops, best of 3: 174 ms per loop
```

But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited to the most time consuming four calls) using the prun ipython magic function:

```python
In [5]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
671001 function calls (665992 primitive calls) in 0.228 seconds

Ordered by: internal time
List reduced from 143 to 4 due to restriction <4>

ncalls   tottime    percall  cumtime   percall filename:lineno(function)
  1000  0.120  0.000   0.175  0.000 <ipython-input-4-91e33489f136>:1(integrate_f)
 552423  0.055  0.000   0.055  0.000 <ipython-input-3-bc41a25943f6>:1(f)
  3000  0.006  0.000   0.036  0.000 base.py:2405(get_value)
  3000  0.004  0.000   0.041  0.000 series.py:598(__getitem__)
```

By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing these two functions.

Note: In python 2 replacing the `range` with its generator counterpart (`xrange`) would mean the `range` line would vanish. In python 3 `range` is already a generator.

26.1.2 Plain cython

First we’re going to need to import the cython magic function to ipython (for cython versions < 0.21 you can use `%load_ext cythonmagic`):

```python
In [6]: %load_ext Cython
```

Now, let’s simply copy our functions over to cython as is (the suffix is here to distinguish between function versions):

```python
In [7]: %%cython
   ...: def f_plain(x):
   ...:     return x * (x - 1)
   ...:
   ...: def integrate_f_plain(a, b, N):
   ...:     s = 0
   ...:     dx = (b - a) / N
   ...:     for i in range(N):
   ...:         s += f(a + i * dx)
   ...:     return s * dx
   ...
```
...: dx = (b - a) / N
...: for i in range(N):
...: s += f_plain(a + i * dx)
...: return s * dx

Note: If you’re having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython for paste to play well with cell magics.

In [4]: %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 85.5 ms per loop

Already this has shaved a third off, not too bad for a simple copy and paste.

26.1.3 Adding type

We get another huge improvement simply by providing type information:

In [8]: %%cython
 ...
 cdef double f_typed(double x) except? -2:
 ...: return x * (x - 1)
 ...
 cpdef double integrate_f_typed(double a, double b, int N):
 ...: cdef int i
 ...: cdef double s, dx
 ...: s = 0
 ...: dx = (b - a) / N
 ...: for i in range(N):
 ...: s += f_typed(a + i * dx)
 ...: return s * dx
 ...

In [4]: %timeit df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 20.3 ms per loop

Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really modified the code. Let’s have another look at what’s eating up time:

In [9]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
118576 function calls (113567 primitive calls) in 0.054 seconds

Ordered by: internal time
List reduced from 140 to 4 due to restriction <4>

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>0.006</td>
<td>0.000</td>
<td>0.036</td>
<td>0.000</td>
</tr>
<tr>
<td>3000</td>
<td>0.004</td>
<td>0.000</td>
<td>0.041</td>
<td>0.000</td>
</tr>
<tr>
<td>9024</td>
<td>0.003</td>
<td>0.000</td>
<td>0.007</td>
<td>0.000</td>
</tr>
<tr>
<td>3000</td>
<td>0.003</td>
<td>0.000</td>
<td>0.008</td>
<td>0.000</td>
</tr>
</tbody>
</table>

26.1. Cython (Writing C extensions for pandas)
26.1.4 Using ndarray

It’s calling series... a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three times for each row). Function calls are expensive in python, so maybe we could minimise these by cythonizing the apply part.

Note: We are now passing ndarrays into the cython function, fortunately cython plays very nicely with numpy.

```python
In [10]: %%cython
    ....: cimport numpy as np
    ....: import numpy as np
    ....: cdef double f_typed(double x) except? -2:
    ....:     return x * (x - 1)
    ....: cpdef double integrate_f_typed(double a, double b, int N):
    ....:     cdef int i
    ....:     cdef double s, dx
    ....:     s = 0
    ....:     dx = (b - a) / N
    ....:     for i in range(N):
    ....:         s += f_typed(a + i * dx)
    ....:     return s * dx
    ....: cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_b, np.ndarray col_N):
    ....:     assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.dtype == np.int)
    ....:     cdef Py_ssize_t i, n = len(col_N)
    ....:     assert (len(col_a) == len(col_b) == n)
    ....:     cdef np.ndarray[double] res = np.empty(n)
    ....:     for i in range(len(col_a)):
    ....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
    ....:     return res
```

The implementation is simple, it creates an array of zeros and loops over the rows, applying our `integrate_f_typed`, and putting this in the zeros array.

Warning: In 0.13.0 since Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, you can not pass a Series directly as a ndarray typed parameter to a cython function. Instead pass the actual ndarray using the .values attribute of the Series.

Prior to 0.13.0

```python
apply_integrate_f(df['a'], df['b'], df['N'])
```

Use .values to get the underlying ndarray

```python
apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
```

Note: Loops like this would be extremely slow in python, but in Cython looping over numpy arrays is fast.

```python
In [4]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 1.25 ms per loop
```
We’ve gotten another big improvement. Let’s check again where the time is spent:

```
In [11]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
209 function calls in 0.001 seconds

Ordered by: internal time
List reduced from 54 to 4 due to restriction <4>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1  0.001    0.001  0.001    0.001 {built-in method _cython_magic_
        3  0.000    0.000  0.000    0.000 internals.py:3612(iget)
        1  0.000    0.000  0.001    0.001 {built-in method builtins.exec}
        9  0.000    0.000  0.000    0.000 generic.py:2972(__setattr__)  
```

As one might expect, the majority of the time is now spent in `apply_integrate_f`, so if we wanted to make anymore efficiencies we must continue to concentrate our efforts here.

26.1.5 More advanced techniques

There is still hope for improvement. Here’s an example of using some more advanced cython techniques:

```
In [12]: %cython
        ....: cimport cython
        ....: import numpy as np
        ....: cimport numpy as np
        ....: cdef double f_typed(double x) except? -2:
        ....:     return x * (x - 1)
        ....: cdef double integrate_f_typed(double a, double b, int N):
        ....:     cdef int i
        ....:     cdef double s, dx
        ....:     s = 0
        ....:     dx = (b - a) / N
        ....:     for i in range(N):
        ....:         s += f_typed(a + i * dx)
        ....:     return s * dx
        ....: @cython.boundscheck(False)
        ....: @cython.wraparound(False)
        ....:     cdef int i, n = len(col_N)
        ....:     assert len(col_a) == len(col_b) == n
        ....:     cdef np.ndarray[double] res = np.empty(n)
        ....:     for i in range(n):
        ....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
        ....:     return res
```

```
In [4]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 987 us per loop
```

Even faster, with the caveat that a bug in our cython code (an off-by-one error, for example) might cause a segfault because memory access isn’t checked.
26.2 Using numba

A recent alternative to statically compiling cython code, is to use a dynamic jit-compiler, numba. Numba gives you the power to speed up your applications with high performance functions written directly in Python. With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, runtime, or statically (using the included pycc tool). Numba supports compilation of Python to run on either CPU or GPU hardware, and is designed to integrate with the Python scientific software stack.

Note: You will need to install numba. This is easy with conda, by using: conda install numba, see installing using miniconda.

Note: As of numba version 0.20, pandas objects cannot be passed directly to numba-compiled functions. Instead, one must pass the numpy array underlying the pandas object to the numba-compiled function as demonstrated below.

26.2.1 Jit

Using numba to just-in-time compile your code. We simply take the plain python code from above and annotate with the @jit decorator.

```python
import numba

@numba.jit
def f_plain(x):
    return x * (x - 1)

@numba.jit
def integrate_f_numba(a, b, N):
    s = 0
    dx = (b - a) / N
    for i in range(N):
        s += f_plain(a + i * dx)
    return s * dx

@numba.jit
def apply_integrate_f_numba(col_a, col_b, col_N):
    n = len(col_N)
    result = np.empty(n, dtype='float64')
    assert len(col_a) == len(col_b) == n
    for i in range(n):
        result[i] = integrate_f_numba(col_a[i], col_b[i], col_N[i])
    return result

def compute_numba(df):
    result = apply_integrate_f_numba(df['a'].values, df['b'].values, df['N'].values)
    return pd.Series(result, index=df.index, name='result')
```

Note that we directly pass numpy arrays to the numba function. compute_numba is just a wrapper that provides a nicer interface by passing/returning pandas objects.
26.2.2 Vectorize

`numba` can also be used to write vectorized functions that do not require the user to explicitly loop over the observations of a vector; a vectorized function will be applied to each row automatically. Consider the following toy example of doubling each observation:

```python
import numba

def double_every_value_nonumba(x):
    return x*2

@numba.vectorize
def double_every_value_withnumba(x):
    return x*2

# Custom function without numba
In [5]: %timeit df['col1_doubled'] = df.a.apply(double_every_value_nonumba)
1000 loops, best of 3: 797 us per loop

# Standard implementation (faster than a custom function)
In [6]: %timeit df['col1_doubled'] = df.a*2
1000 loops, best of 3: 233 us per loop

# Custom function with numba
In [7]: %timeit df['col1_doubled'] = double_every_value_withnumba(df.a.values)
1000 loops, best of 3: 145 us per loop
```

26.2.3 Caveats

Note: `numba` will execute on any function, but can only accelerate certain classes of functions.

`numba` is best at accelerating functions that apply numerical functions to numpy arrays. When passed a function that only uses operations it knows how to accelerate, it will execute in `nopython` mode.

If `numba` is passed a function that includes something it doesn’t know how to work with – a category that currently includes sets, lists, dictionaries, or string functions – it will revert to object mode. In object mode, `numba` will execute but your code will not speed up significantly. If you would prefer that `numba` throw an error if it cannot compile a function in a way that speeds up your code, pass `numba` the argument `nopython=True` (e.g. `@numba.jit(nopython=True)`). For more on troubleshooting `numba` modes, see the `numba troubleshooting page`.

Read more in the `numba docs`.

26.3 Expression Evaluation via `eval()` (Experimental)

New in version 0.13.

The top-level function `pandas.eval()` implements expression evaluation of `Series` and `DataFrame` objects.
Note: To benefit from using `eval()` you need to install `numexpr`. See the recommended dependencies section for more details.

The point of using `eval()` for expression evaluation rather than plain Python is two-fold: 1) large DataFrame objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the underlying engine (by default `numexpr` is used for evaluation).

Note: You should not use `eval()` for simple expressions or for expressions involving small DataFrames. In fact, `eval()` is many orders of magnitude slower for smaller expressions/objects than plain ol’ Python. A good rule of thumb is to only use `eval()` when you have a DataFrame with more than 10,000 rows.

`eval()` supports all arithmetic expressions supported by the engine in addition to some extensions available only in pandas.

Note: The larger the frame and the larger the expression the more speedup you will see from using `eval()`.

26.3.1 Supported Syntax

These operations are supported by `pandas.eval()`:

- Arithmetic operations except for the left shift (<<) and right shift (>>) operators, e.g., `df + 2 * pi / s ** 4 % 42 - the_golden_ratio`
- Comparison operations, including chained comparisons, e.g., `2 < df < df2`
- Boolean operations, e.g., `df < df2 and df3 < df4 or not df_bool`
- List and tuple literals, e.g., `[1, 2] or (1, 2)`
- Attribute access, e.g., `df.a`
- Subscript expressions, e.g., `df[0]`
- Simple variable evaluation, e.g., `pd.eval('df')` (this is not very useful)
- Math functions, `sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs and arctan2`.

This Python syntax is not allowed:

- Expressions
 - Function calls other than math functions.
 - `is/is not` operations
 - `if` expressions
 - `lambda` expressions
 - `list/set/dict` comprehensions
 - Literal `dict` and `set` expressions
 - `yield` expressions
 - Generator expressions
 - Boolean expressions consisting of only scalar values
• Statements
 – Neither simple nor compound statements are allowed. This includes things like for, while, and if.

26.3.2 eval() Examples

pandas.eval() works well with expressions containing large arrays.

First let’s create a few decent-sized arrays to play with:

```python
In [13]: nrows, ncols = 20000, 100
In [14]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
```

Now let’s compare adding them together using plain ol’ Python versus *eval()*:

```python
In [15]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 10.1 ms per loop

In [16]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 6.56 ms per loop
```

Now let’s do the same thing but with comparisons:

```python
In [17]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
10 loops, best of 3: 22.5 ms per loop

In [18]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
100 loops, best of 3: 7.89 ms per loop
```

eval() also works with unaligned pandas objects:

```python
In [19]: s = pd.Series(np.random.randn(50))

In [20]: %timeit df1 + df2 + df3 + df4 + s
100 loops, best of 3: 19 ms per loop

In [21]: %timeit pd.eval('df1 + df2 + df3 + df4 + s')
100 loops, best of 3: 7.4 ms per loop
```

Note: Operations such as

```python
1 and 2  # would parse to 1 & 2, but should evaluate to 2
3 or 4  # would parse to 3 | 4, but should evaluate to 3
~1      # this is okay, but slower when using eval
```

should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with scalar operands that are not of type bool or np.bool_. Again, you should perform these kinds of operations in plain Python.

26.3.3 The DataFrame.eval method (Experimental)

New in version 0.13.
In addition to the top level `pandas.eval()` function you can also evaluate an expression in the “context” of a `DataFrame`.

```python
In [22]: df = pd.DataFrame(np.random.randn(5, 2), columns=['a', 'b'])
In [23]: df.eval('a + b')
Out[23]:
   0   -0.246747
   1    0.867786
   2   -1.626063
   3  -1.134978
   4  -1.027798
```

Any expression that is a valid `pandas.eval()` expression is also a valid `DataFrame.eval()` expression, with the added benefit that you don’t have to prefix the name of the `DataFrame` to the column(s) you’re interested in evaluating.

In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. The assignment target can be a new column name or an existing column name, and it must be a valid Python identifier.

New in version 0.18.0.

The `inplace` keyword determines whether this assignment will performed on the original `DataFrame` or return a copy with the new column.

```python
In [24]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [25]: df.eval('c = a + b', inplace=True)
In [26]: df.eval('d = a + b + c', inplace=True)
In [27]: df.eval('a = 1', inplace=True)
In [28]: df
Out[28]:
   a  b  c  d
 0  0  5  5 10
 1  1  6  7 14
 2  1  7  9 18
 3  1  8 11 22
 4  1  9 13 26
```

When `inplace` is set to `False`, a copy of the `DataFrame` with the new or modified columns is returned and the original frame is unchanged.

```python
In [29]: df
Out[29]:
   a  b  c  d
 0  0  5  5 10
 1  1  6  7 14
 2  1  7  9 18
 3  1  8 11 22
```

Warning: For backwards compatibility, `inplace` defaults to `True` if not specified. This will change in a future version of pandas - if your code depends on an inplace assignment you should update to explicitly set `inplace=True`
New in version 0.18.0.

As a convenience, multiple assignments can be performed by using a multi-line string.

```python
In [32]: df.eval(""
    .....: c = a + b
    .....: d = a + b + c
    .....: a = 1""", inplace=False)
    .....:
Out[32]:
   a  b  c  d
0  1  5  6  12
1  1  6  7  14
2  1  7  8  16
3  1  8  9  18
4  1  9 10  20
```

The equivalent in standard Python would be

```python
In [33]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [34]: df['c'] = df.a + df.b
In [35]: df['d'] = df.a + df.b + df.c
In [36]: df['a'] = 1
In [37]: df
Out[37]:
   a  b  c  d
0  1  5  5  10
1  1  6  7  14
2  1  7  9  18
3  1  8 11  22
4  1  9 13  26
```
New in version 0.18.0.

The `query` method gained the `inplace` keyword which determines whether the query modifies the original frame.

```python
In [38]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [39]: df.query('a > 2')
Out[39]:
   a  b
0  3  3
1  4  4

In [40]: df.query('a > 2', inplace=True)
In [41]: df
Out[41]:
   a  b
0  3  3
1  4  4

```

Warning: Unlike with `eval`, the default value for `inplace` for `query` is `False`. This is consistent with prior versions of pandas.

26.3.4 Local Variables

In pandas version 0.14 the local variable API has changed. In pandas 0.13.x, you could refer to local variables the same way you would in standard Python. For example,

```python
df = pd.DataFrame(np.random.randn(5, 2), columns=list('ab'))
newcol = np.random.randn(len(df))
df.eval('b + newcol')
```

```
UndefinedVariableError: name 'newcol' is not defined
```

As you can see from the exception generated, this syntax is no longer allowed. You must explicitly reference any local variable that you want to use in an expression by placing the `@` character in front of the name. For example,

```python
In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=list('ab'))
In [43]: newcol = np.random.randn(len(df))
In [44]: df.eval('b + @newcol')
Out[44]:
   0 -0.173926
   1  2.493083
   2 -0.881831
   3 -0.691045
   4  1.334703
dtype: float64

In [45]: df.query('b < @newcol')
```

```
If you don’t prefix the local variable with @, pandas will raise an exception telling you the variable is undefined.

When using `DataFrame.eval()` and `DataFrame.query()`, this allows you to have a local variable and a `DataFrame` column with the same name in an expression.

```python
In [46]: a = np.random.randn()
In [47]: df.query('@a < a')
Out[47]:
 a b
0 0.863987 -0.115998
In [48]: df.loc[a < df.a] # same as the previous expression
Out[48]:
 a b
0 0.863987 -0.115998
```

With `pandas.eval()` you cannot use the @ prefix at all, because it isn’t defined in that context. pandas will let you know this if you try to use @ in a top-level call to `pandas.eval()`. For example,

```python
In [49]: a, b = 1, 2
In [50]: pd.eval('@a + b')
File "<string>", line unknown
SyntaxError: The '@' prefix is not allowed in top-level eval calls, please refer to your variables by name without the '@' prefix
```

In this case, you should simply refer to the variables like you would in standard Python.

```python
In [51]: pd.eval('a + b')
Out[51]: 3
```

### 26.3.5 `pandas.eval()` Parsers

There are two different parsers and two different engines you can use as the backend.

The default 'pandas' parser allows a more intuitive syntax for expressing query-like operations (comparisons, conjunctions and disjunctions). In particular, the precedence of the & and | operators is made equal to the precedence of the corresponding boolean operations and and or.

For example, the above conjunction can be written without parentheses. Alternatively, you can use the 'python' parser to enforce strict Python semantics.

```python
In [52]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [53]: x = pd.eval(expr, parser='python')
In [54]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0'
In [55]: y = pd.eval(expr_no_parens, parser='pandas')
In [56]: np.all(x == y)
Out[56]: True
```
The same expression can be “anded” together with the word `and` as well:

```python
In [57]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)

In [58]: x = pd.eval(expr, parser='python')

In [59]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0'

In [60]: y = pd.eval(expr_with_ands, parser='pandas')

In [61]: np.all(x == y)

Out[61]: True
```

The `and` and `or` operators here have the same precedence that they would in vanilla Python.

### 26.3.6 pandas.eval() Backends

There’s also the option to make `eval()` operate identical to plain ol’ Python.

Note: Using the `python` engine is generally not useful, except for testing other evaluation engines against it. You will achieve no performance benefits using `eval()` with engine='python' and in fact may incur a performance hit.

You can see this by using `pandas.eval()` with the `python` engine. It is a bit slower (not by much) than evaluating the same expression in Python

```python
In [62]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 9.98 ms per loop

In [63]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python')
100 loops, best of 3: 11 ms per loop
```

### 26.3.7 pandas.eval() Performance

`eval()` is intended to speed up certain kinds of operations. In particular, those operations involving complex expressions with large `DataFrame/Series` objects should see a significant performance benefit. Here is a plot showing the running time of `pandas.eval()` as function of the size of the frame involved in the computation. The two lines are two different engines.
Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python:

This plot was created using a DataFrame with 3 columns each containing floating point values generated using `numpy.random.randn()`.

26.3.8 Technical Minutia Regarding Expression Evaluation

Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated in Python space. The main reason for this behavior is to maintain backwards compatibility with versions of numpy < 1.7. In those versions of numpy a call to `ndarray.astype(str)` will truncate any strings that are more than 60 characters in length. Second, we can’t pass object arrays to `numexpr` thus string comparisons must be evaluated in Python space.

The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression—for example
In [64]: df = pd.DataFrame({'strings': np.repeat(list('c ba'), 3),
                      'nums': np.repeat(range(3), 3)})

In [65]: df
Out[65]:
   nums  strings
0     0      c
1     0      c
2     1      b
3     1      b
4     2      a
5     2      a
6     2      a
7     2      a
8     2      a

In [66]: df.query('strings == "a" and nums == 1')

Empty DataFrame
Columns: [nums, strings]
Index: []

the numeric part of the comparison (nums == 1) will be evaluated by numexpr.
In general, DataFrame.query()//pandas.eval() will evaluate the subexpressions that can be evaluated by numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the result type of an expression from its arguments and operators.
Note: The SparsePanel class has been removed in 0.19.0

We have implemented “sparse” versions of Series and DataFrame. These are not sparse in the typical “mostly 0”. Rather, you can view these objects as being “compressed” where any data matching a specific value (NaN / missing value, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a to_sparse method:

```
In [1]: ts = pd.Series(randn(10))
In [2]: ts[2:-2] = np.nan
In [3]: sts = ts.to_sparse()
In [4]: sts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: float64
```

The to_sparse method takes a kind argument (for the sparse index, see below) and a fill_value. So if we had a mostly zero Series, we could convert it to sparse with fill_value=0:

```
In [5]: ts.fillna(0).to_sparse(fill_value=0)
Out[5]:
0 0.469112
1 -0.282863
2 0.000000
3 0.000000
4 0.000000
5 0.000000
```
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

```python
In [6]: df = pd.DataFrame(randn(10000, 4))
In [7]: df.iloc[:9998] = np.nan
In [8]: sdf = df.to_sparse()
In [9]: sdf
Out[9]:
 0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
...
9993 NaN NaN NaN NaN
9994 NaN NaN NaN NaN
9995 NaN NaN NaN NaN
9996 NaN NaN NaN NaN
9997 NaN NaN NaN NaN
9998 0.509184 -0.774928 -1.369894 -0.382141
9999 0.280249 -1.648493 1.490865 -0.890819
[10000 rows x 4 columns]
```

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling `to_dense`:

```python
In [11]: sts.to_dense()
Out[11]:
 0 1 2 3
0 0.469112 NaN NaN NaN
1 -0.282863 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 NaN NaN NaN NaN
6 NaN NaN NaN NaN
7 NaN NaN NaN NaN
```

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling `to_dense`:
27.1 SparseArray

SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value:

```python
In [12]: arr = np.random.randn(10)
In [14]: sparr = pd.SparseArray(arr)
In [15]: sparr
Out[15]:
[-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1.33421134013]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)
```

Like the indexed objects (SparseSeries, SparseDataFrame), a SparseArray can be converted back to a regular ndarray by calling to_dense:

```python
In [16]: sparr.to_dense()
Out[16]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453, nan, 0.606, 1.3342])
```

27.2 SparseList

The SparseList class has been deprecated and will be removed in a future version. See the docs of a previous version for documentation on SparseList.

27.3 SparseIndex objects

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill value. The block format tracks only the locations and sizes of blocks of data.

27.4 Sparse Dtypes

Sparse data should have the same dtype as its dense representation. Currently, float64, int64 and bool dtypes are supported. Depending on the original dtype, fill_value default changes:

- float64: np.nan
In [17]: s = pd.Series([1, np.nan, np.nan])

In [18]: s
Out[18]:
0    1.0
1   NaN
2   NaN
dtype: float64

In [19]: s.to_sparse()
Out[19]:
0    1.0
1   NaN
2   NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [20]: s = pd.Series([1, 0, 0])

In [21]: s
Out[21]:
0    1
1    0
2    0
dtype: int64

In [22]: s.to_sparse()
Out[22]:
0    1
1    0
2    0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [23]: s = pd.Series([True, False, True])

In [24]: s
Out[24]:
0   True
1   False
2   True
dtype: bool

In [25]: s.to_sparse()
Out[25]:
0   True
1  False
2   True
dtype: bool
BlockIndex
Block locations: array([0, 2], dtype=int32)
You can change the dtype using `.astype()`, the result is also sparse. Note that `.astype()` also affects to the fill_value to keep its dense representation.

```python
In [26]: s = pd.Series([1, 0, 0, 0, 0])

In [27]: s
Out[27]:
0 1
1 0
2 0
3 0
4 0
dtype: int64

In [28]: ss = s.to_sparse()

In [29]: ss
Out[29]:
0 1
1 0
2 0
3 0
4 0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [30]: ss.astype(np.float64)

0 1.0
1 0.0
2 0.0
3 0.0
4 0.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)
```

It raises if any value cannot be coerced to specified dtype.

```python
In [1]: ss = pd.Series([1, np.nan, np.nan]).to_sparse()
0 1.0
1 NaN
2 NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [2]: ss.astype(np.int64)
ValueError: unable to coerce current fill_value nan to int64 dtype
```
27.5 Sparse Calculation

You can apply NumPy ufuncs to SparseArray and get a SparseArray as a result.

```python
In [31]: arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])
In [32]: np.abs(arr)
Out[32]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)
```

The ufunc is also applied to fill_value. This is needed to get the correct dense result.

```python
In [33]: arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
In [34]: np.abs(arr)
Out[34]:
[1.0, 1, 1, 2.0, 1]
Fill: 1
IntIndex
Indices: array([0, 3], dtype=int32)
```

In [35]: np.abs(arr).to_dense()
\[array([ 1., 1., 1., 2., 1.])
```

27.6 Interaction with scipy.sparse

27.6.1 SparseDataFrame

New in version 0.20.0.

Pandas supports creating sparse dataframes directly from scipy.sparse matrices.

```python
In [36]: from scipy.sparse import csr_matrix
In [37]: arr = np.random.random(size=(1000, 5))
In [38]: arr[arr < .9] = 0
In [39]: sp_arr = csr_matrix(arr)
In [40]: sp_arr
Out[40]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'
  with 517 stored elements in Compressed Sparse Row format>
In [41]: sdf = pd.SparseDataFrame(sp_arr)
In [42]: sdf
Out[42]:
    0  1  2  3  4
0 0.956380 NaN NaN NaN NaN
```

Chapter 27. Sparse data structures
All sparse formats are supported, but matrices that are not in **COOrdinate** format will be converted, copying data as needed. To convert a **SparseDataFrame** back to sparse SciPy matrix in COO format, you can use the **SparseDataFrame.to_coo()** method:

```python
In [43]: sdf.to_coo()
Out[43]:
<1000x5 sparse matrix of type '<class 'numpy.float64'>'
with 517 stored elements in COOrdinate format>
```

27.6.2 SparseSeries

New in version 0.16.0.

A **SparseSeries.to_coo()** method is implemented for transforming a SparseSeries indexed by a MultiIndex to a scipy.sparse.coo_matrix.

The method requires a MultiIndex with two or more levels.

```python
In [44]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])

In [45]: s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
                                       (1, 2, 'a', 1),
                                       (1, 1, 'b', 0),
                                       (1, 1, 'b', 1),
                                       (2, 1, 'b', 0),
                                       (2, 1, 'b', 1)],
                                       names=['A', 'B', 'C', 'D'])

In [46]: s
Out[46]:
A  B  C  D
1 2  a  0  3.0
   1  NaN
1 1  b  0  1.0
   1  3.0
2 1  b  0  NaN
   1  NaN
dtype: float64
```
SparseSeries

In [47]: ss = s.to_sparse()

In [48]: ss

Out[48]:
```
   A  B  C  D
1  2  a  0  3.0
   1  NaN
1  b  0  1.0
   1  3.0
2  1  b  0  NaN
   1  NaN
dtype: float64
```

BlockIndex

Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 2], dtype=int32)

In the example below, we transform the SparseSeries to a sparse representation of a 2-d array by specifying that the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.

```
In [49]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
.....:                      column_levels=['C', 'D'],
.....:                      sort_labels=True)
.....:

In [50]: A

Out[50]:
```
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
```

```
In [51]: A.todense()

Out[51]:
```
matrix([[ 0., 0., 1., 3.],
         [ 3., 0., 0., 0.],
         [ 0., 0., 0., 0.]])
```
```
In [52]: rows

Out[52]:
```
[(1, 1), (1, 2), (2, 1)]
```
```
In [53]: columns

Out[53]:
```
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]
```
```
Specifying different row and column labels (and not sorting them) yields a different sparse matrix:
```
```
In [54]: A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'],
.....:                      column_levels=['D'],
.....:                      sort_labels=False)
.....:

In [55]: A

Out[55]:
```
<3x2 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
```
A convenience method `SparseSeries.from_coo()` is implemented for creating a SparseSeries from a `scipy.sparse.coo_matrix`.

```python
In [59]: from scipy import sparse

In [60]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
......: shape=(3, 4))

In [61]: A
Out[61]:
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>

In [62]: A.todense()
→
matrix([[0., 0., 1., 2.],
[3., 0., 0., 0.],
[0., 0., 0., 0.]])
```

The default behaviour (with `dense_index=False`) simply returns a SparseSeries containing only the non-null entries.

```python
In [63]: ss = pd.SparseSeries.from_coo(A)

In [64]: ss
Out[64]:
0 2 1.0
3 2.0
1 0 3.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)
```

Specifying `dense_index=True` will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to `dense_index=False`) if the sparse matrix is large (and sparse) enough.

```python
In [65]: ss_dense = pd.SparseSeries.from_coo(A, dense_index=True)

In [66]: ss_dense
```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>NaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>NaN</td>
</tr>
</tbody>
</table>

```
Out[66]:
0 0 NaN
 1 NaN
 2 1.0
 3 2.0
1 0 3.0
 1 NaN
 2 NaN
 3 NaN
2 0 NaN
 1 NaN
 2 NaN
 3 NaN
dtype: float64
```

```
BlockIndex
Block locations: array([2], dtype=int32)
Block lengths: array([3], dtype=int32)
```
CHAPTER TWENTYEIGHT

FREQUENTLY ASKED QUESTIONS (FAQ)

28.1 DataFrame memory usage

As of pandas version 0.15.0, the memory usage of a dataframe (including the index) is shown when accessing the info method of a dataframe. A configuration option, display.memory_usage (see Options and Settings), specifies if the dataframe’s memory usage will be displayed when invoking the df.info() method.

For example, the memory usage of the dataframe below is shown when calling df.info():

```
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
 ..., 'complex128', 'object', 'bool']

In [2]: n = 5000

In [3]: data = dict((t, np.random.randint(100, size=n).astype(t))
 ...: for t in dtypes)

In [4]: df = pd.DataFrame(data)

In [5]: df['categorical'] = df['object'].astype('category')

In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
object(1), timedelta64[ns](1)
memory usage: 289.1+ KB
```

The + symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with dtype=object.

New in version 0.17.1.
Passing `memory_usage='deep'` will enable a more accurate memory usage report, that accounts for the full usage of the contained objects. This is optional as it can be expensive to do this deeper introspection.

```
In [7]: df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
 bool 5000 non-null bool
 complex128 5000 non-null complex128
 datetime64[ns] 5000 non-null datetime64[ns]
 float64 5000 non-null float64
 int64 5000 non-null int64
 object 5000 non-null object
 timedelta64[ns] 5000 non-null timedelta64[ns]
 categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
 object(1), timedelta64[ns](1)
memory usage: 425.6 KB
```

By default the display option is set to `True` but can be explicitly overridden by passing the `memory_usage` argument when invoking `df.info()`.

The memory usage of each column can be found by calling the `memory_usage` method. This returns a Series with an index represented by column names and memory usage of each column shown in bytes. For the dataframe above, the memory usage of each column and the total memory usage of the dataframe can be found with the `memory_usage` method:

```
In [8]: df.memory_usage()
Out[8]:
Index 80
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 10920
dtype: int64

total memory usage of dataframe
In [9]: df.memory_usage().sum()

 296000
```

By default the memory usage of the dataframe’s index is shown in the returned Series, the memory usage of the index can be suppressed by passing the `index=False` argument:

```
In [10]: df.memory_usage(index=False)
Out[10]:
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 10920
```
 dtype: int64

The memory usage displayed by the `info` method utilizes the `memory_usage` method to determine the memory usage of a dataframe while also formatting the output in human-readable units (base-2 representation; i.e., 1KB = 1024 bytes).

See also *Categorical Memory Usage*.

### 28.2 Using If/Truth Statements with pandas

pandas follows the numpy convention of raising an error when you try to convert something to a `bool`. This happens in a `if` or when using the boolean operations, `and`, `or`, or `not`. It is not clear what the result of

```python
>>> if pd.Series([False, True, False]):
... print("I was true")
```

should be. Should it be `True` because it’s not zero-length? `False` because there are `False` values? It is unclear, so instead, pandas raises a `ValueError`:

```python
>>> if pd.Series([False, True, False]):
 print("I was true")
Traceback
... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

If you see that, you need to explicitly choose what you want to do with it (e.g., use `any()`, `all()` or `empty`). or, you might want to compare if the pandas object is `None`

```python
>>> if pd.Series([False, True, False]) is not None:
 print("I was not None")
```

or return if any value is `True`.

```python
>>> if pd.Series([False, True, False]).any():
 print("I am any")
>>> I am any
```

To evaluate single-element pandas objects in a boolean context, use the method `.bool()`:

```python
In [11]: pd.Series([True]).bool()
Out[11]: True

In [12]: pd.Series([False]).bool()
Out[12]: False

In [13]: pd.DataFrame([[True]]).bool()
Out[13]: True

In [14]: pd.DataFrame([[False]]).bool()
Out[14]: False
```
28.2.1 Bitwise boolean

Bitwise boolean operators like `==` and `!=` will return a boolean Series, which is almost always what you want anyways.

```python
>>> s = pd.Series(range(5))
>>> s == 4
0 False
1 False
2 False
3 False
4 True
dtype: bool
```

See boolean comparisons for more examples.

28.2.2 Using the in operator

Using the Python `in` operator on a Series tests for membership in the index, not membership among the values.

If this behavior is surprising, keep in mind that using `in` on a Python dictionary tests keys, not values, and Series are dict-like. To test for membership in the values, use the method `isin()`:

For DataFrames, likewise, `in` applies to the column axis, testing for membership in the list of column names.

28.3 NaN, Integer NA values and NA type promotions

28.3.1 Choice of NA representation

For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either

- A masked array solution: an array of data and an array of boolean values indicating whether a value
- Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value `NaN` (Not-A-Number) is used everywhere as the NA value, and there are API functions `isnull` and `notnull` which can be used across the dtypes to detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

28.3.2 Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example:

```python
In [15]: s = pd.Series([1, 2, 3, 4, 5], index=list('abcde'))

In [16]: s
Out[16]:
 a 1
 b 2
 c 3
```
This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”. One possibility is to use `dtype=object` arrays instead.

### 28.3.3 NA type promotions

When introducing NAs into an existing Series or DataFrame via `reindex` or some other means, boolean and integer types will be promoted to a different `dtype` in order to store the NAs. These are summarized by this table:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Promotion dtype for storing NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>floating</td>
<td>no change</td>
</tr>
<tr>
<td>object</td>
<td>no change</td>
</tr>
<tr>
<td>integer</td>
<td>cast to float64</td>
</tr>
<tr>
<td>boolean</td>
<td>cast to object</td>
</tr>
</tbody>
</table>

While this may seem like a heavy trade-off, I have found very few cases where this is an issue in practice. Some explanation for the motivation here in the next section.

### 28.3.4 Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific statistical programming language R. Part of the reason is the NumPy type hierarchy:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Dtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.floating</td>
<td>float16, float32, float64, float128</td>
</tr>
<tr>
<td>numpy.integer</td>
<td>int8, int16, int32, int64</td>
</tr>
<tr>
<td>numpy.unsignedinteger</td>
<td>uint8, uint16, uint32, uint64</td>
</tr>
<tr>
<td>numpy.object_</td>
<td>object_</td>
</tr>
<tr>
<td>numpy.bool_</td>
<td>bool_</td>
</tr>
<tr>
<td>numpy.character</td>
<td>string_, unicode_</td>
</tr>
</tbody>
</table>

The R language, by contrast, only has a handful of built-in data types: `integer`, `numeric` (floating-point), `character`, and `boolean`. NA types are implemented by reserving special bit patterns for each type to be used.
as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.

An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly high performance cost when working with numerical data compared with the simple approach of using NaN. Thus, I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when NAs must be introduced.

28.4 Differences with NumPy

For Series and DataFrame objects, var normalizes by N−1 to produce unbiased estimates of the sample variance, while NumPy’s var normalizes by N, which measures the variance of the sample. Note that cov normalizes by N−1 in both pandas and NumPy.

28.5 Thread-safety

As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the DataFrame.copy method. If you are doing a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where the data copying occurs.

See this link for more information.

28.6 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like

```
Traceback
 ...
ValueError: Big-endian buffer not supported on little-endian compiler
```

To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:

```
In [21]: x = np.array(list(range(10)), '>i4') # big endian
In [22]: newx = x.byteswap().newbyteorder() # force native byteorder
In [23]: s = pd.Series(newx)
```

See the NumPy documentation on byte order for more details.
**Warning:** Up to pandas 0.19, a pandas.rpy module existed with functionality to convert between pandas and rpy2 objects. This functionality now lives in the rpy2 project itself. See the updating section of the previous documentation for a guide to port your code from the removed pandas.rpy to rpy2 functions.

rpy2 is an interface to R running embedded in a Python process, and also includes functionality to deal with pandas DataFrames. Converting data frames back and forth between rpy2 and pandas should be largely automated (no need to convert explicitly, it will be done on the fly in most rpy2 functions). To convert explicitly, the functions are pandas2ri.py2ri() and pandas2ri.ri2py().

See also the documentation of the rpy2 project: https://rpy2.readthedocs.io.

In the remainder of this page, a few examples of explicit conversion is given. The pandas conversion of rpy2 needs first to be activated:

```python
In [1]: from rpy2.robjects import r, pandas2ri
In [2]: pandas2ri.activate()
```

### 29.1 Transferring R data sets into Python

Once the pandas conversion is activated (pandas2ri.activate()), many conversions of R to pandas objects will be done automatically. For example, to obtain the ‘iris’ dataset as a pandas DataFrame:

```python
In [3]: r.data('iris')
Out[3]:
R object with classes: {'character',} mapped to:
<StrVector - Python:0x130229a88 / R:0x7fc1035943d8> ['iris']
In [4]: r['iris'].head()
```

<table>
<thead>
<tr>
<th></th>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>4</td>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
</tbody>
</table>
If the pandas conversion was not activated, the above could also be accomplished by explicitly converting it with the `pandas2ri.ri2py` function (pandas2ri.ri2py(r['iris'])).

### 29.2 Converting DataFrames into R objects

The `pandas2ri.py2ri` function support the reverse operation to convert DataFrames into the equivalent R object (that is, `data.frame`):

```python
In [5]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]},
 index=['one', 'two', 'three'])

In [6]: r_dataframe = pandas2ri.py2ri(df)

In [7]: print(type(r_dataframe))
<class 'rpy2.robjects.vectors.DataFrame'>

In [8]: print(r_dataframe)

 A B C
one 1 4 7
two 2 5 8
three 3 6 9
```

The DataFrame’s index is stored as the `rownames` attribute of the `data.frame` instance.
Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around its original requirements.

This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space.

We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should be on this list, please let us know.

### 30.1 Statistics and Machine Learning

#### 30.1.1 Statsmodels

Statsmodels is the prominent python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation.

#### 30.1.2 sklearn-pandas

Use pandas DataFrames in your scikit-learn ML pipeline.

### 30.2 Visualization

#### 30.2.1 Bokeh

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.

#### 30.2.2 yhat/ggplot

Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. It’s really quite incredible. Various implementations to other languages are available, but a faithful
implementation for python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project has been progressing quickly in that direction.

### 30.2.3 Seaborn

Although pandas has quite a bit of “just plot it” functionality built-in, visualization and in particular statistical graphics is a vast field with a long tradition and lots of ground to cover. The Seaborn project builds on top of pandas and matplotlib to provide easy plotting of data which extends to more advanced types of plots than those offered by pandas.

### 30.2.4 Vincent

The Vincent project leverages Vega (that in turn, leverages d3) to create plots. Although functional, as of Summer 2016 the Vincent project has not been updated in over two years and is unlikely to receive further updates.

### 30.2.5 IPython Vega

Like Vincent, the IPython Vega project leverages Vega to create plots, but primarily targets the IPython Notebook environment.

### 30.2.6 Plotly

Plotly’s Python API enables interactive figures and web shareability. Maps, 2D, 3D, and live-streaming graphs are rendered with WebGL and D3.js. The library supports plotting directly from a pandas DataFrame and cloud-based collaboration. Users of matplotlib, ggplot for Python, and Seaborn can convert figures into interactive web-based plots. Plots can be drawn in IPython Notebooks, edited with R or MATLAB, modified in a GUI, or embedded in apps and dashboards. Plotly is free for unlimited sharing, and has cloud, offline, or on-premise accounts for private use.

### 30.2.7 QtPandas

Spun off from the main pandas library, the qtpandas library enables DataFrame visualization and manipulation in PyQt4 and PySide applications.

### 30.3 IDE

#### 30.3.1 IPython

IPython is an interactive command shell and distributed computing environment. IPython Notebook is a web application for creating IPython notebooks. An IPython notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. IPython notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and ipython nbconvert in a shell.

Pandas DataFrames implement _repr_html_ methods which are utilized by IPython Notebook for displaying (abbreviated) HTML tables. (Note: HTML tables may or may not be compatible with non-HTML IPython output formats.)
30.3.2 quantopian/qgrid

qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid.

30.3.3 Spyder

Spyder is a cross-platform Qt-based open-source Python IDE with editing, testing, debugging, and introspection features. Spyder can now introspect and display Pandas DataFrames and show both “column wise min/max and global min/max coloring.”

30.4 API

30.4.1 pandas-datareader

pandas-datareader is a remote data access library for pandas. pandas.io from pandas < 0.17.0 is now refactored/split-off to and importable from pandas_datareader (PyPI:pandas-datareader). Many/most of the supported APIs have at least a documentation paragraph in the pandas-datareader docs:

The following data feeds are available:

- Yahoo! Finance
- Google Finance
- FRED
- Fama/French
- World Bank
- OECD
- Eurostat
- EDGAR Index

30.4.2 quandl/Python

Quandl API for Python wraps the Quandl REST API to return Pandas DataFrames with timeseries indexes.

30.4.3 pydatastream

PyDatastream is a Python interface to the Thomson Dataworks Enterprise (DWE/DataStream) SOAP API to return indexed Pandas DataFrames or Panels with financial data. This package requires valid credentials for this API (non free).

30.4.4 pandaSDMX

pandaSDMX is a library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1, an ISO-standard widely used by institutions such as statistics offices, central banks, and international organisations. pandaSDMX can expose datasets and related structural metadata including dataflows, code-lists, and datastructure definitions as pandas Series or multi-indexed DataFrames.
30.4.5 fredapi

Fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic data revisions). Fredapi provides a wrapper in python to the FRED HTTP API, and also provides several convenient methods for parsing and analyzing point-in-time data from ALFRED. Fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website.

30.5 Domain Specific

30.5.1 Geopandas

Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas.

30.5.2 xarray

Xarray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels.

30.6 Out-of-core

30.6.1 Dask

Dask is a flexible parallel computing library for analytics. Dask allow a familiar DataFrame interface to out-of-core, parallel and distributed computing.

30.6.2 Blaze

Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB, PyTables, PySpark.

30.6.3 Odo

Odo provides a uniform API for moving data between different formats. It uses pandas own read_csv for CSV IO and leverages many existing packages such as PyTables, h5py, and pymongo to move data between non pandas formats. Its graph based approach is also extensible by end users for custom formats that may be too specific for the core of odo.
COMPARISON WITH R / R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas. In comparisons with R and CRAN libraries, we care about the following things:

- **Functionality / flexibility**: what can/cannot be done with each tool
- **Performance**: how fast are operations. Hard numbers/benchmarks are preferable
- **Ease-of-use**: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons)

This page is also here to offer a bit of a translation guide for users of these R packages.

For transfer of DataFrame objects from pandas to R, one option is to use HDF5 files, see External Compatibility for an example.

### 31.1 Quick Reference

We’ll start off with a quick reference guide pairing some common R operations using dplyr with pandas equivalents.

#### 31.1.1 Querying, Filtering, Sampling

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim(df)</td>
<td>df.shape</td>
</tr>
<tr>
<td>head(df)</td>
<td>df.head()</td>
</tr>
<tr>
<td>slice(df, 1:10)</td>
<td>df.iloc[:9]</td>
</tr>
<tr>
<td>filter(df, col1 == 1, col2 == 1)</td>
<td>df.query('col1 == 1 &amp; col2 == 1')</td>
</tr>
<tr>
<td>df[col1 == 1 &amp; df$col2 == 1,]</td>
<td>df[(df.col1 == 1) &amp; (df.col2 == 1)]</td>
</tr>
<tr>
<td>select(df, col1, col2)</td>
<td>df[['col1', 'col2']]</td>
</tr>
<tr>
<td>select(df, col1:col3)</td>
<td>df.loc[:, 'col1':'col3']</td>
</tr>
<tr>
<td>select(df, -(col1:col3))</td>
<td>df.drop(cols_to_drop, axis=1) but see¹</td>
</tr>
<tr>
<td>distinct(select(df, col1))</td>
<td>df[['col1']].drop_duplicates()</td>
</tr>
<tr>
<td>distinct(select(df, col1, col2))</td>
<td>df[['col1', 'col2']].drop_duplicates()</td>
</tr>
<tr>
<td>sample_n(df, 10)</td>
<td>df.sample(n=10)</td>
</tr>
<tr>
<td>sample_frac(df, 0.01)</td>
<td>df.sample(frac=0.01)</td>
</tr>
</tbody>
</table>

¹ R’s shorthand for a subrange of columns (select(df, col1:col3)) can be approached cleanly in pandas, if you have the list of columns, for example df[cols[1:3]] or df.drop(cols[1:3]), but doing this by column name is a bit messy.
31.1.2 Sorting

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arrange(df, col1, col2)</code></td>
<td><code>df.sort_values(['col1', 'col2'])</code></td>
</tr>
<tr>
<td><code>arrange(df, desc(col1))</code></td>
<td><code>df.sort_values('col1', ascending=False)</code></td>
</tr>
</tbody>
</table>

31.1.3 Transforming

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>select(df, col_one = col1)</code></td>
<td><code>df.rename(columns={'col1': 'col_one'})</code>[`col_one`]</td>
</tr>
<tr>
<td><code>rename(df, col_one = col1)</code></td>
<td><code>df.rename(columns={'col1': 'col_one'})</code></td>
</tr>
<tr>
<td><code>mutate(df, c=a-b)</code></td>
<td><code>df.assign(c=df.a-df.b)</code></td>
</tr>
</tbody>
</table>

31.1.4 Grouping and Summarizing

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary(df)</code></td>
<td><code>df.describe()</code></td>
</tr>
<tr>
<td><code>gdf &lt;- group_by(df, col1)</code></td>
<td><code>gdf = df.groupby('col1')</code></td>
</tr>
<tr>
<td><code>summarise(gdf, avg=mean(col1, na.rm=TRUE))</code></td>
<td><code>gdf.groupby('col1').agg({'col1': 'mean'})</code></td>
</tr>
<tr>
<td><code>summarise(gdf, total=sum(col1))</code></td>
<td><code>gdf.groupby('col1').sum()</code></td>
</tr>
</tbody>
</table>

31.2 Base R

31.2.1 Slicing with R’s c

R makes it easy to access `data.frame` columns by name

```
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
```

or by integer location

```
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
```

Selecting multiple columns by name in pandas is straightforward

```
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
In [2]: df[['a', 'c']]
Out[2]:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.039575</td>
<td>-0.424972</td>
</tr>
<tr>
<td>1</td>
<td>0.567020</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2</td>
<td>-0.673690</td>
<td>-1.478427</td>
</tr>
<tr>
<td>3</td>
<td>0.524988</td>
<td>0.577046</td>
</tr>
<tr>
<td>4</td>
<td>-1.715002</td>
<td>-0.370647</td>
</tr>
<tr>
<td>5</td>
<td>-1.157892</td>
<td>0.844885</td>
</tr>
</tbody>
</table>
```
In [3]: df.loc[:, ['a', 'c']]

→

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.039575</td>
<td>-0.424972</td>
</tr>
<tr>
<td>1</td>
<td>0.567020</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2</td>
<td>-0.673690</td>
<td>-1.478427</td>
</tr>
<tr>
<td>3</td>
<td>0.524988</td>
<td>0.577046</td>
</tr>
<tr>
<td>4</td>
<td>-1.715002</td>
<td>-0.370647</td>
</tr>
<tr>
<td>5</td>
<td>-1.157892</td>
<td>0.844885</td>
</tr>
<tr>
<td>6</td>
<td>1.075770</td>
<td>1.643563</td>
</tr>
<tr>
<td>7</td>
<td>-1.469388</td>
<td>-0.674600</td>
</tr>
<tr>
<td>8</td>
<td>-1.776904</td>
<td>-1.294524</td>
</tr>
<tr>
<td>9</td>
<td>0.413738</td>
<td>-0.472035</td>
</tr>
</tbody>
</table>

Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the `iloc` indexer attribute and NumPy's `r_`.

In [4]: named = list('abcdefg')

In [5]: n = 30

In [6]: columns = named + np.arange(len(named), n).tolist()

In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)

In [8]: df.iloc[:, np.r_[:10, 24:30]]

Out [8]:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.013960</td>
<td>-0.362543</td>
<td>-0.006154</td>
<td>-0.923061</td>
<td>0.895717</td>
<td>0.805244</td>
</tr>
<tr>
<td>1</td>
<td>0.545952</td>
<td>-1.219217</td>
<td>-1.226825</td>
<td>0.769804</td>
<td>-1.281247</td>
<td>-0.727707</td>
</tr>
<tr>
<td>2</td>
<td>2.396780</td>
<td>0.014871</td>
<td>3.357427</td>
<td>-0.317441</td>
<td>-1.326269</td>
<td>0.896171</td>
</tr>
<tr>
<td>3</td>
<td>-0.988387</td>
<td>0.094055</td>
<td>1.262731</td>
<td>1.289997</td>
<td>0.082423</td>
<td>-0.055758</td>
</tr>
<tr>
<td>4</td>
<td>-1.340896</td>
<td>1.846883</td>
<td>-1.328865</td>
<td>1.682706</td>
<td>-1.717693</td>
<td>0.888782</td>
</tr>
<tr>
<td>5</td>
<td>0.464000</td>
<td>0.227371</td>
<td>-0.496222</td>
<td>0.306389</td>
<td>-2.290613</td>
<td>-1.134623</td>
</tr>
<tr>
<td>6</td>
<td>-0.507516</td>
<td>-0.230096</td>
<td>0.394500</td>
<td>-1.934370</td>
<td>-1.652499</td>
<td>1.488753</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>23</td>
<td>-0.083272</td>
<td>-0.273955</td>
<td>-0.772369</td>
<td>-1.242807</td>
<td>-0.386336</td>
<td>-0.182486</td>
</tr>
<tr>
<td>24</td>
<td>2.071413</td>
<td>-1.364763</td>
<td>1.122066</td>
<td>0.066847</td>
<td>1.751987</td>
<td>0.419071</td>
</tr>
<tr>
<td>25</td>
<td>0.036609</td>
<td>0.359986</td>
<td>1.211905</td>
<td>0.850427</td>
<td>1.554957</td>
<td>-0.88463</td>
</tr>
<tr>
<td>26</td>
<td>-1.179240</td>
<td>0.238923</td>
<td>1.756671</td>
<td>-0.747571</td>
<td>0.543625</td>
<td>-0.159609</td>
</tr>
<tr>
<td>27</td>
<td>0.025645</td>
<td>0.932436</td>
<td>-1.694531</td>
<td>-0.182236</td>
<td>-1.072710</td>
<td>0.466764</td>
</tr>
<tr>
<td>28</td>
<td>0.439086</td>
<td>0.812684</td>
<td>-0.128932</td>
<td>-0.142506</td>
<td>-1.137207</td>
<td>0.462001</td>
</tr>
<tr>
<td>29</td>
<td>-0.909806</td>
<td>-0.312006</td>
<td>0.383630</td>
<td>-0.631606</td>
<td>1.321415</td>
<td>-0.004799</td>
</tr>
<tr>
<td>30</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

31.2. Base R 1143
.. code-block::

```
23 0.065624 0.307665 -1.898358 1.389045 -0.873585 -0.699862 0.812477
24 1.010694 0.877138 -0.611561 -1.040389 -0.796211 0.241596 0.385922
25 -0.617855 0.536164 2.175585 1.872601 -2.513465 -0.139184 0.810491
26 0.937882 0.617547 0.287918 -1.584814 0.307941 1.809049 0.296237
27 -0.026233 -0.051744 0.001402 0.150664 -3.060395 0.040268 0.066091
28 -1.788308 0.753604 0.918071 0.922729 0.869610 0.364726 -0.226101
29 -0.481634 -2.056211 -2.106095 0.039227 0.211283 1.440190 -0.989193
```

[30 rows x 16 columns]

31.2.2 aggregate

In R you may want to split data into subsets and compute the mean for each. Using a data.frame called `df` and splitting it into groups `by1` and `by2`:

```r
df <- data.frame(
 v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
 v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
 by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
 by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
```

The `groupby()` method is similar to base R `aggregate` function.

```python
df = pd.DataFrame({
 ...: 'v1': [1,3,5,7,8,3,5, np.nan, 4, 5, 7, 9],
 ...: 'v2': [11,33,55,77,88,33,55, np.nan, 44, 55, 77, 99],
 ...: 'by1': ['red', 'blue', 1, 2, np.nan, 'big', 1, 2, 'red', 1, np.nan, 12],
 ...: 'by2': ['wet', 'dry', 99, 95, np.nan, 'damp', 95, 99, 'red', 99, np.nan, np.nan],
 ...: })

In [10]: g = df.groupby(['by1', 'by2'])
In [11]: g[['v1','v2']].mean()
```

Out[11]:
```
 v1 v2
28 29

23 -0.469503 1.142702
24 -0.486078 0.433042
25 0.571599 -0.000676
26 -0.143550 0.289401
27 -0.192862 1.979055
28 -0.657647 -0.952699
29 0.313335 -0.399709
[30 rows x 16 columns]
```
For more details and examples see the groupby documentation.

### 31.2.3 match / `%in%`

A common way to select data in R is using `%in%` which is defined using the function `match`. The operator `%in%` is used to return a logical vector indicating if there is a match or not:

```
s <- 0:4
s %in% c(2,4)
```

The `isin()` method is similar to R `%in%` operator:

```
In [12]: s = pd.Series(np.arange(5),dtype=np.float32)
In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
```

The `match` function returns a vector of the positions of matches of its first argument in its second:

```
s <- 0:4
match(s, c(2,4))
```

For more details and examples see the reshaping documentation.

### 31.2.4 tapply

tapply is similar to aggregate, but data can be in a ragged array, since the subclass sizes are possibly irregular. Using a data.frame called `baseball`, and retrieving information based on the array `team`:

```
baseball <-
data.frame(team = gl(5, 5,
 labels = paste("Team", LETTERS[1:5]),
 player = sample(letters, 25),
 batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
 max)
```

In pandas we may use `pivot_table()` method to handle this:
In [14]: import random
In [15]: import string
In [16]:
baseball = pd.DataFrame({
    'team': ['team %d' % (x+1) for x in range(5)]*5,
    'player': random.sample(list(string.ascii_lowercase),25),
    'batting avg': np.random.uniform(.200, .400, 25)
})
In [17]:
baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)
Out[17]:
<table>
<thead>
<tr>
<th>team</th>
<th>team 1</th>
<th>team 2</th>
<th>team 3</th>
<th>team 4</th>
<th>team 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>batting avg</td>
<td>0.394457</td>
<td>0.39573</td>
<td>0.343015</td>
<td>0.388863</td>
<td>0.377379</td>
</tr>
</tbody>
</table>

For more details and examples see the reshaping documentation.

### 31.2.5 subset

New in version 0.13.

The `query()` method is similar to the base R `subset` function. In R you might want to get the rows of a `data.frame` where one column’s values are less than another column’s values:

```r
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
```

```r
df[df$a <= df$b,] # note the comma
```

In pandas, there are a few ways to perform subsetting. You can use `query()` or pass an expression as if it were an index/slice as well as standard boolean indexing:

In [18]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [19]: df.query('a <= b')
Out[19]:
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  -1.003455</td>
<td>-0.990738</td>
</tr>
<tr>
<td>1   0.083515</td>
<td>0.548796</td>
</tr>
<tr>
<td>3  -0.524392</td>
<td>0.904400</td>
</tr>
<tr>
<td>4  -0.837804</td>
<td>0.746374</td>
</tr>
<tr>
<td>8  -0.507219</td>
<td>0.245479</td>
</tr>
</tbody>
</table>

In [20]: df[df.a <= df.b]
```

```python
→ a   b
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  -1.003455</td>
<td>-0.990738</td>
</tr>
<tr>
<td>1   0.083515</td>
<td>0.548796</td>
</tr>
<tr>
<td>3  -0.524392</td>
<td>0.904400</td>
</tr>
<tr>
<td>4  -0.837804</td>
<td>0.746374</td>
</tr>
<tr>
<td>8  -0.507219</td>
<td>0.245479</td>
</tr>
</tbody>
</table>
```

In [21]: df.loc[df.a <= df.b]
```

```python
→ a b
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -1.003455</td>
<td>-0.990738</td>
</tr>
<tr>
<td>1 0.083515</td>
<td>0.548796</td>
</tr>
<tr>
<td>3 -0.524392</td>
<td>0.904400</td>
</tr>
<tr>
<td>4 -0.837804</td>
<td>0.746374</td>
</tr>
<tr>
<td>8 -0.507219</td>
<td>0.245479</td>
</tr>
</tbody>
</table>
```
For more details and examples see the query documentation.

### 31.2.6 with

New in version 0.13.

An expression using a data.frame called \texttt{df} in R with the columns \texttt{a} and \texttt{b} would be evaluated using \texttt{with} like so:

```r
df <- \texttt{data.frame(a=rnorm(10), b=rnorm(10))}
\texttt{with(df, a + b)}
df$a + df$b \# same as the previous expression
```

In pandas the equivalent expression, using the \texttt{eval()} method, would be:

```python
In [22]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})

In [23]: df.eval('a + b')
Out[23]:
 0 -0.920205
 1 -0.860236
 2 1.154370
 3 0.188140
 4 -1.163718
 5 0.001397
 6 -0.825694
 7 -1.138198
 8 -1.708034
 9 1.148616
```

In certain cases \texttt{eval()} will be much faster than evaluation in pure Python. For more details and examples see the \texttt{eval} documentation.
31.3 plyr

plyr is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data structures in R, a for arrays, l for lists, and d for data.frame. The table below shows how these data structures could be mapped in Python.

<table>
<thead>
<tr>
<th>R</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>list</td>
</tr>
<tr>
<td>lists</td>
<td>dictionary or list of objects</td>
</tr>
<tr>
<td>data.frame</td>
<td>dataframe</td>
</tr>
</tbody>
</table>

31.3.1 ddply

An expression using a data.frame called df in R where you want to summarize x by month:

```r
require(plyr)
df <- data.frame(
 x = runif(120, 1, 168),
 y = runif(120, 7, 334),
 z = runif(120, 1.7, 20.7),
 month = rep(c(5,6,7,8),30),
 week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
 mean = round(mean(x), 2),
 sd = round(sd(x), 2))
```

In pandas the equivalent expression, using the `groupby()` method, would be:

```python
In [25]: df = pd.DataFrame(
 : {'x': np.random.uniform(1., 168., 120),
 : 'y': np.random.uniform(7., 334., 120),
 : 'z': np.random.uniform(1.7, 20.7, 120),
 : 'month': [5,6,7,8]*30,
 : 'week': np.random.randint(1,4, 120)
 :)
 :
 :
In [26]: grouped = df.groupby(['month','week'])
In [27]: grouped['x'].agg([np.mean, np.std])
Out[27]:
```

<table>
<thead>
<tr>
<th>month</th>
<th>week</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>71.840596</td>
<td>52.886392</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>97.730877</td>
<td>52.442172</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
For more details and examples see the groupby documentation.

### 31.4 reshape / reshape2

#### 31.4.1 melt.array

An expression using a 3 dimensional array called `a` in R where you want to melt it into a data.frame:

```r
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
```

In Python, since `a` is a list, you can simply use list comprehension.

```python
In [28]: a = np.array(list(range(1,24))+[np.NAN]).reshape(2,3,4)
In [29]: pd.DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(a)])
Out[29]:
 0 1 2 3
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
5 0 1 1 6.0
6 0 1 2 7.0
..
17 1 1 1 18.0
18 1 1 2 19.0
19 1 1 3 20.0
20 1 2 0 21.0
21 1 2 1 22.0
22 1 2 2 23.0
23 1 2 3 NaN
```

#### 31.4.2 melt.list

An expression using a list called `a` in R where you want to melt it into a data.frame:

```r
a <- as.list(c(1:4, NA))
data.frame(melt(a))
```

In Python, this list would be a list of tuples, so `DataFrame()` method would convert it to a dataframe as required.

```python
In [30]: a = list(enumerate(list(range(1,5))+[np.NAN]))
In [31]: pd.DataFrame(a)
Out[31]:
 0 1
0 0 1
```

31.4. reshape / reshape2
For more details and examples see the Intro to Data Structures documentation.

### 31.4.3 melt.data.frame

An expression using a data.frame called `cheese` in R where you want to reshape the data.frame:

```r
cheese <- data.frame(
 first = c('John', 'Mary'),
 last = c('Doe', 'Bo'),
 height = c(5.5, 6.0),
 weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
```

In Python, the `melt()` method is the R equivalent:

```python
In [32]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
 'last' : ['Doe', 'Bo'],
 'height' : [5.5, 6.0],
 'weight' : [130, 150]})

In [33]: pd.melt(cheese, id_vars=['first', 'last'])
```

### 31.4.4 cast

In R `acast` is an expression using a data.frame called `df` in R to cast into a higher dimensional array:

```r
def <- data.frame(
 x = runif(12, 1, 168),
 y = runif(12, 7, 334),
```

For more details and examples see the reshaping documentation.
```r
z <- runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)
}

mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
```

In Python the best way is to make use of `pivot_table()`:

```py
In [35]: df = pd.DataFrame({
....: 'x': np.random.uniform(1., 168., 12),
....: 'y': np.random.uniform(7., 334., 12),
....: 'z': np.random.uniform(1.7, 20.7, 12),
....: 'month': [5,6,7]*4,
....: 'week': [1,2]*6
....: })

In [36]: mdf = pd.melt(df, id_vars=['month', 'week'])
In [37]: pd.pivot_table(mdf, values='value', index=['variable','week'],
....: columns=['month'], aggfunc=np.mean)
```

Similarly for `dcast` which uses a data.frame called `df` in R to aggregate information based on Animal and FeedType:

```r
df <- data.frame(
 Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
 'Animal2', 'Animal3'),
 FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
 Amount = c(10, 7, 4, 2, 5, 6, 2)
)

dcast(df, Animal ~ FeedType, sum, fill=NaN)
Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))
```

Python can approach this in two different ways. Firstly, similar to above using `pivot_table()`:

```py
In [38]: df = pd.DataFrame({
....: 'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
....: 'Animal2', 'Animal3'],
....: 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
....: 'Amount': [10, 7, 4, 2, 5, 6, 2],
....: })
```
In [39]: df.pivot_table(values='Amount', index='Animal', columns='FeedType', aggfunc='sum')

Out[39]:
<table>
<thead>
<tr>
<th>FeedType</th>
<th>Animal1</th>
<th>Animal2</th>
<th>Animal3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.0</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>B</td>
<td>5.0</td>
<td>13.0</td>
<td>NaN</td>
</tr>
</tbody>
</table>

The second approach is to use the `groupby()` method:

In [40]: df.groupby(['Animal', 'FeedType'])['Amount'].sum()

Out[40]:
<table>
<thead>
<tr>
<th>Animal</th>
<th>FeedType</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal1</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>Animal2</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>13</td>
</tr>
<tr>
<td>Animal3</td>
<td>A</td>
<td>6</td>
</tr>
</tbody>
</table>

For more details and examples see the reshaping documentation or the groupby documentation.

### 31.4.5 factor

New in version 0.15.

pandas has a data type for categorical data.

```
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
```

In pandas this is accomplished with `pd.cut` and `astype("category")`:

```
In [41]: pd.cut(pd.Series([1,2,3,4,5,6]), 3)
Out[41]:
<table>
<thead>
<tr>
<th>(0.995, 2.667]</th>
<th>(2.667, 4.333]</th>
<th>(4.333, 6.0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

dtype: category
Categories (3, interval[float64]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]

In [42]: pd.Series([1,2,3,2,2,3]).astype("category")
```

```
For more details and examples see *categorical introduction* and the *API documentation*. There is also a documentation regarding the *differences to R’s factor*.
Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.

If you’re new to pandas, you might want to first read through *10 Minutes to pandas* to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```python
In [1]: import pandas as pd
In [2]: import numpy as np
```

Most of the examples will utilize the `tips` dataset found within pandas tests. We’ll read the data into a DataFrame called `tips` and assume we have a database table of the same name and structure.

```python
In [3]: url = 'https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv'
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
```

32.1 SELECT

In SQL, selection is done using a comma-separated list of columns you’d like to select (or a * to select all columns):

```sql
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
```

With pandas, column selection is done by passing a list of column names to your DataFrame:

```python
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
   total_bill   tip  smoker  time
0     16.99   1.01  Female  Dinner
1     10.34   1.66   Male  Dinner
2     21.01   3.50   Male  Dinner
3     23.68   3.31   Male  Dinner
4     24.59   3.61  Female  Dinner
```
Calling the DataFrame without the list of column names would display all columns (akin to SQL’s `*`).

32.2 WHERE

Filtering in SQL is done via a WHERE clause.

```sql
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

```python
In [7]: tips[tips['time'] == 'Dinner'].head(5)
```

```
Out[7]:
total_bill  tip  sex smoker day  time  size
0  16.99   1.01 Female  No  Sun Dinner  2
1  10.34   1.66  Male  No  Sun Dinner  3
2  21.01   3.50  Male  No  Sun Dinner  3
3  23.68   3.31  Male  No  Sun Dinner  2
4  24.59   3.61 Female  No  Sun Dinner  4
```

The above statement is simply passing a Series of True/False objects to the DataFrame, returning all rows with True.

```python
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
True  176
False  68
Name: time, dtype: int64
```

```python
In [10]: tips[is_dinner].head(5)
```

```
Out[10]:
total_bill  tip  sex smoker day  time  size
0  16.99   1.01 Female  No  Sun Dinner  2
1  10.34   1.66  Male  No  Sun Dinner  3
2  21.01   3.50  Male  No  Sun Dinner  3
3  23.68   3.31  Male  No  Sun Dinner  2
4  24.59   3.61 Female  No  Sun Dinner  4
```

Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).

```sql
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
```
tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]

Out[11]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>39.42</td>
<td>7.58</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>30.40</td>
<td>5.60</td>
<td>Male</td>
<td>No Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>47</td>
<td>32.40</td>
<td>6.00</td>
<td>Male</td>
<td>No Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>34.81</td>
<td>5.20</td>
<td>Female</td>
<td>No Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>48.27</td>
<td>6.73</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>116</td>
<td>29.93</td>
<td>5.07</td>
<td>Male</td>
<td>No Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>155</td>
<td>29.85</td>
<td>5.14</td>
<td>Female</td>
<td>No Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>50.81</td>
<td>10.00</td>
<td>Male</td>
<td>Yes Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>172</td>
<td>7.25</td>
<td>5.15</td>
<td>Male</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>181</td>
<td>23.33</td>
<td>5.65</td>
<td>Male</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>183</td>
<td>23.17</td>
<td>6.50</td>
<td>Male</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>211</td>
<td>25.89</td>
<td>5.16</td>
<td>Male</td>
<td>Yes Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>212</td>
<td>48.33</td>
<td>9.00</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>214</td>
<td>28.17</td>
<td>6.50</td>
<td>Female</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>211</td>
<td>25.89</td>
<td>5.16</td>
<td>Male</td>
<td>Yes Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>212</td>
<td>48.33</td>
<td>9.00</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>214</td>
<td>28.17</td>
<td>6.50</td>
<td>Female</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>239</td>
<td>29.03</td>
<td>5.92</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
</tbody>
</table>

tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;

tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]

Out[12]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>48.27</td>
<td>6.73</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>125</td>
<td>29.80</td>
<td>4.20</td>
<td>Female</td>
<td>No Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>141</td>
<td>34.30</td>
<td>6.70</td>
<td>Male</td>
<td>No Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>142</td>
<td>41.19</td>
<td>5.00</td>
<td>Male</td>
<td>No Thur</td>
<td>Lunch</td>
<td>5</td>
</tr>
<tr>
<td>143</td>
<td>27.05</td>
<td>5.00</td>
<td>Female</td>
<td>No Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>155</td>
<td>29.85</td>
<td>5.14</td>
<td>Female</td>
<td>No Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>156</td>
<td>48.17</td>
<td>5.00</td>
<td>Male</td>
<td>No Sun</td>
<td>Dinner</td>
<td>6</td>
</tr>
<tr>
<td>170</td>
<td>50.81</td>
<td>10.00</td>
<td>Male</td>
<td>Yes Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>45.35</td>
<td>3.50</td>
<td>Male</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>185</td>
<td>20.69</td>
<td>5.00</td>
<td>Male</td>
<td>No Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>187</td>
<td>30.46</td>
<td>2.00</td>
<td>Male</td>
<td>Yes Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>212</td>
<td>48.33</td>
<td>9.00</td>
<td>Male</td>
<td>No Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>28.15</td>
<td>3.00</td>
<td>Male</td>
<td>Yes Sat</td>
<td>Dinner</td>
<td>5</td>
</tr>
</tbody>
</table>

NULL checking is done using the notnull() and isnull() methods.

....: 'col2': ['F', np.NaN, 'G', 'H', 'I']})

In [14]: frame
Out[14]:

<table>
<thead>
<tr>
<th>col1</th>
<th>col2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>NaN</td>
</tr>
<tr>
<td>NaN</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
</tr>
</tbody>
</table>
Assume we have a table of the same structure as our DataFrame above. We can see only the records where `col2` IS NULL with the following query:

```sql
SELECT * 
FROM frame 
WHERE col2 IS NULL;
```

```python
In [15]: frame[frame['col2'].isnull()]
Out[15]:
   col1  col2
0   NaN   NaN
1    B  NaN
```

Getting items where `col1` IS NOT NULL can be done with `notnull()`.

```sql
SELECT * 
FROM frame 
WHERE col1 IS NOT NULL;
```

```python
In [16]: frame[frame['col1'].notnull()]
Out[16]:
   col1  col2
0    A    F
1    B  NaN
3    C    H
4    D    I
```

32.3 GROUP BY

In pandas, SQL’s GROUP BY operations are performed using the similarly named `groupby()` method. `groupby()` typically refers to a process where we’d like to split a dataset into groups, apply some function (typically aggregation), and then combine the groups together.

A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:

```sql
SELECT sex, count(*) 
FROM tips 
GROUP BY sex;
```

```
/*
Female 87
Male 157
*/
```

The pandas equivalent would be:

```python
In [17]: tips.groupby('sex').size()
Out[17]:
   sex
Female  87
   Male  157
dtype: int64
```

Notice that in the pandas code we used `size()` and not `count()`. This is because `count()` applies the function to each column, returning the number of not null records within each.
Alternatively, we could have applied the `count()` method to an individual column:

```
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex   
Female 87
Male   157
Name: total_bill, dtype: int64
```

Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - `agg()` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.

```
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
```

```
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
    tip  day
day
Fri  2.734737  19
Sat  2.993103  87
Sun  3.255132  76
Thur 2.771452  62
```

Grouping by more than one column is done by passing a list of columns to the `groupby()` method.

```
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker  day
No  Fri   4 2.812500
     Sat  45 3.102889
     Sun  57 3.167895
     Thur 45 2.673778
Yes Fri  15 2.714000
      Sat 42 2.875476
      Sun 19 3.516842
      Thur 17 3.030000
*/
```
32.4 JOIN

JOINs can be performed with `join()` or `merge()`. By default, `join()` will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices).

```python
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
                   ....:                     'value': np.random.randn(4)})

In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
                   ....:                     'value': np.random.randn(4)})
```

Assume we have two database tables of the same name and structure as our DataFrames.

Now let's go over the various types of JOINs.

32.4.1 INNER JOIN

```sql
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
```

```python
In [24]: pd.merge(df1, df2, on='key')
```

```py
# merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
```

`merge()` also offers parameters for cases when you'd like to join one DataFrame's column with another DataFrame's index.

```python
In [25]: indexed_df2 = df2.set_index('key')

In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
```
32.4.2 LEFT OUTER JOIN

```
-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
```

```
# show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
<table>
<thead>
<tr>
<th>key</th>
<th>value_x</th>
<th>value_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.116174</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>-0.318214</td>
<td>0.543581</td>
</tr>
<tr>
<td>2</td>
<td>0.285261</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>2.169960</td>
<td>-0.426067</td>
</tr>
<tr>
<td>4</td>
<td>2.169960</td>
<td>1.138079</td>
</tr>
</tbody>
</table>
```

32.4.3 RIGHT JOIN

```
-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
```

```
# show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
<table>
<thead>
<tr>
<th>key</th>
<th>value_x</th>
<th>value_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.318214</td>
<td>0.543581</td>
</tr>
<tr>
<td>1</td>
<td>2.169960</td>
<td>-0.426067</td>
</tr>
<tr>
<td>2</td>
<td>2.169960</td>
<td>1.138079</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>0.086073</td>
</tr>
</tbody>
</table>
```

32.4.4 FULL JOIN

pandas also allows for FULL JOINs, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).

```
-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
```
show all records from both frames
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:
 key value_x value_y
0 A 0.116174 NaN
1 B -0.318214 0.543581
2 C 0.285261 NaN
3 D 2.169960 -0.426067
4 D 2.169960 1.138079
5 E NaN 0.086073

32.5 UNION

UNION ALL can be performed using `concat()`.

In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
 'rank': range(1, 4)})
In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
 'rank': [1, 4, 5]})

SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/

In [32]: pd.concat([df1, df2])
Out[32]:
 city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5

SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows.

SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
In pandas, you can use `concat()` in conjunction with `drop_duplicates()`.

```python
In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:
   city  rank
0  Chicago    1
1    San Francisco    2
2  New York City    3
1      Boston    4
2    Los Angeles    5
```

32.6 Pandas equivalents for some SQL analytic and aggregate functions

32.6.1 Top N rows with offset

```sql
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
```

```python
In [34]: tips.nlargest(10+5, columns='tip').tail(10)
Out[34]:
   total_bill  tip  sex   smoker day    time size
0    23.17    6.50  Male     Yes Sun  Dinner    4
1    28.17    6.50 Female     Yes Sat  Dinner    3
2    32.40    6.00  Male      No Sun  Dinner    4
1    29.03    5.92  Male      No Sat  Dinner    3
2    24.71    5.60  Male      No Thur Lunch    2
1    32.33    5.65  Male     Yes Sun  Dinner    2
2    30.40    5.60  Male      No Sun  Dinner    4
1    34.81    5.20 Female     No Sun  Dinner    4
2    34.83    5.17 Female     No Thur Lunch    4
2    25.89    5.16  Male     Yes Sat  Dinner    4
```

32.6.2 Top N rows per group

```sql
-- Oracle’s ROW_NUMBER() analytic function
SELECT * FROM (  
  SELECT  
    t.*,  
```

32.6. Pandas equivalents for some SQL analytic and aggregate functions
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
WHERE rn < 3
ORDER BY day, rn;

In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
 : .groupby(['day'])
 : .cumcount() + 1)
 : .query('rn < 3')
 : .sort_values(['day','rn'])
 :)

Out[35]:
 total_bill tip sex smoker day time size rn
95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2

the same using rank(method='first') function

In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
 : .rank(method='first', ascending=False))
 : .query('rnk < 3')
 : .sort_values(['day','rnk'])
 :)

Out[36]:
 total_bill tip sex smoker day time size rnk
95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0

-- Oracle's RANK() analytic function

SELECT * FROM (SELECT t.*,
 RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
) WHERE rnk < 3
ORDER BY sex, rnk;

Let's find tips with (rank < 3) per gender group for (tips < 2). Notice that when using rank(method='min') function rnk_min remains the same for the same tip (as Oracle’s RANK() function)
In [37]: (tips[tips['tip'] < 2]
....: .assign(rnk_min=tips.groupby(['sex'])['tip']
....: .rank(method='min'))
....: .query('rnk_min < 3')
....: .sort_values(['sex','rnk_min'])
....:)

Out[37]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
<th>rnk_min</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>3.07</td>
<td>Female</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>92</td>
<td>5.75</td>
<td>Female</td>
<td>Yes</td>
<td>Fri</td>
<td>Dinner</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>111</td>
<td>7.25</td>
<td>Female</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>236</td>
<td>12.60</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>237</td>
<td>32.83</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

32.7 UPDATE

```sql
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
```

In [38]: tips.loc[tips['tip'] < 2, 'tip'] *= 2

32.8 DELETE

```sql
DELETE FROM tips
WHERE tip > 9;
```

In pandas we select the rows that should remain, instead of deleting them

In [39]: tips = tips.loc[tips['tip'] <= 9]
COMPARISON WITH SAS

For potential users coming from SAS this page is meant to demonstrate how different SAS operations would be performed in pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```python
In [1]: import pandas as pd
In [2]: import numpy as np
```

Note: Throughout this tutorial, the pandas DataFrame will be displayed by calling `df.head()`, which displays the first N (default 5) rows of the DataFrame. This is often used in interactive work (e.g. Jupyter notebook or terminal) - the equivalent in SAS would be:

```sas
proc print data=df(obs=5);
run;
```

33.1 Data Structures

33.1.1 General Terminology Translation

<table>
<thead>
<tr>
<th>pandas</th>
<th>SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame</td>
<td>data set</td>
</tr>
<tr>
<td>column</td>
<td>variable</td>
</tr>
<tr>
<td>row</td>
<td>observation</td>
</tr>
<tr>
<td>groupby</td>
<td>BY-group</td>
</tr>
<tr>
<td>NaN</td>
<td>.</td>
</tr>
</tbody>
</table>

33.1.2 DataFrame / Series

A DataFrame in pandas is analogous to a SAS data set - a two-dimensional data source with labeled columns that can be of different types. As will be shown in this document, almost any operation that can be applied to a data set using SAS’s DATA step, can also be accomplished in pandas.
A Series is the data structure that represents one column of a DataFrame. SAS doesn’t have a separate data structure for a single column, but in general, working with a Series is analogous to referencing a column in the DATA step.

33.1.3 Index

Every DataFrame and Series has an Index - which are labels on the rows of the data. SAS does not have an exactly analogous concept. A data set’s row are essentially unlabeled, other than an implicit integer index that can be accessed during the DATA step (_N_).

In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on). While using a labeled Index or MultiIndex can enable sophisticated analyses and is ultimately an important part of pandas to understand, for this comparison we will essentially ignore the Index and just treat the DataFrame as a collection of columns. Please see the indexing documentation for much more on how to use an Index effectively.

33.2 Data Input / Output

33.2.1 Constructing a DataFrame from Values

A SAS data set can be built from specified values by placing the data after a datalines statement and specifying the column names.

```plaintext
data df;
   input x y;
datalines;
  1 2
  3 4
  5 6
 run;
```

A pandas DataFrame can be constructed in many different ways, but for a small number of values, it is often convenient to specify it as a python dictionary, where the keys are the column names and the values are the data.

```plaintext
In [3]: df = pd.DataFrame({
   ...:     'x': [1, 3, 5],
   ...:     'y': [2, 4, 6]})
   ...:

In [4]: df
Out[4]:
   x  y
  0  1  2
  1  3  4
  2  5  6
```

33.2.2 Reading External Data

Like SAS, pandas provides utilities for reading in data from many formats. The tips dataset, found within the pandas tests (csv) will be used in many of the following examples.

SAS provides PROC IMPORT to read csv data into a data set.
The pandas method is `read_csv()`, which works similarly.

```python
In [5]: url = 'https://raw.githubusercontent.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv'
In [6]: tips = pd.read_csv(url)
In [7]: tips.head()
```

<table>
<thead>
<tr>
<th></th>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
</tbody>
</table>

Like PROC IMPORT, `read_csv` can take a number of parameters to specify how the data should be parsed. For example, if the data was instead tab delimited, and did not have column names, the pandas command would be:

```python
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
```

In addition to text/csv, pandas supports a variety of other data formats such as Excel, HDF5, and SQL databases. These are all read via a `pd.read_*` function. See the IO documentation for more details.

33.2.3 Exporting Data

The inverse of PROC IMPORT in SAS is PROC EXPORT

```python
proc export data=tips outfile='tips2.csv' dbms=csv;
run;
```

Similarly in pandas, the opposite of `read_csv` is `to_csv()`, and other data formats follow a similar api.

```python
tips.to_csv('tips2.csv')
```

33.3 Data Operations

33.3.1 Operations on Columns

In the DATA step, arbitrary math expressions can be used on new or existing columns.

```python
data tips;
  set tips;
  total_bill = total_bill - 2;
  new_bill = total_bill / 2;
run;
```
pandas provides similar vectorized operations by specifying the individual Series in the DataFrame. New columns can be assigned in the same way.

```
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2.0
In [10]: tips.head()
Out[10]:
     total_bill  tip     sex  smoker  day    time  size  new_bill
0    14.99   1.01  Female    No   Sun  Dinner    2  7.495
1     8.34   1.66  Male    No   Sun  Dinner    3  4.170
2    19.01   3.50  Male    No   Sun  Dinner    3  9.505
3    21.68   3.31  Male    No   Sun  Dinner    2 10.840
4    22.59   3.61  Female    No   Sun  Dinner    4 11.295
```

33.3.2 Filtering

Filtering in SAS is done with an `if` or `where` statement, on one or more columns.

```
data tips;
  set tips;
  if total_bill > 10;
run;

data tips;
  set tips;
  where total_bill > 10;
  /* equivalent in this case - where happens before the
     DATA step begins and can also be used in PROC statements */
run;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using **boolean indexing**

```
In [11]: tips[tips['total_bill'] > 10].head()
Out[11]:
     total_bill  tip     sex  smoker  day    time  size
0    14.99   1.01  Female    No   Sun  Dinner    2
1     8.34   1.66  Male    No   Sun  Dinner    3
2    19.01   3.50  Male    No   Sun  Dinner    3
3    21.68   3.31  Male    No   Sun  Dinner    2
4    22.59   3.61  Female    No   Sun  Dinner    4
```

33.3.3 If/Then Logic

In SAS, if/then logic can be used to create new columns.

```
data tips;
  set tips;
  format bucket $4.;
  if total_bill < 10 then bucket = 'low';
  else bucket = 'high';
run;
```
The same operation in pandas can be accomplished using the `where` method from `numpy`.

```python
In [12]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
In [13]: tips.head()
Out[13]:
<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
<th>bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
<td>high</td>
</tr>
<tr>
<td>8.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>19.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
<td>high</td>
</tr>
<tr>
<td>21.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
<td>high</td>
</tr>
<tr>
<td>22.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
<td>high</td>
</tr>
</tbody>
</table>
```

33.3.4 Date Functionality

SAS provides a variety of functions to do operations on date/datetime columns.

```sas
data tips;
set tips;
format date1 date2 date1_plusmonth mmddyy10.;
date1 = mdy(1, 15, 2013);
date2 = mdy(2, 15, 2015);
date1_year = year(date1);
date2_month = month(date2);
* shift date to beginning of next interval;
date1_next = intnx('MONTH', date1, 1);
* count intervals between dates;
months_between = intck('MONTH', date1, date2);
run;
```

The equivalent pandas operations are shown below. In addition to these functions pandas supports other Time Series features not available in Base SAS (such as resampling and and custom offsets) - see the `timeseries documentation` for more details.

```python
In [14]: tips['date1'] = pd.Timestamp('2013-01-15')
In [15]: tips['date2'] = pd.Timestamp('2015-02-15')
In [16]: tips['date1_year'] = tips['date1'].dt.year
In [17]: tips['date2_month'] = tips['date2'].dt.month
In [18]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [19]: tips['months_between'] = (tips['date2'].dt.to_period('M') - tips['date1'].dt.to_period('M'))
In [20]: tips[['date1', 'date2', 'date1_year', 'date2_month',
            'date1_next', 'months_between']].head()
Out[20]:
<table>
<thead>
<tr>
<th>date1</th>
<th>date2</th>
<th>date1_year</th>
<th>date2_month</th>
<th>date1_next</th>
<th>months_between</th>
</tr>
</thead>
</table>
```

33.3. Data Operations
33.3.5 Selection of Columns

SAS provides keywords in the `DATA` step to select, drop, and rename columns.

```r
# keep
In [21]: tips[['sex', 'total_bill', 'tip']].head()
Out[21]:
   sex  total_bill  tip
0  Female      14.99   1.01
1   Male        8.34   1.66
2   Male      19.01   3.50
3   Male      21.68   3.31
4  Female      22.59   3.61

# drop
In [22]: tips.drop('sex', axis=1).head()
   total_bill  tip  smoker  day  time  size
0       14.99  1.01   No  Sun  Dinner  2
1        8.34  1.66   No  Sun  Dinner  3
2       19.01  3.50   No  Sun  Dinner  3
3       21.68  3.31   No  Sun  Dinner  2
4       22.59  3.61   No  Sun  Dinner  4

# rename
In [23]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
   total_bill_2  tip  sex  smoker  day  time  size
0        14.99  1.01 Female   No  Sun  Dinner  2
1        8.34  1.66   Male   No  Sun  Dinner  3
2       19.01  3.50   Male   No  Sun  Dinner  3
3       21.68  3.31   Male   No  Sun  Dinner  2
4       22.59  3.61 Female   No  Sun  Dinner  4
```
33.3.6 Sorting by Values

Sorting in SAS is accomplished via `PROC SORT`.

```sas
proc sort data=tips;
   by sex total_bill;
run;
```

Pandas objects have a `sort_values()` method, which takes a list of columns to sort by.

```python
In [24]: tips = tips.sort_values(['sex', 'total_bill'])

In [25]: tips.head()
Out[25]:
   total_bill  tip  sex  smoker  day  time  size
0   1.07   1.00 Female   Yes  Sat  Dinner  1
1   3.75   1.00 Female   Yes  Fri  Dinner  2
2  5.25   1.00 Female    No  Sat  Dinner  1
3  6.35   1.50 Female    No Thur  Lunch  2
4  6.51   1.25 Female    No Thur  Lunch  2
```

33.4 Merging

The following tables will be used in the merge examples.

```python
In [26]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
                       'value': np.random.randn(4)})

In [27]: df1
Out[27]:
   key   value
0   A -0.857326
1   B  1.075416
2   C  0.371727
3   D  1.065735

In [28]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
                       'value': np.random.randn(4)})

In [29]: df2
Out[29]:
   key   value
0   B -0.227314
1   D  2.102726
2   D -0.092796
3   E  0.094694
```

In SAS, data must be explicitly sorted before merging. Different types of joins are accomplished using the `in=` dummy variables to track whether a match was found in one or both input frames.

```sas
proc sort data=df1;
   by key;
run;
```
pandas: powerful Python data analysis toolkit, Release 0.20.1

```plaintext
proc sort data=df2;
   by key;
run;

data left_join inner_join right_join outer_join;
   merge df1(in=a) df2(in=b);
   if a and b then output inner_join;
   if a then output left_join;
   if b then output right_join;
   if a or b then output outer_join;
run;
```

pandas DataFrames have a `merge()` method, which provides similar functionality. Note that the data does not have to be sorted ahead of time, and different join types are accomplished via the `how` keyword.

```
In [30]: inner_join = df1.merge(df2, on=['key'], how='inner')

In [31]: inner_join
Out[31]:
   key  value_x  value_y
0   B  1.075416 -0.227314
1   D  1.065735  2.102726
2   D  1.065735 -0.092796

In [32]: left_join = df1.merge(df2, on=['key'], how='left')

In [33]: left_join
Out[33]:
   key  value_x  value_y
0   A  -0.857326    NaN
1   B  1.075416 -0.227314
2   C  0.371727    NaN
3   D  1.065735  2.102726
4   D  1.065735 -0.092796
5   E   NaN         0.094694

In [34]: right_join = df1.merge(df2, on=['key'], how='right')

In [35]: right_join
Out[35]:
   key  value_x  value_y
0   B  1.075416 -0.227314
1   D  1.065735  2.102726
2   D  1.065735 -0.092796
3   E   NaN         0.094694

In [36]: outer_join = df1.merge(df2, on=['key'], how='outer')

In [37]: outer_join
Out[37]:
   key  value_x  value_y
0   A  -0.857326    NaN
1   B  1.075416 -0.227314
2   C  0.371727    NaN
3   D  1.065735  2.102726
4   D  1.065735 -0.092796
5   E   NaN         0.094694
```

Chapter 33. Comparison with SAS
33.5 Missing Data

Like SAS, pandas has a representation for missing data - which is the special float value NaN (not a number). Many of the semantics are the same, for example missing data propagates through numeric operations, and is ignored by default for aggregations.

```
In [38]: outer_join
Out[38]:
   key  value_x  value_y
0   A   -0.857326   NaN
1   B   1.075416  -0.227314
2   C    0.371727   NaN
3   D   1.065735   2.102726
4   D   1.065735  -0.092796
5   E   NaN       0.094694

In [39]: outer_join['value_x'] + outer_join['value_y']
   →
   0   NaN
   1  0.848102
   2   NaN
   3  3.168461
   4  0.972939
   5   NaN
dtype: float64

In [40]: outer_join['value_x'].sum()
   →2.72128653544262
```

One difference is that missing data cannot be compared to its sentinel value. For example, in SAS you could do this to filter missing values.

```
data outer_join_nulls;
   set outer_join;
   if value_x = .;
run;

data outer_join_no_nulls;
   set outer_join;
   if value_x ^= .;
run;
```

Which doesn’t work in in pandas. Instead, the `pd.isnull` or `pd.notnull` functions should be used for comparisons.

```
In [41]: outer_join[pd.isnull(outer_join['value_x'])]
Out[41]:
   key  value_x  value_y
5   E   NaN       0.094694

In [42]: outer_join[pd.notnull(outer_join['value_x'])]
Out[42]:
   key  value_x  value_y
0   A   -0.857326   NaN
1   B   1.075416  -0.227314
```
pandas: powerful Python data analysis toolkit, Release 0.20.1

2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796

pandas also provides a variety of methods to work with missing data - some of which would be challenging to express in SAS. For example, there are methods to drop all rows with any missing values, replacing missing values with a specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.

```
In [43]: outer_join.dropna()
Out[43]:
 key  value_x  value_y
 1   B  1.075416 -0.227314
 3   D  1.065735  2.102726
 4   D  1.065735  -0.092796
```

```
In [44]: outer_join.fillna(method='ffill')
    →
 key  value_x  value_y
 0   A -0.857326   NaN
 1   B  1.075416 -0.227314
 2   C  0.371727 -0.227314
 3   D  1.065735  2.102726
 4   D  1.065735  -0.092796
 5   E  1.065735  0.094694
```

```
In [45]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
    →
     0  -0.857326
     1  1.075416
     2  0.371727
     3  1.065735
     4  1.065735
     5  0.544257
Name: value_x, dtype: float64
```

33.6 GroupBy

33.6.1 Aggregation

SAS’s PROC SUMMARY can be used to group by one or more key variables and compute aggregations on numeric columns.

```
proc summary data=tips nway;
  class sex smoker;
  var total_bill tip;
  output out=tips_summed sum=;
run;
```

pandas provides a flexible groupby mechanism that allows similar aggregations. See the groupby documentation for more details and examples.
33.6.2 Transformation

In SAS, if the group aggregations need to be used with the original frame, it must be merged back together. For example, to subtract the mean for each observation by smoker group.

```
proc summary data=tips missing nway;
class smoker;
var total_bill;
output out=smoker_means mean(total_bill)=group_bill;
run;
proc sort data=tips;
by smoker;
run;
data tips;
merge tips(in=a) smoker_means(in=b);
by smoker;
adj_total_bill = total_bill - group_bill;
if a and b;
run;
```

The `pandas` `groupby` provides a transform mechanism that allows these type of operations to be succinctly expressed in one operation.

```
In [48]: gb = tips.groupby('smoker')['total_bill']
```

```
In [49]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
```

```
In [50]: tips.head()
```

```
Out[50]:
   total_bill  tip   sex  smoker day  time  size  adj_total_bill
0       67.00  1.07 Female Yes  Sat  Dinner 1   -17.686344
1       92.00  3.75 Female Yes  Fri  Dinner 2   -15.006344
2      111.00  5.25 Female Yes  Sat  Dinner 1   -11.938278
3      145.00  6.35 Female No   Sat  Dinner 1   -10.838278
4      135.00  6.51 Female No  Thur  Lunch 2   -10.678278
```

33.6.3 By Group Processing

In addition to aggregation, `pandas` `groupby` can be used to replicate most other by group processing from SAS. For example, this `DATA` step reads the data by sex/smoker group and filters to the first entry for each.
In SAS:
```
proc sort data=tips;
  by sex smoker;
run;

data tips_first;
  set tips;
  by sex smoker;
  if FIRST.sex or FIRST.smoker then output;
run;
```

In pandas this would be written as:

```
In [51]: tips.groupby(['sex','smoker']).first()
Out[51]:
   total_bill  tip  day  time   size  adj_total_bill
  sex  smoker
Female  No  5.25  1.00  Sat  Dinner  1   -11.938278
  Yes     1.07  1.00  Sat  Dinner  1   -17.686344
Male   No  5.51  2.00  Thur Lunch  2   -11.678278
  Yes     5.25  5.15  Sun  Dinner  2   -13.506344
```

33.7 Other Considerations

33.7.1 Disk vs Memory

pandas operates exclusively in memory, where a SAS data set exists on disk. This means that the size of data able to be loaded in pandas is limited by your machine’s memory, but also that the operations on that data may be faster.

If out of core processing is needed, one possibility is the dask.dataframe library (currently in development) which provides a subset of pandas functionality for an on-disk DataFrame.

33.7.2 Data Interop

pandas provides a `read_sas()` method that can read SAS data saved in the XPORT format. The ability to read SAS’s binary format is planned for a future release.

```
libname xportout xport 'transport-file.xpt';
data xportout.tips;
  set tips(rename=(total_bill=tbill));
  * xport variable names limited to 6 characters;
run;

df = pd.read_sas('transport-file.xpt')
```

XPORT is a relatively limited format and the parsing of it is not as optimized as some of the other pandas readers. An alternative way to interop data between SAS and pandas is to serialize to csv.

```
# version 0.17, 10M rows
In [8]: %time df = pd.read_sas('big.xpt')
Wall time: 14.6 s
```
In [9]: %time df = pd.read_csv('big.csv')
Wall time: 4.86 s
This page gives an overview of all public pandas objects, functions and methods. In general, all classes and functions exposed in the top-level pandas.* namespace are regarded as public.

Further some of the subpackages are public, including pandas.errors, pandas.plotting, and pandas.testing. Certain functions in the the pandas.io and pandas.tseries submodules are public as well (those mentioned in the documentation). Further, the pandas.api.types subpackage holds some public functions related to data types in pandas.

```
Warning: The pandas.core, pandas.compat, and pandas.util top-level modules are considered to be PRIVATE. Stability of functionality in those modules in not guaranteed.
```

34.1 Input/Output

34.1.1 Pickling

read_pickle

```
read_pickle(path[, compression])
```

Load pickled pandas object (or any other pickled object) from the specified path.

Parameters

- **path**: string
 - File path
 - For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, xz or zip if path is a string ending in ‘.gz’, ‘.bz2’, ‘.xz’, or ‘.zip’ respectively, and no decompression otherwise. Set to None for no decompression.

Returns

- **unpickled**: type of object stored in file

Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html
34.1.2 Flat File

read_table(*filepath_or_buffer[, sep, ...]*)
Read general delimited file into DataFrame

read_csv(*filepath_or_buffer[, sep, ...]*)
Read CSV (comma-separated) file into DataFrame

read_fwf(*filepath_or_buffer[, colspecs, widths]*)
Read a table of fixed-width formatted lines into DataFrame

read_msgpack(*path_or_buf[, encoding, iterator]*)
Load msgpack pandas object from the specified

34.1.2.1 pandas.read_table

`pandas.read_table`(*filepath_or_buffer, sep='\t', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, man-...)

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters

filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

sep : str, default t (tab-stop)

Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used automatically. In addition, separators longer than 1 character and different from `\s+` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: `\r\t`

delimiter : str, default None

Alternative argument name for sep.

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ` ` or ` `) will be used as the sep. Equivalent to setting `sep=\s+`. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’
Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. \([0,1,3]\). Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names: array-like, default None

List of column names to use. If file contains no header row, you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols: array-like or callable, default None

Return a subset of the columns. If array-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid array-like usecols parameter would be \([0, 1, 2]\) or \(['\text{foo}', 'bar', 'baz']\).

If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be \(\lambda x: x.\text{upper()} \in ['\text{AAA}', '\text{BBB}', '\text{DDD}']\). Using this parameter results in much faster parsing time and lower memory usage.

as_recarray: boolean, default False

DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

squeeze: boolean, default False

If the parsed data only contains one column then return a Series

prefix: str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols: boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype: Type name or dict of column -> type, default None

Data type for data or columns. E.g. \{'a': np.float64, 'b': np.int32\} Use str or object to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

engine: {'c', 'python'}, optional
Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

converters: dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels.

true_values: list, default None

Values to consider as True.

false_values: list, default None

Values to consider as False.

skipinitialspace: boolean, default False

Skip spaces after delimiter.

skiprows: list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be `lambda x: x in [0, 2]`.

skipfooter: int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

skip_footer: int, default 0

DEPRECATED: use the `skipfooter` parameter instead, as they are identical.

nrows: int, default None

Number of rows of file to read. Useful for reading pieces of large files.

na_values: scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’. If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

keep_default_na: bool, default True

na_filter: boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns.

skip_blank_lines: boolean, default True

If True, skip over blank lines rather than interpreting as NaN values.

parse_dates: boolean or list of ints or names or list of lists or dict, default False
• boolean. If True -> try parsing the index.

• list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.

• list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.

• dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize : int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information on iterator and chunksize.

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if filepath_or_buffer is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).
float_precision: string, default None

Specifies which converter the C engine should use for floating-point values. The options are *None* for the ordinary converter, *high* for the high-precision converter, and *round_trip* for the round-trip converter.

lineterminator: str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar: str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting: int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote: boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element.

escapechar: str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#emptya,b,cn1,2,3' with header=0 will result in 'a,b,c' being treated as the header.

encoding: str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

dialect: str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.

tupleize_cols: boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines: boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned.

warn_bad_lines: boolean, default True
If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output.

low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser)

buffer_lines : int, default None

DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

compact_ints : boolean, default False

DEPRECATED: this argument will be removed in a future version

If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the `use_unsigned` parameter.

use_unsigned : boolean, default False

DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. `compact_ints=True`), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

memory_map : boolean, default False

If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

Returns `result` : DataFrame or TextParser

34.1.2.2 pandas.read_csv

pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar=None, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.
Parameters

filepath_or_buffer: str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

sep: str, default ',

Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used automatically. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t'

delimiter: str, default None

Alternative argument name for sep.

delim_whitespace: boolean, default False

Specifies whether or not whitespace (e.g. ' ' or ' ') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header: int or list of ints, default 'infer'

Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names: array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols: array-like or callable, default None

Return a subset of the columns. If array-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid array-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz'].

If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.

as_recarray: boolean, default False
DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the `squeeze` parameter. In addition, as row indices are not available in such a format, the `index_col` parameter will be ignored.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use `str` or `object` to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

engine : {'c', 'python'}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be `lambda x: x in [0, 2]`.

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

skip_footer : int, default 0

DEPRECATED: use the `skipfooter` parameter instead, as they are identical

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files
na_values: scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’.

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

na_filter: boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns.

skip_blank_lines: boolean, default True

If True, skip over blank lines rather than interpreting as NaN values.

parse_dates: boolean or list of ints or names or list of lists or dict, default False

- boolean. If True -> try parsing the index.
- list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format: boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col: boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser: function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.
dayfirst: boolean, default False

DD/MM format dates, international and European format

iterator: boolean, default False

Return TextFileReader object for iteration or getting chunks with `get_chunk()`.

chunksize: int, default None

Return TextFileReader object for iteration. See the IO Tools docs for more information on `iterator` and `chunksize`.

compression: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if `filepath_or_buffer` is a string ending in `.gz`, `.bz2`, `.zip`, or ‘xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands: str, default None

Thousands separator

decimal: str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision: string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

lineterminator: str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar: str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting: int or `csv.QUOTE_*` instance, default 0

Control field quoting behavior per `csv.QUOTE_*` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

doublequote: boolean, default True

When `quotechar` is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive `quotechar` elements INSIDE a field as a single `quotechar` element.

escapechar: str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

comment: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as `skip_blank_lines=True`), fully commented lines are ignored.
by the parameter header but not by skiprows. For example, if comment='#', parsing
‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

encoding : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard
encodings
dialect : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following pa-
rameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting.
If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the
columns)
error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause
an exception to be raised, and no DataFrame will be returned. If False, then these “bad
lines” will dropped from the DataFrame that is returned.
warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line”
will be output.
low_memory : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but
possibly mixed type inference. To ensure no mixed types either set False, or specify the
type with the dtype parameter. Note that the entire file is read into a single DataFrame
regardless, use the chunksize or iterator parameter to return the data in chunks. (Only
valid with C parser)
buffer_lines : int, default None

DEPRECATED: this argument will be removed in a future version because its value is
not respected by the parser
compact_ints : boolean, default False

DEPRECATED: this argument will be removed in a future version
If compact_ints is True, then for any column that is of integer dtype, the parser will
attempt to cast it as the smallest integer dtype possible, either signed or unsigned de-
pending on the specification from the use_unsigned parameter.
use_unsigned : boolean, default False

DEPRECATED: this argument will be removed in a future version
If integer columns are being compacted (i.e. compact_ints=True), specify whether the
column should be compacted to the smallest signed or unsigned integer dtype.
memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory
and access the data directly from there. Using this option can improve performance
because there is no longer any I/O overhead.
Returns result: DataFrame or TextParser

34.1.2.3 pandas.read_fwf

pandas.read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds)

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters

filepath_or_buffer: str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:////local-host/path/to/table.csv

colspecs: list of pairs (int, int) or 'infer'. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer').

widths: list of ints. optional

A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous.

delimiter: str, default None

Alternative argument name for sep.

delim_whitespace: boolean, default False

Specifies whether or not whitespace (e.g. ' ' or '') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header: int or list of ints, default ‘infer’

Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names: array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_duplicate_cols=True, which is the default.

index_col: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols : array-like or callable, default None

Return a subset of the columns. If array-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid array-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz'].

If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.

as_recarray : boolean, default False

DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N', rather than ‘X’...'X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use str or object to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer or callable, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.
If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be $\lambda x: x \in [0, 2]$.

skipfooter: int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

skip footer: int, default 0

DEPRECATED: use the **skipfooter** parameter instead, as they are identical

nrows: int, default None

Number of rows of file to read. Useful for reading pieces of large files

na_values: scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’.

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

na_filter: boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines: boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

parse_dates: boolean or list of ints or names or list of lists or dict, default False

- boolean. If True -> try parsing the index.
- list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- dict, e.g. {'foo': [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format: boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.

keep_date_col: boolean, default False
If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses `dateutil.parser.parser` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return `TextFileReader` object for iteration or getting chunks with `get_chunk()`.

chunksize : int, default None

Return `TextFileReader` object for iteration. See the IO Tools docs for more information on iterator and chunksize.

compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'

For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if `filepath_or_buffer` is a string ending in `.gz`, `.bz2`, `.zip`, or `.xz`, respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for 'zip' and 'xz' compression.

thousands : str, default None

Thousands separator

decimal : str, default '.

Character to recognize as decimal point (e.g. use ',' for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are `None` for the ordinary converter, `high` for the high-precision converter, and `round_trip` for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or `csv.QUOTE_*` instance, default 0

Control field quoting behavior per `csv.QUOTE_*` constants. Use one of `QUOTE_MINIMAL` (0), `QUOTE_ALL` (1), `QUOTE_NONNUMERIC` (2) or `QUOTE_NONE` (3).

doublequote : boolean, default True
When `quotechar` is specified and quoting is not `QUOTE_NONE`, indicate whether or not to interpret two consecutive `quotechar` elements INSIDE a field as a single `quotechar` element.

`escapechar` : str (length 1), default None

One-character string used to escape delimiter when quoting is `QUOTE_NONE`.

`comment` : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as `skip_blank_lines=True`), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if `comment='#'`, parsing ‘#emptyna,b,cn1,2,3’ with `header=0` will result in ‘a,b,c’ being treated as the header.

`encoding` : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

`dialect` : str or csv.Dialect instance, default None

If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.

`tuplize_cols` : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

`error_bad_lines` : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned.

`warn_bad_lines` : boolean, default True

If `error_bad_lines` is False, and `warn_bad_lines` is True, a warning for each “bad line” will be output.

`low_memory` : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser)

`buffer_lines` : int, default None

DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

`compact_ints` : boolean, default False

DEPRECATED: this argument will be removed in a future version

If `compact_ints` is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the `use_unsigned` parameter.
use_unsigned : boolean, default False

DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. `compact_ints=True`), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

memory_map : boolean, default False

If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

Returns **result** : DataFrame or TextParser

Also, ‘delimiter’ is used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).

34.1.2.4 pandas.read_msgpack

```python
pandas.read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs)
```

Load msgpack pandas object from the specified file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters **path_or_buf** : string File path, BytesIO like or string

encoding: Encoding for decoding msgpack str type

iterator : boolean, if True, return an iterator to the unpacker (default is False)

Returns **obj** : type of object stored in file

34.1.3 Clipboard

```python
read_clipboard([sep])
```

Read text from clipboard and pass to read_table.

34.1.3.1 pandas.read_clipboard

```python
pandas.read_clipboard(sep='\s+', **kwargs)
```

Read text from clipboard and pass to read_table. See read_table for the full argument list

Parameters **sep** : str, default ‘s+’.

A string or regex delimiter. The default of ‘s+’ denotes one or more whitespace characters.

Returns **parsed** : DataFrame

34.1.4 Excel

```python
read_excel(io[, sheetname, header, ...])
```

Read an Excel table into a pandas DataFrame

```python
ExcelFile.parse([sheetname, header, ...])
```

Parse specified sheet(s) into a DataFrame
34.1.4.1 pandas.read_excel

```python
pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=False, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
```

Read an Excel table into a pandas DataFrame

Parameters
- `io`: string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx
- `sheetname`: string, int, mixed list of strings/int, or None, default 0
 - Strings are used for sheet names, Integers are used in zero-indexed sheet positions.
 - Lists of strings/integers are used to request multiple sheets.
 - Specify None to get all sheets.
 - str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets.
 - Available Cases
 - Defaults to 0 -> 1st sheet as a DataFrame
 - 1 -> 2nd sheet as a DataFrame
 - “Sheet1” -> 1st sheet as a DataFrame
 - [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
 - None -> All sheets as a dictionary of DataFrames
- `header`: int, list of ints, default 0
 - Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex
- `skiprows`: list-like
 - Rows to skip at the beginning (0-indexed)
- `skip_footer`: int, default 0
 - Rows at the end to skip (0-indexed)
- `index_col`: int, list of ints, default None
 - Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex
- `names`: array-like, default None
 - List of column names to use. If file contains no header row, then you should explicitly pass header=None
- `converters`: dict, default None
 - Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.
dtype: Type name or dict of column -> type, default None

Data type for data or columns. E.g. `{‘a’: np.float64, ‘b’: np.int32}` Use str or object to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.

New in version 0.20.0.

true_values: list, default None

Values to consider as True

New in version 0.19.0.

false_values: list, default None

Values to consider as False

New in version 0.19.0.

parse_cols: int or list, default None

- If None then parse all columns,
- If int then indicates last column to be parsed
- If list of ints then indicates list of column numbers to be parsed
- If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

squeeze: boolean, default False

If the parsed data only contains one column then return a Series

na_values: scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘,’ , ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-Na’, ‘-nan’,

thousands: str, default None

Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to.

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns

engine: string, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float: boolean, default True

Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally
has_index_names : boolean, default None

DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True.

Returns parsed : DataFrame or Dict of DataFrames

DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned.

34.1.4.2 pandas.ExcelFile.parse

ExcelFile.parse (sheetname=0, header=0, skiprows=None, skip_footer=0, names=None, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, squeeze=False, **kwds)

Parse specified sheet(s) into a DataFrame.

Equivalent to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters

34.1.5 JSON

read_json([(path_or_buf, orient, typ, dtype, ...)]) Convert a JSON string to pandas object

34.1.5.1 pandas.read_json

pandas.read_json (path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)

Convert a JSON string to pandas object

Parameters path_or_buf : a valid JSON string or file-like, default: None

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json

orient : string,

Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:

- 'split' : dict like {index -> [index], columns -> [columns], data -> [values]}
- 'records' : list like [{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
- 'columns' : dict like {column -> {index -> value}}
- 'values' : just the values array

The allowed and default values depend on the value of the typ parameter.

- when typ == 'series',
allowed orients are {'split', 'records', 'index'}
default is 'index'
The Series index must be unique for orient 'index'.

when typ == 'frame',
allowed orients are {'split', 'records', 'index', 'columns', 'values'}
default is 'columns'
The DataFrame index must be unique for orients 'index' and 'columns'.
The DataFrame columns must be unique for orients 'index', 'columns', and 'records'.

typ : type of object to recover (series or frame), default 'frame'

dtype : boolean or dict, default True

If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

convert_axes : boolean, default True

Try to convert the axes to the proper dtypes.

convert_dates : boolean, default True

List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
- it ends with '_at',
- it ends with '_time',
- it begins with 'timestamp',
- it is 'modified', or
- it is 'date'

keep_default_dates : boolean, default True

If parsing dates, then parse the default datelike columns

numpy : boolean, default False

Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

precise_float : boolean, default False

Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

date_unit : string, default None

The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

lines : boolean, default False
Read the file as a json object per line.

New in version 0.19.0.

encoding: str, default is ‘utf-8’

The encoding to use to decode py3 bytes.

New in version 0.19.0.

Returns result: Series or DataFrame, depending on the value of *typ*.

See also:

```
DataFrame.to_json
```

Examples

```python
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
...                    index=['row 1', 'row 2'],
...                    columns=['col 1', 'col 2'])

Encoding/decoding a Dataframe using 'split' formatted JSON:

```python
>>> df.to_json(orient='split')

{}

>>> pd.DataFrame(orient='split')

 col 1 col 2
row 1 a b
row 2 c d
```

Encoding/decoding a Dataframe using 'index' formatted JSON:

```python
>>> df.to_json(orient='index')

{}

>>> pd.DataFrame(orient='index')

 col 1 col 2
row 1 a b
row 2 c d
```

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.

```python
>>> df.to_json(orient='records')

{}

>>> pd.DataFrame(orient='records')

 col 1 col 2
 0 a b
 1 c d
```

Encoding with Table Schema

```python
>>> df.to_json(orient='table')

{}

>>> pd.DataFrame(orient='table')

 "schema": {"fields": [{"name": "index", "type": "string"},
 {"name": "col 1", "type": "string"},
 {"name": "col 2", "type": "string"}],
 "primaryKey": "index",}
json_normalize(data[, record_path, meta, ...])
“Normalize” semi-structured JSON data into a flat table

build_table_schema(data[, index, ...])
Create a Table schema from data.

34.1.5.2 pandas.io.json.json_normalize

pandas.io.json.json_normalize(data, record_path=None, meta=None, meta_prefix=None, record_prefix=None, errors='raise', sep='.

“Normalize” semi-structured JSON data into a flat table

Parameters

data : dict or list of dicts
 Unserialized JSON objects

record_path : string or list of strings, default None
 Path in each object to list of records. If not passed, data will be assumed to be an array
 of records

meta : list of paths (string or list of strings), default None
 Fields to use as metadata for each record in resulting table

record_prefix : string, default None
 If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is ['foo',
 'bar']

meta_prefix : string, default None
 errors : {'raise', 'ignore'}, default ‘raise’
 • ‘ignore’ : will ignore KeyError if keys listed in meta are not always present
 • ‘raise’ : will raise KeyError if keys listed in meta are not always present
 New in version 0.20.0.

sep : string, default ‘.’
 Nested records will generate names separated by sep, e.g., for sep='\', { ‘foo’ : { ‘bar’ :
 0 } } -> foo.bar
 New in version 0.20.0.

Returns

frame : DataFrame

Examples

```python
>>> data = [{'state': 'Florida',
  ...
  'shortname': 'FL',
  ...
  'info': {
  ...
    'governor': 'Rick Scott',
  ...
  },
  ...
  'counties': [{'name': 'Dade', 'population': 12345},
     ...
    {'name': 'Broward', 'population': 40000},
     ...
    {'name': 'Palm Beach', 'population': 60000}]}],
```
... {'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {
... 'governor': 'John Kasich'
... },
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}]})
>>> from pandas.io.json import json_normalize
>>> result = json_normalize(data, 'counties', ['state', 'shortname',
... ['info', 'governor']])
>>> result
 name population info.governor state shortname
0 Dade 12345 Rick Scott Florida FL
1 Broward 40000 Rick Scott Florida FL
2 Palm Beach 60000 Rick Scott Florida FL
3 Summit 1234 John Kasich Ohio OH
4 Cuyahoga 1337 John Kasich Ohio OH

34.1.5.3 pandas.io.json.build_table_schema

pandas.io.json.build_table_schema(data, index=True, primary_key=None, version=True)
Create a Table schema from data.

Parameters

- **data** : Series, DataFrame
- **index** : bool, default True
 Whether to include data.index in the schema.
- **primary_key** : bool or None, default True
 column names to designate as the primary key. The default None will set ‘primaryKey’
 to the index level or levels if the index is unique.
- **version** : bool, default True
 Whether to include a field pandas_version with the version of pandas that generated the
 schema.

Returns

- **schema** : dict

Notes

See _as_json_table_type for conversion types. Timedeltas as converted to ISO8601 duration format with 9
decimal places after the seconds field for nanosecond precision.

Categoricals are converted to the any dtype, and use the enum field constraint to list the allowed values. The
ordered attribute is included in an ordered field.

Examples

```python
>>> df = pd.DataFrame(
... {'A': [1, 2, 3],
... 'B': ['a', 'b', 'c'],
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
... }, index=pd.Index(range(3), name='idx'))
```
```python
>>> build_table_schema(df)
{'fields': [{'name': 'idx', 'type': 'integer'},
{'name': 'A', 'type': 'integer'},
{'name': 'B', 'type': 'string'},
{'name': 'C', 'type': 'datetime'}],
'pandas_version': '0.20.0',
'primaryKey': ['idx']}
```

34.1.6 HTML

`read_html(io[, match, flavor, header, ...])` Read HTML tables into a list of DataFrame objects.

34.1.6.1 pandas.read_html

```python
pandas.read_html(io[, match=\'+', flavor=None, header=None, index_col=None, skiprows=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands=',', encoding=None, decimal='.', converters=None, na_values=None, keep_default_na=True])
```

Read HTML tables into a list of DataFrame objects.

Parameters

- `io` : str or file-like
 A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with 'https' you might try removing the 's'.

- `match` : str or compiled regular expression, optional
 The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to `\'+` (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml.

- `flavor` : str or None, container of strings
 The parsing engine to use. `bs4` and `html5lib` are synonymous with each other, they are both there for backwards compatibility. The default of `None` tries to use lxml to parse and if that fails it falls back on bs4 + html5lib.

- `header` : int or list-like or None, optional
 The row (or list of rows for a MultiIndex) to use to make the columns headers.

- `index_col` : int or list-like or None, optional
 The column (or list of columns) to use to create the index.

- `skiprows` : int or list-like or slice or None, optional
 0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means 'skip the nth row' whereas an integer means 'skip n rows'.

- `attrs` : dict or None, optional
 This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or Beautiful
Soup. However, these attributes must be valid HTML table attributes to work correctly. For example,

```python
attrs = {'id': 'table'}
```

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document.

```python
attrs = {'asdf': 'table'}
```

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A working draft of the HTML 5 spec can be found here. It contains the latest information on table attributes for the modern web.

parse_dates: bool, optional

See :meth:`read_csv` for more details.

tupleize_cols: bool, optional

If False try to parse multiple header rows into a :class:`MultiIndex`, otherwise return raw tuples. Defaults to False.

thousands: str, optional

Separator to use to parse thousands. Defaults to ', '.

encoding: str or None, optional

The encoding used to decode the web page. Defaults to None. ‘None’ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document).

decimal: str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

New in version 0.19.0.

converters: dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the cell (not column) content, and return the transformed content.

New in version 0.19.0.

na_values: iterable, default None

Custom NA values

New in version 0.19.0.

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

New in version 0.19.0.

Returns

- dfs: list of DataFrames

See also:

pandas.read_csv
Notes

Before using this function you should read the *gotchas about the HTML parsing libraries*.

Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the `header=0` argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user.

This function searches for `<table>` elements and only for `<tr>` and `<th>` rows and `<td>` elements within each `<tr>` or `<th>` element in the table. `<td>` stands for “table data”.

Similar to `read_csv()` the `header` argument is applied after `skiprows` is applied.

This function will *always* return a list of `DataFrame` or it will fail, e.g., it will *not* return an empty list.

Examples

See the *read_html documentation in the IO section of the docs* for some examples of reading in HTML tables.

34.1.7 HDFStore: PyTables (HDF5)

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read_hdf(path_or_buf[, key])</code></td>
<td>read from the store, close it if we opened it</td>
</tr>
<tr>
<td><code>HDFStore.put(key, value[, format, append])</code></td>
<td>Store object in HDFStore</td>
</tr>
<tr>
<td><code>HDFStore.append(key, value[, format, ...])</code></td>
<td>Append to Table in file.</td>
</tr>
<tr>
<td><code>HDFStore.get(key)</code></td>
<td>Retrieve pandas object stored in file</td>
</tr>
<tr>
<td><code>HDFStore.select(key[, where, start, stop, ...])</code></td>
<td>Retrieve pandas object stored in file, optionally based on where criteria</td>
</tr>
</tbody>
</table>

34.1.7.1 pandas.read_hdf

pandas.read_hdf(path_or_buf, key=None, **kwargs)

read from the store, close it if we opened it

Retrieve pandas object stored in file, optionally based on where criteria

Parameters

- **path_or_buf**: path (string), buffer, or path object (pathlib.Path or py._path.local.LocalPath) to read from

 New in version 0.19.0: support for pathlib, py.path.

- **key**: group identifier in the store. Can be omitted if the HDF file contains a single pandas object.

- **where**: list of Term (or convertible) objects, optional

- **start**: optional, integer (defaults to None), row number to start selection

- **stop**: optional, integer (defaults to None), row number to stop selection

- **columns**: optional, a list of columns that if not None, will limit the return columns
iterator : optional, boolean, return an iterator, default False
chunksize : optional, nrows to include in iteration, return an iterator

Returns The selected object

34.1.7.2 pandas.HDFStore.put

HDFStore.put(key, value, format=None, append=False, **kwargs)
Store object in HDFStore

Parameters key : object
 value : {Series, DataFrame, Panel}
 format : ‘fixed(f)\table(t)’, default is ‘fixed’
 fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
 table(t) [Table format] Write as a PyTables Table structure which may perform worse
 but allow more flexible operations like searching / selecting subsets of the data
 append : boolean, default False
 This will force Table format, append the input data to the existing.
 data_columns : list of columns to create as data columns, or True to
 use all columns. See here # noqa
 encoding : default None, provide an encoding for strings
 dropna : boolean, default False, do not write an ALL nan row to
 the store settable by the option ‘io.hdf.dropna_table’

34.1.7.3 pandas.HDFStore.append

HDFStore.append(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)
Append to Table in file. Node must already exist and be Table format.

Parameters key : object
 value : {Series, DataFrame, Panel, Panel4D}
 format: 'table' is the default
 table(t) [table format] Write as a PyTables Table structure which may perform worse
 but allow more flexible operations like searching / selecting subsets of the data
 append : boolean, default True, append the input data to the
 existing
 data_columns : list of columns, or True, default None
 List of columns to create as indexed data columns for on-disk queries, or True to use all
 columns. By default only the axes of the object are indexed. See here.
 min_itemsize : dict of columns that specify minimum string sizes
 nan_rep : string to use as string nan represenation
 chunksze : size to chunk the writing
 expectedrows : expected TOTAL row size of this table
encoding: default None, provide an encoding for strings

dropna: boolean, default False, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

Notes

Does *not* check if data being appended overlaps with existing data in the table, so be careful

34.1.7.4 pandas.HDFStore.get

`HDFStore.get(key)`

Retrieve pandas object stored in file

- **Parameters**
 - **key**: object

- **Returns**
 - **obj**: type of object stored in file

34.1.7.5 pandas.HDFStore.select

`HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs)`

Retrieve pandas object stored in file, optionally based on where criteria

- **Parameters**
 - **key**: object
 - **where**: list of Term (or convertible) objects, optional
 - **start**: integer (defaults to None), row number to start selection
 - **stop**: integer (defaults to None), row number to stop selection
 - **columns**: a list of columns that if not None, will limit the return
 - **columns**
 - **iterator**: boolean, return an iterator, default False
 - **chunksize**: nrows to include in iteration, return an iterator
 - **auto_close**: boolean, should automatically close the store when finished, default is False

- **Returns**
 - The selected object

34.1.8 Feather

`read_feather(path)`

Load a feather-format object from the file path

34.1.8.1 pandas.read_feather

`pandas.read_feather(path)`

Load a feather-format object from the file path

- **Parameters**
 - **path**: string
File path

Returns type of object stored in file

34.1.9 SAS

| `read_sas(filepath_or_buffer[, format, ...])` | Read SAS files stored as either XPORT or SAS7BDAT format files. |

34.1.9.1 pandas.read_sas

`pandas.read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False)`

Read SAS files stored as either XPORT or SAS7BDAT format files.

Parameters

- **filepath_or_buffer**: string or file-like object

 Path to the SAS file.

- **format**: string {'xport', 'sas7bdat'} or None

 If None, file format is inferred. If ‘xport’ or ‘sas7bdat’, uses the corresponding format.

- **index**: identifier of index column, defaults to None

 Identifier of column that should be used as index of the DataFrame.

- **encoding**: string, default is None

 Encoding for text data. If None, text data are stored as raw bytes.

- **chunksize**: int

 Read file chunksize lines at a time, returns iterator.

- **iterator**: bool, defaults to False

 If True, returns an iterator for reading the file incrementally.

Returns

DataFrame if iterator=False and chunksize=None, else SAS7BDATReader or XportReader

34.1.10 SQL

`read_sql_table(table_name, con[, schema, ...])`	Read SQL database table into a DataFrame.
`read_sql_query(sql, con[, index_col, ...])`	Read SQL query into a DataFrame.
`read_sql(sql, con[, index_col, ...])`	Read SQL query or database table into a DataFrame.

34.1.11 Google BigQuery

| `read_gbq(query[, project_id, index_col, ...])` | Load data from Google BigQuery. |
34.1.11.1 pandas.read_gbq

```python
def pandas.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False, verbose=True, private_key=None, dialect='legacy', **kwargs):
    # Load data from Google BigQuery.
    # The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame.
    # Google BigQuery API Client Library v2 for Python is used. Documentation is available here
    # Authentication to the Google BigQuery service is via OAuth 2.0.
    # • If “private_key” is not provided:
    #   By default “application default credentials” are used.
    #   If default application credentials are not found or are restrictive, user account credentials are used. In this
    #   case, you will be asked to grant permissions for product name ‘pandas GBQ’.
    # • If “private_key” is provided:
    #   Service account credentials will be used to authenticate.

    Parameters
    ----------
    query : str
        SQL-Like Query to return data values
    project_id : str
        Google BigQuery Account project ID.
    index_col : str (optional)
        Name of result column to use for index in results DataFrame
    col_order : list(str) (optional)
        List of BigQuery column names in the desired order for results DataFrame
    reauth : boolean (default False)
        Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts
        are used.
    verbose : boolean (default True)
        Verbose output
    private_key : str (optional)
        Service account private key in JSON format. Can be file path or string contents. This is
        useful for remote server authentication (eg. jupyter iPython notebook on remote host)
    dialect : {'legacy', 'standard'}, default ‘legacy’
        ‘legacy’ : Use BigQuery’s legacy SQL dialect. ‘standard’ : Use BigQuery’s standard
        SQL (beta), which is compliant with the SQL 2011 standard. For more information see
        BigQuery SQL Reference

    **kwargs : Arbitrary keyword arguments
        configuration (dict): query config parameters for job processing. For example:
        configuration = {'query': {'useQueryCache': False}}
        For more information see BigQuery SQL Reference

    Returns
    -------
    df: DataFrame
```

"""
DataFrame representing results of query

34.1.12 STATA

read_stata(filepath_or_buffer[, ...])
Read Stata file into DataFrame

34.1.12.1 pandas.read_stata

```python
pandas.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False)
```

Read Stata file into DataFrame

Parameters
filepath_or_buffer : string or file-like object
Path to .dta file or object implementing a binary read() functions

convert_dates : boolean, defaults to True
Convert date variables to DataFrame time values

convert_categoricals : boolean, defaults to True
Read value labels and convert columns to Categorical/Factor variables

encoding : string, None or encoding
Encoding used to parse the files. None defaults to latin-1.

index : identifier of index column
identifier of column that should be used as index of the DataFrame

convert_missing : boolean, defaults to False
Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects.

preserve_dtypes : boolean, defaults to True
Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

columns : list or None
Columns to retain. Columns will be returned in the given order. None returns all columns

order_categoricals : boolean, defaults to True
Flag indicating whether converted categorical data are ordered.

chunksize : int, default None
Return StataReader object for iterations, returns chunks with given number of lines

iterator : boolean, default False
Return StataReader object

Returns
DataFrame or StataReader
Examples

Read a Stata dta file:

```python
>>> df = pandas.read_stata('filename.dta')
```

Read a Stata dta file in 10,000 line chunks:

```python
>>> itr = pandas.read_stata('filename.dta', chunksize=10000)
>>> for chunk in itr:
>>>     do_something(chunk)
```

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StataReader.data(kwargs)</td>
<td>DEPRECATED: Reads observations from Stata file, converting them into a dataframe</td>
</tr>
<tr>
<td>StataReader.data_label()</td>
<td>Returns data label of Stata file</td>
</tr>
<tr>
<td>StataReader.value_labels()</td>
<td>Returns a dict, associating each variable name a dict, associating</td>
</tr>
<tr>
<td>StataReader.variable_labels()</td>
<td>Returns variable labels as a dict, associating each variable name</td>
</tr>
<tr>
<td>StataWriter.write_file()</td>
<td></td>
</tr>
</tbody>
</table>

34.1.12.2 pandas.io.stata.StataReader.data

StataReader.data(**kwargs)

DEPRECATED: Reads observations from Stata file, converting them into a dataframe

This is a legacy method. Use `read` in new code.

Parameters

- **convert_dates**: boolean, defaults to True
 - Convert date variables to DataFrame time values
- **convert_categoricals**: boolean, defaults to True
 - Read value labels and convert columns to Categorical/Factor variables
- **index**: identifier of index column
 - identifier of column that should be used as index of the DataFrame
- **convert_missing**: boolean, defaults to False
 - Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects.
- **preserve_dtypes**: boolean, defaults to True
 - Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)
- **columns**: list or None
 - Columns to retain. Columns will be returned in the given order. None returns all columns
- **order_categoricals**: boolean, defaults to True
 - Flag indicating whether converted categorical data are ordered.
Retrns DataFrame

34.1.12.3 pandas.io.stata.StataReader.data_label

StataReader.data_label()
 Returns data label of Stata file

34.1.12.4 pandas.io.stata.StataReader.value_labels

StataReader.value_labels()
 Returns a dict, associating each variable name a dict, associating each value its corresponding label

34.1.12.5 pandas.io.stata.StataReader.variable_labels

StataReader.variable_labels()
 Returns variable labels as a dict, associating each variable name with corresponding label

34.1.12.6 pandas.io.stata.StataWriter.write_file

StataWriter.write_file()

34.2 General functions

34.2.1 Data manipulations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>melt(frame[, id_vars, value_vars, var_name, ...])</td>
<td>“Unpivots” a DataFrame from wide format to long format, optionally</td>
</tr>
<tr>
<td>pivot(index, columns, values)</td>
<td>Produce ‘pivot’ table based on 3 columns of this DataFrame.</td>
</tr>
<tr>
<td>pivot_table(data[, values, index, columns, ...])</td>
<td>Create a spreadsheet-style pivot table as a DataFrame.</td>
</tr>
<tr>
<td>crosstab(index, columns[, values, rownames, ...])</td>
<td>Compute a simple cross-tabulation of two (or more) factors.</td>
</tr>
<tr>
<td>cut(x, bins[, right, labels, retbins, ...])</td>
<td>Return indices of half-open bins to which each value of x belongs.</td>
</tr>
<tr>
<td>qcut(x, q[, labels, retbins, precision, ...])</td>
<td>Quantile-based discretization function.</td>
</tr>
<tr>
<td>merge(left, right[, how, on, left_on, ...])</td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td>merge_ordered(left, right[, on, left_on, ...])</td>
<td>Perform merge with optional filling/interpolation designed for ordered data like time series data.</td>
</tr>
<tr>
<td>merge_asof(left, right[, on, left_on, ...])</td>
<td>Perform an asof merge.</td>
</tr>
<tr>
<td>concat(objs[, axis, join, join_axes, ...])</td>
<td>Concatenate pandas objects along a particular axis with optional set logic along the other axes.</td>
</tr>
<tr>
<td>get_dummies(data[, prefix, prefix_sep, ...])</td>
<td>Convert categorical variable into dummy/indicator variables</td>
</tr>
<tr>
<td>factorize(values[, sort, order, ...])</td>
<td>Encode input values as an enumerated type or categorical variable</td>
</tr>
<tr>
<td>unique(values)</td>
<td>Hash table-based unique.</td>
</tr>
</tbody>
</table>

Continued on next page
34.2.1.1 pandas.melt

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

“Un pivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters frame : DataFrame

 id_vars : tuple, list, or ndarray, optional
 Column(s) to use as identifier variables.

 value_vars : tuple, list, or ndarray, optional
 Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.

 var_name : scalar
 Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.

 value_name : scalar, default ‘value’
 Name to use for the ‘value’ column.

 col_level : int or string, optional
 If columns are a MultiIndex then use this level to melt.

See also:

DataFrame.melt, pivot_table, DataFrame.pivot

Examples

```python
>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
... 'B': {0: 1, 1: 3, 2: 5},
... 'C': {0: 2, 1: 4, 2: 6}})
>>> df
   A  B  C
0  a  1  2
1  b  3  4
2  c  5  6
```

```python
>>> pd.melt(df, id_vars=['A'], value_vars=['B'])
   A   variable  value
0  a        B   1
1  b        B   3
2  c        B   5
```
```python
>>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
  A  variable  value
0  a    B     1
1  b    B     3
2  c    B     5
3  a    C     2
4  b    C     4
5  c    C     6
```

The names of ‘variable’ and ‘value’ columns can be customized:

```python
>>> pd.melt(df, id_vars=['A'], value_vars=['B'],
          var_name='myVarname', value_name='myValname')
  A  myVarname  myValname
0  a    B       1
1  b    B       3
2  c    B       5
```

If you have multi-index columns:

```python
>>> df.columns = [list('ABC'), list('DEF')]

>>> df
   A  B  C  D  E  F
0  a  1  2
1  b  3  4
2  c  5  6

>>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
  A  variable  value
0  a    B     1
1  b    B     3
2  c    B     5

>>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')])
   (A, D)  variable_0  variable_1  value
0  a  B    E          1
1  b  B    E          3
2  c  B    E          5
```

34.2.1.2 pandas.pivot

`pandas.pivot(index, columns, values)`

Produce ‘pivot’ table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values.

Parameters

- `index` : ndarray

 Labels to use to make new frame’s index

- `columns` : ndarray

 Labels to use to make new frame’s columns

- `values` : ndarray

 Values to use for populating new frame’s values
Returns DataFrame

See also:

Dataframe.pivot_table generalization of pivot that can handle duplicate values for one index/column pair

Notes

Obviously, all 3 of the input arguments must have the same length

34.2.1.3 pandas.pivot_table

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters data : DataFrame

values : column to aggregate, optional

index : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.

columns : column, Grouper, array, or list of the previous

If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.

aggfunc : function or list of functions, default numpy.mean

If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

fill_value : scalar, default None

Value to replace missing values with

margins : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

margins_name : string, default ‘All’

Name of the row / column that will contain the totals when margins is True.

Returns table : DataFrame

See also:

Dataframe.pivot pivot without aggregation that can handle non-numeric data
Examples

```python
>>> df
    A     B      C    D
 0  foo  one  small  1
 1  foo  one  large  2
 2  foo  one  large  2
 3  foo  two  small  3
 4  foo  two  small  3
 5  bar  one   large  4
 6  bar  one  small  5
 7  bar  two  small  6
 8  bar  two  large  7
```

```python
>>> table = pivot_table(df, values='D', index=['A', 'B'],
...                     columns=['C'], aggfunc=np.sum)
```

```python
>>> table
    small     large
  foo  one  1    4
    two  6  NaN
  bar  one  5    4
    two  6    7
```

34.2.1.4 pandas.crosstab

`pandas.crosstab` (index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed.

Parameters

- **index**: array-like, Series, or list of arrays/Series
 - Values to group by in the rows
- **columns**: array-like, Series, or list of arrays/Series
 - Values to group by in the columns
- **values**: array-like, optional
 - Array of values to aggregate according to the factors. Requires `aggfunc` to be specified.
- **aggfunc**: function, optional
 - If specified, requires `values` to be specified as well
- **rownames**: sequence, default None
 - If passed, must match number of row arrays passed
- **colnames**: sequence, default None
 - If passed, must match number of column arrays passed
- **margins**: boolean, default False
 - Add row/column margins (subtotals)
- **dropna**: boolean, default True
 - Do not include columns whose entries are all NaN

34.2. General functions
normalize : boolean, {'all', 'index', 'columns'}, or {0,1}, default False

Normalize by dividing all values by the sum of values.

- If passed ‘all’ or True, will normalize over all values.
- If passed ‘index’ will normalize over each row.
- If passed ‘columns’ will normalize over each column.
- If margins is True, will also normalize margin values.

New in version 0.18.1.

Returns crosstab : DataFrame

Notes

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified.

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.

In the event that there aren’t overlapping indexes an empty DataFrame will be returned.

Examples

```python
crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
```

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>foo</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

```python
crosstab(foo, bar) # 'c' and 'f' are not represented in the data, # but they still will be counted in the output
col_0 d e f
row_0
a | 1 0 0
b | 0 1 0
c | 0 0 0
```
34.2.1.5 pandas.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

Return indices of half-open bins to which each value of x belongs.

Parameters

- **x**: array-like
 Input array to be binned. It has to be 1-dimensional.
- **bins**: int, sequence of scalars, or IntervalIndex
 If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case.
- **right**: bool, optional
 Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4].
- **labels**: array or boolean, default None
 Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.
- **retbins**: bool, optional
 Whether to return the bins or not. Can be useful if bins is given as a scalar.
- **precision**: int, optional
 The precision at which to store and display the bins labels
- **include_lowest**: bool, optional
 Whether the first interval should be left-inclusive or not.

Returns

- **out**: Categorical or Series or array of integers if labels is False
 The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.
 - **bins**: ndarray of floats
 Returned only if retbins is True.

Notes

The cut function can be useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges.

Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object.

Examples

```python
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367], (3.367, 6.533],
 (6.533, 9.7], (0.191, 3.367])
```
34.2.1.6 pandas.qcut

pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')

Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point.

Parameters

x : ndarray or Series

q : integer or array of quantiles

Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles

labels : array or boolean, default None

Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.

retbins : bool, optional

Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar.

precision : int, optional

The precision at which to store and display the bins labels

duplicates : {default ‘raise’, ‘drop’}, optional

If bin edges are not unique, raise ValueError or drop non-uniques.

New in version 0.20.0.

Returns

out : Categorical or Series or array of integers if labels is False

The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.

bins : ndarray of floats

Returned only if retbins is True.

Notes

Out of bounds values will be NA in the resulting Categorical object
Examples

```python
good, medium, bad]
Categories (3, object): [good < medium < bad]
```
sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame. If False, the order of the
join keys depends on the join type (how keyword)

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

copy : boolean, default True

If False, do not copy data unnecessarily

indicator : boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on the
source of each row. If string, column with information on source of each row will be
added to output DataFrame, and column will be named value of string. Information
column is Categorical-type and takes on a value of “left_only” for observations whose
merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge
key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is
found in both.

New in version 0.17.0.

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:
mmerge_ordered, merge_asof

Examples

```python
>>> A
  lkey value
  0 foo 1
  1 bar 2
  2 baz 3
  3 foo 4

>>> B
  rkey value
  0 foo 5
  1 bar 6
  2 qux 7

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
  lkey value_x rkey value_y
  0 foo 1 foo 5
  1 foo 4 foo 5
  2 bar 2 bar 6
  3 bar 2 bar 8
  4 baz 3 NaN NaN
  5 NaN NaN qux 7
```

34.2.1.8 pandas.merge_ordered

pandas.merge_ordered(left, right, on=None, left_on=None, right_on=None, left_by=None,
right_by=None, fill_method=None, suffixes=('_x', '_y'), how='outer')

Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally
perform group-wise merge (see examples)
Parameters:

left: DataFrame

- **right**: DataFrame
- **on**: label or list
 - Field names to join on. Must be found in both DataFrames.
- **left_on**: label or list, or array-like
 - Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
- **right_on**: label or list, or array-like
 - Field names to join on in right DataFrame or vector/list of vectors per left_on docs
- **left_by**: column name or list of column names
 - Group left DataFrame by group columns and merge piece by piece with right DataFrame
- **right_by**: column name or list of column names
 - Group right DataFrame by group columns and merge piece by piece with left DataFrame
- **fill_method**: {'ffill', None}, default None
 - Interpolation method for data
- **suffixes**: 2-length sequence (tuple, list, ...)
 - Suffix to apply to overlapping column names in the left and right side, respectively
- **how**: {'left', 'right', 'outer', 'inner'}, default 'outer'
 - left: use only keys from left frame (SQL: left outer join)
 - right: use only keys from right frame (SQL: right outer join)
 - outer: use union of keys from both frames (SQL: full outer join)
 - inner: use intersection of keys from both frames (SQL: inner join)

New in version 0.19.0.

Returns

merged: DataFrame

The output type will be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge, merge_asof

Examples

```python
>>> A
   key  lvalue group
0   a    1     a
1   c    2     a
2   e    3     a
3   a    1     b
4   c    2     b
5   e    3     b
>>> B
   key  rvalue
0   b    1
1   c    2
2   d    3
```
>>> ordered_merge(A, B, fill_method='ffill', left_by='group')

<table>
<thead>
<tr>
<th>key</th>
<th>lvalue</th>
<th>group</th>
<th>rvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>1</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>b</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>9</td>
<td>d</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>10</td>
<td>e</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>3</td>
<td>b</td>
</tr>
</tbody>
</table>

34.2.1.9 pandas.merge_asof

pandas.merge_asof *(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True, direction='backward')*

Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys.

Both DataFrames must be sorted by the key.

For each row in the left DataFrame:

- A “backward” search selects the last row in the right DataFrame whose ‘on’ key is less than or equal to the left’s key.
- A “forward” search selects the first row in the right DataFrame whose ‘on’ key is greater than or equal to the left’s key.
- A “nearest” search selects the row in the right DataFrame whose ‘on’ key is closest in absolute distance to the left’s key.

The default is “backward” and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces “forward” and “nearest”.

Optionally match on equivalent keys with ‘by’ before searching with ‘on’.

New in version 0.19.0.

Parameters

- **left** : DataFrame
 - **right** : DataFrame
 - **on** : label
 - **left_on** : label
 - **right_on** : label
 - **left_index** : boolean
 - **right_index** : boolean
Use the index of the left DataFrame as the join key.

New in version 0.19.2.

right_index: boolean

Use the index of the right DataFrame as the join key.

New in version 0.19.2.

by: column name or list of column names

Match on these columns before performing merge operation.

left_by: column name

Field names to match on in the left DataFrame.

New in version 0.19.2.

right_by: column name

Field names to match on in the right DataFrame.

New in version 0.19.2.

suffixes: 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively.

tolerance: integer or Timedelta, optional, default None

Select asof tolerance within this range; must be compatible with the merge index.

allow_exact_matches: boolean, default True

- If True, allow matching with the same ‘on’ value (i.e. less-than-or-equal-to / greater-than-or-equal-to)
- If False, don’t match the same ‘on’ value (i.e., strictly less-than / strictly greater-than)

direction: ‘backward’ (default), ‘forward’, or ‘nearest’

Whether to search for prior, subsequent, or closest matches.

New in version 0.20.0.

Returns *merged*: DataFrame

See also:

merge, merge_ordered

Examples

```
>>> left
   a  left_val
0  1     a
1  5     b
2 10    c
```

```
>>> right
   a  right_val
0  1     1
1  2     2
```
We can use indexed DataFrames as well.

Here is a real-world times-series example
pandas: powerful Python data analysis toolkit, Release 0.20.1

```
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

>>> trades
  time    ticker   price   quantity
0 2016-05-25 13:30:00.023  MSFT   51.95      75
1 2016-05-25 13:30:00.038  MSFT   51.95     155
2 2016-05-25 13:30:00.048  GOOG   720.77    100
3 2016-05-25 13:30:00.048  GOOG   720.92    100
4 2016-05-25 13:30:00.048  AAPL    98.00    100

By default we are taking the asof of the quotes

```python
>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker')
```

```
 time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 2ms between the quote time and the trade time

```python
>>> pd.merge_asof(trades, quotes,
...                   on='time',
...                   by='ticker',
...                   tolerance=pd.Timedelta('2ms'))
```

```
  time    ticker   price   quantity   bid   ask
0 2016-05-25 13:30:00.023  MSFT   51.95      75   51.95  51.96
1 2016-05-25 13:30:00.038  MSFT   51.95     155   NaN   NaN
2 2016-05-25 13:30:00.048  GOOG   720.77    100  720.50  720.93
3 2016-05-25 13:30:00.048  GOOG   720.92    100  720.50  720.93
4 2016-05-25 13:30:00.048  AAPL    98.00    100   NaN   NaN

We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However prior data will propagate forward

```python
>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker',
... tolerance=pd.Timedelta('10ms'),
... allow_exact_matches=False)
```

```
 time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

34.2. General functions

1229
34.2.1.10 pandas.concat

`pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)`

Concatenate pandas objects along a particular axis with optional set logic along the other axes.

Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Parameters

`objs` : a sequence or mapping of Series, DataFrame, or Panel objects

If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised

`axis` : {0/'index', 1/'columns'}, default 0

The axis to concatenate along

`join` : {'inner', 'outer'}, default 'outer'

How to handle indexes on other axis(es)

`join_axes` : list of Index objects

Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic

`ignore_index` : boolean, default False

If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.

`keys` : sequence, default None

If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

`levels` : list of sequences, default None

Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys

`names` : list, default None

Names for the levels in the resulting hierarchical index

`verify_integrity` : boolean, default False

Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

`copy` : boolean, default True

If False, do not copy data unnecessarily

Returns

`concatenated` : type of objects

See also:

`Series.append`, `DataFrame.append`, `DataFrame.join`, `DataFrame.merge`
Notes

The keys, levels, and names arguments are all optional.
A walkthrough of how this method fits in with other tools for combining panda objects can be found here.

Examples

Combine two Series.

```python
In [3]: s1 = pd.Series(['a', 'b'])
In [4]: s2 = pd.Series(['c', 'd'])
In [5]: pd.concat([s1, s2])
Out[5]:
    0  a
    1  b
    0  c
    1  d
    dtype: object
```

Clear the existing index and reset it in the result by setting the `ignore_index` option to `True`.

```python
In [6]: pd.concat([s1, s2], ignore_index=True)
Out[6]:
    0  a
    1  b
    2  c
    3  d
    dtype: object
```

Add a hierarchical index at the outermost level of the data with the `keys` option.

```python
In [7]: pd.concat([s1, s2], keys=['s1', 's2'])
Out[7]:
     s1  s2
    0  a  c
    1  b  d
    dtype: object
```

Label the index keys you create with the `names` option.

```python
In [8]: pd.concat([s1, s2], keys=['s1', 's2'],
               names=['Series name', 'Row ID'])
Out[8]:
   Series name  Row ID
      s1        0  a
                   1  b
      s2        0  c
                   1  d
    dtype: object
```

Combine two DataFrame objects with identical columns.

```python
In [9]: df1 = pd.DataFrame([[a', 1], ['b', 2]],
                        columns=['letter', 'number'])
In [10]: df1
Out[10]:
   letter  number
      0      a  1
      1      b  2
In [11]: df2 = pd.DataFrame([[c', 3], ['d', 4]],
                        columns=['letter', 'number'])
In [12]: df2
Out[12]:
   letter  number
      0      c  3
      1      d  4
```
Combine DataFrame objects with overlapping columns and return everything. Columns outside the intersection will be filled with NaN values.

```python
... columns=['letter', 'number'])
>>> df2
   letter  number
0    c      3
1    d      4
>>> pd.concat([df1, df2])
   letter  number
0    a      1
1    b      2
0    c      3
1    d      4
```

Combine DataFrame objects with overlapping columns and return only those that are shared by passing inner to the join keyword argument.

```python
>>> df3 = pd.DataFrame([[c, 3, cat], [d, 4, dog]],
... columns=['letter', 'number', 'animal'])
>>> df3
   letter  number animal
0    c      3   cat
1    d      4   dog
>>> pd.concat([df1, df3], join="inner")
   letter  number
0    a      1
1    b      2
0    c      3
1    d      4
```

Combine DataFrame objects horizontally along the x axis by passing in axis=1.

```python
>>> df4 = pd.DataFrame([[bird, polly], [monkey, george]],
... columns=['animal', 'name'])
>>> pd.concat([df1, df4], axis=1)
   letter  number animal  name
0    a      1   bird    polly
1    b      2  monkey  george
```

Prevent the result from including duplicate index values with the verify_integrity option.

```python
>>> df5 = pd.DataFrame([1], index=['a'])
>>> df5
   0
a  1
>>> df6 = pd.DataFrame([2], index=['a'])
>>> df6
   0
a  2
```
34.2.1.11 pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)

Convert categorical variable into dummy/indicator variables

Parameters

- data: array-like, Series, or DataFrame

 - prefix: string, list of strings, or dict of strings, default None

 String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes.

 - prefix_sep: string, default '_'

 If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix.

 - dummy_na: bool, default False

 Add a column to indicate NaNs, if False NaNs are ignored.

 - columns: list-like, default None

 Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.

 - sparse: bool, default False

 Whether the dummy columns should be sparse or not. Returns SparseDataFrame if data is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks.

 New in version 0.16.1.

 - drop_first: bool, default False

 Whether to get k-1 dummies out of k categorical levels by removing the first level.

 New in version 0.18.0.

Returns

dummies: DataFrame or SparseDataFrame

See also:

Series.str.get_dummies

Examples

```python
>>> import pandas as pd
>>> s = pd.Series(list('abca'))
```
>>> pd.get_dummies(s)
 a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

>>> s1 = ["a", "b", np.nan]

>>> pd.get_dummies(s1)
 a b
0 1 0
1 0 1
2 0 0

>>> pd.get_dummies(s1, dummy_na=True)
 a b NaN
0 1 0 0
1 0 1 0
2 0 0 1

>>> df = pd.DataFrame({'A': ["a", "b", "a"], 'B': ["b", "a", "c"],
 'C': [1, 2, 3]})

>>> pd.get_dummies(df, prefix=['col1', 'col2'])
 C col1_a col1_b col2_a col2_b col2_c
0 1 1 0 0 1 0
1 2 0 1 1 0 0
2 3 1 0 0 0 1

>>> pd.get_dummies(pd.Series(list('abcaa')))
 a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0

>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)
 b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0

34.2.1.12 pandas.factorize

pandas.factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None)

Encode input values as an enumerated type or categorical variable

Parameters values : ndarray (1-d)
 Sequence
sort : boolean, default False
 Sort by values
na_sentinel : int, default -1
 Value to mark “not found”
size_hint : hint to the hashtable sizer

Returns labels : the indexer to the original array
uniques : ndarray (1-d) or Index
 the unique values. Index is returned when passed values is Index or Series
note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex

34.2.1.13 pandas.unique

pandas.unique(values)
Hash table-based unique. Uniques are returned in order of appearance. This does NOT sort.
Significantly faster than numpy.unique. Includes NA values.

Parameters values : 1d array-like
Returns unique values.

• If the input is an Index, the return is an Index
• If the input is a Categorical dtype, the return is a Categorical
• If the input is a Series/ndarray, the return will be an ndarray

See also:
pandas.Index.unique, pandas.Series.unique

Examples

```python
>>> pd.unique(pd.Series([2, 1, 3, 3]))
array([2, 1, 3])

>>> pd.unique(pd.Series([2] + [1] * 5))
array([2, 1])

>>> pd.unique(Series([pd.Timestamp('20160101'), ...
... pd.Timestamp('20160101')]))
array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

>>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'), ...
... pd.Timestamp('20160101', tz='US/Eastern')]))
array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
dtype=object)
```
An unordered Categorical will return categories in the order of appearance.

```python
>>> pd.unique(Series(pd.Categorical(list('baabc'))))
[b, a, c]
Categories (3, object): [b, a, c]
```

An ordered Categorical preserves the category ordering.

```python
>>> pd.unique(Series(pd.Categorical(list('baabc'),
... categories=list('abc'),
... ordered=True)))
[b, a, c]
Categories (3, object): [a < b < c]
```

34.2.14 pandas.wide_to_long

pandas.wide_to_long (*df, stubnames, i, j, sep='', suffix='\d+')

Wide panel to long format. Less flexible but more user-friendly than melt.

With stubnames ['A', 'B'], this function expects to find one or more group of columns with format Asuffix1, Asuffix2,..., Bsuffix1, Bsuffix2,... You specify what you want to call this suffix in the resulting long format with j (for example j='year')

Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names)

All remaining variables in the data frame are left intact.

Parameters

- **df** : DataFrame
 - The wide-format DataFrame
- **stubnames** : str or list-like
 - The stub name(s). The wide format variables are assumed to start with the stub names.
- **i** : str or list-like
 - Column(s) to use as id variable(s)
- **j** : str
 - The name of the subobservation variable. What you wish to name your suffix in the long format.
- **sep** : str, default “”
A character indicating the separation of the variable names in the wide format, to be
stripped from the names in the long format. For example, if your column names are
A-suffix1, A-suffix2, you can strip the hyphen by specifying sep='-'

New in version 0.20.0.

suffix : str, default ‘\d+’

A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes.
Suffixes with no numbers could be specified with the negated character class ‘\D+’.
You can also further disambiguate suffixes, for example, if your wide variables are of
the form Aone, Btwo,..., and you have an unrelated column Arating, you can ignore the
last one by specifying suffix=’(!?one|two)’

New in version 0.20.0.

Returns DataFrame

A DataFrame that contains each stub name as a variable, with new index (i, j)

Notes

All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to “do
the right thing” in a typicaly case.

Examples

```python
>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> df = pd.DataFrame({
...     "A1970" : {0 : "a", 1 : "b", 2 : "c"},
...     "A1980" : {0 : "d", 1 : "e", 2 : "f"},
...     "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
...     "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
...     "X" : dict(zip(range(3), np.random.randn(3)))
... })
>>> df["id"] = df.index
>>> df
0   a     d   2.5   3.2  -1.085631  0
1   b     e   1.2   1.3   0.997345  1
2   c     f   0.7   0.1   0.282978  2
>>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
X  A  B
id  year
0  1970  -1.085631  a  2.5
1  1970   0.997345  b  1.2
2  1980   0.282978  c  0.7
0  1980  -1.085631  d  3.2
1  1980   0.997345  e  1.3
2  1980   0.282978  f  0.1
With multiple id columns
```
Going from long back to wide just takes some creative use of `unstack`

```
>>> w = l.reset_index().set_index(['famid', 'birth', 'age']).unstack()
>>> w.columns = pd.Index(w.columns).str.join('')
>>> w.reset_index()
     famid birth  ht1  ht2
0   1   1  2.8  3.4
1   1   2  2.9  3.8
2   2   1  2.2  2.9
3   3   1  2.0  3.2
4   4   2  1.8  2.8
5   5   3  1.9  2.4
6   6   1  2.2  3.3
7   7   2  2.3  3.4
8   8   3  2.1  2.9
```

Less wieldy column names are also handled

```
>>> df = pd.DataFrame({'A(quarterly)-2010': np.random.rand(3),
...                    'A(quarterly)-2011': np.random.rand(3),
...                    'B(quarterly)-2010': np.random.rand(3),
...})
```
If we have many columns, we could also use a regex to find our stubnames and pass that list on to `wide_to_long`

```python
>>> stubnames = set([match[0] for match in df.columns.str.findall('^[A-B]\(.*\)').values if match != []])
>>> list(stubnames)
['B(quarterly)', 'A(quarterly)']
```

34.2.2 Top-level missing data

<table>
<thead>
<tr>
<th><code>isnull(obj)</code></th>
<th>Detect missing values (NaN in numeric arrays, None/NaN in object arrays)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>notnull(obj)</code></td>
<td>Replacement for <code>numpy.isfinite</code> / <code>-numpy.isnan</code> which is suitable for use on object arrays.</td>
</tr>
</tbody>
</table>

34.2.2.1 `pandas.isnull`

`pandas.isnull(obj)`

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

- **Parameters** `arr` : ndarray or object value

 Object to check for null-ness

- **Returns** `isnull` : array-like of bool or bool

 Array or bool indicating whether an object is null or if an array is given which of the element is null.

- **See also:**

 `pandas.notnull` boolean inverse of `pandas.isnull`
34.2.2 pandas.notnull

pandas.notnull(obj)

Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

Parameters

- **arr**: ndarray or object value

 Object to check for not-null-ness

Returns

- **isnull**: array-like of bool or bool

 Array or bool indicating whether an object is not null or if an array is given which of the element is not null.

See also:

- **pandas.isnull** boolean inverse of pandas.notnull

34.2.3 Top-level conversions

to_numeric(arg[, errors, downcast])

Convert argument to a numeric type.

34.2.3.1 pandas.to_numeric

pandas.to_numeric(arg, errors='raise', downcast=None)

Convert argument to a numeric type.

Parameters

- **arg**: list, tuple, 1-d array, or Series

 A list, tuple, 1-d array, or Series to convert to a numeric type.

- **errors**: {'ignore', 'raise', 'coerce'}, default 'raise'

 - If 'raise', then invalid parsing will raise an exception
 - If 'coerce', then invalid parsing will be set as NaN
 - If 'ignore', then invalid parsing will return the input

- **downcast**: {'integer', 'signed', 'unsigned', 'float'} , default None

 If not None, and if the data has been successfully cast to a numerical dtype (or if the data was numeric to begin with), downcast that resulting data to the smallest numerical dtype possible according to the following rules:

 - 'integer' or 'signed': smallest signed int dtype (min.: np.int8)
 - 'unsigned': smallest unsigned int dtype (min.: np.uint8)
 - 'float': smallest float dtype (min.: np.float32)

 As this behaviour is separate from the core conversion to numeric values, any errors raised during the downcasting will be surfaced regardless of the value of the 'errors' input.

 In addition, downcasting will only occur if the size of the resulting data's dtype is strictly larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that specification, no downcasting will be performed on the data.

 New in version 0.19.0.

Returns

- **ret**: numeric if parsing succeeded.

 Return type depends on input. Series if Series, otherwise ndarray
Examples

Take separate series and convert to numeric, coercing when told to

```python
>>> import pandas as pd
>>> s = pd.Series(['1.0', '2', -3])
>>> pd.to_numeric(s)
0  1.0
1  2.0
2 -3.0
dtype: float64

>>> pd.to_numeric(s, downcast='float')
0  1.0
1  2.0
2 -3.0
dtype: float32

>>> pd.to_numeric(s, downcast='signed')
0   1
1   2
2  -3

dtype: int8

>>> s = pd.Series(['apple', '1.0', '2', -3])

>>> pd.to_numeric(s, errors='ignore')
0 apple
1   1.0
2   2
3  -3

dtype: object

>>> pd.to_numeric(s, errors='coerce')
0   NaN
1   1.0
2   2.0
3  -3.0

dtype: float64
```

34.2.4 Top-level dealing with datetimelike

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_datetime</code> arg[, errors, dayfirst, ...])</td>
<td>Convert argument to datetime.</td>
</tr>
<tr>
<td><code>to_timedelta</code> arg[, unit, box, errors]</td>
<td>Convert argument to timedelta</td>
</tr>
<tr>
<td><code>date_range</code> [start, end, periods, freq, tz, ...])</td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td><code>bdate_range</code> [start, end, periods, freq, tz, ...])</td>
<td>Return a fixed frequency datetime index, with business day as the default</td>
</tr>
<tr>
<td><code>period_range</code> [start, end, periods, freq, name]</td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td><code>timedelta_range</code> [start, end, periods, freq, ...])</td>
<td>Return a fixed frequency timedelta index, with day as the default</td>
</tr>
<tr>
<td><code>infer_freq</code> index[, warn]</td>
<td>Infer the most likely frequency given the input index.</td>
</tr>
</tbody>
</table>

34.2.4.1 pandas.to_datetime

```python
pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix')
```

Convert argument to datetime.
Parameters arg: integer, float, string, datetime, list, tuple, 1-d array, Series

errors: {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’

• If ‘raise’, then invalid parsing will raise an exception
• If ‘coerce’, then invalid parsing will be set as NaT
• If ‘ignore’, then invalid parsing will return the input

dayfirst: boolean, default False

Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior).

yearfirst: boolean, default False

Specify a date parse order if arg is str or its list-likes.

• If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.
• If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).

Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil behavior).

utc: boolean, default None

Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well).

box: boolean, default True

• If True returns a DatetimeIndex
• If False returns ndarray of values.

format: string, default None

strftime to parse time, eg “-%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds.

exact: boolean, True by default

• If True, require an exact format match.
• If False, allow the format to match anywhere in the target string.

unit: string, default ‘ns’

unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit=’ms’ and origin=’unix’ (the default), this would calculate the number of milliseconds to the unix epoch start.

infer_datetime_format: boolean, default False

If True and no format is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

origin: scalar, default is ‘unix’

Define the reference date. The numeric values would be parsed as number of units (defined by unit) since this reference date.
pandas: powerful Python data analysis toolkit, Release 0.20.1

- If ‘unix’ (or POSIX) time; origin is set to 1970-01-01.
- If ‘julian’, unit must be ‘D’, and origin is set to beginning of Julian Calendar. Julian
day number 0 is assigned to the day starting at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by origin.

Returns `ret` : datetime if parsing succeeded.

Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp

In case when it is not possible to return designated types (e.g. when any element of input
is before Timestamp.min or after Timestamp.max) return will have datetime.datetime
type (or corresponding array/Series).

Examples

Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like

```python
>>> df = pd.DataFrame({'year': [2015, 2016],
                     'month': [2, 3],
                     'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
```

If a date does not meet the timestamp limitations, passing `errors='ignore'` will return the original input instead
of raising any exception.

Passing `errors='coerce'` will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-
parseable dates) to NaT.

```python
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
```

Passing `infer_datetime_format=True` can often-times speedup a parsing if its not an ISO8601 format exactly,
but in a regular format.

```python
>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object
```
>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop

>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop

Using a unix epoch time

```python
>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')

>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')
```

Warning: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type.

Using a non-unix epoch origin

```python
>>> pd.to_datetime([1, 2, 3], unit='D',
                 origin=pd.Timestamp('1960-01-01'))
0   1960-01-02
1   1960-01-03
2   1960-01-04
```

34.2.4.2 pandas.to_timedelta

`pandas.to_timedelta(arg, unit='ns', box=True, errors='raise')`

Convert argument to timedelta

Parameters

- **arg**: string, timedelta, list, tuple, 1-d array, or Series
- **unit**: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number
- **box**: boolean, default True
 - If True returns a Timedelta/TimedeltaIndex of the results
 - if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns]
- **errors**: {'ignore', 'raise', 'coerce'}, default 'raise'
 - If 'raise', then invalid parsing will raise an exception
 - If 'coerce', then invalid parsing will be set as NaT
 - If 'ignore', then invalid parsing will return the input

Returns

- **ret**: timedelta64/arrays of timedelta64 if parsing succeeded

Examples

Parsing a single string to a Timedelta:
Parsing a list or array of strings:

```python
>>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
dtype='timedelta64[ns]', freq=None)
```

Converting numbers by specifying the `unit` keyword argument:

```python
>>> pd.to_timedelta(np.arange(5), unit='s')
TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02',
                 '00:00:03', '00:00:04'],
dtype='timedelta64[ns]', freq=None)
>>> pd.to_timedelta(np.arange(5), unit='d')
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
dtype='timedelta64[ns]', freq=None)
```

34.2.4.3 pandas.date_range

`pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)`

Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters

- `start`: string or datetime-like, default None
 - Left bound for generating dates
- `end`: string or datetime-like, default None
 - Right bound for generating dates
- `periods`: integer or None, default None
 - If None, must specify start and end
- `freq`: string or DateOffset, default ‘D’ (calendar daily)
 - Frequency strings can have multiples, e.g. ‘5H’
- `tz`: string or None
 - Time zone name for returning localized DatetimeIndex, for example Asia/Hong_Kong
- `normalize`: bool, default False
 - Normalize start/end dates to midnight before generating date range
- `name`: str, default None
 - Name of the resulting index
- `closed`: string or None, default None
 - Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns

- `rng`: DatetimeIndex
Notes

2 of start, end, or periods must be specified
To learn more about the frequency strings, please see this link.

34.2.4.4 pandas.bdate_range

pandas.bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None, **kwargs)

Return a fixed frequency datetime index, with business day as the default frequency

Parameters

- **start**: string or datetime-like, default None
 - Left bound for generating dates
- **end**: string or datetime-like, default None
 - Right bound for generating dates
- **periods**: integer or None, default None
 - If None, must specify start and end
- **freq**: string or DateOffset, default ‘B’ (business daily)
 - Frequency strings can have multiples, e.g. ‘5H’
- **tz**: string or None
 - Time zone name for returning localized DatetimeIndex, for example Asia/Beijing
- **normalize**: bool, default False
 - Normalize start/end dates to midnight before generating date range
- **name**: str, default None
 - Name for the resulting index
- **closed**: string or None, default None
 - Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns

- **rng**: DatetimeIndex

Notes

2 of start, end, or periods must be specified
To learn more about the frequency strings, please see this link.

34.2.4.5 pandas.period_range

pandas.period_range(start=None, end=None, periods=None, freq='D', name=None)

Return a fixed frequency datetime index, with day (calendar) as the default frequency
Parameters

- **start**: starting value, period-like, optional
- **end**: ending value, period-like, optional
- **periods**: int, default None
 - Number of periods in the index
- **freq**: str/DateOffset, default ‘D’
 - Frequency alias
- **name**: str, default None
 - Name for the resulting PeriodIndex

Returns **prng**: PeriodIndex

34.2.4.6 pandas.timedelta_range

```python
def timedelta_range(start=None, end=None, periods=None, freq='D', name=None, closed=None):
```

Return a fixed frequency timedelta index, with day as the default frequency

Parameters

- **start**: string or timedelta-like, default None
 - Left bound for generating dates
- **end**: string or datetime-like, default None
 - Right bound for generating dates
- **periods**: integer or None, default None
 - If None, must specify start and end
- **freq**: string or DateOffset, default ‘D’ (calendar daily)
 - Frequency strings can have multiples, e.g. ‘5H’
- **name**: str, default None
 - Name of the resulting index
- **closed**: string or None, default None
 - Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns **rng**: TimedeltaIndex

Notes

2 of start, end, or periods must be specified.

To learn more about the frequency strings, please see this link.

34.2.4.7 pandas.infer_freq

```python
def infer_freq(index, warn=True):
```

Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed.

Parameters **index**: DatetimeIndex or TimedeltaIndex

34.2. General functions
if passed a Series will use the values of the series (NOT THE INDEX)

warn: boolean, default True

Returns freq: string or None

None if no discernible frequency TypeError if the index is not datetime-like ValueError if there are less than three values.

34.2.5 Top-level evaluation

<table>
<thead>
<tr>
<th>eval(expr[, parser, engine, truediv, ...])</th>
<th>Evaluate a Python expression as a string using various backends.</th>
</tr>
</thead>
</table>

34.2.5.1 pandas.eval

pandas.eval(expr, parser='pandas', engine=None, truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None, inplace=None)

Evaluate a Python expression as a string using various backends.

The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the following boolean operations: | (or), & (and), and ~ (not). Additionally, the 'pandas' parser allows the use of `and`, `or`, and `not` with the same semantics as the corresponding bitwise operators. *Series* and *DataFrame* objects are supported and behave as they would with plain ol' Python evaluation.

Parameters

- **expr**: str or unicode

 The expression to evaluate. This string cannot contain any Python statements, only Python expressions.

- **parser**: string, default 'pandas', {'pandas', 'python'}

 The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the enhancing performance documentation for more details.

- **engine**: string or None, default 'numexpr', {'python', 'numexpr'}

 The engine used to evaluate the expression. Supported engines are

 - None: tries to use numexpr, falls back to python

 - 'numexpr': This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames.

 - 'python': Performs operations as if you had eval'd in top level python. This engine is generally not that useful.

 More backends may be available in the future.

- **truediv**: bool, optional

 Whether to use true division, like in Python >= 3

- **local_dict**: dict or None, optional

 A dictionary of local variables, taken from locals() by default.

- **global_dict**: dict or None, optional

 A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional

A list of objects implementing the __getitem__ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes.

level : int, optional

The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter.

target : a target object for assignment, optional, default is None

essentially this is a passed in resolver

inplace : bool, default True

If expression mutates, whether to modify object inplace or return copy with mutation.

WARNING: inplace=None currently falls back to to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default.

Returns ndarray, numeric scalar, DataFrame, Series

See also:

pandas.DataFrame.query, pandas.DataFrame.eval

Notes

The dtype of any objects involved in an arithmetic % operation are recursively cast to float64.

See the enhancing performance documentation for more details.

34.2.6 Testing

test([extra_args])

34.2.6.1 pandas.test

pandas.test(extra_args=None)

34.3 Series

34.3.1 Constructor

Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series).
34.3.1.1 pandas.Series

class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

Operations between Series (+, -, /, *) align values based on their associated index values— they need not be the same length. The result index will be the sorted union of the two indexes.

Parameters:
- **data**: array-like, dict, or scalar value
 Contains data stored in Series
- **index**: array-like or Index (1d)
 Values must be hashable and have the same length as data. Non-unique index values are allowed. Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.
- **dtype**: numpy.dtype or None
 If None, dtype will be inferred
- **copy**: boolean, default False
 Copy input data

Attributes:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>asobject</code></td>
<td>return object Series which contains boxed values</td>
</tr>
<tr>
<td><code>at</code></td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td><code>axes</code></td>
<td>Return a list of the row axis labels</td>
</tr>
<tr>
<td><code>base</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>blocks</code></td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td><code>data</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td><code>dtypes</code></td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td><code>empty</code></td>
<td></td>
</tr>
<tr>
<td><code>flags</code></td>
<td></td>
</tr>
<tr>
<td><code>ftype</code></td>
<td>return if the data is sparseldense</td>
</tr>
<tr>
<td><code>ftypes</code></td>
<td>return if the data is sparseldense</td>
</tr>
<tr>
<td><code>hasnans</code></td>
<td></td>
</tr>
<tr>
<td><code>iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>iiloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>imag</code></td>
<td></td>
</tr>
<tr>
<td><code>is_copy</code></td>
<td></td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>Return boolean if values in the object are</td>
</tr>
</tbody>
</table>
Table 34.22 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_unique</code></td>
<td>Return boolean if values in the object are unique</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>ix</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>loc</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>name</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of dimensions of the underlying data, real</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the number of elements in the underlying data, real</td>
</tr>
<tr>
<td><code>values</code></td>
<td>Return Series as ndarray or ndarray-like</td>
</tr>
</tbody>
</table>

pandas.Series.T

`Series.T`
return the transpose, which is by definition self

pandas.Series.asobject

`Series.asobject`
return object Series which contains boxed values

this is an internal non-public method

pandas.Series.at

`Series.at`
Fast label-based scalar accessor

Similarly to `loc`, `at` provides `label` based scalar lookups. You can also set using these indexers.

pandas.Series.axes

`Series.axes`

Return a list of the row axis labels

pandas.Series.base

`Series.base`

return the base object if the memory of the underlying data is shared
pandas.Series.blocks

Series.blocks
Internal property, property synonym for as_blocks()

pandas.Series.data

Series.data
return the data pointer of the underlying data

pandas.Series.dtype

Series.dtype
return the dtype object of the underlying data

pandas.Series.dtypes

Series.dtypes
return the dtype object of the underlying data

pandas.Series.empty

Series.empty

pandas.Series.flags

Series.flags

pandas.Series.ftype

Series.ftype
return if the data is sparseldense

pandas.Series.ftypes

Series.ftypes
return if the data is sparseldense

pandas.Series.hasnans

Series.hasnans = None
pandas.Series.iat

Series.iat
Fast integer location scalar accessor.

Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.

pandas.Series.iloc

Series.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

•An integer, e.g. 5.
•A list or array of integers, e.g. [4, 3, 0].
•A slice object with ints, e.g. 1:7.
•A boolean array.
•A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above).

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Series.imag

Series.imag

pandas.Series.is_copy

Series.is_copy = None

pandas.Series.is_monotonic

Series.is_monotonic
Return boolean if values in the object are monotonic_increasing

New in version 0.19.0.

Returns is_monotonic : boolean
pandas.Series.is_monotonic_decreasing

Series.is_monotonic_decreasing
 Return boolean if values in the object are monotonic_decreasing
 New in version 0.19.0.
 Returns is_monotonic_decreasing : boolean

pandas.Series.is_monotonic_increasing

Series.is_monotonic_increasing
 Return boolean if values in the object are monotonic_increasing
 New in version 0.19.0.
 Returns is_monotonic : boolean

pandas.Series.is_unique

Series.is_unique
 Return boolean if values in the object are unique
 Returns is_unique : boolean

pandas.Series.itemsize

Series.itemsize
 return the size of the dtype of the item of the underlying data

pandas.Series.ix

Series.ix
 A primarily label-location based indexer, with integer position fallback.
 .ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.
 .ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes.
 However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.
 See more at Advanced Indexing.

pandas.Series.loc

Series.loc
 Purely label-location based indexer for selection by label.
 .loc[] is primarily label based, but may also be used with a boolean array.
Allowed inputs are:

- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).
- A list or array of labels, e.g. ['a', 'b', 'c'].
- A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!).
- A boolean array.
- A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above).

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

pandas.Series.name

Series.name

pandas.Series.nbytes

Series.nbytes

return the number of bytes in the underlying data

pandas.Series.ndim

Series.ndim

return the number of dimensions of the underlying data, by definition 1

pandas.Series.real

Series.real

pandas.Series.shape

Series.shape

return a tuple of the shape of the underlying data

pandas.Series.size

Series.size

return the number of elements in the underlying data

pandas.Series.strides

Series.strides

return the strides of the underlying data
pandas.Series.values

Series.values
Return Series as ndarray or ndarray-like depending on the dtype

Returns arr: numpy.ndarray or ndarray-like

Examples

```python
>>> pd.Series([1, 2, 3]).values
array([1, 2, 3])

>>> pd.Series(list('aabc')).values
array(['a', 'a', 'b', 'c'], dtype=object)

>>> pd.Series(list('aabc')).astype('category').values
[a, a, b, c]
Categories (3, object): [a, b, c]
```

Timezone aware datetime data is converted to UTC:

```python
>>> pd.Series(pd.date_range('20130101', periods=3, tz='US/Eastern')).values
array(['2013-01-01T05:00:00.000000000',
       '2013-01-02T05:00:00.000000000',
       '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
```

Methods

```
abs() Return an object with absolute value taken–only applicable to objects that are all numeric.
add(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary operator add).
add_prefix(prefix) Concatenate prefix string with panel items names.
add_suffix(suffix) Concatenate suffix string with panel items names.
agg(func[, axis]) Aggregate using callable, string, dict, or list of string/callables
aggregate(func[, axis]) Aggregate using callable, string, dict, or list of string/callables
align(other[, join, axis, level, copy, ...]) Align two object on their axes with the
all([axis, bool_only, skipna, level]) Return whether all elements are True over requested axis
any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis
append(to_append[, ignore_index, ...]) Concatenate two or more Series.
apply(func[, convert_dtype, args]) Invoke function on values of Series.
argmax([axis, skipna]) Index of first occurrence of maximum of values.
argmin([axis, skipna]) Index of first occurrence of minimum of values.
argsort([axis, kind, order]) Overrides ndarray.argsort.
as_blocks([copy]) Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
```

Continued on next page
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as_matrix(columns)</code></td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td><code>asfreq(freq[, method, how, normalize, ...])</code></td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>asof(where[, subset])</code></td>
<td>The last row without any NaN is taken (or the last row without</td>
</tr>
<tr>
<td><code>astype(dtype[, copy, errors])</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>at_time(time[, asof])</code></td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td><code>autocorr(lag)</code></td>
<td>Lag-N autocorrelation</td>
</tr>
<tr>
<td><code>between(left, right[, inclusive])</code></td>
<td>Return boolean Series equivalent to left <= series <= right.</td>
</tr>
<tr>
<td><code>between_time(start_time, end_time[, ...])</code></td>
<td>Select values between particular times of the day (e.g.,</td>
</tr>
<tr>
<td><code>bfill(axis, inplace, limit, downcast)[]</code></td>
<td>Synonym for DataFrame. bfill()</td>
</tr>
<tr>
<td><code>bool()</code></td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td><code>cat</code></td>
<td>alias of CategoricalAccessor</td>
</tr>
<tr>
<td><code>clip([lower, upper, axis])</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>clip_lower(threshold[, axis])</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>clip_upper(threshold[, axis])</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>combine(other, func[, fill_value])</code></td>
<td>Perform elementwise binary operation on two Series using given function</td>
</tr>
<tr>
<td><code>combine_first(other)</code></td>
<td>Combine Series values, choosing the calling Series’s values first.</td>
</tr>
<tr>
<td><code>compound([axis, skipna, level])</code></td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>compress(condition, *args, **kwargs)</code></td>
<td>Return selected slices of an array along given axis as a Series</td>
</tr>
<tr>
<td><code>consolidate([inplace])</code></td>
<td>DEPRECATED: consolidate will be an internal implementation only.</td>
</tr>
<tr>
<td><code>convert_objects([convert_dates, ...])</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>copy([deep])</code></td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>corr(other[, method, min_periods])</code></td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td><code>count([level])</code></td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td><code>cov(other[, min_periods])</code></td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td><code>cummax([axis, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin([axis, skipna])</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>cumprod([axis, skipna])</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>cumsum([axis, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe([percentiles, include, exclude])</code></td>
<td>Generates descriptive statistics that summarize the central tendency,</td>
</tr>
<tr>
<td><code>diff(periods)</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
<tr>
<td><code>divide(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot(other)</code></td>
<td>Matrix multiplication with DataFrame or inner-product with Series</td>
</tr>
<tr>
<td><code>drop(labels[, axis, level, inplace, errors])</code></td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>drop_duplicates([keep, inplace])</code></td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([axis, inplace])</code></td>
<td>Return Series without null values</td>
</tr>
<tr>
<td><code>dt</code></td>
<td>alias of CombinedDatetimelikeProperties</td>
</tr>
<tr>
<td><code>duplicated([keep])</code></td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
<tr>
<td><code>eq(other[, level, fill_value, axis])</code></td>
<td>Equal to of series and other, element-wise (binary operator eq).</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>ewm([com, span, halflife, alpha, ...])</code></td>
<td>Provides exponential weighted functions</td>
</tr>
<tr>
<td><code>expanding([min_periods, freq, center, axis])</code></td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>ffill([axis, inplace, limit, downcast])</code></td>
<td>Synonym for DataFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna([value, method, axis, inplace, ...])</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter([items, like, regex, axis])</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>first_valid_index()</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator floordiv).</td>
</tr>
<tr>
<td><code>from_array(arr[, index, name, dtype, copy, ...])</code></td>
<td>Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).</td>
</tr>
<tr>
<td><code>from_csv(path[, sep, parse_dates, header, ...])</code></td>
<td>Subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>get(key[, default])</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.).</td>
</tr>
<tr>
<td><code>get_dtypes()</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>get_dtypes()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>get_value(label[, takeable])</code></td>
<td>Quickly retrieve single value at passed index label</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>Same as values (but handles sparseness conversions); is a view</td>
</tr>
<tr>
<td><code>groupby([by, axis, level, as_index, sort, ...])</code></td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td><code>gt(other[, level, fill_value, axis])</code></td>
<td>Greater than of series and other, element-wise (binary operator gt).</td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>hist([by, ax, grid, xlabels, xrot, ...])</code></td>
<td>Draw histogram of the input series using matplotlib</td>
</tr>
<tr>
<td><code>idxmax([axis, skipna])</code></td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td><code>idxmin([axis, skipna])</code></td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td><code>interpolate([method, axis, limit, inplace, ...])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>Return the first element of the underlying data as a python.</td>
</tr>
<tr>
<td><code>items()</code></td>
<td>Lazily iterate over (index, value) tuples.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Lazily iterate over (index, value) tuples.</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Alias for index.</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher's definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher's definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>last_valid_index()</code></td>
<td>Return label for last non-NA/null value.</td>
</tr>
<tr>
<td><code>le(other[, level, fill_value, axis])</code></td>
<td>Less than or equal to of series and other, element-wise (binary operator <code>le</code>).</td>
</tr>
<tr>
<td><code>lt(other[, level, fill_value, axis])</code></td>
<td>Less than of series and other, element-wise (binary operator <code>lt</code>).</td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis.</td>
</tr>
<tr>
<td><code>map(arg[, na_action])</code></td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td><code>mask(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td><code>max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis.</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis.</td>
</tr>
<tr>
<td><code>memory_usage([index, deep])</code></td>
<td>Memory usage of the Series.</td>
</tr>
<tr>
<td><code>min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>mod(other[, level, fill_value, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>mode()</code></td>
<td>Return the mode(s) of the dataset.</td>
</tr>
<tr>
<td><code>mul(other[, level, fill_value, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>multiply(other[, level, fill_value, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>ne(other[, level, fill_value, axis])</code></td>
<td>Not equal to of series and other, element-wise (binary operator <code>ne</code>).</td>
</tr>
<tr>
<td><code>nlargest([n, keep])</code></td>
<td>Return the largest (n) elements.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>Return the indices of the elements that are non-zero.</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>nsmallest([n, keep])</code></td>
<td>Return the smallest (n) elements.</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>pct_change([periods, fill_method, limit, freq])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe(func, *args, **kwargs)</code></td>
<td>Apply func(self, *args, **kwargs)</td>
</tr>
</tbody>
</table>
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot</td>
<td>alias of SeriesPlotMethods</td>
</tr>
<tr>
<td>pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>pow(other[, level, fill_value, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator pow).</td>
</tr>
<tr>
<td>prod([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td>product([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td>ptp([axis, skipna, level, numeric_only])</td>
<td>Returns the difference between the maximum value and the minimum value in the object.</td>
</tr>
<tr>
<td>put(*args, **kwargs)</td>
<td>Applies the put method to its values attribute if it has one.</td>
</tr>
<tr>
<td>quantile([q, interpolation])</td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td>radd(other[, level, fill_value, axis])</td>
<td>Addition of series and other, element-wise (binary operator radd).</td>
</tr>
<tr>
<td>rank([axis, method, numeric_only, ...])</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>ravel([order])</td>
<td>Return the flattened underlying data as an ndarray</td>
</tr>
<tr>
<td>rdiv(other[, level, fill_value, axis])</td>
<td>Floating division of series and other, element-wise (binary operator rtruediv).</td>
</tr>
<tr>
<td>reindex([index])</td>
<td>Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>reindex_axis(labels[, axis])</td>
<td>for compatibility with higher dims</td>
</tr>
<tr>
<td>reindex_like(other[, method, copy, limit, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>rename([index])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>reorder_levels(order)</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>replace(lto_replace, value, inplace, limit, ...)</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample(rule[, how, axis, fill_method, ...])</td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td>reset_index([level, drop, name, inplace])</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see docstring there.</td>
</tr>
<tr>
<td>reshape(*args, **kwargs)</td>
<td>DEPRECATED: calling this method will raise an error in a future release.</td>
</tr>
<tr>
<td>rfloordiv(other[, level, fill_value, axis])</td>
<td>Integer division of series and other, element-wise (binary operator rfloordiv).</td>
</tr>
<tr>
<td>rmod(other[, level, fill_value, axis])</td>
<td>Modulo of series and other, element-wise (binary operator rmod).</td>
</tr>
<tr>
<td>rmul(other[, level, fill_value, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator rmul).</td>
</tr>
<tr>
<td>rolling(window[, min_periods, freq, center, ...])</td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td>round([decimals])</td>
<td>Round each value in a Series to the given number of decimals.</td>
</tr>
<tr>
<td>rpow(other[, level, fill_value, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator rpow).</td>
</tr>
<tr>
<td>rsub(other[, level, fill_value, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator rsub).</td>
</tr>
<tr>
<td>rtruediv(other[, level, fill_value, axis])</td>
<td>Floating division of series and other, element-wise (binary operator rtruediv).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sample()</code></td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>searchsorted()</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>select()</code></td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td><code>sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis()</code></td>
<td>Public version of axis assignment.</td>
</tr>
<tr>
<td><code>set_value()</code></td>
<td>Quickly set single value at passed label.</td>
</tr>
<tr>
<td><code>shift()</code></td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><code>slice_shift()</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort_index()</code></td>
<td>Sort object by labels (along an axis).</td>
</tr>
<tr>
<td><code>sort_values()</code></td>
<td>Sort by the values along either axis.</td>
</tr>
<tr>
<td><code>sortlevel()</code></td>
<td>Deprecated; use <code>Series.sort_index()</code></td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub()</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>subtract()</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><code>swapaxes()</code></td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td><code>swaplevel()</code></td>
<td>Swap levels i and j in a MultiIndex.</td>
</tr>
<tr>
<td><code>tail()</code></td>
<td>Returns last n rows.</td>
</tr>
<tr>
<td><code>take()</code></td>
<td>Return Series corresponding to requested indices.</td>
</tr>
<tr>
<td><code>to_clipboard()</code></td>
<td>Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.</td>
</tr>
<tr>
<td><code>to_csv()</code></td>
<td>Write Series to a comma-separated values (csv) file.</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td><code>to_dict()</code></td>
<td>Convert Series to <code>{label -> value}</code> dict.</td>
</tr>
<tr>
<td><code>to_excel()</code></td>
<td>Write Series to an excel sheet.</td>
</tr>
<tr>
<td><code>to_frame()</code></td>
<td>Convert Series to DataFrame.</td>
</tr>
<tr>
<td><code>to_hdf()</code></td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td><code>to_json()</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_msgpack()</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_period()</code></td>
<td>Convert Series from DatetimeIndex to PeriodIndex with desired.</td>
</tr>
<tr>
<td><code>to_pickle()</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_sparse()</code></td>
<td>Convert Series to SparseSeries.</td>
</tr>
<tr>
<td><code>to_sql()</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_string()</code></td>
<td>Render a string representation of the Series.</td>
</tr>
<tr>
<td><code>to_timestamp()</code></td>
<td>Cast to datetimestamp of timestamps, at beginning of period.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_xarray()</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>Convert Series to a nested list.</td>
</tr>
<tr>
<td><code>transform()</code></td>
<td>Call function producing a like-indexed NDFrame.</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>return the transpose, which is by definition self.</td>
</tr>
<tr>
<td><code>truediv()</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>truncate()</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td><code>tshift()</code></td>
<td>Shift the time index, using the index’s frequency if available.</td>
</tr>
<tr>
<td><code>tz_convert()</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize()</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td><code>unstack()</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>update()</code></td>
<td>Modify Series in place using non-NA values from passed Series.</td>
</tr>
<tr>
<td><code>valid()</code></td>
<td></td>
</tr>
<tr>
<td><code>value_counts()</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>view()</code></td>
<td></td>
</tr>
<tr>
<td><code>where()</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td><code>xs()</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

pandas.Series.abs

Series.abs()
Return an object with absolute value taken—only applicable to objects that are all numeric.

Returns abs: type of caller

pandas.Series.add

Series.add(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator `add`).
Equivalent to `series + other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters
other : Series or scalar value
fill_value : None or float scalar, default None (NaN)
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series
See also:

pandas.Series.add"

pandas.Series.add_prefix

```python
def add_prefix(self, prefix):
    """
    Concatenate prefix string with panel items names.
    """
    Parameters
    prefix : string
    Returns
    with_prefix : type of caller
```

pandas.Series.add_suffix

```python
def add_suffix(self, suffix):
    """
    Concatenate suffix string with panel items names.
    """
    Parameters
    suffix : string
    Returns
    with_suffix : type of caller
```

pandas.Series.agg

```python
def agg(self, func, axis=0, *args, **kwargs):
    """
    Aggregate using callable, string, dict, or list of string/callables
    New in version 0.20.0.
    Parameters
    func : callable, string, dictionary, or list of string/callables
    Function to use for aggregating the data. If a function, must either work when passed a
    Series or when passed to Series.apply. For a DataFrame, can pass a dict, if the keys are
    DataFrame column names.
    Accepted Combinations are:
    • string function name
    • function
    • list of functions
    • dict of column names -> functions (or list of functions)
    Returns
    aggregated : Series
    """
```

See also:

pandas.Series.apply, pandas.Series.transform

Notes

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying
the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy
behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.
Examples

```python
>>> s = Series(np.random.randn(10))

>>> s.agg('min')
-1.3018049988556679

>>> s.agg(['min', 'max'])
min -1.301805
max 1.127688
dtype: float64
```

pandas.Series.aggregate

`Series.aggregate(func, axis=0, *args, **kwargs)`
Aggregate using callable, string, dict, or list of string/callables

New in version 0.20.0.

- **Parameters**
 - `func` : callable, string, dictionary, or list of string/callables
 Function to use for aggregating the data. If a function, must either work when passed a
 Series or when passed to Series.apply. For a DataFrame, can pass a dict, if the keys are
 DataFrame column names.
 Accepted Combinations are:
 • string function name
 • function
 • list of functions
 • dict of column names -> functions (or list of functions)

- **Returns**
 - `aggregated` : Series

See also:
`pandas.Series.apply, pandas.Series.transform`

Notes

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying
the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy
behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.

Examples

```python
>>> s = Series(np.random.randn(10))

>>> s.agg('min')
-1.3018049988556679
```
```python
>>> s.agg(['min', 'max'])
min  -1.301805
max  1.127688
dtype: float64
```

pandas.Series.align

`Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)`

Align two object on their axes with the specified join method for each axis

Parameters

- `other`: DataFrame or Series
 - `join`: {'outer', 'inner', 'left', 'right'}, default 'outer'
 - `axis`: allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
 - `level`: int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
 - `copy`: boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
 - `fill_value`: scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
 - `method`: str, default None
 - `limit`: int, default None
 - `fill_axis`: {0, ‘index’}, default 0
 - Filling axis, method and limit
 - `broadcast_axis`: {0, ‘index’}, default None
 - Broadcast values along this axis, if aligning two objects of different dimensions

Returns

- `(left, right)`: (Series, type of other)
 - Aligned objects

pandas.Series.all

`Series.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs)`

Return whether all elements are True over requested axis

Parameters

- `axis`: {index (0)}
 - `skipna`: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - `level`: int or level name, default None

34.3. Series 1265
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns all : scalar or Series (if level specified)

pandas.Series.any

Series.any *(axis=None, bool_only=None, skipna=None, level=None, **kwargs)*

Return whether any element is True over requested axis

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns any : scalar or Series (if level specified)

pandas.Series.append

Series.append *(to_append, ignore_index=False, verify_integrity=False)*

Concatenate two or more Series.

Parameters

to_append : Series or list/tuple of Series

ignore_index : boolean, default False

If True, do not use the index labels.

verify_integrity : boolean, default False

If True, raise Exception on creating index with duplicates

Returns appended : Series

Examples

```python
>>> a1 = pd.Series([1, 2, 3])
>>> a2 = pd.Series([4, 5, 6])
>>> a3 = pd.Series([4, 5, 6], index=[3, 4, 5])
>>> a1.append(a2)
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
1 5
dtype: int64

```python
>>> s1.append(s3)
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64
```

With `ignore_index` set to True:

```python
>>> s1.append(s2, ignore_index=True)
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64
```

With `verify_integrity` set to True:

```python
>>> s1.append(s2, verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: [0, 1, 2]
```

pandas.Series.apply

Series.apply *(func, convert_dtype=True, args=(), **kwds)*

Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values

Parameters

- **func**: function
- **convert_dtype**: boolean, default True
 - Try to find better dtype for elementwise function results. If False, leave as dtype=object
- **args**: tuple
 - Positional arguments to pass to function in addition to the value
- **kwds**: additional keyword arguments will be passed as keywords to the function

Returns

- **y**: Series or DataFrame if func returns a Series

See also:

- **Series.map** For element-wise operations
- **Series.agg** only perform aggregating type operations
- **Series.transform** only perform transforming type operations

34.3. Series 1267
Examples

Create a series with typical summer temperatures for each city.

```python
>>> import pandas as pd
>>> import numpy as np
>>> series = pd.Series([20, 21, 12], index=['London', 'New York', 'Helsinki'])
>>> series
London 20
New York 21
Helsinki 12
dtype: int64
```

Square the values by defining a function and passing it as an argument to apply().

```python
>>> def square(x):
...     return x**2
>>> series.apply(square)
London 400
New York 441
Helsinki 144
dtype: int64
```

Square the values by passing an anonymous function as an argument to apply().

```python
>>> series.apply(lambda x: x**2)
London 400
New York 441
Helsinki 144
dtype: int64
```

Define a custom function that needs additional positional arguments and pass these additional arguments using the args keyword.

```python
>>> def subtract_custom_value(x, custom_value):
...     return x-custom_value
>>> series.apply(subtract_custom_value, args=(5,))
London 15
New York 16
Helsinki 7
dtype: int64
```

Define a custom function that takes keyword arguments and pass these arguments to apply.

```python
>>> def add_custom_values(x, **kwargs):
...     for month in kwargs:
...         x+=kwargs[month]
...     return x
```

```python
>>> series.apply(add_custom_values, june=30, july=20, august=25)
London 95
New York 96
Helsinki 87
dtype: int64
```
Use a function from the Numpy library.

```python
>>> series.apply(np.log)
London      2.995732
New York   3.044522
Helsinki   2.484907
dtype: float64
```

pandas.Series.argmax

Series.argmax (axis=None, skipna=True, *args, **kwargs)

Index of first occurrence of maximum of values.

- **Parameters** `skipna` : boolean, default True

 Exclude NA/null values

- **Returns** `idxmax` : Index of maximum of values

- **See also:**

 `DataFrame.idxmax`, `numpy.ndarray.argmax`

Notes

This method is the Series version of `ndarray.argmax`.

pandas.Series.argmin

Series.argmin (axis=None, skipna=True, *args, **kwargs)

Index of first occurrence of minimum of values.

- **Parameters** `skipna` : boolean, default True

 Exclude NA/null values

- **Returns** `idxmin` : Index of minimum of values

- **See also:**

 `DataFrame.idxmin`, `numpy.ndarray.argmin`

Notes

This method is the Series version of `ndarray.argmin`.

pandas.Series.argsort

Series.argsort (axis=0, kind='quicksort', order=None)

Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.

- **Parameters** `axis` : int (can only be zero)

 - `kind` : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

order : ignored

Returns argsorted : Series, with -1 indicated where nan values are present

See also:

numpy.ndarray.argsort

pandas.Series.as_blocks

Series.as_blocks(copy=True)

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters copy : boolean, default True

Returns values : a dict of dtype -> Constructor Types

pandas.Series.as_matrix

Series.as_matrix(columns=None)

Convert the frame to its Numpy-array representation.

Parameters columns: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray

If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.
pandas.DataFrame

DataFrame

DataFrame

pandas.Series

Series

Series

Series.asfreq

Series.asfreq(freq=None, method=None, how=None, normalize=False, fill_value=None)

Convert TimeSeries to specified frequency.

 Optionally provide filling method to pad/backfill missing values.

 Returns the original data conformed to a new index with the specified frequency. resample is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

 Parameters freq : DateOffset object, or string

 method : {'backfill', 'bfill', 'pad', 'ffill'}, default None

 Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):

 • ‘pad’ / ‘fill’ : propagate last valid observation forward to next valid
 • ‘backfill’ / ‘bfill’ : use NEXT valid observation to fill

 how : {'start', 'end'}, default end

 For PeriodIndex only, see PeriodIndex.asfreq

 normalize : bool, default False

 Whether to reset output index to midnight

 fill_value: scalar, optional

 Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present).

 New in version 0.20.0.

 Returns converted : type of caller

 See also:

 reindex

 Notes

 To learn more about the frequency strings, please see this link.

 Examples

 Start by creating a series with 4 one minute timestamps.

 >>> index = pd.date_range('1/1/2000', periods=4, freq='T')
 >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
 >>> df = pd.DataFrame({'s':series})
 >>> df
 s
0 2000-01-01 00:00:00 0.0
1 2000-01-01 00:01:00 NaN
2 2000-01-01 00:02:00 2.0
3 2000-01-01 00:03:00 3.0

 Upsample the series into 30 second bins.

 >>> df['s'].asfreq('30S')
 2000-01-01 00:00:00 0.0
 2000-01-01 00:01:00 NaN
 2000-01-01 00:02:00 2.0
 2000-01-01 00:03:00 3.0

 New in version 0.20.0.

 Returns converted : type of caller

 See also:

 reindex

 Notes

 To learn more about the frequency strings, please see this link.

 Examples

 Start by creating a series with 4 one minute timestamps.

 >>> index = pd.date_range('1/1/2000', periods=4, freq='T')
 >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
 >>> df = pd.DataFrame({'s':series})
 >>> df
 s
0 2000-01-01 00:00:00 0.0
1 2000-01-01 00:01:00 NaN
2 2000-01-01 00:02:00 2.0
3 2000-01-01 00:03:00 3.0

 Upsample the series into 30 second bins.

 >>> df['s'].asfreq('30S')
 2000-01-01 00:00:00 0.0
 2000-01-01 00:01:00 NaN
 2000-01-01 00:02:00 2.0
 2000-01-01 00:03:00 3.0

 New in version 0.20.0.

 Returns converted : type of caller

 See also:

 reindex

 Notes

 To learn more about the frequency strings, please see this link.

 Examples

 Start by creating a series with 4 one minute timestamps.

 >>> index = pd.date_range('1/1/2000', periods=4, freq='T')
 >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
 >>> df = pd.DataFrame({'s':series})
 >>> df
 s
0 2000-01-01 00:00:00 0.0
1 2000-01-01 00:01:00 NaN
2 2000-01-01 00:02:00 2.0
3 2000-01-01 00:03:00 3.0

 Upsample the series into 30 second bins.
>>> df.asfreq(freq='30S')

```
          s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  NaN
2000-01-01 00:02:00   2.0
2000-01-01 00:02:30  NaN
2000-01-01 00:03:00   3.0
```

Upsample again, providing a fill value.

>>> df.asfreq(freq='30S', fill_value=9.0)

```
          s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  9.0
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  9.0
2000-01-01 00:02:00   2.0
2000-01-01 00:02:30  9.0
2000-01-01 00:03:00   3.0
```

Upsample again, providing a method.

>>> df.asfreq(freq='30S', method='bfill')

```
          s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30   2.0
2000-01-01 00:02:00   2.0
2000-01-01 00:02:30   3.0
2000-01-01 00:03:00   3.0
```

pandas.Series.asof

Series.asof(where, subset=None)

The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters

where : date or array of dates

subset : string or list of strings, default None

if not None use these columns for NaN propagation

Returns

where is scalar

• value or NaN if input is Series

• Series if input is DataFrame

where is Index: same shape object as input

See also:
merge_asof

Notes

Dates are assumed to be sorted. Raises if this is not the case.

pandas.Series.astype

Series.astype (dtype, copy=True, errors='raise', **kwargs)
Cast object to input numpy.dtype. Return a copy when copy = True (be really careful with this!)

Parameters
dtype: data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

errors: {'raise', 'ignore'}, default 'raise'.
Control raising of exceptions on invalid data for provided dtype.

• raise: allow exceptions to be raised
• ignore: suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error: DEPRECATED use errors instead

kwargs: keyword arguments to pass on to the constructor

Returns
casted: type of caller

pandas.Series.at_time

Series.at_time (time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters
time: datetime.time or string

Returns values_at_time: type of caller

pandas.Series.autocorr

Series.autocorr (lag=1)
Lag-N autocorrelation

Parameters
lag: int, default 1
Number of lags to apply before performing autocorrelation.

Returns autocorr: float
pandas.Series.between

Series.between (*left*, *right*, *inclusive=True*)

Return boolean Series equivalent to left <= series <= right. NA values will be treated as False.

- **Parameters**
 - *left*: scalar

 Left boundary
 - *right*: scalar

 Right boundary
 - **Returns**
 - *is_between*: Series

pandas.Series.between_time

Series.between_time (*start_time*, *end_time*, *include_start=True*, *include_end=True*)

Select values between particular times of the day (e.g., 9:00-9:30 AM).

- **Parameters**
 - *start_time*: datetime.time or string
 - *end_time*: datetime.time or string
 - *include_start*: boolean, default True
 - *include_end*: boolean, default True
 - **Returns**
 - *values_between_time*: type of caller

pandas.Series.bfill

Series.bfill (*axis=None*, *inplace=False*, *limit=None*, *downcast=None*)

Synonym for *DataFrame.fillna(method='bfill')*

pandas.Series.bool

Series.bool()

Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not
have exactly 1 element, or that element is not boolean

pandas.Series.cat

Series.cat()

Accessor object for categorical properties of the Series values.

Be aware that assigning to *categories* is a inplace operation, while all methods return new categorical data
per default (but can be called with *inplace=True*).
Examples

```python
>>> s.cat.categories
>>> s.cat.categories = list('abc')
>>> s.cat.rename_categories(list('cab'))
>>> s.cat.reorder_categories(list('cab'))
>>> s.cat.add_categories(['d','e'])
>>> s.cat.remove_categories(['d'])
>>> s.cat.remove_unused_categories()
>>> s.cat.set_categories(list('abcde'))
>>> s.cat.as_ordered()
>>> s.cat.as_unordered()
```

pandas.Series.clip

`Series.clip(lower=None, upper=None, axis=None, *args, **kwargs)`

Trim values at input threshold(s).

Parameters

- `lower` : float or array_like, default None
- `upper` : float or array_like, default None
- `axis` : int or string axis name, optional

Align object with lower and upper along the given axis.

Returns

- `clipped` : Series

Examples

```python
>>> df
   0  1
0  0.335232 -1.256177
1 -1.367855  0.746646
2  0.027753 -1.176076
3  0.230930 -0.679613
4  1.261967  0.570967
>>> df.clip(-1.0, 0.5)
   0  1
0  0.335232 -1.000000
1 -1.000000  0.500000
2  0.027753 -1.000000
3  0.230930 -0.679613
4  0.500000  0.500000
>>> t
 0  -0.3
 1  -0.2
 2  -0.1
 3   0.0
 4   0.1
dtype: float64
>>> df.clip(t, t + 1, axis=0)
   0  1
0  0.335232 -0.300000
1 -0.300000  0.400000
2  0.200000  0.746646
3  0.027753 -0.100000
```

34.3. Series 1275
pandas.Series.clip_lower

Series.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters

threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns

clipped : same type as input

See also:
clip

pandas.Series.clip_upper

Series.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters

threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns

clipped : same type as input

See also:
clip

pandas.Series.combine

Series.combine(other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other.

Parameters

other : Series or scalar value
func : function
fill_value : scalar value

Returns

result : Series

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes.

Parameters

other : Series
Returns y : Series

pandas.Series.compound

Series.compound (axis=None, skipna=None, level=None)

Return the compound percentage of the values for the requested axis

Parameters

- **axis** : {index (0)}
- **skipna** : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only** : boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **compound** : scalar or Series (if level specified)

pandas.Series.compress

Series.compress (condition, *args, **kwargs)

Return selected slices of an array along given axis as a Series

See also:

numpy.ndarray.compress

pandas.Series.consolidate

Series.consolidate (inplace=False)

DEPRECATED: consolidate will be an internal implementation only.

pandas.Series.convert_objects

Series.convert_objects (convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Deprecated.

Attempt to infer better dtype for object columns

Parameters

- **convert_dates** : boolean, default True

 If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.
- **convert_numeric** : boolean, default False

 If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.
- **convert_timedeltas** : boolean, default True
If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

copy: boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace.

Returns converted : same as input object

See also:

- `pandas.to_datetime` Convert argument to datetime.
- `pandas.to_timedelta` Convert argument to timedelta.
- `pandas.to_numeric` Return a fixed frequency timedelta index, with day as the default.

pandas.Series.copy

Series.copy *(deep=True)*

Make a copy of this objects data.

Parameters deep : boolean or string, default True

Make a deep copy, including a copy of the data and the indices. With deep=False neither the indices or the data are copied.

Note that when deep=True data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively copies object data.

Returns copy : type of caller

pandas.Series.corr

Series.corr *(other, method=’pearson’, min_periods=None)*

Compute correlation with other Series, excluding missing values

Parameters other : Series

method : {'pearson', 'kendall', 'spearman'}

- pearson : standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns correlation : float

pandas.Series.count

Series.count *(level=None)*

Return number of non-NA/null observations in the Series
Parameters level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns nobs : int or Series (if level specified)

pandas.Series.cov

Series.cov(other, min_periods=None)
Compute covariance with Series, excluding missing values

Parameters other : Series
min_periods : int, optional
Minimum number of observations needed to have a valid result

Returns covariance : float
Normalized by N-1 (unbiased estimator).

pandas.Series.cummax

Series.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative max over requested axis.

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummax : scalar
See also:
pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

pandas.Series.cummin

Series.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over requested axis.

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummin : scalar
See also:
pandas.core.window.Expanding.min Similar functionality but ignores NaN values.
pandas.Series.cumprod

Series.cumprod (axis=None, skipna=True, *args, **kwargs)
Return cumulative product over requested axis.

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cumprod : scalar

See also:
pandas.core.window.Expanding.prod Similar functionality but ignores NaN values.

pandas.Series.cumsum

Series.cumsum (axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over requested axis.

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cumsum : scalar

See also:
pandas.core.window.Expanding.sum Similar functionality but ignores NaN values.

pandas.Series.describe

Series.describe (percentiles=None, include=None, exclude=None)
Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters percentiles : list-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.
include : ‘all’, list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignored for Series. Here are the options:
• ‘all’: All columns of the input will be included in the output.
• A list-like of dtypes: Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to categorical objects submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O']))
• None (default): The result will include all numeric columns.
exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the options:

- A list-like of dtypes : Excludes the provided data types from the result. To select numeric types submit \texttt{numpy.number}. To select categorical objects submit the data type \texttt{numpy.object}. Strings can also be used in the style of \texttt{select_dtypes} (e.g. \texttt{df.describe(include=['O'])})

- None (default) : The result will exclude nothing.

Returns summary: Series/DataFrame of summary statistics

See also:

\texttt{DataFrame.count, DataFrame.max, DataFrame.min, DataFrame.mean, DataFrame.std, DataFrame.select_dtypes}

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The \texttt{include} and \texttt{exclude} parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

```python
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
         count  mean  std  min  25%  50%  75%  max
0      3.00  2.00  1.00  1.00  1.50  2.00  2.50  3.00
```

Describing a categorical Series.
>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
type: object

Describing a timestamp Series.

>>> s = pd.Series([... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe()
count 3
unique 2
top 2010-01-01 00:00:00
type: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame([[1, 'a'], [2, 'b'], [3, 'c']],
... columns=['numeric', 'object'])
>>> df.describe()
numeric
 count 3.0
 mean 2.0
 std 1.0
 min 1.0
 25% 1.5
 50% 2.0
 75% 2.5
 max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
numeric object
 count 3.0 3
 unique NaN 3
 top NaN b
 freq NaN 1
 mean 2.0 NaN
 std 1.0 NaN
 min 1.0 NaN
 25% 1.5 NaN
 50% 2.0 NaN
 75% 2.5 NaN
 max 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.
```
>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64
```

Including only numeric columns in a DataFrame description.

```
>>> df.describe(include=[np.number])
          numeric
     count 3.0
     mean 2.0
     std  1.0
     min  1.0
   25%  1.5
   50%  2.0
   75%  2.5
     max 3.0
```

Including only string columns in a DataFrame description.

```
>>> df.describe(include=[np.object])
          object
     count 3
     unique 3
  top  b
   freq 1
```

Excluding numeric columns from a DataFrame description.

```
>>> df.describe(exclude=[np.number])
          object
     count 3
     unique 3
  top  b
   freq 1
```

Excluding object columns from a DataFrame description.

```
>>> df.describe(exclude=[np.object])
           numeric
     count 3.0
     mean 2.0
     std  1.0
     min  1.0
   25%  1.5
   50%  2.0
   75%  2.5
     max 3.0
```
pandas.Series.diff

Series.diff (periods=1)
1st discrete difference of object

Parameters
periods: int, default 1
 Periods to shift for forming difference

Returns
diffed: Series

pandas.Series.div

Series.div (other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).
Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other: Series or scalar value

fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: Series

See also:
Series.rtruediv

pandas.Series.divide

Series.divide (other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).
Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other: Series or scalar value

fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: Series

See also:
Series.rtruediv
pandas.Series.dot

Series.dot(other)
Matrix multiplication with DataFrame or inner-product with Series objects

Parameters other : Series or DataFrame
Returns dot_product : scalar or Series

pandas.Series.drop

Series.drop(labels=0, axis=0, level=None, inplace=False, errors='raise')
Return new object with labels in requested axis removed.

Parameters labels : single label or list-like
axis : int or axis name
level : int or level name, default None
For MultiIndex
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and existing labels are dropped.
New in version 0.16.1.
Returns dropped : type of caller

pandas.Series.drop_duplicates

Series.drop_duplicates(keep='first', inplace=False)
Return Series with duplicate values removed

Parameters keep : {'first', 'last', False}, default 'first'
• first : Drop duplicates except for the first occurrence.
• last : Drop duplicates except for the last occurrence.
• False : Drop all duplicates.
inplace : boolean, default False
If True, performs operation inplace and returns None.
Returns deduplicated : Series

pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)
Return Series without null values

Returns valid : Series
inplace : boolean, default False
Do operation in place.

pandas.Series.dt

Series.dt()

Accessor object for datetimelike properties of the Series values.

Examples

```python
>>> s.dt.hour
>>> s.dt.second
>>> s.dt.quarter
```

Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values.

pandas.Series.duplicated

Series.duplicated(keep='first')

Return boolean Series denoting duplicate values

Parameters keep : {'first', 'last', False}, default 'first'

- first : Mark duplicates as True except for the first occurrence.
- last : Mark duplicates as True except for the last occurrence.
- False : Mark all duplicates as True.

Returns duplicated : Series

pandas.Series.eq

Series.eq(other, level=None, fill_value=None, axis=0)

Equal to of series and other, element-wise (binary operator eq).

Equivalent to series == other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value

- fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

- level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.None
pandas.Series.equals

Series.equals(other)
Determines if two DataFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Series.ewm

Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)
Provides exponential weighted functions
New in version 0.18.0.

Parameters

- com : float, optional
 Specify decay in terms of center of mass, \(\alpha = 1/(1 + \text{com}) \), for \(\text{com} \geq 0 \)

- span : float, optional
 Specify decay in terms of span, \(\alpha = 2/(\text{span} + 1) \), for \(\text{span} \geq 1 \)

- halflife : float, optional
 Specify decay in terms of half-life, \(\alpha = 1 - \exp(\log(0.5) / \text{halflife}) \), for \(\text{halflife} > 0 \)

- alpha : float, optional
 Specify smoothing factor \(\alpha \) directly, \(0 < \alpha \leq 1 \)
 New in version 0.18.0.

- min_periods : int, default 0
 Minimum number of observations in window required to have a value (otherwise result is NA).

- freq : None or string alias / date offset object, default=None (DEPRECATED)
 Frequency to conform to before computing statistic

- adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

- ignore_na : boolean, default False
 Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

Returns

a Window sub-classed for the particular operation

Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).
When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-
alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as:

weighted_average[0] = arg[0];
weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of
x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is
True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For
example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha
and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#
exponentially-weighted-windows

Examples

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
     B
0   0.0
1   1.0
2   2.0
3   NaN
4   4.0

>>> df.ewm(com=0.5).mean()
     B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
```

pandas.Series.expanding

Series.expanding(min_periods=1, freq=None, center=False, axis=0)

Provides expanding transformations.

New in version 0.18.0.

Parameters

- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).

- **freq**: string or DateOffset object, optional (default None) (DEPRECATED)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

- **center**: boolean, default False
 Set the labels at the center of the window.

- **axis**: int or string, default 0

Returns
a Window sub-classed for the particular operation
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This
is done with the default parameters of resample() (i.e. using the mean).

Examples

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
   B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

>>> df.expanding(2).sum()
   B
0  NaN
1  1.0
2  3.0
3  3.0
4  7.0
```

`pandas.Series.factorize`

Series.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

Parameters:
- sort : boolean, default False
 - Sort by values
- na_sentinel : int, default -1
 - Value to mark “not found”

Returns:
- labels : the indexer to the original array
- uniques : the unique Index

`pandas.Series.ffill`

Series.ffill(axis=None, inplace=False, limit=None, downcast=None)

Synonym for DataFrame.fillna(method='ffill')

`pandas.Series.fillna`

Series.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

Fill NA/NaN values using the specified method
Parameters

- **value**: scalar, dict, Series, or DataFrame
 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

- **axis**: {0, 'index'}

- **inplace**: boolean, default False
 If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

- **limit**: int, default None
 If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

- **downcast**: dict, default is None
 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

- **filled**: Series

See also:

- reindex, asfreq

pandas.Series.filter

Series.filter *(items=None, like=None, regex=None, axis=None)*

Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters

- **items**: list-like
 List of info axis to restrict to (must not all be present)

- **like**: string
 Keep info axis where “arg in col == True”

- **regex**: string (regular expression)
 Keep info axis with re.search(regex, col) == True

- **axis**: int or string axis name
 The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

Returns

same type as input object
See also:

```
pandas.DataFrame.select
```

Notes

The `items`, `like`, and `regex` parameters are enforced to be mutually exclusive. `axis` defaults to the info axis that is used when indexing with `[]`.

Examples

```python
>>> df
one  two  three
mouse   1   2   3
rabbit   4   5   6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one   three
mouse   1   3
rabbit   4   6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one   three
mouse   1   3
rabbit   4   6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one  two  three
rabbit   4   5   6
```

pandas.Series.first

```
Series.first(offset)
```

Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters
- `offset` : string, DateOffset, dateutil.relativedelta

Returns
- `subset` : type of caller

Examples

```python
ts.first('10D') -> First 10 days
```

pandas.Series.first_valid_index

```
Series.first_valid_index()
```

Return label for first non-NA/null value
pandas.Series.floordiv

Series.floordiv(other, level=None, fill_value=None, axis=0)

Integer division of series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

other : Series or scalar value

fill_value : None or float scalar value, default None (NaN)

level : int or name

Returns

result : Series

See also:

Series.rfloordiv

pandas.Series.from_array

classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False, fast-path=False)

pandas.Series.from_csv

classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)

Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).

It is preferable to use the more powerful pandas.read_csv() for most general purposes, but from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), especially with a time Series.

This method only differs from pandas.read_csv() in some defaults:

• index_col is 0 instead of None (take first column as index by default)

• header is None instead of 0 (the first row is not used as the column names)

• parse_dates is True instead of False (try parsing the index as datetime by default)

With pandas.read_csv(), the option squeeze=True can be used to return a Series like from_csv.

Parameters

path : string file path or file handle / StringIO

sep : string, default ‘,’

Field delimiter

parse_dates : boolean, default True

Parse dates. Different default from read_table

header : int, default None
Row to use as header (skip prior rows)

index_col: int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table

encoding: string, optional

a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

infer_datetime_format: boolean, default False

If True and **parse_dates** is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns **y**: Series

See also:

pandas.read_csv

pandas.Series.ge

Series.ge (other, level=None, fill_value=None, axis=0)

Greater than or equal to of series and other, element-wise (binary operator ge).

Equivalent to **series >= other**, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters **other**: Series or scalar value

fill_value: None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns **result**: Series

See also:

Series.None

pandas.Series.get

Series.get (key, default=None)

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

Parameters **key**: object

Returns **value**: type of items contained in object
pandas.Series.get_dtype_counts

Series.get_dtype_counts()

Return the counts of dtypes in this object.

pandas.Series.get_ftype_counts

Series.get_ftype_counts()

Return the counts of ftypes in this object.

pandas.Series.get_value

Series.get_value(label, takeable=False)

Quickly retrieve single value at passed index label

Parameters

- **index**: label
- **takeable**: interpret the index as indexers, default False

Returns

- **value**: scalar value

pandas.Series.get_values

Series.get_values()

same as values (but handles sparseness conversions); is a view

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Parameters

- **by**: mapping, function, str, or iterable
 - Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an ndarray is passed, the values are used as-is determine the groups. A str or list of strs may be passed to group by the columns in self
- **axis**: int, default 0
- **level**: int, level name, or sequence of such, default None
 - If the axis is a MultiIndex (hierarchical), group by a particular level or levels
- **as_index**: boolean, default True
 - For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
- **sort**: boolean, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default `True`

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default `False`

reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns GroupBy object

Examples

DataFrame

DataFrame results

```python
>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()
```

DataFrame with hierarchical index

```python
>>> data.groupby(['col1', 'col2']).mean()
```

pandas.Series.gt

Series.\texttt{gt} (other, level=None, fill_value=None, axis=0)

Greater than of series and other, element-wise (binary operator \texttt{gt}).

Equivalent to \texttt{series > other}, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.\texttt{None}

pandas.Series.head

Series.\texttt{head}(n=5)

Returns first n rows
pandas.Series.hist

The `Series.hist` function is used to draw histograms of the input series using matplotlib. The function parameters are as follows:

- **by**: object, optional. If passed, then used to form histograms for separate groups.
- **ax**: matplotlib axis object. If not passed, uses `gca()`.
- **grid**: boolean, default True. Whether to show axis grid lines.
- **xlabelsize**: int, default None. If specified changes the x-axis label size.
- **xrot**: float, default None. Rotation of x axis labels.
- **ylabelsize**: int, default None. If specified changes the y-axis label size.
- **yrot**: float, default None. Rotation of y axis labels.
- **figsize**: tuple, default None. Figure size in inches by default.
- **bins**: integer, default 10. Number of histogram bins to be used.
- **kwds**: keywords. To be passed to the actual plotting function.

Notes

See matplotlib documentation online for more on this.

pandas.Series.idxmax

The `Series.idxmax` function returns the index of the first occurrence of maximum of values.

- **skipna**: boolean, default True. Exclude NA/null values.

Returns

- **idxmax**: Index of maximum of values.

See also:

`DataFrame.idxmax`, `numpy.ndarray.argmax`
Notes

This method is the Series version of ndarray.argmax.

pandas.Series.idxmin

Series.idxmin(axis=None, skipna=True, *args, **kwargs)
Index of first occurrence of minimum of values.

Parameters

- skipna : boolean, default True
 Exclude NA/null values

Returns

- idxmin : Index of minimum of values

See also:

DataFrame.idxmin, numpy.ndarray.argmin

Notes

This method is the Series version of ndarray.argmin.

pandas.Series.interpolate

Series.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)
Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters

- method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}
 - 'linear': ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
 - 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
 - 'index', 'values': use the actual numerical values of the index
 - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to scipy.interpolate.interp1d. Both 'polynomial' and 'spline' require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.
 - 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. For more information on their behavior, see the scipy documentation and tutorial documentation
 - 'from_derivatives' refers to BPoly.from_derivatives which replaces 'piecewise_polynomial' interpolation method in scipy 0.18

34.3. Series
New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-compatible with scipy < 0.18

`axis`: {0, 1}, default 0
- 0: fill column-by-column
- 1: fill row-by-row

`limit`: int, default None.
- Maximum number of consecutive NaNs to fill. Must be greater than 0.

`limit_direction`: {'forward', 'backward', 'both'}, default ‘forward’
- If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

`inplace`: bool, default False
- Update the NDFrame in place if possible.

`downcast`: optional, ‘infer’ or None, defaults to None
- Downcast dtypes if possible.

`kwargs`: keyword arguments to pass on to the interpolating function.

Returns
- Series or DataFrame of same shape interpolated at the NaNs

See also: `reindex`, `replace`, `fillna`

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64
```

pandas.Series.isin

Series.isin(values)

Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

Parameters

values: set or list-like
- The sequence of values to test. Passing in a single string will raise a `TypeError`. Instead, turn a single string into a list of one element.

New in version 0.18.1.

Support for values as a set
Returns isin: Series (bool dtype)

Raises TypeError
- If values is a string

See also:
pandas.DataFrame.isin

Examples

```python
>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0   True
1  False
2   True
dtype: bool
```

Passing a single string as `s.isin('a')` will raise an error. Use a list of one element instead:

```python
>>> s.isin(['a'])
0   True
1  False
2  False
dtype: bool
```

pandas.Series.isnull

Series.isnull()
Return a boolean same-sized object indicating if the values are null.

See also:
- `notnull` boolean inverse of isnull

pandas.Series.item

Series.item()
return the first element of the underlying data as a python scalar

pandas.Series.items

Series.items()
Lazily iterate over (index, value) tuples

pandas.Series.iteritems

Series.iteritems()
Lazily iterate over (index, value) tuples
pandas.Series.keys

```
Series.keys()
```

Alias for index

pandas.Series.kurt

```
Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters

- **axis**: {index (0)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **kurt**: scalar or Series (if level specified)

pandas.Series.kurtosis

```
Series.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters

- **axis**: {index (0)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **kurt**: scalar or Series (if level specified)

pandas.Series.last

```
Series.last(offset)
```

Convenience method for subsetting final periods of time series data based on a date offset.

Parameters

- **offset**: string, DateOffset, dateutil.relativedelta
Returns subset: type of caller

Examples

ts.last(‘5M’) -> Last 5 months

pandas.Series.last_valid_index

Series.last_valid_index()

Return label for last non-NA/null value

pandas.Series.le

Series.le(other, level=None, fill_value=None, axis=0)

Less than or equal to of series and other, element-wise (binary operator le).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: Series

See also:

Series.None

pandas.Series.lt

Series.lt(other, level=None, fill_value=None, axis=0)

Less than of series and other, element-wise (binary operator lt).

Equivalent to series < other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: Series
See also:
Series.None

pandas.Series.mad

Series.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters axis: {index (0)}
 skipna: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
 a scalar
 numeric_only: boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then
 use only numeric data. Not implemented for Series.

Returns mad: scalar or Series (if level specified)

pandas.Series.map

Series.map(arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters arg: function, dict, or Series
 na_action: {None, ‘ignore’}
 If ‘ignore’, propagate NA values, without passing them to the mapping function

Returns y: Series
 same index as caller

See also:
Series.apply For applying more complex functions on a Series
DataFrame.apply Apply a function row-/column-wise
DataFrame.applymap Apply a function elementwise on a whole DataFrame

Notes

When arg is a dictionary, values in Series that are not in the dictionary (as keys) are converted to NaN. However, if the dictionary is a dict subclass that defines __missing__ (i.e. provides a method for default values), then this default is used rather than NaN:

```python
>>> from collections import Counter
>>> counter = Counter()
>>> counter['bar'] += 1
>>> y.map(counter)
```
Examples

Map inputs to outputs (both of type `Series`)

```python
>>> x = pd.Series([1,2,3], index=['one', 'two', 'three'])
>>> x
one  1
two  2
three 3
dtype: int64

>>> y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3])
>>> y
1    foo
2    bar
3    baz
>>> x.map(y)
one foo
two bar
three baz
```

If `arg` is a dictionary, return a new Series with values converted according to the dictionary’s mapping:

```python
>>> z = {1: 'A', 2: 'B', 3: 'C'}

>>> x.map(z)
one A
two B
three C
```

Use `na_action` to control whether NA values are affected by the mapping function.

```python
>>> s = pd.Series([1, 2, 3, np.nan])

>>> s2 = s.map('this is a string \{x\}'.format, na_action=\'None\)
0  this is a string 1.0
1  this is a string 2.0
2  this is a string 3.0
3  this is a string nan
dtype: object

>>> s3 = s.map('this is a string \{x\}'.format, na_action='ignore')
0  this is a string 1.0
1  this is a string 2.0
2  this is a string 3.0
3   NaN
dtype: object
```
pandas.Series.mask

Series.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

Parameters

cond : boolean NDFrame, array-like, or callable
 If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).
 New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable
 If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).
 New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False
 Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False
 try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True
 Whether to raise on invalid data types (e.g. trying to where on strings)

Returns

wh : same type as caller

See also:

Dataframe.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for Dataframe.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples
<<< s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9

>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True

>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True

pandas.Series.max

Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns max : scalar or Series (if level specified)
pandas.Series.mean

```
Series.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the mean of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
mean : scalar or Series (if level specified)

pandas.Series.median

```
Series.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the median of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
median : scalar or Series (if level specified)

pandas.Series.memory_usage

```
Series.memory_usage (index=True, deep=False)
```

Memory usage of the Series

Parameters
index : bool

Specifies whether to include memory usage of Series index

deep : bool

Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns
scalar bytes of memory consumed
See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.Series.min

Series.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns min : scalar or Series (if level specified)

pandas.Series.mod

Series.mod (other, level=None, fill_value=None, axis=0)

Modulo of series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.rmod
pandas.Series.mode

Series.mode()
Return the mode(s) of the dataset.
Always returns Series even if only one value is returned.
Returns modes : Series (sorted)

pandas.Series.mul

Series.mul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator mul).
Equivalent to series * other, but with support to substitute a fill_value for missing data in one of the inputs.
Parameters other : Series or scalar value
 fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result : Series
See also:
Series.rmul

pandas.Series.multiply

Series.multiply(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator mul).
Equivalent to series * other, but with support to substitute a fill_value for missing data in one of the inputs.
Parameters other : Series or scalar value
 fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result : Series
See also:
Series.rmul
pandas.Series.ne

Series.ne(other, level=None, fill_value=None, axis=0)

Not equal to of series and other, element-wise (binary operator ne).

Equivalent to series != other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

other : Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : Series

See also:

Series.None

pandas.Series.nlargest

Series.nlargest(n=5, keep='first')

Return the largest n elements.

Parameters

n : int

Return this many descending sorted values

keep : {'first', 'last', False}, default 'first'

Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence.

Returns

top_n : Series

The n largest values in the Series, in sorted order

See also:

Series.nsmallest

Notes

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nlargest(10) # only sorts up to the N requested
 219921 4.644710
 3187441 6.401217
 3197832 6.452870
 8755386 6.726795
 9120726 7.983615
 9544870 7.983615
 9688524 8.423693
 9746140 8.547275
 9850457 8.557257
 9907514 8.791853

34.3. Series
pandas.Series.nonzero

Series.nonzero()
Return the indices of the elements that are non-zero

This method is equivalent to calling numpy.nonzero on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension.

See also:

numpy.nonzero

Examples

```python
>>> s = pd.Series([0, 3, 0, 4])
>>> s.nonzero()
(array([1, 3]),)
```

pandas.Series.notnull

Series.notnull()
Return a boolean same-sized object indicating if the values are not null.

See also:

isnull boolean inverse of notnull

pandas.Series.nsmallest

Series.nsmallest(n=5, keep='first')
Return the smallest n elements.

Parameters n : int
Return this many ascending sorted values

keep : ['first', 'last', False], default 'first'
Where there are duplicate values: - first: take the first occurrence. - last: take the last occurrence.

Returns `bottom_n`: Series

The n smallest values in the Series, in sorted order

See also:

`Series.nlargest`

Notes

Faster than `.sort_values().head(n)` for small `n` relative to the size of the `Series` object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np

>>> s = pd.Series(np.random.randn(10**6))
>>> s.nsmallest(10) # only sorts up to the N requested
288532   -4.954580
732345   -4.835960
64803    -4.812550
446457   -4.609998
501225   -4.483945
669476   -4.472935
973615   -4.401699
621279   -4.355126
773916   -4.347355
359919   -4.331927
```

pandas.Series.nunique

`Series.nunique` (*dropna=True*)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters
`dropna`: boolean, default True

Don’t include NaN in the count.

Returns
`nunique`: int

pandas.Series.pct_change

`Series.pct_change` (*periods=1, fill_method='pad', limit=None, freq=None, **kwargs*)

Percent change over given number of periods.

Parameters
`periods`: int, default 1

Periods to shift for forming percent change

`fill_method`: str, default ‘pad’
How to handle NAs before computing percent changes

limit : int, default None

The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns **chg** : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Series.pipe

```
Series.pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

New in version 0.16.2.
```

Parameters **func** : function

function to apply to the NDFrame. *args and **kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

args : positional arguments passed into func.

kwargs : a dictionary of keyword arguments passed into func.

Returns **object** : the return type of func.

See also:

pandas.DataFrame.apply, pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipe when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe(f, arg2=b, arg3=c)
...)
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:
pandas.Series.plot

Series.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)

Make plots of Series using matplotlib / pylab.

New in version 0.17.0: Each plot kind has a corresponding method on the Series.plot accessor: s.plot(kind='line') is equivalent to s.plot.line().

Parameters data: Series

kind : str
 • ‘line’ : line plot (default)
 • ‘bar’ : vertical bar plot
 • ‘barh’ : horizontal bar plot
 • ‘hist’ : histogram
 • ‘box’ : boxplot
 • ‘kde’ : Kernel Density Estimation plot
 • ‘density’ : same as ‘kde’
 • ‘area’ : area plot
 • ‘pie’ : pie plot

ax : matplotlib axes object
 If not passed, uses gca()

figsize : a tuple (width, height) in inches

use_index : boolean, default True
 Use index as ticks for x axis

title : string or list
 Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and subplots is True, print each item in the list above the corresponding subplot.

grid : boolean, default None (matlab style default)
 Axis grid lines

legend : False/True/’reverse’
 Place legend on axis subplots

style : list or dict
 matplotlib line style per column
logx : boolean, default False
 Use log scaling on x axis
logy : boolean, default False
 Use log scaling on y axis
loglog : boolean, default False
 Use log scaling on both x and y axes
xticks : sequence
 Values to use for the xticks
yticks : sequence
 Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
rot : int, default None
 Rotation for ticks (xticks for vertical, yticks for horizontal plots)
fontsize : int, default None
 Font size for xticks and yticks
colormap : str or matplotlib colormap object, default None
 Colormap to select colors from. If string, load colormap with that name from matplotlib.
colorbar : boolean, optional
 If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
position : float
 Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
layout : tuple (optional)
 (rows, columns) for the layout of the plot
table : boolean, Series or DataFrame, default False
 If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.
yerr : DataFrame, Series, array-like, dict and str
 See Plotting with Error Bars for detail.
xerr : same types as yerr.
label : label argument to provide to plot
secondary_y : boolean or sequence of ints, default False
 If True then y-axis will be on the right
mark_right : boolean, default True
When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns axes : matplotlib.AxesSubplot or np.array of them

Notes

- See matplotlib documentation online for more on this subject
- If `kind` = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

pandas.Series.pop

`Series.pop(item)`

Return item and drop from frame. Raise KeyError if not found.

pandas.Series.pow

`Series.pow(other, level=None, fill_value=None, axis=0)`

Exponential power of series and other, element-wise (binary operator `pow`).

Equivalent to `series ** other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

`Series.rpow`

pandas.Series.prod

`Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the product of the values for the requested axis

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns prod : scalar or Series (if level specified)

pandas.Series.product

```
Series.product (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the product of the values for the requested axis

Parameters axis : {index (0)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns prod : scalar or Series (if level specified)

pandas.Series.ptp

```
Series.ptp (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the difference between the maximum value and the minimum value in the object. This is the
equivalent of the numpy.ndarray method ptp.

Parameters axis : {index (0)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns ptp : scalar or Series (if level specified)
pandas.Series.put

```python
Series.put(*args, **kwargs)
```
Applies the *put* method to its *values* attribute if it has one.

See also:
- `numpy.ndarray.put`

pandas.Series.quantile

```python
Series.quantile(q=0.5, interpolation='linear')
```
Return value at the given quantile, a la `numpy.percentile`.

Parameters
- `q` : float or array-like, default 0.5 (50% quantile)
 - `0 <= q <= 1`, the quantile(s) to compute

- `interpolation` : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}

 New in version 0.18.0.

 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`:

 - `linear`: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`.
 - `lower`: `i`.
 - `higher`: `j`.
 - `nearest`: `i or j` whichever is nearest.
 - `midpoint`: `(i + j) / 2`.

Returns
- `quantile` : float or Series
 - if `q` is an array, a Series will be returned where the index is `q` and the values are the quantiles.

Examples

```python
>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25  1.75
0.50  2.50
0.75  3.25
dtype: float64
```

pandas.Series.radd

```python
Series.radd(other, level=None, fill_value=None, axis=0)
```
Addition of series and other, element-wise (binary operator `radd`).
Equivalent to `other + series`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters

- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: Series

See also:

- `Series.add`

pandas.Series.rank

```python
Series.rank (axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)
```

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values.

Parameters

- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
- **method**: {'average', ‘min’, ‘max’, ‘first’, ‘dense’}
 - average: average rank of group
 - min: lowest rank in group
 - max: highest rank in group
 - first: ranks assigned in order they appear in the array
 - dense: like ‘min’, but rank always increases by 1 between groups
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. Valid only for DataFrame or Panel objects
- **na_option**: {'keep', ‘top’, ‘bottom’}
 - keep: leave NA values where they are
 - top: smallest rank if ascending
 - bottom: smallest rank if descending
- **ascending**: boolean, default True
 - False for ranks by high (1) to low (N)
- **pct**: boolean, default False
 - Computes percentage rank of data

Returns

- **ranks**: same type as caller
pandas.Series.ravel

Series.ravel(order='C')
Return the flattened underlying data as an ndarray
See also:
numpy.ndarray.ravel

pandas.Series.rdiv

Series.rdiv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to other / series, but with support to substitute a fill_value for missing data in one of
the inputs.
Parameters other : Series or scalar value
 fill_value : None or float scalar value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be
 missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result : Series
See also:
 Series.truediv

pandas.Series.reindex

Series.reindex(index=None, **kwargs)
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in
the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False
Parameters index : array-like, optional (can be specified in order, or as
 keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
 method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
 • default: don’t fill gaps
 • pad / ffill: propagate last valid observation forward to next valid
 • backfill / bfill: use next valid observation to fill gap
 • nearest: use nearest valid observations to fill gap
 copy : boolean, default True
 Return a new object, even if the passed indexes are the same
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches. The values of
the index at the matching locations most satisfy the equation \(\text{abs(index[indexer]} - \text{target}) \leq \text{tolerance} \).

New in version 0.17.0.

Returns reindexed : Series

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
...     'http_status': [200, 200, 404, 404, 301],
...     'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
...     index=index
... },
...     index=index)
>>> df
          http_status response_time
Firefox       200        0.04
Chrome       200        0.02
Safari       404        0.07
IE10         404        0.08
Konqueror    301        1.00
```

Create a new index and reindex the dataframe. By default values in the new index that do not have
the corresponding records in the dataframe are assigned NaN.

```python
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)
          http_status response_time
Safari       404.0       0.07
Iceweasel   NaN        NaN
Comodo Dragon NaN        NaN
IE10         404.0       0.08
Chrome       200.0       0.02
```

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is
not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the
NaN values.

```python
>>> df.reindex(new_index, fill_value=0)
          http_status response_time
Safari       404        0.07
Iceweasel    0          0.00
```
To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```python
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({'prices': [100, 101, np.nan, 100, 89, 88]},
                    index=date_index)
>>> df2
...  prices
2010-01-01     100
2010-01-02     101
2010-01-03    NaN
2010-01-04     100
2010-01-05     89
2010-01-06     88
```

Suppose we decide to expand the dataframe to cover a wider date range.

```python
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
...  prices
2009-12-29   NaN
2009-12-30   NaN
2009-12-31   NaN
2010-01-01    100
2010-01-02    101
2010-01-03   NaN
2010-01-04    100
2010-01-05     89
2010-01-06     88
2010-01-07   NaN
```

The index entries that did not have a value in the original dataframe (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass `bfill` as an argument to the `method` keyword.

```python
>>> df2.reindex(date_index2, method='bfill')
...  prices
2009-12-29    100
2009-12-30    100
2009-12-31    100
2010-01-01    100
2010-01-02    101
2010-01-03   NaN
2010-01-04    100
2010-01-05     89
2010-01-06     88
2010-01-07   NaN
```
Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the `fillna()` method.

pandas.Series.reindex_axis

```
Series.reindex_axis(labels, axis=0, **kwargs)
```

for compatibility with higher dims

pandas.Series.reindex_like

```
Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
```

Return an object with matching indices to myself.

Parameters

- `other`: Object
 - `method`: string or None
 - `copy`: boolean, default True
 - `limit`: int, default None
 - Maximum number of consecutive labels to fill for inexact matches.
 - `tolerance`: optional
 - Maximum distance between labels of the other object and this object for inexact matches.
 - New in version 0.17.0.

Returns

- `reindexed`: same as input

Notes

Like calling `s.reindex(index=other.index, columns=other.columns, method=...)`

pandas.Series.rename

```
Series.rename(index=None, **kwargs)
```

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change `Series.name` with a scalar value (Series only).

Parameters

- `index`: scalar, list-like, dict-like or function, optional
 - `Scalar` or list-like will alter the `Series.name` attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values
 - `copy`: boolean, default True

1322 Chapter 34. API Reference
Also copy underlying data

inplace : boolean, default False

Whether to return a new Series. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns renamed : Series (new object)

See also:

pandas.NDFrame.rename_axis

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0    1
1    2
2    3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0    1
1    2
4    3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0    1
3    2
5    3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
Traceback (most recent call last):
  ...  TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a  c
0  1  4
1  2  5
2  3  6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a  B
0  1  4
1  2  5
2  3  6
```
pandas.Series.rename_axis

`Series.rename_axis(mapper, axis=0, copy=True, inplace=False)`

Alter index and / or columns using input function or functions. A scalar or list-like for `mapper` will alter the `Index.name` or `MultiIndex.names` attribute. A function or dict for `mapper` will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters
- `mapper` : scalar, list-like, dict-like or function, optional
 - `axis` : int or string, default 0
 - `copy` : boolean, default True
 - Also copy underlying data
 - `inplace` : boolean, default False

Returns
- `renamed` : type of caller

See also:
- `pandas.NDFrame.rename`, `pandas.Index.rename`

Examples

```python
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
>>> df.rename_axis('foo')  # scalar, alters df.index.name
   foo
  0 1 4
  1 2 5
  2 3 6
```
```
>>> df.rename_axis(lambda x: 2 * x)  # function: alters labels
   A  B
  0 1 4
  2 2 5
  4 3 6
```
```
>>> df.rename_axis({'A': 'ehh', 'C': 'see'}, axis='columns')  # mapping
   ehh  B
  0 1 4
  1 2 5
  2 3 6
```

pandas.Series.reorder_levels

`Series.reorder_levels(order)`

Rearrange index levels using input order. May not drop or duplicate levels

Parameters
- `order` : list of int representing new level order.
 - (reference level by number or key)
- `axis` : where to reorder levels

Returns
- `type of caller (new object)`
pandas.Series.repeat

Series.repeat(repeats, *args, **kwargs)

Repeat elements of an Series. Refer to numpy.ndarray.repeat for more information about the repeats argument.

See also:

numpy.ndarray.repeat

pandas.Series.replace

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexs matching to_replace will be replaced with value
- list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
- dict:
 - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
- None:
 - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.
limit : int, default None
Maximum size gap to forward or backward fill
regex : bool or same types as to_replace, default False
Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.
method : string, optional, {'pad', 'ffill', 'bfill'}
The method to use when for replacement, when to_replace is a list.

Returns filled : NDFrame

Raises AssertiionError
• If regex is not a bool and to_replace is not None.
TypeError
• If to_replace is a dict and value is not a list, dict, ndarray, or Series
• If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarry, or Series.

ValueError
• If to_replace and value are lists or ndarrays, but they are not the same length.

See also:
NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.
• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Series.resample

Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

Parameters rule : string
the offset string or object representing target conversion
axis : int, optional, default 0

closed : {'right', 'left'}
 Which side of bin interval is closed
label : {'right', 'left'}
 Which bin edge label to label bucket with
convention : {'start', 'end', 's', 'e'}
loffset : timedelta
 Adjust the resampled time labels
base : int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0
on : string, optional
 For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.
 New in version 0.19.0.
level : string or int, optional
 For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.
 New in version 0.19.0.

Notes

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.
Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label “2000-01-01 00:03:00” does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5]  #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the pad method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```
Pass a custom function via `apply`

```python
>>> def custom_resampler(array_like):
...     return np.sum(array_like)+5
```
```
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00  8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
```

For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling.

```python
>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
```
```
a  b  c  d
2000-01-01 00:00:00  0  3  6  9
2000-01-01 00:03:00  0  3  6  9
2000-01-01 00:06:00  0  3  6  9
```

For a DataFrame with MultiIndex, the keyword `level` can be used to specify on level the resampling needs to take place.

```python
>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],
...     columns=['a', 'b', 'c', 'd'],
...     index=pd.MultiIndex.from_product([time, [1, 2]])
... )
>>> df2.resample('3T', level=0).sum()
```
```
a  b  c  d
2000-01-01 00:00:00  0  6 12 18
2000-01-01 00:03:00  0  4  8 12
```

```python
pandas.Series.reset_index
```

`Series.reset_index(level=None, drop=False, name=None, inplace=False)`

Analogous to the `pandas.DataFrame.reset_index()` function, see docstring there.

Parameters
- **level**: int, str, tuple, or list, default None
 - Only remove the given levels from the index. Removes all levels by default
- **drop**: boolean, default False
 - Do not try to insert index into dataframe columns
- **name**: object, default None
 - The name of the column corresponding to the Series values
- **inplace**: boolean, default False
 - Modify the Series in place (do not create a new object)

Returns
- **resetted**: DataFrame, or Series if drop == True
pandas.Series.reshape

Series.reshape(*args, **kwargs)
DEPRECATED: calling this method will raise an error in a future release. Please call .values.reshape(...) instead.
return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat)
See also:
numpy.ndarray.reshape

pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv).
Equivalent to other // series, but with support to substitute a fill_value for missing data in one of the inputs.
Parameters other : Series or scalar value
 fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result : Series
See also:
Series.floordiv

pandas.Series.rmod

Series.rmod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator rmod).
Equivalent to other % series, but with support to substitute a fill_value for missing data in one of the inputs.
Parameters other : Series or scalar value
 fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result : Series
See also:
Series.mod
pandas.Series.rmul

Series.rmul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator rmul).
Equivalent to other * series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- other : Series or scalar value
- fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result : Series

See also:
- Series.mul

pandas.Series.rolling

Series.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None)
Provides rolling window calculations.
New in version 0.18.0.

Parameters
- window : int, or offset
 Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.
 If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0
- min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1.
- freq : string or DateOffset object, optional (default None) (DEPRECATED)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- center : boolean, default False
 Set the labels at the center of the window.
- win_type : string, default None
 Provide a window type. See the notes below.
- on : string, optional
 For a DataFrame, column on which to calculate the rolling window, rather than the index
closed : string, default None

Make the interval closed on the ‘right’, ‘left’, ‘both’ or ‘neither’ endpoints. For
offset-based windows, it defaults to ‘right’. For fixed windows, defaults to ‘both’.
Remaining cases not implemented for fixed windows.

New in version 0.20.0.

axis : int or string, default 0

Returns a Window or Rolling sub-classed for the particular operation

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the
window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data.
This is done with the default parameters of resample() (i.e. using the mean).

To learn more about the offsets & frequency strings, please see this link.

The recognized win_types are:

• boxcar
• triang
• blackman
• hamming
• bartlett
• parzen
• bohman
• blackmanharris
• nuttall
• barthann
• kaiser (needs beta)
• gaussian (needs std)
• general_gaussian (needs power, width)
• slepian (needs width).

Examples

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
   B
0  0.0
1  1.0
2  2.0
3  NaN
4  NaN
```
Rolling sum with a window length of 2, using the ‘triang’ window type.

```python
>>> df.rolling(2, win_type='triang').sum()
   B
0  NaN
1  1.0
2  2.5
3  NaN
4  NaN
```

Rolling sum with a window length of 2, min_periods defaults to the window length.

```python
>>> df.rolling(2).sum()
   B
0  NaN
1  1.0
2  3.0
3  NaN
4  NaN
```

Same as above, but explicitly set the min_periods

```python
>>> df.rolling(2, min_periods=1).sum()
   B
0   0.0
1   1.0
2   3.0
3   2.0
4   4.0
```

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
                    index = [pd.Timestamp('20130101 09:00:00'),
                             pd.Timestamp('20130101 09:00:02'),
                             pd.Timestamp('20130101 09:00:03'),
                             pd.Timestamp('20130101 09:00:05'),
                             pd.Timestamp('20130101 09:00:06')])
```

Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1.

```python
>>> df.rolling('2s').sum()
   B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0
```
pandas.Series.round

Series.round(decimals=0, *args, **kwargs)
Round each value in a Series to the given number of decimals.

Parameters decimals : int
Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns Series object

See also:
numpy.around, DataFrame.round

pandas.Series.rpow

Series.rpow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator rpow).

Equivalent to other ** series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value
fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:
Series.pow

pandas.Series.rsub

Series.rsub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator rsub).

Equivalent to other - series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value
fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series
pandas.Series.rtruediv

Series.rtruediv(other, level=None, fill_value=None, axis=0)

Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to other / series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

other : Series or scalar value

fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : Series

See also:

Series.truediv

pandas.Series.sample

Series.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of object.

New in version 0.16.1.

Parameters

n : int, optional
 Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

frac : float, optional
 Fraction of axis items to return. Cannot be used with n.

replace : boolean, optional
 Sample with or without replacement. Default = False.

weights : str or ndarray-like, optional
 Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.

random_state : int or numpy.random.RandomState, optional
Seed for the random number generator (if int), or numpy RandomState object.

axis: int or string, optional

Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0   -0.038497
1     1.820773
2     -0.972766
3     -1.598270
4     -1.095526
dtype: float64

>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
   A          B          C          D
0 0.016443 -2.318952 -0.566372 -1.028078
1-1.051921  0.438836  0.658280  0.175797
2-1.243569 -0.364626 -0.215065  0.057736
3 1.768216  0.404512 -0.385604 -1.457834
4 1.072446 -1.137172  0.314194 -0.046661
```

Next extract a random sample from both of these objects...

3 random elements from the Series:

```python
>>> s.sample(n=3)
27   -0.994689
55   -1.049016
67   -0.224565
dtype: float64
```

And a random 10% of the DataFrame with replacement:

```python
>>> df.sample(frac=0.1, replace=True)
   A          B          C          D
35  1.981780  0.142106  1.817165 -0.290805
49  1.336199 -0.448634 -0.789640  0.217116
40  0.823173 -0.078816  1.009536  1.015108
15  1.421154 -0.055301  1.922594 -0.019696
  6 -0.148339  0.832938  1.787600 -1.383767
```

pandas.Series.searchsorted

Series.searchsorted(value, side='left', sorter=None)

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted Series self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved.
Parameters

value: array_like

Values to insert into `self`.

side : {'left', 'right'}, optional

If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`).

sorter : 1-D array_like, optional

Optional array of integer indices that sort `self` into ascending order. They are typically the result of `np.argsort`.

Returns

indices: array of ints

Array of insertion points with the same shape as `value`.

See also:

`numpy.searchsorted`

Notes

Binary search is used to find the required insertion points.

Examples

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])

>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
```
```python
>>> x.searchsorted(['bread'])
array([1])

>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])

>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4])  # eggs before milk
```

pandas.Series.select

Series.select *(crit, axis=0)*

Return data corresponding to axis labels matching criteria

Parameters

- **crit**: function

 To be called on each index (label). Should return True or False

- **axis**: int

Returns

- **selection**: type of caller

pandas.Series.sem

Series.sem *(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)*

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- **axis**: {index (0)}

 - **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **level**: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

- **ddof**: int, default 1

 degrees of freedom

- **numeric_only**: boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **sem**: scalar or Series (if level specified)

pandas.Series.set_axis

Series.set_axis *(axis, labels)*

public version of axis assignment
pandas.Series.set_value

Series.set_value(label, value, takeable=False)
Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index

Parameters
- label : object
 Partial indexing with MultiIndex not allowed
- value : object
 Scalar value
- takeable : interpret the index as indexers, default False

Returns
- series : Series
 If label is contained, will be reference to calling Series, otherwise a new object

pandas.Series.shift

Series.shift(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq

Parameters
- periods : int
 Number of periods to move, can be positive or negative
- freq : DateOffset, timedelta, or time rule string, optional
 Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.
- axis : {0, ‘index’}

Returns
- shifted : Series

Notes
If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.Series.skew

Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters
- axis : {index (0)}
- skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns skew: scalar or Series (if level specified)

pandas.Series.slice_shift

Series.slice_shift(periods=1, axis=0)

Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters periods: int

Number of periods to move, can be positive or negative

Returns shifted: same type as caller

Notes

While the `slice_shift` is faster than `shift`, you may pay for it later during alignment.

pandas.Series.sort_index

Series.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True)

Sort object by labels (along an axis)

Parameters axis: index to direct sorting

- **level**: int or level name or list of ints or list of level names

 if not None, sort on values in specified index level(s)

- **ascending**: boolean, default True

 Sort ascending vs. descending

- **inplace**: bool, default False

 if True, perform operation in-place

- **kind**: {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'

 Choice of sorting algorithm. See also `ndarray.np.sort` for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.

- **na_position**: {'first', 'last'}, default 'last'

 `first` puts NaNs at the beginning, `last` puts NaNs at the end. Not implemented for MultiIndex.

- **sort_remaining**: bool, default True

 if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level

Returns sorted_obj: Series
pandas.Series.sort_values

Series.sort_values(axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort by the values along either axis
New in version 0.17.0.

Parameters
- **axis**: {0, 'index'}, default 0
 - Axis to direct sorting
- **ascending**: bool or list of bool, default True
 - Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- **inplace**: bool, default False
 - if True, perform operation in-place
- **kind**: {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
 - Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- **na_position**: {'first', 'last'}, default 'last'
 - first puts NaNs at the beginning, last puts NaNs at the end

Returns
- **sorted_obj**: Series

pandas.Series.sortlevel

Series.sortlevel(level=0, ascending=True, sort_remaining=True)
DEPRECATED: use Series.sort_index()
Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters
- **level**: int or level name, default None
- **ascending**: bool, default True

Returns
- **sorted**: Series

See also:
- Series.sort_index

pandas.Series.squeeze

Series.squeeze(axis=None)
Squeeze length 1 dimensions.

Parameters
- **axis**: None, integer or string axis name, optional
 - The axis to squeeze if 1-sized.
 - New in version 0.20.0.

Returns
- scalar if 1-sized, else original object
pandas.Series.std

Series.std (axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
ddof : int, default 1
degrees of freedom
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns std : scalar or Series (if level specified)

pandas.Series.str

Series.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
```
```python
>>> s.str.replace('_', '')
```

pandas.Series.sub

Series.sub (other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator sub).
Equivalent to series - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other : Series or scalar value
fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level
pandas.Series.subtract

Series.subtract (other, level=None, fill_value=None, axis=0)

Subtraction of series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result**: Series

See also:
- Series.rsub

pandas.Series.sum

Series.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis

Parameters
- **axis**: {index (0)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
- **sum**: scalar or Series (if level specified)

pandas.Series.swapaxes

Series.swapaxes (axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

Returns
- **y**: same as input
pandas.Series.swaplevel

Series.swaplevel(i=-2, j=-1, copy=True)
Swap levels i and j in a MultiIndex

Parameters i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns swapped : Series
Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

pandas.Series.tail

Series.tail(n=5)
Returns last n rows

pandas.Series.take

Series.take(indices, axis=0, convert=True, is_copy=False, **kwargs)
return Series corresponding to requested indices

Parameters indices : list / array of ints
convert : translate negative to positive indices (default)

Returns taken : Series
See also:
numpy.ndarray.take

pandas.Series.to_clipboard

Series.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters excel : boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. If False, write a string representation of the object to the clipboard

sep : optional, defaults to tab
other keywords are passed to to_csv

Notes

Requirements for your platform
- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none
pandas.Series.to_csv

Series.to_csv(path=None, index=True, sep=',', na_rep='', float_format=None, header=False, index_label=None, mode='w', encoding=None, date_format=None, decimal='.')

Write Series to a comma-separated values (csv) file

Parameters

- **path**: string or file handle, default None
 - File path or object, if None is provided the result is returned as a string.
- **na_rep**: string, default ‘’
 - Missing data representation
- **float_format**: string, default None
 - Format string for floating point numbers
- **header**: boolean, default False
 - Write out series name
- **index**: boolean, default True
 - Write row names (index)
- **index_label**: string or sequence, default None
 - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **mode**: Python write mode, default ’w’
- **sep**: character, default ’,’
 - Field delimiter for the output file.
- **encoding**: string, optional
 - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
- **date_format**: string, default None
 - Format string for datetime objects.
- **decimal**: string, default ‘.’
 - Character recognized as decimal separator. E.g. use ‘.’ for European data

pandas.Series.to_dense

Series.to_dense()

Return dense representation of NDFrame (as opposed to sparse)

pandas.Series.to_dict

Series.to_dict()

Convert Series to {label -> value} dict

Returns **value_dict**: dict
pandas.Series.to_excel

Series.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True)

Write Series to an excel sheet

New in version 0.20.0.

Parameters

- **excel_writer**: string or ExcelWriter object
 - File path or existing ExcelWriter
- **sheet_name**: string, default ‘Sheet1’
 - Name of sheet which will contain DataFrame
- **na_rep**: string, default ‘’
 - Missing data representation
- **float_format**: string, default None
 - Format string for floating point numbers
- **columns**: sequence, optional
 - Columns to write
- **header**: boolean or list of string, default True
 - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
 - Write row names (index)
- **index_label**: string or sequence, default None
 - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **startrow**:
 - upper left cell row to dump data frame
- **startcol**:
 - upper left cell column to dump data frame
- **engine**: string, default None
 - write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.
- **merge_cells**: boolean, default True
 - Write MultiIndex and Hierarchical Rows as merged cells.
- **encoding**: string, default None
 - encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.
- **inf_rep**: string, default ‘inf’
Representation for infinity (there is no native representation for infinity in Excel)

freeze_panes: tuple of integer (length 2), default None

Specifies the one-based bottommost row and rightmost column that is to be frozen

New in version 0.20.0.

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook:

```python
>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer, 'Sheet1')
>>> df2.to_excel(writer, 'Sheet2')
>>> writer.save()
```

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

pandas.Series.to_frame

Series.to_frame (name=None)

Convert Series to DataFrame

Parameters

- **name**: object, default None

The passed name should substitute for the series name (if it has one).

Returns

- **data_frame**: DataFrame

pandas.Series.to_hdf

Series.to_hdf (path_or_buf, key, **kwargs)

Write the contained data to an HDF5 file using HDFStore.

Parameters

- **path_or_buf**: the path (string) or HDFStore object

 key: string

 identifier for the group in the store

- **mode**: optional, {'a', 'w', 'r+'}, default 'a'

 - 'w': Write; a new file is created (an existing file with the same name would be deleted).
 - 'a': Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
 - 'r+': It is similar to 'a', but the file must already exist.

- **format**: ‘fixed(f)|table(t)’, default is ‘fixed’

 - fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
 - table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
append : boolean, default False

For Table formats, append the input data to the existing
data_columns : list of columns, or True, default None

List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.

Applicable only to format='table'.

complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lzma', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum

dropna : boolean, default False.

If true, ALL nan rows will not be written to store.

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10,
force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters path_or_buf : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient : string

• Series
 – default is ‘index’
 – allowed values are: {'split', 'records', 'index'}

• DataFrame
 – default is ‘columns’
 – allowed values are: {'split', 'records', 'index', 'columns', 'values'}

• The format of the JSON string
 – split : dict like {index -> [index], columns -> [columns], data -> [values]}
 – records : list like [{column -> value}, ... , {column -> value}]
 – index : dict like {index -> {column -> value}}
 – columns : dict like {column -> {index -> value}}
 – values : just the values array
pandas: powerful Python data analysis toolkit, Release 0.20.1

– table : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data, and the
data component is like orient='records'.
Changed in version 0.20.0.
date_format : {None, ‘epoch’, ‘iso’}
Type of date conversion. epoch = epoch milliseconds, iso = ISO8601. The default
depends on the orient. For orient=’table’, the default is ‘iso’. For all other orients,
the default is ‘epoch’.
double_precision : The number of decimal places to use when encoding
floating point values, default 10.
force_ascii : force encoded string to be ASCII, default True.
date_unit : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.
lines : boolean, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.
New in version 0.19.0.
Returns same type as input object with filtered info axis
See also:
pd.read_json
Examples
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
...
index=['row 1', 'row 2'],
...
columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'index' formatted JSON:
>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.
>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

34.3. Series

1349


pandas: powerful Python data analysis toolkit, Release 0.20.1

Encoding with Table Schema
>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},
{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}],
"primaryKey": "index",
"pandas_version": "0.20.0"},
"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]}'

pandas.Series.to_msgpack
Series.to_msgpack(path_or_buf=None, encoding=’utf-8’, **kwargs)
msgpack (serialize) object to input file path
THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.
Parameters path : string File path, buffer-like, or None
if None, return generated string
append : boolean whether to append to an existing msgpack
(default is False)
compress : type of compressor (zlib or blosc), default to None (no
compression)
pandas.Series.to_period
Series.to_period(freq=None, copy=True)
Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not
passed)
Parameters freq : string, default
Returns ts : Series with PeriodIndex
pandas.Series.to_pickle
Series.to_pickle(path, compression=’infer’)
Pickle (serialize) object to input file path.
Parameters path : string
File path
a string representing the compression to use in the output file
New in version 0.20.0.

1350

Chapter 34. API Reference


pandas.Series.to_sparse

Series.to_sparse(kind='block', fill_value=None)
Convert Series to SparseSeries

Parameters kind : {'block', 'integer'}
fill_value : float, defaults to NaN (missing)

Returns sp : SparseSeries

pandas.Series.to_sql

Series.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
Write records stored in a DataFrame to a SQL database.

Parameters name : string
Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : 'sqlite', default None
DEPRECATED: this parameter will be removed in a future version, as 'sqlite' is the only supported option if SQLAlchemy is not installed.

schema : string, default None
Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True
Write DataFrame index as a column.

index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None
If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

dtype : dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.
pandas.Series.to_string

Series.to_string(buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None)

Render a string representation of the Series

Parameters

- **buf**: StringIO-like, optional
 - buffer to write to
- **na_rep**: string, optional
 - string representation of NAN to use, default ‘NaN’
- **float_format**: one-parameter function, optional
 - formatter function to apply to columns’ elements if they are floats default None
- **header**: boolean, default True
 - Add the Series header (index name)
- **index**: bool, optional
 - Add index (row) labels, default True
- **length**: boolean, default False
 - Add the Series length
- **dtype**: boolean, default False
 - Add the Series dtype
- **name**: boolean, default False
 - Add the Series name if not None
- **max_rows**: int, optional
 - Maximum number of rows to show before truncating. If None, show all.

Returns

- **formatted**: string (if not buffer passed)

pandas.Series.to_timestamp

Series.to_timestamp(freq=None, how='start', copy=True)

Cast to datetimeindex of timestamps, at beginning of period

Parameters

- **freq**: string, default frequency of PeriodIndex
 - Desired frequency
- **how**: {'s', 'e', 'start', 'end'}
 - Convention for converting period to timestamp; start of period vs. end

Returns

- **ts**: Series with DatetimeIndex

pandas.Series.to_xarray

Series.to_xarray()

Return an xarray object from the pandas object.
Returns

- a DataArray for a Series
- a Dataset for a DataFrame
- a DataArray for higher dims

Notes

See the xarray docs

Examples

```python
>>> df = pd.DataFrame({'A' : [1, 1, 2],
                    'B' : ['foo', 'bar', 'foo'],
                    'C' : np.arange(4.,7)})
>>> df
   A  B  C
0  1  foo 4.0
1  1  bar 5.0
2  2  foo 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
* index  (index) int64 0 1 2
Data variables:
  A   (index) int64 1 1 2
  B   (index) object 'foo' 'bar' 'foo'
  C   (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
                    'B' : ['foo', 'bar', 'foo'],
                    'C' : np.arange(4.,7)})
 >>> df.set_index(['B', 'A'])

>>> df
   C
B A
foo
   1  4.0
   2  6.0
bar
   1  5.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
* B  (B) object 'bar' 'foo'
* A  (A) int64 1 2
Data variables:
  C   (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
                items=list('ABCD'),
                major_axis=pd.date_range('20130101', periods=3),
```
```python
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7],
       [ 8,  9],
       [10, 11],
       [12, 13],
       [14, 15],
       [16, 17],
       [18, 19],
       [20, 21],
       [22, 23]])
Coordinates:
* items (items) object 'A' 'B' 'C' 'D'
* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
  → # noqa
* minor_axis (minor_axis) object 'first' 'second'
```

pandas.Series.tolist

Series.tolist()

Convert Series to a nested list

pandas.Series.transform

Series.transform(func, *args, **kwargs)

Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values’

New in version 0.20.0.

Parameters

- **func**: callable, string, dictionary, or list of string/callables

 To apply to column

 Accepted Combinations are:

 - string function name
 - function
 - list of functions
 - dict of column names -> functions (or list of functions)

Returns

- **transformed**: NDFrame

See also:
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.NDFrame.aggregate, pandas.NDFrame.apply

Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
...                   index=pd.date_range('1/1/2000', periods=10))
df.iloc[3:7] = np.nan

>>> df.transform(lambda x: (x - x.mean()) / x.std())
       A      B      C
2000-01-01  0.579457  1.236184  0.123424
2000-01-02  0.370357 -0.605875 -1.231325
2000-01-03  1.455756 -0.277446  0.288967
2000-01-04  NaN      NaN      NaN
2000-01-05  NaN      NaN      NaN
2000-01-06  NaN      NaN      NaN
2000-01-07  NaN      NaN      NaN
2000-01-08 -0.498658  1.274522  1.642524
2000-01-09 -0.540524 -1.012676 -0.828968
2000-01-10 -1.366388 -0.614710  0.005378
```

pandas.Series.transpose

Series.transpose(*args, **kwargs)

return the transpose, which is by definition self

pandas.Series.truediv

Series.truediv(other, level=None, fill_value=None, axis=0)

Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.rtruediv

pandas.Series.truncate

Series.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only
datetime values, before/after parameters are converted to datetime values.

Parameters

- **before**: date
 - Truncate before index value
- **after**: date
 - Truncate after index value
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 - return a copy of the truncated section

Returns

- **truncated**: type of caller

pandas.Series.tshift

Series.tshift(periods=1, freq=None, axis=0)

Shift the time index, using the index’s frequency if available.

Parameters

- **periods**: int
 - Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, default None
 - Increment to use from the tseries module or time rule (e.g. ’EOM’)
- **axis**: int or basestring
 - Corresponds to the axis that contains the Index

Returns

- **shifted**: NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.Series.tz_convert

Series.tz_convert(tz, axis=0, level=None, copy=True)

Convert tz-aware axis to target time zone.

Parameters

- **tz**: string or pytz.timezone object
- **axis**: the axis to convert
- **level**: int, str, default None
 - If axis is a MultiIndex, convert a specific level. Otherwise must be None
- **copy**: boolean, default True
 - Also make a copy of the underlying data

Raises

- **TypeError**
 - If the axis is tz-naive.
pandas.Series.tz_localize

Series.tz_localize(tz, axis=0, level=None, copy=True, ambiguous='raise')

Localize tz-naive TimeSeries to target time zone.

Parameters
- **tz**: string or pytz.timezone object
 - axis: the axis to localize
 - level: int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
 - copy: boolean, default True
 - Also make a copy of the underlying data
 - ambiguous: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
 - infer_dst: boolean, default False (DEPRECATED)
 - Attempt to infer fall dst-transition hours based on order

Raises
- TypeError
 - If the TimeSeries is tz-aware and tz is not None.

pandas.Series.unique

Series.unique()

Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.

Parameters
- **values**: 1d array-like

Returns
- unique values.
 - If the input is an Index, the return is an Index
 - If the input is a Categorical dtype, the return is a Categorical
 - If the input is a Series/ndarray, the return will be an ndarray

See also:
- unique, Index.unique, Series.unique

pandas.Series.unstack

Series.unstack(level=-1, fill_value=None)

Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted.

Parameters
- **level**: int, string, or list of these, default last level
Level(s) to unstack, can pass level name

fill_value : replace NaN with this value if the unstack produces missing values

Returns unstacked : DataFrame

Examples

```python
>>> s = pd.Series([1, 2, 3, 4],
                 index=pd.MultiIndex.from_product([['one', 'two'], ['a', 'b']]))

>>> s
one  a  1
    b  2
two a  3
    b  4
dtype: int64

>>> s.unstack(level=-1)
a b
one 1 2
    two 3 4
```

```python
>>> s.unstack(level=0)
one two
   a  1  3
    b  2  4
```

pandas.Series.update

Series.update(other)
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters other : Series

pandas.Series.valid

Series.valid(inplace=False, **kwargs)

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.
sort : boolean, default True
 Sort by values

ascending : boolean, default False
 Sort in ascending order

bins : integer, optional
 Rather than count values, group them into half-open bins, a convenience for
 pd.cut, only works with numeric data

dropna : boolean, default True
 Don’t include counts of NaN.

Returns counts : Series

pandas.Series.var

Series.var (axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
 Return unbiased variance over requested axis.

 Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0)}

skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a scalar

ddof : int, default 1
 degrees of freedom

numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.

Returns var : scalar or Series (if level specified)

pandas.Series.view

Series.view (dtype=None)

pandas.Series.where

Series.where (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False,
 raise_on_error=True)
 Return an object of same shape as self and whose corresponding entries are from self where cond is True
 and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable
If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other: scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace: boolean, default False

Whether to perform the operation in place on the data

axis: alignment axis if needed, default None

level: alignment level if needed, default None

try_cast: boolean, default False

try to cast the result back to the input type (if possible).

raise_on_error: boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns

wh : same type as caller

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for *DataFrame.where()* differs from *numpy.where()* . Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in *indexing*.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
```
A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9

```python
>>> df.where(m, -df) == np.where(m, df, -df)
   A   B
0  True True
1  True True
2  True True
3  True True
4  True True
```  

```python
>>> df.where(m, -df) == df.mask(~m, -df)
   A   B
0  True True
1  True True
2  True True
3  True True
4  True True
```  

pandas.Series.xs

pandas.Series.xs(key, axis=0, level=None, drop_level=True)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters

- **key** : object
 - Some label contained in the index, or partially in a MultiIndex

- **axis** : int, default 0
 - Axis to retrieve cross-section on

- **level** : object, defaults to first n levels (n=1 or len(key))
 - In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

- **drop_level** : boolean, default True
 - If False, returns object with same levels as self.

Returns

xs : Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see *MultiIndex Slicers*.
Examples

```python
>>> df
   A  B  C
a  4  5  2
b  4  0  9
c  9  7  3
>>> df.xs('a')
   A  B  C
  a  4  5  2
  Name: a
>>> df.xs('C', axis=1)
   a  2
   b  9
   c  3
  Name: C
```

```python
>>> df
   A  B  C  D
first second third
bar one  1  4  1  8  9
two  1  7  5  5  0
baz one  1  6  6  8  0
two  2  5  3  5  3
>>> df.xs(('baz', 'three'))
   A  B  C  D
  third
  2  5  3  5  3
>>> df.xs('one', level=1)
   A  B  C  D
first third
bar  1  4  1  8  9
baz  1  6  6  8  0
>>> df.xs(('baz', 2), level=[0, 'third'])
   A  B  C  D
second
three  5  3  5  3
```

34.3.2 Attributes

Axes

- **index**: axis labels

```
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.values</td>
<td>Return Series as ndarray or ndarray-like</td>
</tr>
<tr>
<td>Series.dtype</td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td>Series.ftype</td>
<td>return if the data is sparse</td>
</tr>
<tr>
<td>Series.shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>Series nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>Series.ndim</td>
<td>return the number of dimensions of the underlying data</td>
</tr>
<tr>
<td>Series.size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>Series strides</td>
<td>return the strides of the underlying data</td>
</tr>
</tbody>
</table>
```

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.20.1

Table 34.24 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>Series.base</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>Series.T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>Series.memory_usage([index, deep])</code></td>
<td>Memory usage of the Series</td>
</tr>
</tbody>
</table>

34.3.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.astype(dtype[, copy, errors])</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>Series.copy([deep])</code></td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>Series.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>Series.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
</tbody>
</table>

34.3.4 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.get(key[, default])</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.).</td>
</tr>
<tr>
<td><code>Series.at</code></td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td><code>Series.iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>Series.loc</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>Series.iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>Series.__iter__()</code></td>
<td>provide iteration over the values of the Series</td>
</tr>
<tr>
<td><code>Series.iteritems()</code></td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
</tbody>
</table>

34.3.4.1 pandas.Series.__iter__

Series.__iter__() provide iteration over the values of the Series box values if necessary

For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.

34.3.5 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.add(other[, level, fill_value, axis])</code></td>
<td>Addition of series and other, element-wise (binary operator add).</td>
</tr>
<tr>
<td><code>Series.sub(other[, level, fill_value, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td><code>Series.mul(other[, level, fill_value, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator mul).</td>
</tr>
<tr>
<td><code>Series.div(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.truediv(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>Series.floordiv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><code>Series.mod(other[, level, fill_value, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>Series.pow(other[, level, fill_value, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>Series.radd(other[, level, fill_value, axis])</code></td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>Series.rsub(other[, level, fill_value, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td><code>Series.rmul(other[, level, fill_value, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><code>Series.rdiv(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>Series.rtruediv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>Series.rfloordiv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><code>Series.rpow(other[, level, fill_value, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>Series.combine(other, func[, fill_value])</code></td>
<td>Perform elementwise binary operation on two Series using given function.</td>
</tr>
<tr>
<td><code>Series.combine_first(other)</code></td>
<td>Combine Series values, choosing the calling Series's values first.</td>
</tr>
<tr>
<td><code>Series.round([decimals])</code></td>
<td>Round each value in a Series to the given number of decimals.</td>
</tr>
<tr>
<td><code>Series.lt(other[, level, fill_value, axis])</code></td>
<td>Less than of series and other, element-wise (binary operator <code>lt</code>).</td>
</tr>
<tr>
<td><code>Series.gt(other[, level, fill_value, axis])</code></td>
<td>Greater than of series and other, element-wise (binary operator <code>gt</code>).</td>
</tr>
<tr>
<td><code>Series.le(other[, level, fill_value, axis])</code></td>
<td>Less than or equal to of series and other, element-wise (binary operator <code>le</code>).</td>
</tr>
<tr>
<td><code>Series.ge(other[, level, fill_value, axis])</code></td>
<td>Greater than or equal to of series and other, element-wise (binary operator <code>ge</code>).</td>
</tr>
<tr>
<td><code>Series.ne(other[, level, fill_value, axis])</code></td>
<td>Not equal to of series and other, element-wise (binary operator <code>ne</code>).</td>
</tr>
<tr>
<td><code>Series.eq(other[, level, fill_value, axis])</code></td>
<td>Equal to of series and other, element-wise (binary operator <code>eq</code>).</td>
</tr>
</tbody>
</table>

34.3.6 Function application, GroupBy & Window

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.apply(func[, convert_dtype, args])</code></td>
<td>Invoke function on values of Series.</td>
</tr>
<tr>
<td><code>Series.aggregate(func[, axis])</code></td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td><code>Series.transform(func, *args, **kwargs)</code></td>
<td>Call function producing a like-indexed NDFrame</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.28 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.map(arg[, na_action])</code></td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td><code>Series.groupby([by, axis, level, as_index, ...])</code></td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td><code>Series.rolling(window[, min_periods, freq, ...])</code></td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td><code>Series.expanding([min_periods, freq, ...])</code></td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td><code>Series.ewm([com, span, halflife, alpha, ...])</code></td>
<td>Provides exponential weighted functions</td>
</tr>
</tbody>
</table>

34.3.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.abs()</code></td>
<td>Return an object with absolute value taken-only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td><code>Series.all([axis, bool_only, skipna, level])</code></td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>Series.any([axis, bool_only, skipna, level])</code></td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>Series.autocorr([lag])</code></td>
<td>Lag-N autocorrelation</td>
</tr>
<tr>
<td><code>Series.between(left, right[, inclusive])</code></td>
<td>Return boolean Series equivalent to left <= series <= right.</td>
</tr>
<tr>
<td><code>Series.clip([lower, upper, axis])</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>Series.clip_lower(threshold[, axis])</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>Series.clip_upper(threshold[, axis])</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>Series.corr(other[, method, min_periods])</code></td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td><code>Series.count([level])</code></td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td><code>Series.cov(other[, min_periods])</code></td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td><code>Series.cummax([axis, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>Series.cummin([axis, skipna])</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>Series.cumprod([axis, skipna])</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>Series.cumsum([axis, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>Series.describe([percentiles, include, exclude])</code></td>
<td>Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.</td>
</tr>
<tr>
<td><code>Series.diff([periods])</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>Series.factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>Series.kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>Series.mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Series.mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.median([axis, skipna, level, ...])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>Series.mode()</code></td>
<td>Return the mode(s) of the dataset.</td>
</tr>
<tr>
<td><code>Series.nlargest([n, keep])</code></td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td><code>Series.nsmallest([n, keep])</code></td>
<td>Return the smallest n elements.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.29 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.pct_change(</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>Series.product(</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td>Series.quantile(</td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td>Series.rank(</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>Series.sem(</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>Series.skew(</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td>Series.std(</td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td>Series.sum(</td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td>Series.var(</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td>Series.unique()</td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td>Series.nunique(dropna)</td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td>Series.is_unique</td>
<td>Return boolean if values in the object are unique.</td>
</tr>
<tr>
<td>Series.is_monotonic</td>
<td>Return boolean if values in the object are increasing.</td>
</tr>
<tr>
<td>Series.is_monotonic_increasing</td>
<td>Return boolean if values in the object are increasing.</td>
</tr>
<tr>
<td>Series.is_monotonic_decreasing</td>
<td>Return boolean if values in the object are decreasing.</td>
</tr>
<tr>
<td>Series.value_counts()</td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

34.3.8 Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.align(other[, join, axis, level,...])</td>
<td>Align two object on their axes with the other object.</td>
</tr>
<tr>
<td>Series.drop(labels[, axis, level, inplace,...])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>Series.drop_duplicates(keep[, inplace])</td>
<td>Return Series with duplicate values removed.</td>
</tr>
<tr>
<td>Series.duplicated(keep)</td>
<td>Return boolean Series denoting duplicate values.</td>
</tr>
<tr>
<td>Series.equals(other)</td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td>Series.first(offset)</td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>Series.head(n)</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>Series.idxmax(axis, skipna)</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td>Series.idxmin(axis, skipna)</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td>Series.isin(values)</td>
<td>Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.</td>
</tr>
<tr>
<td>Series.last(offset)</td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>Series.reindex(index)</td>
<td>Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>Series.reindex_like(other[, method, copy,...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>Series.rename(index)</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>Series.rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>Series.reset_index(</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see docstring there.</td>
</tr>
<tr>
<td>Series.sample(n, frac, replace, weights,...)</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>Series.select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>Series.take(indices[, axis, convert, is_copy])</td>
<td>Return Series corresponding to requested indices</td>
</tr>
<tr>
<td>Series.tail(n)</td>
<td>Returns last n rows</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.30 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.truncate([before, after, axis, copy])</td>
<td>Truncates a sorted DataFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td>Series.where([cond[, other, inplace, axis, ...]])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td>Series.mask([cond[, other, inplace, axis, ...]])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
</tbody>
</table>

34.3.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dropna([axis, inplace])</td>
<td>Return Series without null values</td>
</tr>
<tr>
<td>Series.fillna([value, method, axis, ...])</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>Series.interpolate([method, axis, limit, ...])</td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>

34.3.10 Reshaping, sorting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.argsort([axis, kind, order])</td>
<td>Overrides ndarray.argsort.</td>
</tr>
<tr>
<td>Series.reorder_levels(order)</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>Series.sort_values([axis, ascending, ...])</td>
<td>Sort by the values along either axis</td>
</tr>
<tr>
<td>Series.sort_index([axis, level, ascending, ...])</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>Series.swaplevel([i, j, copy])</td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td>Series.unstack([level, fill_value])</td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td>Series.searchsorted([value[, side, sorter]])</td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
</tbody>
</table>

34.3.11 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.append([to_append[, ignore_index, ...]])</td>
<td>Concatenate two or more Series.</td>
</tr>
<tr>
<td>Series.replace([to_replace, value, inplace, ...])</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>Series.update(other)</td>
<td>Modify Series in place using non-NA values from passed Series.</td>
</tr>
</tbody>
</table>

34.3.12 Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.asfreq([freq[, method, how, ...]])</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td>Series.asof(where[, subset])</td>
<td>The last row without any NaN is taken (or the last row without)</td>
</tr>
<tr>
<td>Series.shift([periods, freq, axis])</td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td>Series.first_valid_index()</td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td>Series.last_valid_index()</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>Series.resample([rule[, how, axis, ...]])</td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td>Series.tz_convert([tz[, axis, level, copy])]</td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
</tbody>
</table>
Pandas: powerful Python data analysis toolkit, Release 0.20.1

Table 34.34 – continued from previous page

Series.tz_localize(tz[, axis, level, copy, ...]) Localize tz-naive TimeSeries to target time zone.

34.3.13 Datetimelike Properties

Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like Series.dt.<property>.

Datetime Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.date</td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
<tr>
<td>Series.dt.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td>Series.dt.year</td>
<td>The year of the datetime.</td>
</tr>
<tr>
<td>Series.dt.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>Series.dt.day</td>
<td>The days of the datetime.</td>
</tr>
<tr>
<td>Series.dt.hour</td>
<td>The hours of the datetime.</td>
</tr>
<tr>
<td>Series.dt.minute</td>
<td>The minutes of the datetime.</td>
</tr>
<tr>
<td>Series.dt.second</td>
<td>The seconds of the datetime.</td>
</tr>
<tr>
<td>Series.dt.millisecond</td>
<td>The microseconds of the datetime.</td>
</tr>
<tr>
<td>Series.dt.nanosecond</td>
<td>The nanoseconds of the datetime.</td>
</tr>
<tr>
<td>Series.dt.week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>Series.dt.weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>Series.dt.dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>Series.dt.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>Series.dt.weekday_name</td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
<tr>
<td>Series.dt.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>Series.dt.quarter</td>
<td>The quarter of the date</td>
</tr>
<tr>
<td>Series.dt.is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_leap_year</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td>Series.dt.daysinmonth</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>Series.dt.days_in_month</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>Series.dt.tz</td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td>Series.dtFreq</td>
<td></td>
</tr>
</tbody>
</table>

34.3.13.1 pandas.Series.dt.date

Series.dt.date Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).
34.3.13.2 pandas.Series.dt.time

Series.dt.time
Returns numpy array of datetime.time. The time part of the Timestamps.

34.3.13.3 pandas.Series.dt.year

Series.dt.year
The year of the datetime

34.3.13.4 pandas.Series.dt.month

Series.dt.month
The month as January=1, December=12

34.3.13.5 pandas.Series.dt.day

Series.dt.day
The days of the datetime

34.3.13.6 pandas.Series.dt.hour

Series.dt.hour
The hours of the datetime

34.3.13.7 pandas.Series.dt.minute

Series.dt.minute
The minutes of the datetime

34.3.13.8 pandas.Series.dt.second

Series.dt.second
The seconds of the datetime

34.3.13.9 pandas.Series.dt.microsecond

Series.dt.microsecond
The microseconds of the datetime

34.3.13.10 pandas.Series.dt.nanosecond

Series.dt.nanosecond
The nanoseconds of the datetime
34.3.13.11 pandas.Series.dt.week

Series.dt.week
The week ordinal of the year

34.3.13.12 pandas.Series.dt.weekofyear

Series.dt.weekofyear
The week ordinal of the year

34.3.13.13 pandas.Series.dt.dayofweek

Series.dt.dayofweek
The day of the week with Monday=0, Sunday=6

34.3.13.14 pandas.Series.dt.weekday

Series.dt.weekday
The day of the week with Monday=0, Sunday=6

34.3.13.15 pandas.Series.dt.weekday_name

Series.dt.weekday_name
The name of day in a week (ex: Friday)
 New in version 0.18.1.

34.3.13.16 pandas.Series.dt.dayofyear

Series.dt.dayofyear
The ordinal day of the year

34.3.13.17 pandas.Series.dt.quarter

Series.dt.quarter
The quarter of the date

34.3.13.18 pandas.Series.dt.is_month_start

Series.dt.is_month_start
Logical indicating if first day of month (defined by frequency)

34.3.13.19 pandas.Series.dt.is_month_end

Series.dt.is_month_end
Logical indicating if last day of month (defined by frequency)
34.3.13.20 pandas.Series.dt.is_quarter_start

Series.dt.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

34.3.13.21 pandas.Series.dt.is_quarter_end

Series.dt.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)

34.3.13.22 pandas.Series.dt.is_year_start

Series.dt.is_year_start
Logical indicating if first day of year (defined by frequency)

34.3.13.23 pandas.Series.dt.is_year_end

Series.dt.is_year_end
Logical indicating if last day of year (defined by frequency)

34.3.13.24 pandas.Series.dt.is_leap_year

Series.dt.is_leap_year
Logical indicating if the date belongs to a leap year

34.3.13.25 pandas.Series.dt.daysinmonth

Series.dt.daysinmonth
The number of days in the month
New in version 0.16.0.

34.3.13.26 pandas.Series.dt.days_in_month

Series.dt.days_in_month
The number of days in the month
New in version 0.16.0.

34.3.13.27 pandas.Series.dt.tz

Series.dt.tz

34.3.13.28 pandas.Series.dt.freq

Series.dt.freq
get/set the frequency of the Index

Datet ime Methods
pandas.Series.dt.to_period

`Series.dt.to_period(*args, **kwars)`
Cast to PeriodIndex at a particular frequency

pandas.Series.dt.to_pydatetime

`Series.dt.to_pydatetime()`

pandas.Series.dt.tz_localize

`Series.dt.tz_localize(*args, **kwars)`
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters

- **tz**: string, pytz.timezone, dateutil.tz.tzfile or None
 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

- **ambiguous**: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- **errors**: ‘raise’, ‘coerce’, default ‘raise’
 - ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in the specified timezone (e.g. due to a transition from or to DST time)
 - ‘coerce’ will return NaT if the timestamp can not be converted into the specified timezone

New in version 0.19.0.

- **infer_dst**: boolean, default False (DEPRECATED)
 Attempt to infer fall dst-transition hours based on order
pandas: powerful Python data analysis toolkit, Release 0.20.1

- **Returns localized**: DatetimeIndex
- **Raises TypeError**
 If the DatetimeIndex is tz-aware and tz is not None.

34.3.13.32 pandas.Series.dt.tz_convert

```python
Series.dt.tz_convert(*args, **kwargs)
```

Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

- **Parameters**
 - `tz` : string, pytz.timezone, dateutil.tz.tzfile or None
 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time.

- **Returns**
 - `normalized` : DatetimeIndex
 - **Raises**
 - TypeError
 If DatetimeIndex is tz-naive.

34.3.13.33 pandas.Series.dt.normalize

```python
Series.dt.normalize(*args, **kwargs)
```

Return DatetimeIndex with times to midnight. Length is unaltered

- **Returns**
 - `normalized` : DatetimeIndex

34.3.13.34 pandas.Series.dt.strftime

```python
Series.dt.strftime(*args, **kwargs)
```

Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc

New in version 0.17.0.

- **Parameters**
 - `date_format` : str
 date format string (e.g. “%Y-%m-%d”)

- **Returns**
 - ndarray of formatted strings

34.3.13.35 pandas.Series.dt.round

```python
Series.dt.round(*args, **kwargs)
```

round the index to the specified freq

- **Parameters**
 - `freq` : freq string/object

- **Returns**
 - index of same type
 - **Raises**
 - ValueError if the freq cannot be converted
34.3.13.36 pandas.Series.dt.floor

Series.dt.floor(*args, **kwargs)
floor the index to the specified freq

Parameters freq : freq string/object
Returns index of same type
Raises ValueError if the freq cannot be converted

34.3.13.37 pandas.Series.dt.ceil

Series.dt.ceil(*args, **kwargs)
ceil the index to the specified freq

Parameters freq : freq string/object
Returns index of same type
Raises ValueError if the freq cannot be converted

Timedelta Properties

<table>
<thead>
<tr>
<th>Series.dt.days</th>
<th>Number of days for each element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.seconds</td>
<td>Number of seconds (>= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td>Series.dt.microseconds</td>
<td>Number of microseconds (>= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td>Series.dt.nanoseconds</td>
<td>Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td>Series.dt.components</td>
<td>Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.</td>
</tr>
</tbody>
</table>

34.3.13.38 pandas.Series.dt.days

Series.dt.days
Number of days for each element.

34.3.13.39 pandas.Series.dt.seconds

Series.dt.seconds
Number of seconds (>= 0 and less than 1 day) for each element.

34.3.13.40 pandas.Series.dt.microseconds

Series.dt.microseconds
Number of microseconds (>= 0 and less than 1 second) for each element.

34.3.13.41 pandas.Series.dt.nanoseconds

Series.dt.nanoseconds
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.
34.3.13.42 pandas.Series.dt.components

Series.dt.components
Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.

Returns a DataFrame

Timedelta Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.to_pytimedelta()</td>
<td></td>
</tr>
<tr>
<td>Series.dt.total_seconds(*args, **kwargs)</td>
<td>Total duration of each element expressed in seconds.</td>
</tr>
</tbody>
</table>

34.3.13.43 pandas.Series.dt.to_pytimedelta

Series.dt.to_pytimedelta()

34.3.13.44 pandas.Series.dt.total_seconds

Series.dt.total_seconds(*args, **kwargs)
Total duration of each element expressed in seconds.
New in version 0.17.0.

34.3.14 String handling

Series.str can be used to access the values of the series as strings and apply several methods to it. These can be accessed like Series.str.<function/property>.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.str.capitalize()</td>
<td>Convert strings in the Series/Index to be capitalized.</td>
</tr>
<tr>
<td>Series.str.cat([others, sep, na_rep])</td>
<td>Concatenate strings in the Series/Index with a given separator.</td>
</tr>
<tr>
<td>Series.str.center(width[, fillchar])</td>
<td>Filling left and right side of strings in the Series/Index with an additional character.</td>
</tr>
<tr>
<td>Series.str.contains(pat[, case, flags, na, ...])</td>
<td>Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index.</td>
</tr>
<tr>
<td>Series.str.count(pat[, flags])</td>
<td>Count occurrences of pattern in each string of the Series/Index.</td>
</tr>
<tr>
<td>Series.str.decode(encoding[, errors])</td>
<td>Decode character string in the Series/Index using indicated encoding.</td>
</tr>
<tr>
<td>Series.str.encode(encoding[, errors])</td>
<td>Encode character string in the Series/Index using indicated encoding.</td>
</tr>
<tr>
<td>Series.str.endswith(pat[, na])</td>
<td>Return boolean Series indicating whether each string in the Series/Index ends with passed pattern.</td>
</tr>
<tr>
<td>Series.str.extract(pat[, flags, expand])</td>
<td>For each subject string in the Series, extract groups from the first match of regular expression pat.</td>
</tr>
<tr>
<td>Series.str.extractall(pat[, flags])</td>
<td>For each subject string in the Series, extract groups from all matches of regular expression pat.</td>
</tr>
<tr>
<td>Series.str.find(sub[, start, end])</td>
<td>Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td>Series.str.findall(pat[, flags])</td>
<td>Find all occurrences of pattern or regular expression in the Series/Index.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.39 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.str.get(i)</td>
<td>Extract element from lists, tuples, or strings in each element in the Series/Index.</td>
</tr>
<tr>
<td>Series.str.index(sub[, start, end])</td>
<td>Return lowest indexes in each strings where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td>Series.str.join(sep)</td>
<td>Join lists contained as elements in the Series/Index with passed delimiter.</td>
</tr>
<tr>
<td>Series.str.len()</td>
<td>Compute length of each string in the Series/Index.</td>
</tr>
<tr>
<td>Series.str.ljust(width[, fillchar])</td>
<td>Filling right side of strings in the Series/Index with an additional character.</td>
</tr>
<tr>
<td>Series.str.lower()</td>
<td>Convert strings in the Series/Index to lowercase.</td>
</tr>
<tr>
<td>Series.str.lstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from left side.</td>
</tr>
<tr>
<td>Series.str.match(pat[, case, flags, na, ...])</td>
<td>Determine if each string matches a regular expression.</td>
</tr>
<tr>
<td>Series.str.normalize(form)</td>
<td>Return the Unicode normal form for the strings in the Series/Index.</td>
</tr>
<tr>
<td>Series.str.pad(width[, side, fillchar])</td>
<td>Pad strings in the Series/Index with an additional character to specified side.</td>
</tr>
<tr>
<td>Series.str.partition([pat, expand])</td>
<td>Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator.</td>
</tr>
<tr>
<td>Series.str.repeat(repeats)</td>
<td>Duplicate each string in the Series/Index by indicated number of times.</td>
</tr>
<tr>
<td>Series.str.replace(pat, repl[, n, case, flags])</td>
<td>Replace occurrences of pattern/regex in the Series/Index with some other string.</td>
</tr>
<tr>
<td>Series.str.rfind(sub[, start, end])</td>
<td>Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td>Series.str.rindex(sub[, start, end])</td>
<td>Return highest indexes in each strings where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td>Series.str.rjust(width[, fillchar])</td>
<td>Filling left side of strings in the Series/Index with an additional character.</td>
</tr>
<tr>
<td>Series.str.rpartition([pat, expand])</td>
<td>Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator.</td>
</tr>
<tr>
<td>Series.str.rstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from right side.</td>
</tr>
<tr>
<td>Series.str.slice([start, stop, step])</td>
<td>Slice substrings from each element in the Series/Index.</td>
</tr>
<tr>
<td>Series.str.slice_replace([start, stop, repl])</td>
<td>Replace a slice of each string in the Series/Index with another string.</td>
</tr>
<tr>
<td>Series.str.split([pat, n, expand])</td>
<td>Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values.</td>
</tr>
<tr>
<td>Series.str.rsplit([pat, n, expand])</td>
<td>Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working to the front.</td>
</tr>
<tr>
<td>Series.str.startswith(pat[, na])</td>
<td>Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern.</td>
</tr>
<tr>
<td>Series.str.strip([to_strip])</td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from left and right sides.</td>
</tr>
<tr>
<td>Series.str.swapcase()</td>
<td>Convert strings in the Series/Index to be swapcased.</td>
</tr>
<tr>
<td>Series.str.title()</td>
<td>Convert strings in the Series/Index to titlecase.</td>
</tr>
<tr>
<td>Series.str.translate(table[, deletechars])</td>
<td>Map all characters in the string through the given mapping table.</td>
</tr>
</tbody>
</table>
Table 34.39 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.str.upper()</code></td>
<td>Convert strings in the Series/Index to uppercase.</td>
</tr>
<tr>
<td><code>Series.str.wrap(width, **kwargs)</code></td>
<td>Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width.</td>
</tr>
<tr>
<td><code>Series.str.zfill(width)</code></td>
<td>Filling left side of strings in the Series/Index with 0.</td>
</tr>
<tr>
<td><code>Series.str.isalnum()</code></td>
<td>Check whether all characters in each string in the Series/Index are alphanumeric.</td>
</tr>
<tr>
<td><code>Series.str.isalpha()</code></td>
<td>Check whether all characters in each string in the Series/Index are alphabetic.</td>
</tr>
<tr>
<td><code>Series.str.isdigit()</code></td>
<td>Check whether all characters in each string in the Series/Index are digits.</td>
</tr>
<tr>
<td><code>Series.str.isspace()</code></td>
<td>Check whether all characters in each string in the Series/Index are whitespace.</td>
</tr>
<tr>
<td><code>Series.str.islower()</code></td>
<td>Check whether all characters in each string in the Series/Index are lowercase.</td>
</tr>
<tr>
<td><code>Series.str.isupper()</code></td>
<td>Check whether all characters in each string in the Series/Index are uppercase.</td>
</tr>
<tr>
<td><code>Series.str.istitle()</code></td>
<td>Check whether all characters in each string in the Series/Index are titlecase.</td>
</tr>
<tr>
<td><code>Series.str.isnumeric()</code></td>
<td>Check whether all characters in each string in the Series/Index are numeric.</td>
</tr>
<tr>
<td><code>Series.str.isdecimal()</code></td>
<td>Check whether all characters in each string in the Series/Index are decimal.</td>
</tr>
<tr>
<td><code>Series.str.get_dummies([sep])</code></td>
<td>Split each string in the Series by sep and return a frame of dummy/indicator variables.</td>
</tr>
</tbody>
</table>

34.3.14.1 pandas.Series.str.capitalize

`Series.str.capitalize()`
Convert strings in the Series/Index to be capitalized. Equivalent to `str.capitalize()`.

Returns converted: Series/Index of objects

34.3.14.2 pandas.Series.str.cat

`Series.str.cat(others=None, sep=None, na_rep=None)`
Concatenate strings in the Series/Index with given separator.

Parameters others: list-like, or list of list-likes
If None, returns str concatenating strings of the Series

sep: string or None, default None
na_rep: string or None, default None
If None, NA in the series are ignored.

Returns concat: Series/Index of objects or str

Examples

When `na_rep` is `None` (default behavior), NaN value(s) in the Series are ignored.
Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ')
'a b c'

Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ', na_rep='?')
'a b ? c'

If `others` is specified, corresponding values are concatenated with the separator. Result will be a Series of strings.

Series(['a', 'b', 'c']).str.cat(['A', 'B', 'C'], sep=',')
0 a,A
1 b,B
2 c,C
dtype: object

Otherwise, strings in the Series are concatenated. Result will be a string.

Series(['a', 'b', 'c']).str.cat(sep=',')
'a,b,c'

Also, you can pass a list of list-likes.

Series(['a', 'b']).str.cat([['x', 'y'], ['1', '2']], sep=',')
0 a,x,1
1 b,y,2
dtype: object

34.3.14.3 pandas.Series.str.center

Series.str.center(width, fillchar=' ')
Filling left and right side of strings in the Series/Index with an additional character. Equivalent to `str.center()`.

Parameters
width : int
Minimum width of resulting string; additional characters will be filled with `fillchar`

fillchar : str
Additional character for filling, default is whitespace

Returns
filled : Series/Index of objects

34.3.14.4 pandas.Series.str.contains

Series.str.contains(pat, case=True, flags=0, na=nan, regex=True)
Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index.

Parameters
pat : string
Character sequence or regular expression

case : boolean, default True
If True, case sensitive

flags : int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE

na : default NaN, fill value for missing values.

regex : bool, default True
 If True use re.search, otherwise use Python in operator

Returns contained : Series/array of boolean values

See also:

match analogous, but stricter, relying on re.match instead of re.search

34.3.14.5 pandas.Series.str.count

Series.str.count(pat, flags=0, **kwargs)
 Count occurrences of pattern in each string of the Series/Index.

Parameters pat : string, valid regular expression

flags : int, default 0 (no flags)
 re module flags, e.g. re.IGNORECASE

Returns counts : Series/Index of integer values

34.3.14.6 pandas.Series.str.decode

Series.str.decode(encoding, errors='strict')
 Decode character string in the Series/Index using indicated encoding. Equivalent to str.decode() in python2 and bytes.decode() in python3.

Parameters encoding : str

errors : str, optional

Returns decoded : Series/Index of objects

34.3.14.7 pandas.Series.str.encode

Series.str.encode(encoding, errors='strict')
 Encode character string in the Series/Index using indicated encoding. Equivalent to str.encode().

Parameters encoding : str

errors : str, optional

Returns encoded : Series/Index of objects

34.3.14.8 pandas.Series.str.endswith

Series.str.endswith(pat, na=nan)
 Return boolean Series indicating whether each string in the Series/Index ends with passed pattern. Equivalent to str.endswith().

Parameters pat : string
 Character sequence

See also:

match analogous, but stricter, relying on re.match instead of re.search
na : bool, default NaN

Returns endswith : Series/array of boolean values

34.3.14.9 pandas.Series.str.extract

Series.str.extract (pat, flags=0, expand=None)

For each subject string in the Series, extract groups from the first match of regular expression pat.

New in version 0.13.0.

Parameters pat : string

Regular expression pattern with capturing groups

flags : int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

.. versionadded:: 0.18.0

expand : bool, default False

- If True, return DataFrame.
- If False, return Series/Index/DataFrame.

Returns DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If expand=False and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index).

See also:

extractall returns all matches (not just the first match)

Examples

A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN.

>>> s = Series(['a1', 'b2', 'c3'])
>>> s.str.extract('([ab])\d')
 0 1
0 a 1
1 b 2
2 NaN NaN

A pattern may contain optional groups.

>>> s.str.extract('([ab]?\d?)')
 0 1
0 a 1
1 b 2
2 NaN 3

Named groups will become column names in the result.

```python
>>> s.str.extract('(?P<letter>[ab])(?P<digit>\d)')
    letter digit
0    a    1
1    b    2
2   NaN  NaN
```

A pattern with one group will return a DataFrame with one column if expand=True.

```python
>>> s.str.extract('[ab](\d)', expand=True)
     0
0    1
1    2
2  NaN
```

A pattern with one group will return a Series if expand=False.

```python
>>> s.str.extract('[ab](\d)', expand=False)
     0
0    1
1    2
2  NaN
dtype: object
```

34.3.14.10 pandas.Series.str.extractall

`Series.str.extractall(pat, flags=0)`

For each subject string in the Series, extract groups from all matches of regular expression pat. When each subject string in the Series has exactly one match, `extractall(pat).xs(0, level='match')` is the same as `extract(pat)`.

New in version 0.18.0.

Parameters

- `pat` : string
 - Regular expression pattern with capturing groups
- `flags` : int, default 0 (no flags)
 - re module flags, e.g. re.IGNORECASE

Returns

A DataFrame with one row for each match, and one column for each group. Its rows have a MultiIndex with first levels that come from the subject Series. The last level is named ‘match’ and indicates the order in the subject. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used.

See also:

- `extract` returns first match only (not all matches)
Examples

A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in the result.

```
>>> s = Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
>>> s.str.extractall("[ab](\d)")
```

```
<table>
<thead>
<tr>
<th></th>
<th>match</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

Capture group names are used for column names of the result.

```
>>> s.str.extractall("[ab](?P<digit>\d)")
```

```
<table>
<thead>
<tr>
<th></th>
<th>digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

A pattern with two groups will return a DataFrame with two columns.

```
>>> s.str.extractall("(?P<letter>[ab])(?P<digit>\d)")
```

```
<table>
<thead>
<tr>
<th></th>
<th>letter</th>
<th>digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Optional groups that do not match are NaN in the result.

```
>>> s.str.extractall("(?P<letter>[ab])?(?P<digit>\d)")
```

```
<table>
<thead>
<tr>
<th></th>
<th>letter</th>
<th>digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>NaN</td>
<td>1</td>
</tr>
</tbody>
</table>
```

34.3.14.11 pandas.Series.str.find

Series.str.find(sub, start=0, end=None)

Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard str.find().

Parameters

- **sub** : str
 - Substring being searched
- **start** : int
 - Left edge index
- **end** : int
 - Right edge index
Returns found : Series/Index of integer values

See also:

`rfind` Return highest indexes in each strings

34.3.14.12 pandas.Series.str.findall

Series.str.findall(pat=0, **kwargs)
Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to `re.findall()`.

Parameters pat : string
Pattern or regular expression
flags : int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE

Returns matches : Series/Index of lists

See also:

`extractall` returns DataFrame with one column per capture group

34.3.14.13 pandas.Series.str.get

Series.str.get(i)
Extract element from lists, tuples, or strings in each element in the Series/Index.

Parameters i : int
Integer index (location)

Returns items : Series/Index of objects

34.3.14.14 pandas.Series.str.index

Series.str.index(sub=0, end=None)
Return lowest indexes in each strings where the substring is fully contained between [start:end]. This is the same as `str.find` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard `str.index`.

Parameters sub : str
Substring being searched
start : int
Left edge index
end : int
Right edge index

Returns found : Series/Index of objects

See also:

`rindex` Return highest indexes in each strings
34.3.14.15 pandas.Series.str.join

Series.str.join(sep)
 Join lists contained as elements in the Series/Index with passed delimiter. Equivalent to str.join().

 Parameters sep : string
 Delimiter

 Returns joined : Series/Index of objects

34.3.14.16 pandas.Series.str.len

Series.str.len()
 Compute length of each string in the Series/Index.

 Returns lengths : Series/Index of integer values

34.3.14.17 pandas.Series.str.ljust

Series.str.ljust(width, fillchar=' ')
 Filling right side of strings in the Series/Index with an additional character. Equivalent to str.ljust().

 Parameters width : int
 Minimum width of resulting string; additional characters will be filled with fillchar

 fillchar : str
 Additional character for filling, default is whitespace

 Returns filled : Series/Index of objects

34.3.14.18 pandas.Series.str.lower

Series.str.lower()
 Convert strings in the Series/Index to lowercase. Equivalent to str.lower().

 Returns converted : Series/Index of objects

34.3.14.19 pandas.Series.str.lstrip

Series.str.lstrip(to_strip=None)
 Strip whitespace (including newlines) from each string in the Series/Index from left side. Equivalent to str.lstrip().

 Returns stripped : Series/Index of objects

34.3.14.20 pandas.Series.str.match

Series.str.match(pat, case=True, flags=0, na=nan, as_indexer=None)
 Determine if each string matches a regular expression.

 Parameters pat : string
 Character sequence or regular expression
case : boolean, default True
If True, case sensitive
flags : int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE
na : default NaN, fill value for missing values.
as_indexer : DEPRECATED
Returns Series/array of boolean values
See also:
contains analogous, but less strict, relying on re.search instead of re.match
extract extract matched groups

34.3.14.21 pandas.Series.str.normalize

Series.str.normalize(form)
Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the unicodedata.normalize().
Parameters form : {'NFC', 'NFKC', 'NFD', 'NFKD'}
Unicode form
Returns normalized : Series/Index of objects

34.3.14.22 pandas.Series.str.pad

Series.str.pad(width, side='left', fillchar=' ')
Pad strings in the Series/Index with an additional character to specified side.
Parameters width : int
Minimum width of resulting string; additional characters will be filled with spaces
side : {'left', 'right', 'both'}, default 'left'
fillchar : str
Additional character for filling, default is whitespace
Returns padded : Series/Index of objects

34.3.14.23 pandas.Series.str.partition

Series.str.partition(pat=' ', expand=True)
Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing the string itself, followed by two empty strings.
Parameters pat : string, default whitespace
String to split on.
expand : bool, default True
• If True, return DataFrame/MultiIndex expanding dimensionality.
• If False, return Series/Index.

Returns split: DataFrame/MultiIndex or Series/Index of objects

See also:

rpartition Split the string at the last occurrence of sep

Examples

```python
>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0   A_B_C
1   D_E_F
2     X
dtype: object

>>> s.str.partition('_')
   0  1  2
0  A  _  B_C
1  D  _  E_F
2    X

>>> s.str.rpartition('_')
   0  1  2
0  A_B  _  C
1  D_E  _  F
2    X
```

34.3.14.24 pandas.Series.str.repeat

Series.str.repeat(repeats)
Duplicate each string in the Series/Index by indicated number of times.

Parameters repeats: int or array

Same value for all (int) or different value per (array)

Returns repeated: Series/Index of objects

34.3.14.25 pandas.Series.str.replace

Series.str.replace(pat, repl, n=-1, case=None, flags=0)
Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to str.replace() or re.sub().

Parameters pat: string or compiled regex

String can be a character sequence or regular expression.

New in version 0.20.0: pat also accepts a compiled regex.

repl: string or callable
Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See `re.sub()`.

New in version 0.20.0: `repl` also accepts a callable.

n: int, default -1 (all)

Number of replacements to make from start

case: boolean, default None

- If True, case sensitive (the default if `pat` is a string)
- Set to False for case insensitive
- Cannot be set if `pat` is a compiled regex

flags: int, default 0 (no flags)

- re module flags, e.g. `re.IGNORECASE`
- Cannot be set if `pat` is a compiled regex

Returns: `replaced`: Series/Index of objects

Notes

When `pat` is a compiled regex, all flags should be included in the compiled regex. Use of `case` or `flags` with a compiled regex will raise an error.

Examples

When `repl` is a string, every `pat` is replaced as with `str.replace()`. NaN value(s) in the Series are left as is.

```python
>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', 'b')
0     boo
1     buz
2    NaN
dtype: object
```

When `repl` is a callable, it is called on every `pat` using `re.sub()`. The callable should expect one positional argument (a regex object) and return a string.

To get the idea:

```python
>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr)
0     <_sre.SRE_Match object; span=(0, 1), match='f'>oo
1     <_sre.SRE_Match object; span=(0, 1), match='f'>uz
2      NaN
dtype: object
```

Reverse every lowercase alphabetic word:

```python
>>> repl = lambda m: m.group(0)[::-1]
>>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl)
0     oof 123
1     rab zab
2    NaN
dtype: object
```
Using regex groups (extract second group and swap case):

```python
def repl(m):
    return m.group('two').swapcase()

pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl)
```

Using a compiled regex with flags

```python
regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE)

pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar')
```

34.3.14.26 pandas.Series.str.rfind

Series.str.rfind(sub, start=0, end=None)

Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard `str.rfind()`.

Parameters

- **sub**: str
 Substring being searched

- **start**: int
 Left edge index

- **end**: int
 Right edge index

Returns

- **found**: Series/Index of integer values

See also

- `find` Return lowest indexes in each strings

34.3.14.27 pandas.Series.str.rindex

Series.str.rindex(sub, start=0, end=None)

Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as `str.rfind` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard `str.rindex`.

Parameters

- **sub**: str
 Substring being searched

- **start**: int
 Left edge index

- **end**: int
 Right edge index
Returns found: Series/Index of objects

See also:

index Return lowest indexes in each strings

34.3.14.28 pandas.Series.str.rjust

Series.str.rjust(width, fillchar=' ')
Filling left side of strings in the Series/Index with an additional character. Equivalent to str.rjust().

Parameters width: int
Minimum width of resulting string; additional characters will be filled with fillchar

fillchar: str
Additional character for filling, default is whitespace

Returns filled: Series/Index of objects

34.3.14.29 pandas.Series.str.rpartition

Series.str.rpartition(pat='', expand=True)
Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing two empty strings, followed by the string itself.

Parameters pat: string, default whitespace
String to split on.

expand: bool, default True
• If True, return DataFrame/MultiIndex expanding dimensionality.
• If False, return Series/Index.

Returns split: DataFrame/MultiIndex or Series/Index of objects

See also:

partition Split the string at the first occurrence of sep

Examples

```python
>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0    A_B_C
1    D_E_F
2      X
dtype: object
>>> s.str.partition('_')
  0  1  2
0  A  _  B_C
1  D  _  E_F
2      X
```

34.3. Series 1389
pandas: powerful Python data analysis toolkit, Release 0.20.1

```python
>>> s.str.rpartition('_')
0   1  2
0  A_B_  C
1  D_E_  F
2    X
```

34.3.14.30 pandas.Series.str.rstrip

Series.str.rstrip(to_strip=None)

Strip whitespace (including newlines) from each string in the Series/Index from right side. Equivalent to `str.rstrip()`.

Returns stripped : Series/Index of objects

34.3.14.31 pandas.Series.str.slice

Series.str.slice(start=None, stop=None, step=None)

Slice substrings from each element in the Series/Index

Parameters start : int or None
stop : int or None
step : int or None

Returns sliced : Series/Index of objects

34.3.14.32 pandas.Series.str.slice_replace

Series.str.slice_replace(start=None, stop=None, repl=None)

Replace a slice of each string in the Series/Index with another string.

Parameters start : int or None
stop : int or None
repl : str or None

String for replacement

Returns replaced : Series/Index of objects

34.3.14.33 pandas.Series.str.split

Series.str.split(pat=None, n=-1, expand=False)

Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values. Equivalent to `str.split()`.

Parameters pat : string, default None

String or regular expression to split on. If None, splits on whitespace
n : int, default -1 (all)

None, 0 and -1 will be interpreted as return all splits
expand : bool, default False
• If True, return DataFrame/MultiIndex expanding dimensionality.
• If False, return Series/Index.

New in version 0.16.1.

return_type : deprecated, use expand

Returns split : Series/Index or DataFrame/MultiIndex of objects

34.3.14.34 pandas.Series.str.rsplit

Series.str.rsplit(pat=None, n=-1, expand=False)

Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working
to the front. Equivalent to str.rsplit().

New in version 0.16.2.

Parameters pat : string, default None

Separator to split on. If None, splits on whitespace

n : int, default -1 (all)

None, 0 and -1 will be interpreted as return all splits

expand : bool, default False

• If True, return DataFrame/MultiIndex expanding dimensionality.
• If False, return Series/Index.

Returns split : Series/Index or DataFrame/MultiIndex of objects

34.3.14.35 pandas.Series.str.startswith

Series.str.startswith(pat, na=nan)

Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern.
Equivalent to str.startswith().

Parameters pat : string

Character sequence

na : bool, default NaN

Returns startswith : Series/array of boolean values

34.3.14.36 pandas.Series.str.strip

Series.str.strip(to_strip=None)

Strip whitespace (including newlines) from each string in the Series/Index from left and right sides. Equivalent
to str.strip().

Returns stripped : Series/Index of objects
34.3.14.37 pandas.Series.str.swapcase

Series.str.swapcase()

Convert strings in the Series/Index to be swapcased. Equivalent to `str.swapcase()`.

Returns converted: Series/Index of objects

34.3.14.38 pandas.Series.str.title

Series.str.title()

Convert strings in the Series/Index to titlecase. Equivalent to `str.title()`.

Returns converted: Series/Index of objects

34.3.14.39 pandas.Series.str.translate

Series.str.translate(table, deletechars=None)

Map all characters in the string through the given mapping table. Equivalent to standard `str.translate()`.
Note that the optional argument deletechars is only valid if you are using python 2. For python 3, character deletion should be specified via the table argument.

Parameters table: dict (python 3), str or None (python 2)

In python 3, table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. `str.maketrans()` is a helper function for making translation tables.

In python 2, table is either a string of length 256 or None. If the table argument is None, no translation is applied and the operation simply removes the characters in deletechars. `string.maketrans()` is a helper function for making translation tables.

deletechars: str, optional (python 2)

A string of characters to delete. This argument is only valid in python 2.

Returns translated: Series/Index of objects

34.3.14.40 pandas.Series.str.upper

Series.str.upper()

Convert strings in the Series/Index to uppercase. Equivalent to `str.upper()`.

Returns converted: Series/Index of objects

34.3.14.41 pandas.Series.str.wrap

Series.str.wrap(width, **kwargs)

Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width.
This method has the same keyword parameters and defaults as `textwrap.TextWrapper`.

Parameters width: int

Maximum line-width

expand_tabs: bool, optional

If true, tab characters will be expanded to spaces (default: True)
replace_whitespace : bool, optional

If true, each whitespace character (as defined by string.whitespace) remaining after
tab expansion will be replaced by a single space (default: True)

drop_whitespace : bool, optional

If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (default: True)

break_long_words : bool, optional

If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines
may be longer than width. (default: True)

break_on_hyphens : bool, optional

If true, wrapping will occur preferably on whitespace and right after hyphens in com-
 pound words, as it is customary in English. If false, only whitespaces will be consid-
ered as potentially good places for line breaks, but you need to set break_long_words
to false if you want truly inseparable words. (default: True)

Returns wrapped : Series/Index of objects

Notes

Internally, this method uses a textwrap.TextWrapper instance with default settings. To achieve behavior
matching R’s stringr library str_wrap function, use the arguments:
• expand_tabs = False
• replace_whitespace = True
• drop_whitespace = True
• break_long_words = False
• break_on_hyphens = False

Examples

```python
>>> s = pd.Series(['line to be wrapped', 'another line to be wrapped'])
0    line to be\nwrapped
1    another line\nto be\nwrapped
```

34.3.14.42 pandas.Series.str.zfill

Series.str.zfill(width)
Filling left side of strings in the Series/Index with 0. Equivalent to str.zfill().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with 0

Returns filled : Series/Index of objects
34.3.14.43 pandas.Series.str.isalnum

Series.str.isalnum()
Check whether all characters in each string in the Series/Index are alphanumeric. Equivalent to str.isalnum().

Returns is : Series/array of boolean values

34.3.14.44 pandas.Series.str.isalpha

Series.str.isalpha()
Check whether all characters in each string in the Series/Index are alphabetic. Equivalent to str.isalpha().

Returns is : Series/array of boolean values

34.3.14.45 pandas.Series.str.isdigit

Series.str.isdigit()
Check whether all characters in each string in the Series/Index are digits. Equivalent to str.isdigit().

Returns is : Series/array of boolean values

34.3.14.46 pandas.Series.str.isspace

Series.str.isspace()
Check whether all characters in each string in the Series/Index are whitespace. Equivalent to str.isspace().

Returns is : Series/array of boolean values

34.3.14.47 pandas.Series.str.islower

Series.str.islower()
Check whether all characters in each string in the Series/Index are lowercase. Equivalent to str.islower().

Returns is : Series/array of boolean values

34.3.14.48 pandas.Series.str.isupper

Series.str.isupper()
Check whether all characters in each string in the Series/Index are uppercase. Equivalent to str.isupper().

Returns is : Series/array of boolean values

34.3.14.49 pandas.Series.str.istitle

Series.str.istitle()
Check whether all characters in each string in the Series/Index are titlecase. Equivalent to str.istitle().

Returns is : Series/array of boolean values
34.3.14.50 pandas.Series.str.isnumeric

Series.str.isnumeric()
Check whether all characters in each string in the Series/Index are numeric. Equivalent to str.isnumeric().

Returns is: Series/array of boolean values

34.3.14.51 pandas.Series.str.isdecimal

Series.str.isdecimal()
Check whether all characters in each string in the Series/Index are decimal. Equivalent to str.isdecimal().

Returns is: Series/array of boolean values

34.3.14.52 pandas.Series.str.get_dummies

Series.str.get_dummies(sep='|')
Split each string in the Series by sep and return a frame of dummy/indicator variables.

Parameters sep: string, default “|”
String to split on.

Returns dummies: DataFrame
See also:
pandas.get_dummies

Examples

```python
>>> Series(['a|b', 'a', 'a|c']).str.get_dummies()
a b c
0 1 1 0
1 1 0 0
2 1 0 1

>>> Series(['a|b', np.nan, 'a|c']).str.get_dummies()
a b c
0 1 1 0
1 0 0 0
2 1 0 1
```

34.3.15 Categorical

If the Series is of dtype category, Series.cat can be used to change the the categorical data. This accessor is similar to the Series.dt or Series.str and has the following usable methods and properties:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.cat.categories</td>
<td>The categories of this categorical.</td>
</tr>
<tr>
<td>Series.cat.ordered</td>
<td>Gets the ordered attribute</td>
</tr>
<tr>
<td>Series.cat.codes</td>
<td></td>
</tr>
</tbody>
</table>
34.3.15.1 pandas.Series.cat.categories

Series.cat.categories

The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new
categories must be the same as the number of items in the old categories.

Assigning to categories is a inplace operation!

Raises ValueError

If the new categories do not validate as categories or if the number of new categories
is unequal the number of old categories

See also:
rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

34.3.15.2 pandas.Series.cat.ordered

Series.cat.ordered

Gets the ordered attribute

34.3.15.3 pandas.Series.cat.codes

Series.cat.codes

Series.cat.rename_categories(*args,**kwargs)	Renames categories.
Series.cat.reorder_categories(*args,**kwargs)	Reorders categories as specified in new_categories.
Series.cat.add_categories(*args,**kwargs)	Add new categories.
Series.cat.remove_categories(*args,**kwargs)	Removes the specified categories.
Series.cat.remove_unused_categories(*args,...)	Removes categories which are not used.
Series.cat.set_categories(*args,**kwargs)	Sets the categories to the specified new_categories.
Series.cat.as_ordered(*args,**kwargs)	Sets the Categorical to be ordered
Series.cat.as_unordered(*args,**kwargs)	Sets the Categorical to be unordered

34.3.15.4 pandas.Series.cat.rename_categories

Series.cat.rename_categories(*args,**kwargs)

Renames categories.

The new categories has to be a list-like object. All items must be unique and the number of items in the new
categories must be the same as the number of items in the old categories.

Parameters new_categories : Index-like

The renamed categories.

inplace : boolean (default: False)
Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories.

Returns `cat` : Categorical with renamed categories added or None if inplace.

Raises `ValueError`
If the new categories do not have the same number of items than the current categories or do not validate as categories

See also:
```
reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories
```

34.3.15.5 pandas.Series.cat.reorder_categories

Series.cat.reorder_categories(`*args`, **`**kwargs`)**
Reorders categories as specified in `new_categories`.

`new_categories` need to include all old categories and no new category items.

Parameters `new_categories` : Index-like
The categories in new order.

`ordered` : boolean, optional
Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

`inplace` : boolean (default: False)
Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns `cat` : Categorical with reordered categories or None if inplace.

Raises `ValueError`
If the new categories do not contain all old category items or any new ones

See also:
```
rename_categories, add_categories, remove_categories,
remove_unused_categories, set_categories
```

34.3.15.6 pandas.Series.cat.add_categories

Series.cat.add_categories(`*args`, **`**kwargs`)**
Add new categories.

`new_categories` will be included at the last/highest place in the categories and will be unused directly after this call.

Parameters `new_categories` : category or list-like of category
The new categories to be included.

`inplace` : boolean (default: False)
Whether or not to add the categories inplace or return a copy of this categorical with added categories.
Returns `cat`: Categorical with new categories added or None if inplace.

Raises `ValueError`

If the new categories include old categories or do not validate as categories

See also:

- `rename_categories`
- `reorder_categories`
- `remove_categories`
- `remove_unused_categories`
- `set_categories`

34.3.15.7 pandas.Series.cat.remove_categories

`Series.cat.remove_categories(*args, **kwargs)`

Removes the specified categories.

`removals` must be included in the old categories. Values which were in the removed categories will be set to NaN.

Parameters `removals`: category or list of categories

The categories which should be removed.

`inplace`: boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

Returns `cat`: Categorical with removed categories or None if inplace.

Raises `ValueError`

If the removals are not contained in the categories

See also:

- `rename_categories`
- `reorder_categories`
- `add_categories`
- `remove_categories`
- `remove_unused_categories`
- `set_categories`

34.3.15.8 pandas.Series.cat.remove_unused_categories

`Series.cat.remove_unused_categories(*args, **kwargs)`

Removes categories which are not used.

Parameters `inplace`: boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

Returns `cat`: Categorical with unused categories dropped or None if inplace.

See also:

- `rename_categories`
- `reorder_categories`
- `add_categories`
- `remove_categories`
- `remove_unused_categories`
- `set_categories`

34.3.15.9 pandas.Series.cat.set_categories

`Series.cat.set_categories(*args, **kwargs)`

Sets the categories to the specified new_categories.
new_categories can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If rename=True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters

- **new_categories** : Index-like
 The categories in new order.

- **ordered** : boolean, (default: False)
 Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

- **rename** : boolean (default: False)
 Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

- **inplace** : boolean (default: False)
 Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns

- **cat** : Categorical with reordered categories or None if inplace.

Raises

- ValueError
 If new_categories does not validate as categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

34.3.15.10 pandas.Series.cat.as_ordered

Series.cat.as_ordered(*args, **kwargs)

Sets the Categorical to be ordered

Parameters

- **inplace** : boolean (default: False)
 Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True

34.3.15.11 pandas.Series.cat.as_unordered

Series.cat.as_unordered(*args, **kwargs)

Sets the Categorical to be unordered

Parameters

- **inplace** : boolean (default: False)
 Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False
To create a Series of dtype category, use `cat = s.astype("category")`.

The following two `Categorical` constructors are considered API but should only be used when adding ordering information or special categories is needed at creation time of the categorical data:

```python
Categorical(values[, categories, ordered, ...])
```

Represents a categorical variable in classic R / S-plus fashion.

34.3.15.12 pandas.Categorical

```python
class pandas.Categorical(values, categories=none, ordered=False, fastpath=False)
```

Represents a categorical variable in classic R / S-plus fashion.

Categoricals can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible.

All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values.

Parameters

`values` : list-like

The values of the categorical. If categories are given, values not in categories will be replaced with NaN.

`categories` : Index-like (unique), optional

The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values.

`ordered` : boolean, (default False)

Whether or not this categorical is treated as an ordered categorical. If not given, the resulting categorical will not be ordered.

Raises

`ValueError`

If the categories do not validate.

`TypeError`

If an explicit `ordered=True` is given but no `categories` and the `values` are not sortable.

Examples

```python
>>> from pandas import Categorical

>>> Categorical([1, 2, 3, 1, 2, 3])
[1, 2, 3, 1, 2, 3]
Categories (3, int64): [1 < 2 < 3]

>>> Categorical(['a', 'b', 'c', 'a', 'b', 'c'])
[a, b, c, a, b, c]
Categories (3, object): [a < b < c]

>>> a = Categorical(['a','b','c','a','b','c'], ['c','b','a'], ordered=True)
```
>>> a.min()
'c'

Categorical.from_codes(codes, categories, ...) Make a Categorical type from codes and categories arrays.

34.3.15.13 pandas.Categorical.from_codes

classmethod Categorical.from_codes(codes, categories, ordered=False)
 Make a Categorical type from codes and categories arrays.

This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor.

If your data does not follow this convention, please use the normal constructor.

Parameters codes : array-like, integers
 An integer array, where each integer points to a category in categories or -1 for NaN
categories : index-like
 The categories for the categorical. Items need to be unique.
ordered : boolean, (default False)
 Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered.

np.array(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a numpy array, so categories and order information is not preserved!

Categorical.__array__((dtype)) The numpy array interface.

34.3.15.14 pandas.Categorical.__array__

Categorical.__array__(dtype=None) The numpy array interface.

Returns values : numpy array
 A numpy array of either the specified dtype or, if dtype=None (default), the same dtype as categorical.categories.dtype

34.3.16 Plotting

Series.plot is both a callable method and a namespace attribute for specific plotting methods of the form Series.plot.<kind>.

Series.plot(kind, ax, figsize,...) Series plotting accessor and method

Series.plot.area(**kwds) Area plot
Series.plot.bar(**kwds) Vertical bar plot
Series.plot.barh(**kwds) Horizontal bar plot
Series.plot.box(**kwds) Boxplot

Continued on next page
pandas.Series.plot.area

Series.plot.area(**kwds)
Area plot
New in version 0.17.0.

Parameters
- **kwds**: optional
 Keyword arguments to pass on to `pandas.Series.plot()`.

Returns
- `axes`: matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.bar

Series.plot.bar(**kwds)
Vertical bar plot
New in version 0.17.0.

Parameters
- **kwds**: optional
 Keyword arguments to pass on to `pandas.Series.plot()`.

Returns
- `axes`: matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.barh

Series.plot.barh(**kwds)
Horizontal bar plot
New in version 0.17.0.

Parameters
- **kwds**: optional
 Keyword arguments to pass on to `pandas.Series.plot()`.

Returns
- `axes`: matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.box

Series.plot.box(**kwds)
Boxplot
New in version 0.17.0.

Parameters
- **kwds**: optional
 Keyword arguments to pass on to `pandas.Series.plot()`.

Returns
- `axes`: matplotlib.AxesSubplot or np.array of them
34.3.16.5 pandas.Series.plot.density

Series.plot.density(**kwds)
 Kernel Density Estimate plot

 Parameters **kwds : optional
 Keyword arguments to pass on to pandas.Series.plot().

 Returns axes : matplotlib.AxesSubplot or np.array of them

34.3.16.6 pandas.Series.plot.hist

Series.plot.hist(bins=10, **kwds)
 Histogram

 Parameters bins: integer, default 10
 Number of histogram bins to be used
 **kwds : optional
 Keyword arguments to pass on to pandas.Series.plot().

 Returns axes : matplotlib.AxesSubplot or np.array of them

34.3.16.7 pandas.Series.plot.kde

Series.plot.kde(**kwds)
 Kernel Density Estimate plot

 Parameters **kwds : optional
 Keyword arguments to pass on to pandas.Series.plot().

 Returns axes : matplotlib.AxesSubplot or np.array of them

34.3.16.8 pandas.Series.plot.line

Series.plot.line(**kwds)
 Line plot

 Parameters **kwds : optional
 Keyword arguments to pass on to pandas.Series.plot().

 Returns axes : matplotlib.AxesSubplot or np.array of them
34.3.16.9 pandas.Series.plot.pie

Series.plot.pie(**kwds)

Pie chart

New in version 0.17.0.

Parameters **kwds : optional

Keyword arguments to pass on to pandas.Series.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

Series.hist([by, ax, grid, xlabels, size, ...])

Draw histogram of the input series using matplotlib

34.3.17 Serialization / IO / Conversion

Series.from_csv(path[, sep, parse_dates, ...])

Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).

Series.to_pickle(path[, compression])

Pickle (serialize) object to input file path.

Series.to_csv([path, index, sep, na_rep, ...])

Write Series to a comma-separated values (csv) file

Series.to_dict() *

Convert Series to [{label -> value} dict]

Series.to_excel(excel_writer[, sheet_name, ...])

Write Series to an excel sheet

Series.to_frame([name])

Convert Series to DataFrame

Series.to_xarray() *

Return an xarray object from the pandas object.

Series.to_hdf(path_or_buf, key, **kwargs)

Write the contained data to an HDF5 file using HDFStore.

Series.to_sql(name, con[, flavor, schema, ...])

Write records stored in a DataFrame to a SQL database.

Series.to_msgpack([path_or_buf, encoding])

msgpack (serialize) object to input file path

Series.to_json([path_or_buf, orient, ...])

Convert the object to a JSON string.

Series.to_sparse([kind, fill_value])

Convert Series to SparseSeries

Series.to_dense() *

Return dense representation of NDFrame (as opposed to sparse)

Series.to_string([buf, na_rep, ...])

Render a string representation of the Series

Series.to_clipboard([excel, sep])

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

34.3.18 Sparse

SparseSeries.to_coo([row_levels, ...])

Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.

SparseSeries.from_coo(A[, dense_index])

Create a SparseSeries from a scipy.sparse.coo_matrix.

34.3.18.1 pandas.SparseSeries.to_coo

SparseSeries.to_coo(row_levels=(0,), column_levels=(1,), sort_labels=False)

Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.

Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition of the MultiIndex level names (or numbers).

New in version 0.16.0.
Parameters **row_levels** : tuple/list

column_levels : tuple/list

sort_labels : bool, default False

Sort the row and column labels before forming the sparse matrix.

Returns **y** : scipy.sparse.coo_matrix

rows : list (row labels)

columns : list (column labels)

Examples

```python
>>> from numpy import nan
>>> s = Series([3.0, nan, 1.0, 3.0, nan, nan])
>>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
                                  (1, 2, 'a', 1),
                                  (1, 1, 'b', 0),
                                  (1, 1, 'b', 1),
                                  (2, 1, 'b', 0),
                                  (2, 1, 'b', 1)],
                                 names=['A', 'B', 'C', 'D'])
>>> ss = s.to_sparse()
>>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
                                column_levels=['C', 'D'],
                                sort_labels=True)
>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[ 0., 0., 1., 3.],
[ 3., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> rows
[(1, 1), (1, 2), (2, 1)]
>>> columns
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]
```

34.3.18.2 **pandas.SparseSeries.from_coo**

classmethod **SparseSeries.from_coo** *(A, dense_index=False)*

Create a SparseSeries from a scipy.sparse.coo_matrix.

New in version 0.16.0.

Parameters **A** : scipy.sparse.coo_matrix

dense_index : bool, default False

If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix.

Returns **s** : SparseSeries
Examples

```python
>>> from scipy import sparse
>>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4))
>>> A
t3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format
>>> A.todense()
matrix([[ 0., 0., 1., 2.],
        [ 3., 0., 0., 0.],
        [ 0., 0., 0., 0.]])
>>> ss = SparseSeries.from_coo(A)
>>> ss
0 2 1
 3 2
1 0 3
dtype: float64
```

34.4 DataFrame

34.4.1 Constructor

`DataFrame([data, index, columns, dtype, copy])`

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).

34.4.1.1 pandas.DataFrame

`class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)`

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure

Parameters

- `data`: numpy ndarray (structured or homogeneous), dict, or DataFrame
- `index`: Index or array-like
 - Index to use for resulting frame. Will default to `np.arange(n)` if no indexing information part of input data and no index provided
- `columns`: Index or array-like
 - Column labels to use for resulting frame. Will default to `np.arange(n)` if no column labels are provided
- `dtype`: dtype, default None
 - Data type to force, otherwise infer
copy: boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See also:

DataFrame.from_records constructor from tuples, also record arrays

DataFrame.from_dict from dicts of Series, arrays, or dicts

DataFrame.from_items from sequence of (key, value) pairs

pandas.read_csv, pandas.read_table, pandas.read_clipboard

Examples

```python
>>> d = {'col1': ts1, 'col2': ts2)
>>> df = DataFrame(data=d, index=index)
>>> df2 = DataFrame(np.random.randn(10, 5))
>>> df3 = DataFrame(np.random.randn(10, 5),
...                 columns=['a', 'b', 'c', 'd', 'e'])
```

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td>at</td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td>axes</td>
<td>Return a list with the row axis labels and column axis labels as the only members.</td>
</tr>
<tr>
<td>blocks</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>dtypes</td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.</td>
</tr>
<tr>
<td>ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td>iat</td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td>iloc</td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td>is_copy</td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td>ix</td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td>ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>shape</td>
<td>Return a tuple representing the dimensionality of the DataFrame.</td>
</tr>
<tr>
<td>size</td>
<td>Number of elements in the NDFrame</td>
</tr>
<tr>
<td>style</td>
<td>Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame.</td>
</tr>
<tr>
<td>values</td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.DataFrame.T

DataFrame.T
 Transpose index and columns

pandas.DataFrame.at

DataFrame.at
 Fast label-based scalar accessor
 Similarly to loc, at provides label based scalar lookups. You can also set using these indexers.

pandas.DataFrame.axes

DataFrame.axes
 Return a list with the row axis labels and column axis labels as the only members. They are returned in that order.

pandas.DataFrame.blocks

DataFrame.blocks
 Internal property, property synonym for as_blocks()

pandas.DataFrame.dtypes

DataFrame.dtypes
 Return the dtypes in this object.

pandas.DataFrame.empty

DataFrame.empty
 True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.
 See also:
 pandas.Series.dropna, pandas.DataFrame.dropna

Notes

If NDFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:
If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```
>>> df = pd.DataFrame({'A': [np.nan]})
>>> df
   A
0  NaN
>>> df.empty
False
>>> df.dropna().empty
True
```

pandas.DataFrame.ftypes

DataFrame.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.DataFrame.iat

DataFrame.iat
Fast integer location scalar accessor.

Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.

pandas.DataFrame.iloc

DataFrame.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.
• A list or array of integers, e.g. [4, 3, 0].
• A slice object with ints, e.g. 1:7.
• A boolean array.
• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).
See more at *Selection by Position*

pandas.DataFrame.is_copy

Dataframe `.is_copy = None`

pandas.DataFrame.ix

Dataframe `.ix`

A primarily label-location based indexer, with integer position fallback.

`.ix[]` supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.

`.ix` is the most general indexer and will support any of the inputs in `.loc` and `.iloc`. `.ix` also supports floating point label schemes. `.ix` is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use `.iloc` or `.loc`.

See more at *Advanced Indexing*.

pandas.DataFrame.loc

Dataframe `.loc`

Purely label-location based indexer for selection by label.

`.loc[]` is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a': 'f' (note that contrary to usual python slices, both the start and the stop are included!).

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

`.loc` will raise a `KeyError` when the items are not found.

See more at *Selection by Label*

pandas.DataFrame.ndim

Dataframe `.ndim`

Number of axes / array dimensions
pandas.DataFrame.shape

DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.

pandas.DataFrame.size

DataFrame.size
number of elements in the NDFrame

pandas.DataFrame.style

DataFrame.style
Property returning a Styler object containing methods for building a styled HTML representation of the DataFrame.
See also:
pandas.io.formats.style.Styler

pandas.DataFrame.values

DataFrame.values
Numpy representation of NDFrame

Notes
The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abs()</code></td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td><code>add(other[, axis, level, fill_value])</code></td>
<td>Addition of dataframe and other, element-wise (binary operator <code>add</code>).</td>
</tr>
<tr>
<td><code>add_prefix(prefix)</code></td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td><code>add_suffix(suffix)</code></td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td><code>agg(func[, axis])</code></td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td><code>aggregate(func[, axis])</code></td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td><code>align(other[, join, axis, level, copy, ...])</code></td>
<td>Align two object on their axes with the</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code> ([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>any</code> ([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>append</code> (other[, ignore_index, verify_integrity])</td>
<td>Append rows of other to the end of this frame, returning a new object.</td>
</tr>
<tr>
<td><code>apply</code> (func[, axis, broadcast, raw, reduce, args])</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td><code>applymap</code> (func)</td>
<td>Apply a function to a DataFrame that is intended to operate elementwise, i.e.</td>
</tr>
<tr>
<td><code>as_blocks</code> ([copy])</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtypes.</td>
</tr>
<tr>
<td><code>as_matrix</code> ([columns])</td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td><code>asfreq</code> (freq[, method, how, normalize, ...])</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>asof</code> (where[, subset])</td>
<td>The last row without any NaN is taken (or the last row without</td>
</tr>
<tr>
<td><code>assign</code> (**kwargs)</td>
<td>Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.</td>
</tr>
<tr>
<td><code>astype</code> (dtype[, copy, errors])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>at_time</code> (time, asof)</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td><code>between_time</code> (start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., e.g., 9:00-9:30 AM).</td>
</tr>
<tr>
<td><code>bfill</code> ([axis, inplace, limit, downcast])</td>
<td>Synonym for DataFrame.</td>
</tr>
<tr>
<td><code>bool</code> ()</td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td><code>boxplot</code> ([column, by, ax, fontsize, rot, ...])</td>
<td>Make a box plot from DataFrame column optionally grouped by some columns or</td>
</tr>
<tr>
<td><code>clip</code> ([lower, upper, axis])</td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>clip_lower</code> (threshold[, axis])</td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>clip_upper</code> (threshold[, axis])</td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>combine</code> (other, func[, fill_value, overwrite])</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a</td>
</tr>
<tr>
<td><code>combine_first</code> (other)</td>
<td>Combine two DataFrame objects and default to non-null values in frame calling the method.</td>
</tr>
<tr>
<td><code>compound</code> ([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>consolidate</code> ([inplace])</td>
<td>DEPRECATED: consolidate will be an internal implementation only.</td>
</tr>
<tr>
<td><code>convert_objects</code> ([convert_dates, ...])</td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>copy</code> ([deep])</td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>corr</code> ([method, min_periods])</td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>corrwith</code> (other[, axis, drop])</td>
<td>Compute pairwise correlation between rows or columns of two DataFrame objects.</td>
</tr>
<tr>
<td><code>count</code> ([axis, level, numeric_only])</td>
<td>Return Series with number of non-NA/null observations over requested axis.</td>
</tr>
<tr>
<td><code>cov</code> ([min_periods])</td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>cummax</code> ([axis, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin</code> ([axis, skipna])</td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cumprod</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>cumsum</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe</code></td>
<td>Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.</td>
</tr>
<tr>
<td><code>diff</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>divide</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>dot</code></td>
<td>Matrix multiplication with DataFrame or Series objects</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>drop_duplicates</code></td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
<tr>
<td><code>dropna</code></td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td><code>duplicated</code></td>
<td>Return boolean Series denoting duplicate rows, optionally only</td>
</tr>
<tr>
<td><code>eq</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>equals</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>eval</code></td>
<td>Evaluate an expression in the context of the calling DataFrame instance.</td>
</tr>
<tr>
<td><code>ewm</code></td>
<td>Provides exponential weighted functions</td>
</tr>
<tr>
<td><code>expanding</code></td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td><code>ffill</code></td>
<td>Synonym for <code>DataFrame.fillna(method='ffill')</code>.</td>
</tr>
<tr>
<td><code>fillna</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>first</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>first_valid_index</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv</code></td>
<td>Integer division of dataframe and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><code>from_csv</code></td>
<td>Read CSV file (DISCOURAGED, please use <code>pandas.read_csv()</code> instead).</td>
</tr>
<tr>
<td><code>from_dict</code></td>
<td>Construct DataFrame from dict of array-like or dicts</td>
</tr>
<tr>
<td><code>from_items</code></td>
<td>Convert (key, value) pairs to DataFrame.</td>
</tr>
<tr>
<td><code>from_records</code></td>
<td>Convert structured or record ndarray to DataFrame</td>
</tr>
<tr>
<td><code>get</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>get_dtypes</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>get_ftypes</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>Quickly retrieve single value at passed column and index</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.52 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupby(by, axis, level, as_index, sort, ...)</code></td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td><code>gt(other[, axis, level])</code></td>
<td>Wrapper for flexible comparison methods gt</td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>hist(data[, column, by, grid, xlabelsize, ...])</code></td>
<td>Draw histogram of the DataFrame’s series using matplotlib/pylab.</td>
</tr>
<tr>
<td><code>idxmax([axis, skipna])</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>idxmin([axis, skipna])</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>info([verbose, buf, max_cols, memory_usage, ...])</code></td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td><code>insert(loc, column, value[, allow_duplicates])</code></td>
<td>Insert column into DataFrame at specified location.</td>
</tr>
<tr>
<td><code>interpolate([method, axis, limit, inplace, ...])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Return boolean DataFrame showing whether each element in the DataFrame is contained in values.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>items()</code></td>
<td>Iterator over (column name, Series) pairs.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterator over (column name, Series) pairs.</td>
</tr>
<tr>
<td><code>iterrows()</code></td>
<td>Iterate over DataFrame rows as (index, Series) pairs.</td>
</tr>
<tr>
<td><code>itertuples([index, name])</code></td>
<td>Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.</td>
</tr>
<tr>
<td><code>join(other[, on, how, lsuffix, rsuffix, sort])</code></td>
<td>Join columns with other DataFrame either on index or on a key column.</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>last_valid_index()</code></td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td><code>le(other[, axis, level])</code></td>
<td>Wrapper for flexible comparison methods le</td>
</tr>
<tr>
<td><code>lookup(row_labels, col_labels)</code></td>
<td>Label-based “fancy indexing” function for DataFrame.</td>
</tr>
<tr>
<td><code>lt(other[, axis, level])</code></td>
<td>Wrapper for flexible comparison methods lt</td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis.</td>
</tr>
<tr>
<td><code>mask(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td><code>max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>melt([id_vars, value_vars, var_name, ...])</code></td>
<td>“Unpivots” a DataFrame from wide format to long format, optionally</td>
</tr>
<tr>
<td><code>memory_usage([index, deep])</code></td>
<td>Memory usage of DataFrame columns.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.52 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>merge</code> (right[, how, on, left_on, right_on, ...])</td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td><code>min</code> ([axis, skipna, level, numeric_only])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>mod</code> (other[, axis, level, fill_value])</td>
<td>Modulo of dataframe and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>mode</code> ([axis, numeric_only])</td>
<td>Gets the mode(s) of each element along the axis selected.</td>
</tr>
<tr>
<td><code>mul</code> (other[, axis, level, fill_value])</td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>multiply</code> (other[, axis, level, fill_value])</td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>ne</code> (other[, axis, level])</td>
<td>Wrapper for flexible comparison methods <code>ne</code>.</td>
</tr>
<tr>
<td><code>nlargest</code> (n, columns[, keep])</td>
<td>Get the rows of a DataFrame sorted by the n largest values of <code>columns</code>.</td>
</tr>
<tr>
<td><code>notnull</code> ()</td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>nsmallest</code> (n, columns[, keep])</td>
<td>Get the rows of a DataFrame sorted by the n smallest values of <code>columns</code>.</td>
</tr>
<tr>
<td><code>nunique</code> ([axis, dropna])</td>
<td>Return Series with number of distinct observations over requested axis.</td>
</tr>
<tr>
<td><code>pct_change</code> ([periods, fill_method, limit, freq])</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe</code> (func, *args, **kwargs)</td>
<td>Apply <code>func(self, *args, **kwargs)</code>.</td>
</tr>
<tr>
<td><code>pivot</code> ([index, columns, values])</td>
<td>Reshape data (produce a "pivot" table) based on column values.</td>
</tr>
<tr>
<td><code>pivot_table</code> (data[, values, index, columns, ...])</td>
<td>Create a spreadsheet-style pivot table as a DataFrame.</td>
</tr>
<tr>
<td><code>plot</code></td>
<td>alias of <code>FramePlotMethods</code></td>
</tr>
<tr>
<td><code>pop</code> (item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow</code> (other[, axis, level, fill_value])</td>
<td>Exponential power of dataframe and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>prod</code> ([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><code>product</code> ([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><code>quantile</code> ([q, axis, numeric_only, interpolation])</td>
<td>Return values at the given quantile over requested axis, a la <code>numpy.percentile</code>.</td>
</tr>
<tr>
<td><code>query</code> (expr[, inplace])</td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
<tr>
<td><code>radd</code> (other[, axis, level, fill_value])</td>
<td>Addition of dataframe and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>rank</code> ([axis, method, numeric_only, ...])</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>rdiv</code> (other[, axis, level, fill_value])</td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>reindex</code> (index, columns)</td>
<td>Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_axis</code> (labels[, axis, method, level, ...])</td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_like</code> (other[, method, copy, limit, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>rename</code> ([index, columns])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis</code> (mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
</tbody>
</table>

Continued on next page

34.4. DataFrame

1415
Table 34.52 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reorder_levels(order[, axis])</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>replace(to_replace, value, inplace, limit, ...)</code></td>
<td>Replace values given in <code>to_replace</code> with <code>value</code>.</td>
</tr>
<tr>
<td><code>resample(rule[, how, axis, fill_method, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>reset_index([level, drop, inplace, ...])</code></td>
<td>For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to <code>level_0</code>, <code>level_1</code>, etc.</td>
</tr>
<tr>
<td><code>rfloordiv(other[, axis, level, fill_value])</code></td>
<td>Integer division of dataframe and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>rmod(other[, axis, level, fill_value])</code></td>
<td>Modulo of dataframe and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><code>rmul(other[, axis, level, fill_value])</code></td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><code>rolling(window[, min_periods, freq, center, ...])</code></td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td><code>round([decimals])</code></td>
<td>Round a DataFrame to a variable number of decimal places.</td>
</tr>
<tr>
<td><code>rpow(other[, axis, level, fill_value])</code></td>
<td>Exponential power of dataframe and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>rsub(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td><code>rtruediv(other[, axis, level, fill_value])</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>sample([n, frac, replace, weights, ...])</code></td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td><code>select_dtypes([include, exclude])</code></td>
<td>Return a subset of a DataFrame including/excluding columns based on their <code>dtype</code>.</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>Public version of axis assignment</td>
</tr>
<tr>
<td><code>set_index(keys[, drop, append, inplace, ...])</code></td>
<td>Set the DataFrame index (row labels) using one or more existing columns.</td>
</tr>
<tr>
<td><code>set_value(index, col, value[, takeable])</code></td>
<td>Put single value at passed column and index</td>
</tr>
<tr>
<td><code>shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td><code>skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift([periods, axis, index])</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort_index([axis, level, ascending, ...])</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>sort_values(by[, axis, ascending, inplace, ...])</code></td>
<td>Sort by the values along either axis</td>
</tr>
<tr>
<td><code>sortlevel(by[, axis, ascending, inplace, ...])</code></td>
<td>DEPRECATED: use DataFrame.sort_index()</td>
</tr>
<tr>
<td><code>squeeze(axis)</code></td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td><code>stack([level, dropna])</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.52 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>subtract(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>sum(axis, skipna, level, numeric_only)</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><code>swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td><code>swaplevel([i, j, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis.</td>
</tr>
<tr>
<td><code>tail([n])</code></td>
<td>Returns last n rows.</td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Analogous to ndarray.take.</td>
</tr>
<tr>
<td><code>to_clipboard([excel, sep])</code></td>
<td>Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.</td>
</tr>
<tr>
<td><code>to_csv([path_or_buf, sep, na_rep, ...])</code></td>
<td>Write DataFrame to a comma-separated values (csv) file.</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td><code>to_dict([orient])</code></td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td><code>to_excel(excel_writer[, sheet_name, na_rep, ...])</code></td>
<td>Write DataFrame to an excel sheet.</td>
</tr>
<tr>
<td><code>to_feather(fname)</code></td>
<td>Write out the binary feather-format for DataFrames.</td>
</tr>
<tr>
<td><code>to_gbq(destination_table, project_id[, ...])</code></td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Write the contained data to an HDF5 file using HDFS-store.</td>
</tr>
<tr>
<td><code>to_html([buf, columns, col_space, header, ...])</code></td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_latex([buf, columns, col_space, header, ...])</code></td>
<td>Render a DataFrame to a tabular environment table.</td>
</tr>
<tr>
<td><code>to_msgpack([path_or_buf, encoding])</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_panel()</code></td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.</td>
</tr>
<tr>
<td><code>to_period([freq, axis, copy])</code></td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired.</td>
</tr>
<tr>
<td><code>to_pickle(path[, compression])</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_records([index, convert_datetime64])</code></td>
<td>Convert DataFrame to record array.</td>
</tr>
<tr>
<td><code>to_sparse([fill_value, kind])</code></td>
<td>Convert to SparseDataFrame.</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, schema, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_stata(fname[, convert_dates, ...])</code></td>
<td>A class for writing Stata binary dta files from array-like objects.</td>
</tr>
<tr>
<td><code>to_string([buf, columns, col_space, header, ...])</code></td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td><code>to_timestamp([freq, how, axis, copy])</code></td>
<td>Cast to DatetimeIndex of timestamps, at <code>beginning</code> of period.</td>
</tr>
<tr>
<td><code>to_xarray()</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>transform(func, *args, **kwargs)</code></td>
<td>Call function producing a like-indexed NDFrame.</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>Transpose index and columns.</td>
</tr>
<tr>
<td><code>truediv(other[, axis, level, fill_value])</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after a particular index value.</td>
</tr>
<tr>
<td><code>tz_convert(tz[, axis, level, copy])</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize(tz[, axis, level, copy, ambiguous])</code></td>
<td>Localize tz-aware TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>
Table 34.52 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>unstack([level, fill_value])</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.</td>
</tr>
<tr>
<td><code>update(other[, join, overwrite, ...])</code></td>
<td>Modify DataFrame in place using non-NA values from passed DataFrame.</td>
</tr>
<tr>
<td><code>var(axis, skipna, level, ddof, numeric_only)</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>where(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td><code>xs(key[, axis, level, drop_level])</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.abs

DataFrame.abs()

Return an object with absolute value taken—only applicable to objects that are all numeric.

Returns abs: type of caller

pandas.DataFrame.add

DataFrame.add(other[, axis=’columns’, level=None, fill_value=None])

Addition of dataframe and other, element-wise (binary operator add).

Equivalent to `dataframe + other`, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

axis : [0, 1, ‘index’, ‘columns’]
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.radd

Notes
Mismatched indices will be unioned together
Function: `pandas.DataFrame.add_prefix`

DataFrame.add_prefix(prefix)

Concatenate prefix string with panel items names.

Parameters
- `prefix`: string

Returns
- `with_prefix`: type of caller

Function: `pandas.DataFrame.add_suffix`

DataFrame.add_suffix(suffix)

Concatenate suffix string with panel items names.

Parameters
- `suffix`: string

Returns
- `with_suffix`: type of caller

Function: `pandas.DataFrame.agg`

DataFrame.agg(func, axis=0, *args, **kwargs)

Aggregate using callable, string, dict, or list of string/callables

New in version 0.20.0.

Parameters
- `func`: callable, string, dictionary, or list of string/callables

 Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names.

 Accepted Combinations are:
 - string function name
 - function
 - list of functions
 - dict of column names -> functions (or list of functions)

Returns
- `aggregated`: DataFrame

See also:

Notes

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.
Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
...                    index=pd.date_range('1/1/2000', periods=10))
>>> df.iloc[3:7] = np.nan
```

Aggregate these functions across all columns

```python
>>> df.agg(['sum', 'min'])
    A       B       C
sum -0.182253 -0.614014 -2.909534
min -1.916563 -1.460076 -1.568297
```

Different aggregations per column

```python
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
     A     B
max NaN 1.514318
min -1.916563 -1.460076
sum -0.182253 NaN
```

pandas.DataFrame.aggregate

`DataFrame.aggregate(func, axis=0, *args, **kwargs)`

Aggregate using callable, string, dict, or list of string/callables

New in version 0.20.0.

Parameters

- `func` : callable, string, dictionary, or list of string/callables

 Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names.

 Accepted Combinations are:

 - string function name
 - function
 - list of functions
 - dict of column names -> functions (or list of functions)

Returns

- `aggregated` : DataFrame

See also:

Notes

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).
agg is an alias for aggregate. Use it.

Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
...                    index=pd.date_range('1/1/2000', periods=10))
>>> df.iloc[3:7] = np.nan
```

Aggregate these functions across all columns

```python
>>> df.agg(['sum', 'min'])
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>-0.182253</td>
<td>-0.614014</td>
<td>-2.909534</td>
</tr>
<tr>
<td>min</td>
<td>-1.916563</td>
<td>-1.460076</td>
<td>-1.568297</td>
</tr>
</tbody>
</table>

Different aggregations per column

```python
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>NaN</td>
<td>1.514318</td>
</tr>
<tr>
<td>min</td>
<td>-1.916563</td>
<td>-1.460076</td>
</tr>
<tr>
<td>sum</td>
<td>-0.182253</td>
<td>NaN</td>
</tr>
</tbody>
</table>

pandas.DataFrame.align

DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two object on their axes with the specified join method for each axis

Parameters

- other : DataFrame or Series
- join : {'outer', 'inner', 'left', 'right'}, default 'outer'
- axis : allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
- level : int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- copy : boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
- fill_value : scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- method : str, default None
- limit : int, default None
- fill_axis : {0 or ‘index’, 1 or ‘columns’}, default 0
 - Filling axis, method and limit
- broadcast_axis : {0 or ‘index’, 1 or ‘columns’}, default None

34.4. DataFrame 1421
Broadcast values along this axis, if aligning two objects of different dimensions
New in version 0.17.0.

Returns (left, right) : (DataFrame, type of other)
Aligned objects

pandas.DataFrame.all

DataFrame.all (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether all elements are True over requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

Returns all : Series or DataFrame (if level specified)

pandas.DataFrame.any

DataFrame.any (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether any element is True over requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use
only boolean data. Not implemented for Series.

Returns any : Series or DataFrame (if level specified)

pandas.DataFrame.append

DataFrame.append (other, ignore_index=False, verify_integrity=False)
Append rows of other to the end of this frame, returning a new object. Columns not in this frame are
added as new columns.

Parameters other : DataFrame or Series/dict-like object, or list of these
The data to append.

ignore_index : boolean, default False

If True, do not use the index labels.

verify_integrity : boolean, default False

If True, raise ValueError on creating index with duplicates.

Returns appended : DataFrame

See also:

pandas.concat General function to concatenate DataFrame, Series or Panel objects

Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged.

Examples

```python
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
   A  B
0 1  2
1 3  4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
   A  B
0 1  2
1 3  4
0 5  6
1 7  8
```

With *ignore_index* set to True:

```python
>>> df.append(df2, ignore_index=True)
   A  B
0 1  2
1 3  4
2 5  6
3 7  8
```

pandas.DataFrame.apply

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

Parameters func : function
Function to apply to each column/row

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
- 0 or ‘index’: apply function to each column
- 1 or ‘columns’: apply function to each row

broadcast : boolean, default False
For aggregation functions, return object of same size with values propagated

raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance

reduce : boolean or None, default None
Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.

args : tuple
Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

Returns applied : Series or DataFrame

See also:
- `DataFrame.applymap` For elementwise operations
- `DataFrame.aggregate` only perform aggregating type operations
- `DataFrame.transform` only perform transforming type operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples

```python
>>> df.apply(numpy.sqrt)  # returns DataFrame
>>> df.apply(numpy.sum, axis=0)  # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1)  # equiv to df.sum(1)
```
pandas.DataFrame.applymap

DataFrame.applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame

Parameters

- **func**: function

 Python function, returns a single value from a single value

Returns

- **applied**: DataFrame

See also:

- **DataFrame.apply** For operations on rows/columns

Examples

```python
>>> df = pd.DataFrame(np.random.randn(3, 3))
>>> df
        0     1     2
0 -0.029638 1.081563 1.280300
1  0.647747 0.831136 -1.549481
2  0.513416 -0.884417 0.195343
>>> df = df.applymap(lambda x: '%.2f' % x)
>>> df
        0     1     2
0   -0.03   1.08   1.28
1    0.65   0.83  -1.55
2    0.51  -0.88   0.20
```

pandas.DataFrame.as_blocks

DataFrame.as_blocks(copy=True)

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters

- **copy**: boolean, default True

Returns

- **values**: a dict of dtype -> Constructor Types

pandas.DataFrame.as_matrix

DataFrame.as_matrix(columns=None)

Convert the frame to its Numpy-array representation.

Parameters

- **columns**: list, optional, default: None

 If None, return all columns, otherwise, returns specified columns.

Returns

- **values**: ndarray
If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

pandas.DataFrame.asfreq

DataFrame.asfreq(freq, method=None, how=None, normalize=False, fill_value=None)

Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

Returns the original data conformed to a new index with the specified frequency. resample is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

Parameters freq : DateOffset object, or string

 method : {'backfill'/'bfill', 'pad'/'ffill'}, default None
 Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
 • ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid
 • ‘backfill’ / ‘bfill’: use NEXT valid observation to fill

how : {'start', 'end'}, default end

 normalize : bool, default False
 Whether to reset output index to midnight

fill_value : scalar, optional

 Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present).

New in version 0.20.0.

Returns converted : type of caller

See also:

reindex
Notes

To learn more about the frequency strings, please see this link.

Examples

Start by creating a series with 4 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df
     s
2000-01-01 00:00:00  0.0
2000-01-01 00:01:00  NaN
2000-01-01 00:02:00  2.0
2000-01-01 00:03:00  3.0
```

Upsample the series into 30 second bins.

```python
>>> df.asfreq(freq='30S')
     s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  NaN
2000-01-01 00:02:00  2.0
2000-01-01 00:02:30  NaN
2000-01-01 00:03:00  3.0
```

Upsample again, providing a fill value.

```python
>>> df.asfreq(freq='30S', fill_value=9.0)
     s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  9.0
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  9.0
2000-01-01 00:02:00  2.0
2000-01-01 00:02:30  9.0
2000-01-01 00:03:00  3.0
```

Upsample again, providing a method.

```python
>>> df.asfreq(freq='30S', method='bfill')
     s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  2.0
2000-01-01 00:02:00  2.0
2000-01-01 00:02:30  3.0
2000-01-01 00:03:00  3.0
```
pandas.DataFrame.asof

DataFrame.asof(where, subset=None)

The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters where : date or array of dates

subset : string or list of strings, default None

if not None use these columns for NaN propagation

Returns where is scalar

• value or NaN if input is Series

• Series if input is DataFrame

where is Index: same shape object as input

See also:
merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case

pandas.DataFrame.assign

DataFrame.assign(**kwargs)

Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.

New in version 0.16.0.

Parameters kwargs : keyword, value pairs

keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.

Returns df : DataFrame

A new DataFrame with the new columns in addition to all the existing columns.

Notes

Since kwargs is a dictionary, the order of your arguments may not be preserved. To make things predictable, the columns are inserted in alphabetical order, at the end of your DataFrame. Assigning multiple columns within the same assign is possible, but you cannot reference other columns created within the same assign call.
Examples

```python
>>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
```

Where the value is a callable, evaluated on `df`:

```python
>>> df.assign(ln_A = lambda x: np.log(x.A))
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>ln_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.426905</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-0.780949</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-0.418711</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.269708</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-0.274002</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-0.500792</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.649697</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.495604</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.549296</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-0.758542</td>
</tr>
</tbody>
</table>

Where the value already exists and is inserted:

```python
>>> newcol = np.log(df['A'])
>>> df.assign(ln_A=newcol)
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>ln_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.426905</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-0.780949</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-0.418711</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.269708</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-0.274002</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-0.500792</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.649697</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.495604</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.549296</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-0.758542</td>
</tr>
</tbody>
</table>

pandas.DataFrame.astype

DataFrame.astype (dtype, copy=True, errors='raise', **kwargs)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters

- **dtype**: data type, or dict of column name -> data type

 Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use `{col: dtype, ...}`, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

- **errors**: {'raise', 'ignore'}, default ‘raise’.

 Control raising of exceptions on invalid data for provided dtype.

 - **raise**: allow exceptions to be raised
 - **ignore**: suppress exceptions. On error return original object

 New in version 0.20.0.

- **raise_on_error**: DEPRECATED use errors instead
kwargs : keyword arguments to pass on to the constructor

Returns casted : type of caller

pandas.DataFrame.at_time

DataFrame.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters time : datetime.time or string

Returns values_at_time : type of caller

pandas.DataFrame.between_time

DataFrame.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

Parameters start_time : datetime.time or string
date,

end_time : datetime.time or string

include_start : boolean, default True

include_end : boolean, default True

Returns values_between_time : type of caller

pandas.DataFrame.bfill

DataFrame.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='bfill')

pandas.DataFrame.bool

DataFrame.bool()
Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.DataFrame.boxplot

DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)
Make a box plot from DataFrame column optionally grouped by some columns or other inputs

Parameters data : the pandas object holding the data
column : column name or list of names, or vector
Can be any valid input to groupby

by : string or sequence
Column in the DataFrame to group by
ax : Matplotlib axes object, optional

fontsize : int or string

rot : label rotation angle

figsize : A tuple (width, height) in inches

grid : Setting this to True will show the grid

layout : tuple (optional)

 (rows, columns) for the layout of the plot

return_type : {None, ‘axes’, ‘dict’, ‘both’}, default None

 The kind of object to return. The default is axes ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘both’ returns a namedtuple with the axes and dict.

 When grouping with by, a Series mapping columns to return_type is returned, unless return_type is None, in which case a NumPy array of axes is returned with the same shape as layout. See the prose documentation for more.

kwds : other plotting keyword arguments to be passed to matplotlib boxplot function

Returns **lines** : dict

 ax : matplotlib Axes

 (ax, lines): namedtuple

Notes

Use return_type=’dict’ when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, axis=None, *args, **kwargs)

Trim values at input threshold(s).

Parameters **lower** : float or array_like, default None

 upper : float or array_like, default None

 axis : int or string name, optional

 Align object with lower and upper along the given axis.

Returns **clipped** : Series

Examples
>>> df
 0 1
0 0.335232 -1.256177
1 -1.367855 0.746646
2 0.027753 -1.176076
3 0.230930 -0.679613
4 1.261967 0.570967

>>> df.clip(-1.0, 0.5)
 0 1
0 0.335232 -1.000000
1 -1.000000 0.500000
2 0.027753 -1.000000
3 0.230930 -0.679613
4 0.500000 0.500000

>>> t
 0 1 2 3 4
-0.3 -0.2 -0.1 0.0 0.1
dtype: float64

>>> df.clip(t, t + 1, axis=0)
 0 1
0 0.335232 -0.300000
1 -0.200000 0.746646
2 0.027753 -0.100000
3 0.230930 0.000000
4 1.100000 0.570967

pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns clipped : same type as input

See also:
clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns clipped : same type as input
See also:

clip

pandas.DataFrame.combine

DataFrame.combine(other, func, fill_value=None, overwrite=True)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is
missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame
 func : function
 fill_value : scalar value
 overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

Returns
result : DataFrame

pandas.DataFrame.combine_first

DataFrame.combine_first(other)
Combine two DataFrame objects and default to non-null values in frame calling the method. Result index
columns will be the union of the respective indexes and columns

Parameters
other : DataFrame

Returns
combined : DataFrame

Examples

a’s values prioritized, use values from b to fill holes:

```python
>>> a.combine_first(b)
```

pandas.DataFrame.compound

DataFrame.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters
axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.
pandas.DataFrame.consolidate

Dataframe. **consolidate**(inplace=False)

DEPRECATED: consolidate will be an internal implementation only.

pandas.DataFrame.convert_objects

Dataframe. **convert_objects**(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Deprecated.

Attempt to infer better dtype for object columns

Parameters:
- **convert_dates**: boolean, default True
 - If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

- **convert_numeric**: boolean, default False
 - If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.

- **convert_timedeltas**: boolean, default True
 - If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

- **copy**: boolean, default True
 - If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace.

Returns: converted : same as input object

See also:
- **pandas.to_datetime** Convert argument to datetime.
- **pandas.to_timedelta** Convert argument to timedelta.
- **pandas.to_numeric** Return a fixed frequency timedelta index, with day as the default.

pandas.DataFrame.copy

Dataframe. **copy**(deep=True)

Make a copy of this objects data.

Parameters:
- **deep**: boolean or string, default True
 - Make a deep copy, including a copy of the data and the indices. With **deep=False** neither the indices or the data are copied.

 Note that when **deep=True** data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to **copy.deepcopy** in the Standard Library, which recursively copies object data.

Returns **copy**: type of caller
pandas.DataFrame.corr

DataFrame.corr(method='pearson', min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters method : {'pearson', 'kendall', 'spearman'}
 • pearson : standard correlation coefficient
 • kendall : Kendall Tau correlation coefficient
 • spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns y : DataFrame

pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters other : DataFrame
axis : {0 or 'index', 1 or 'columns'}, default 0
 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise
drop : boolean, default False
 Drop missing indices from result, default returns union of all

Returns correls : Series

pandas.DataFrame.count

DataFrame.count(axis=0, level=None, numeric_only=False)
Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None)

Parameters axis : {0 or 'index', 1 or 'columns'}, default 0
 0 or 'index' for row-wise, 1 or 'columns' for column-wise
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default False
 Include only float, int, boolean data

Returns count : Series (or DataFrame if level specified)
pandas.DataFrame.cov

DataFrame.cov(min_periods=None)
Compute pairwise covariance of columns, excluding NA/null values

Parameters min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result.

Returns y : DataFrame

Notes
y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.DataFrame.cummax

DataFrame.cummax(axis=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummax : Series

See also:

pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

pandas.DataFrame.cummin

DataFrame.cummin(axis=None, skipna=True, **kwargs)
Return cumulative minimum over requested axis.

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummin : Series

See also:

pandas.core.window.Expanding.min Similar functionality but ignores NaN values.

pandas.DataFrame.cumprod

DataFrame.cumprod(axis=None, skipna=True, **kwargs)
Return cumulative product over requested axis.
Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns

- **cumprod**: Series

See also:

- `pandas.core.window.Expanding.prod` Similar functionality but ignores NaN values.

pandas.DataFrame.cumsum

DataFrame.cumsum

```
DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)
```

Return cumulative sum over requested axis.

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns

- **cumsum**: Series

See also:

- `pandas.core.window.Expanding.sum` Similar functionality but ignores NaN values.

pandas.DataFrame.describe

DataFrame.describe

```
DataFrame.describe(percentiles=None, include=None, exclude=None)
```

Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters

- **percentiles**: list-like of numbers, optional

 The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

- **include**: ‘all’, list-like of dtypes or None (default), optional

 A white list of data types to include in the result. Ignored for Series. Here are the options:

 • ‘all’: All columns of the input will be included in the output.

 • A list-like of dtypes: Limits the results to the provided data types. To limit the result to numeric types submit `numpy.number`. To limit it instead to categorical objects submit the `numpy.object` data type. Strings can also be used in the style of `select_dtypes` (e.g. `df.describe(include=['O'])`)

 • None (default): The result will include all numeric columns.

- **exclude**: list-like of dtypes or None (default), optional.

 A black list of data types to omit from the result. Ignored for Series. Here are the options:
• A list-like of dtypes: Excludes the provided data types from the result. To select numeric types submit `numpy.number`. To select categorical objects submit the data type `numpy.object`. Strings can also be used in the style of `select_dtypes` (e.g. `df.describe(include=['O'])`)

• None (default): The result will exclude nothing.

Returns summary: Series/DataFrame of summary statistics

See also:

`DataFrame.count`, `DataFrame.max`, `DataFrame.min`, `DataFrame.mean`, `DataFrame.std`, `DataFrame.select_dtypes`

Notes

For numeric data, the result’s index will include `count`, `mean`, `std`, `min`, `max` as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include `count`, `unique`, `top`, and `freq`. The `top` is the most common value. The `freq` is the most common value’s frequency. Timestamps also include the `first` and `last` items.

If multiple object values have the highest count, then the `count` and `top` results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a `DataFrame`, the default is to return only an analysis of numeric columns. If `include='all'` is provided as an option, the result will include a union of attributes of each type.

The `include` and `exclude` parameters can be used to limit which columns in a `DataFrame` are analyzed for the output. The parameters are ignored when analyzing a `Series`.

Examples

Describing a numeric `Series`.

```python
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
```

Describing a categorical `Series`.

```python
>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count 4
unique 3
top a
type: object
```
Describing a timestamp Series.

```python
>>> s = pd.Series([
...     np.datetime64("2000-01-01"),
...     np.datetime64("2010-01-01"),
...     np.datetime64("2010-01-01")
... ])
```

```python
>>> s.describe()
count 3
top 2010-01-01 00:00:00
freq 2
```

Describing a DataFrame. By default only numeric fields are returned.

```python
>>> df = pd.DataFrame([[1, 'a'], [2, 'b'], [3, 'c']],
...                     columns=['numeric', 'object'])
```

```python
>>> df.describe()
numeric
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
```

Describing all columns of a DataFrame regardless of data type.

```python
>>> df.describe(include='all')
numeric object
count 3.0 3
unique NaN 3
top NaN b
freq NaN 1
mean 2.0 NaN
std 1.0 NaN
min 1.0 NaN
25% 1.5 NaN
50% 2.0 NaN
75% 2.5 NaN
max 3.0 NaN
```

Describing a column from a DataFrame by accessing it as an attribute.

```python
>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
```
Including only numeric columns in a DataFrame description.

```python
>>> df.describe(include=[np.number])
           numeric
     count   3.0
      mean   2.0
       std   1.0
      min   1.0
     25%   1.5
     50%   2.0
     75%   2.5
    max   3.0
```

Including only string columns in a DataFrame description.

```python
>>> df.describe(include=[np.object])
          object
        count   3
      unique   3
        top   b
     freq   1
```

Excluding numeric columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.number])
          object
        count   3
      unique   3
        top   b
     freq   1
```

Excluding object columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.object])
           numeric
     count   3.0
      mean   2.0
       std   1.0
      min   1.0
     25%   1.5
     50%   2.0
     75%   2.5
    max   3.0
```

pandas.DataFrame.diff

DataFrame.diff(periods=1, axis=0)

1st discrete difference of object

Parameters

- **periods** : int, default 1

 Periods to shift for forming difference

- **axis** : {0 or ‘index’, 1 or ‘columns’}, default 0
Take difference over rows (0) or columns (1).

Returns diffed : DataFrame

pandas.DataFrame.div

DataFrame.div *(other, axis='columns', level=None, fill_value=None)*

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

- **axis :** {0, 1, ‘index’, ‘columns’}

 For Series input, axis to match Series index on

- **fill_value :** None or float value, default None

 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level :** int or name

 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

DataFrame.rtruediv

Notes

Mismatched indices will be unioned together

pandas.DataFrame.divide

DataFrame.divide *(other, axis='columns', level=None, fill_value=None)*

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

- **axis :** {0, 1, ‘index’, ‘columns’}

 For Series input, axis to match Series index on

- **fill_value :** None or float value, default None

 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level :** int or name

 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame
See also:

`DataFrame.rtruediv`

Notes

Mismatched indices will be unioned together

pandas.DataFrame.dot

`DataFrame.dot(other)`
Matrix multiplication with DataFrame or Series objects

Parameters

- `other`: DataFrame or Series

Returns

- `dot_product`: DataFrame or Series

pandas.DataFrame.drop

`DataFrame.drop(labels, axis=0, level=None, inplace=False, errors='raise')`
Return new object with labels in requested axis removed.

Parameters

- `labels`: single label or list-like
- `axis`: int or axis name
- `level`: int or level name, default None
 - For MultiIndex
- `inplace`: bool, default False
 - If True, do operation inplace and return None.
- `errors`: {'ignore', 'raise'}, default 'raise'
 - If 'ignore', suppress error and existing labels are dropped.

Returns

- `dropped`: type of caller

pandas.DataFrame.drop_duplicates

`DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)`
Return DataFrame with duplicate rows removed, optionally only considering certain columns

Parameters

- `subset`: column label or sequence of labels, optional
 - Only consider certain columns for identifying duplicates, by default use all of the columns
- `keep`: {'first', 'last', False}, default ‘first’
 - `first`: Drop duplicates except for the first occurrence.
 - `last`: Drop duplicates except for the last occurrence.
 - False: Drop all duplicates.
inplace : boolean, default False
Whether to drop duplicates in place or to return a copy

Returns deduplicated : DataFrame

pandas.DataFrame.dropna

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
Return object with labels on given axis omitted where alternately any or all of the data are missing

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, or tuple/list thereof
Pass tuple or list to drop on multiple axes
how : {'any', 'all'}
• any : if any NA values are present, drop that label
• all : if all values are NA, drop that label
thresh : int, default None
int value : require that many non-NA values
subset : array-like
Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include
inplace : boolean, default False
If True, do operation inplace and return None.

Returns dropped : DataFrame

Examples

```python
>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5]],
... columns=list('ABCD'))
>>> df
   A    B    C   D
0  NaN   2.0  NaN  0.0
1   3.0   4.0  NaN  1.0
2   NaN  NaN  NaN  5.0
```

Drop the columns where all elements are nan:

```python
>>> df.dropna(axis=1, how='all')
   A    D
0  NaN  2.0
1  3.0  4.0
2  NaN  NaN
```

Drop the columns where any of the elements is nan

```python
>>> df.dropna(axis=1, how='any')
   D
0  0.0
```
Drop the rows where all of the elements are nan (there is no row to drop, so df stays the same):

```python
>>> df.dropna(axis=0, how='all')
A  B  C  D
0  NaN 2.0  NaN 0
1  3.0 4.0  NaN 1
2  NaN  NaN  NaN 5
```

Keep only the rows with at least 2 non-na values:

```python
>>> df.dropna(thresh=2)
A  B  C  D
0  NaN 2.0  NaN 0
1  3.0 4.0  NaN 1
```

pandas.DataFrame.duplicated

`DataFrame.duplicated(subset=None, keep='first')`

Return boolean Series denoting duplicate rows, optionally only considering certain columns

Parameters

- `subset` : column label or sequence of labels, optional

 Only consider certain columns for identifying duplicates, by default use all of the columns

- `keep` : {'first', 'last', False}, default ‘first’

 - **first** : Mark duplicates as True except for the first occurrence.

 - **last** : Mark duplicates as True except for the last occurrence.

 - **False** : Mark all duplicates as True.

Returns

`duplicated` : Series

pandas.DataFrame.eq

`DataFrame.eq(other, axis='columns', level=None)`

Wrapper for flexible comparison methods eq

pandas.DataFrame.equals

`DataFrame.equals(other)`

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.DataFrame.eval

`DataFrame.eval(expr, inplace=None, **kwargs)`

Evaluate an expression in the context of the calling DataFrame instance.
Parameters

- **expr**: string
 - The expression string to evaluate.
- **inplace**: bool
 - If the expression contains an assignment, whether to return a new DataFrame or mutate the existing.
 - **WARNING**: inplace=None currently falls back to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default.
 - New in version 0.18.0.
- **kwargs**: dict
 - See the documentation for `eval()` for complete details on the keyword arguments accepted by `query()`.

Returns

- **ret**: ndarray, scalar, or pandas object

See also:

- `pandas.DataFrame.query`, `pandas.DataFrame.assign`, `pandas.eval`

Notes

For more details see the API documentation for `eval()`. For detailed examples see *enhancing performance with eval*.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```

pandas.DataFrame.ewm

`DataFrame.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)`

Provides exponential weighted functions

New in version 0.18.0.

Parameters

- **com**: float, optional
 - Specify decay in terms of center of mass, \(\alpha = 1/(1 + com) \), for \(com \geq 0 \)
- **span**: float, optional
 - Specify decay in terms of span, \(\alpha = 2/(span + 1) \), for \(span \geq 1 \)
- **halflife**: float, optional
 - Specify decay in terms of half-life, \(\alpha = 1 - \exp(\log(0.5)/halflife) \), for \(halflife > 0 \)
alpha : float, optional
 Specify smoothing factor α directly, 0 < α ≤ 1
 New in version 0.18.0.

min_periods : int, default 0
 Minimum number of observations in window required to have a value (otherwise
 result is NA).

freq : None or string alias / date offset object, default=None (DEPRECATED)
 Frequency to conform to before computing statistic

adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbal-
 ance in relative weightings (viewing EWMA as a moving average)

ignore_na : boolean, default False
 Ignore missing values when calculating weights; specify True to reproduce pre-
 0.15.0 behavior

Returns a Window sub-classed for the particular operation

Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relation-
ship between the parameters are specified in the parameter descriptions above; see the link at the end of
this section for a detailed explanation.

The freq keyword is used to conform time series data to a specified frequency by resampling the data.
This is done with the default parameters of resample() (i.e. using the mean).

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-
alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] =
arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of
x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is
True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For
example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha
and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#
exponentially-weighted-windows

Examples

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
 B
0 0.0
1 1.0
2 2.0
pandas.DataFrame.expanding

DataFrame.expanding(min_periods=1, freq=None, center=False, axis=0)

Provides expanding transformations.

New in version 0.18.0.

Parameters

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

df

freq : string or DateOffset object, optional (default None) (DEPRECATED)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

axis : int or string, default 0

Returns

a Window sub-classed for the particular operation

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

Examples

>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})

B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

34.4. DataFrame 1447
```python
>>> df.expanding(2).sum()
       B
0   NaN
1   1.0
2   3.0
3   3.0
4   7.0
```

pandas.DataFrame.ffill

DataFrame.ffill(\(axis=None, inplace=False, limit=None, downcast=None\))

Synonym for DataFrame.fillna(method='ffill')

pandas.DataFrame.fillna

DataFrame.fillna(\(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs\))

Fill NA/NaN values using the specified method

Parameters

- **value**: scalar, dict, Series, or DataFrame

 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None

 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

- **axis**: {0 or 'index', 1 or 'columns'}

- **inplace**: boolean, default False

 If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

- **limit**: int, default None

 If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

- **downcast**: dict, default is None

 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

- **filled**: DataFrame

See also:

- reindex
- asfreq
pandas.DataFrame.filter

DataFrame.filter(items=None, like=None, regex=None, axis=None)
Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters
- **items** : list-like
 List of info axis to restrict to (must not all be present)
- **like** : string
 Keep info axis where “arg in col == True”
- **regex** : string (regular expression)
 Keep info axis with re.search(regex, col) == True
- **axis** : int or string axis name
 The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

Returns
same type as input object

See also:
pandas.DataFrame.select

Notes
The `items`, `like`, and `regex` parameters are enforced to be mutually exclusive.

`axis` defaults to the info axis that is used when indexing with `[]`.

Examples

```python
>>> df
one  two  three
mouse 1  2  3
rabbit 4  5  6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one  three
mouse 1  3
rabbit 4  6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one  three
mouse 1  3
rabbit 4  6
```
select rows containing 'bbi'
````python
>>> df.filter(like='bbi', axis=0)
one  two  three
rabbit 4  5  6
````

pandas.DataFrame.first

`DataFrame.first(offset)`

Convenience method for subsetting initial periods of time series data based on a date offset.

- **Parameters**
 - `offset`: string, DateOffset, dateutil.relativedelta
- **Returns**
 - `subset`: type of caller

Examples

ts.first('10D') -> First 10 days

pandas.DataFrame.first_valid_index

`DataFrame.first_valid_index()`

Return label for first non-NA/null value

pandas.DataFrame.floordiv

`DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)`

Integer division of dataframe and other, element-wise (binary operator floordiv).

Equivalent to dataframe // other, but with support to substitute a fill_value for missing data in one of the inputs.

- **Parameters**
 - `other`: Series, DataFrame, or constant
 - `axis`: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - `fill_value`: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- **Returns**
 - `result`: DataFrame

See also:

`DataFrame.rfloordiv`

Notes

Mismatched indices will be unioned together
pandas.DataFrame.from_csv

classmethod DataFrame.from_csv(path, header=0, sep=’,’, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)

Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).

It is preferable to use the more powerful pandas.read_csv() for most general purposes, but from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), especially with a DataFrame of time series data.

This method only differs from the preferred pandas.read_csv() in some defaults:

* index_col is 0 instead of None (take first column as index by default)
* parse_dates is True instead of False (try parsing the index as datetime by default)

So a pd.DataFrame.from_csv(path) can be replaced by pd.read_csv(path, index_col=0, parse_dates=True).

Parameters path : string file path or file handle / StringIO

header : int, default 0

Row to use as header (skip prior rows)

sep : string, default ‘,’

Field delimiter

index_col : int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table

parse_dates : boolean, default True

Parse dates. Different default from read_table

tupleize_cols : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format) if False

infer_datetime_format: boolean, default False

If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns y : DataFrame

See also:

pandas.read_csv

pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient='columns', dtype=None)

Construct DataFrame from dict of array-like or dicts

Parameters data : dict

{field : array-like} or {field : dict}
orient : {'columns', 'index'}, default 'columns'

The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'.

dtype : dtype, default None

Data type to force, otherwise infer

Returns DataFrame

pandas.DataFrame.from_items

classmethod DataFrame.from_items(items, columns=None, orient='columns')

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series.

Parameters items : sequence of (key, value) pairs

Values should be arrays or Series.

columns : sequence of column labels, optional

Must be passed if orient='index'.

orient : {'columns', 'index'}, default 'columns'

The “orientation” of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'.

Returns frame : DataFrame

pandas.DataFrame.from_records

classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame

Parameters data : ndarray (structured dtype), list of tuples, dict, or DataFrame

index : string, list of fields, array-like

Field of array to use as the index, alternately a specific set of input labels to use

exclude : sequence, default None

Columns or fields to exclude

columns : sequence, default None

Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns)

coerce_float : boolean, default False

Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

Returns df : DataFrame
pandas.DataFrame.ge

DataFrame.ge(other, axis='columns', level=None)
Wrap for flexible comparison methods ge

pandas.DataFrame.get

DataFrame.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.
Parameters key: object
Returns value: type of items contained in object

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts()
Return the counts of dtypes in this object.

pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()
Return the counts of ftypes in this object.

pandas.DataFrame.get_value

DataFrame.get_value(index, col, takeable=False)
Quickly retrieve single value at passed column and index
Parameters index: row label
col: column label
takeable: interpret the index/col as indexers, default False
Returns value: scalar value

pandas.DataFrame.get_values

DataFrame.get_values()
same as values (but handles sparseness conversions)

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
Parameters by: mapping, function, str, or iterable
Used to determine the groups for the groupby. If `by` is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see `.align()` method). If an ndarray is passed, the values are used as-is to determine the groups. A str or list of strs may be passed to group by the columns in `self`.

axis: int, default 0

level: int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

as_index: boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. `as_index=False` is effectively “SQL-style” grouped output.

sort: boolean, default True

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys: boolean, default True

When calling apply, add group keys to index to identify pieces.

squeeze: boolean, default False

Reduce the dimensionality of the return type if possible, otherwise return a consistent type.

Returns GroupBy object

Examples

Dataframe results

```python
>>> data.groupby(func, axis=0).mean()
>>> data.groupby(["col1", "col2"])['col3'].mean()
```

Dataframe with hierarchical index

```python
>>> data.groupby(["col1", 'col2']).mean()
```

pandas.DataFrame.gt

DataFrame.gt(other, axis='columns', level=None)

Wrapper for flexible comparison methods `gt`.

pandas.DataFrame.head

DataFrame.head(n=5)

Returns first n rows
DataFrame.hist

DataFrame.hist(data=None, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)

Draw histogram of the DataFrame’s series using matplotlib / pylab.

Parameters data : DataFrame
column : string or sequence
 If passed, will be used to limit data to a subset of columns
by : object, optional
 If passed, then used to form histograms for separate groups
grid : boolean, default True
 Whether to show axis grid lines
xlabelsize : int, default None
 If specified changes the x-axis label size
xrot : float, default None
 rotation of x axis labels
ylabelsize : int, default None
 If specified changes the y-axis label size
yrot : float, default None
 rotation of y axis labels
ax : matplotlib axes object, default None
sharex : boolean, default True if ax is None else False
 In case subplots=True, share x axis and set some x axis labels to invisible; defaults
to True if ax is None otherwise False if an ax is passed in; Be aware, that passing
in both an ax and sharex=True will alter all x axis labels for all subplots in a
figure!
sharey : boolean, default False
 In case subplots=True, share y axis and set some y axis labels to invisible
figsize : tuple
 The size of the figure to create in inches by default
layout : tuple, optional
 Tuple of (rows, columns) for the layout of the histograms
bins : integer, default 10
 Number of histogram bins to be used
kwds : other plotting keyword arguments
 To be passed to hist function
pandas.DataFrame.idxmax

DataFrame.\texttt{idxmax}(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters
- **axis**: \{0 or ‘index’, 1 or ‘columns’\}, default 0
 - 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns
- \texttt{idxmax} : Series

See also:
- \texttt{Series.idxmax}

Notes

This method is the DataFrame version of \texttt{ndarray.argmax}.

pandas.DataFrame.idxmin

DataFrame.\texttt{idxmin}(axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters
- **axis**: \{0 or ‘index’, 1 or ‘columns’\}, default 0
 - 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- \texttt{idxmin} : Series

See also:
- \texttt{Series.idxmin}

Notes

This method is the DataFrame version of \texttt{ndarray.argmin}.

pandas.DataFrame.info

DataFrame.\texttt{info}(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Concise summary of a DataFrame.

Parameters
- **verbose**: \{None, True, False\}, optional
 - Whether to print the full summary. None follows the \texttt{display.max_info_columns} setting. True or False overrides the \texttt{display.max_info_columns} setting.
buf : writable buffer, defaults to sys.stdout

max_cols : int, default None

Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting.

memory_usage : boolean/string, default None

Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. A value of ‘deep’ is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation).

null_counts : boolean, default None

Whether to show the non-null counts

• If None, then only show if the frame is smaller than max_info_rows and max_info_columns.

• If True, always show counts.

• If False, never show counts.

pandas.DataFrame.insert

DataFrame.insert(loc, column, value, allow_duplicates=False)

Insert column into DataFrame at specified location.

If allow_duplicates is False, raises Exception if column is already contained in the DataFrame.

Parameters loc : int

Must have 0 <= loc <= len(columns)

column : object

column : object

value : scalar, Series, or array-like

pandas.DataFrame.interpolate

DataFrame.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)

Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'bicubic', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default

• ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval

• ‘index’, ‘values’: use the actual numerical values of the index
• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. For more information on their behavior, see the scipy documentation and tutorial documentation

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0
• 0: fill column-by-column
• 1: fill row-by-row

limit : int, default None.
 Maximum number of consecutive NaNs to fill. Must be greater than 0.

limit_direction : {'forward', 'backward', 'both'}, default 'forward'
 If limit is specified, consecutive NaNs will be filled in this direction.
 New in version 0.17.0.

inplace : bool, default False
 Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
 Downcast dtypes if possible.

kwarg : keyword arguments to pass on to the interpolating function.

Returns Series or DataFrame of same shape interpolated at the NaNs

See also:
reindex, replace,fillna

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0   0
1   1
2   2
3   3
dtype: float64
```
DataFrame.isin

DataFrame.isin(values)

Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

Parameters

values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.

Returns

DataFrame of booleans

Examples

When values is a list:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> df.isin([1, 3, 12, 'a'])
   A  B
0  True True
1  False False
2  True False
```

When values is a dict:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
    A  B
0  True False # Note that B didn't match the 1 here.
1  False True
2  True True
```

When values is a Series or DataFrame:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)
    A  B
0  False False # Column A in `other` has a 3, but not at index 1.
1  True False
2  True True
```

DataFrame.isnull

DataFrame.isnull()

Return a boolean same-sized object indicating if the values are null.

See also:

.notnull boolean inverse of isnull
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.DataFrame.items

DataFrame.items()
Iterator over (column name, Series) pairs.

See also:

iterrows Iterate over DataFrame rows as (index, Series) pairs.
itertuples Iterate over DataFrame rows as namedtuples of the values.

pandas.DataFrame.iteritems

DataFrame.iteritems()
Iterator over (column name, Series) pairs.

See also:

iterrows Iterate over DataFrame rows as (index, Series) pairs.
itertuples Iterate over DataFrame rows as namedtuples of the values.

pandas.DataFrame.iterrows

DataFrame.iterrows()
Iterate over DataFrame rows as (index, Series) pairs.

Returns

it: generator
A generator that iterates over the rows of the frame.

See also:

itertuples Iterate over DataFrame rows as namedtuples of the values.
iteritems Iterate over (column name, Series) pairs.

Notes

1. Because iterrows returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python
>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
```

To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns namedtuples of the values and which is generally faster than iterrows.
2. You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.

pandas.DataFrame.itertuples

Dataframe.\texttt{itertuples}(\texttt{index=True, name='Pandas'})

Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.

Parameters

- **index** : boolean, default True
 - If True, return the index as the first element of the tuple.
- **name** : string, default “Pandas”
 - The name of the returned namedtuples or None to return regular tuples.

See also:

- **iterrows** Iterate over DataFrame rows as (index, Series) pairs.
- **iteritems** Iterate over (column name, Series) pairs.

Notes

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.

Examples

```python
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
                index=['a', 'b'])
>>> df
     col1  col2
a     1  0.1
b     2  0.2
>>> for row in df.itertuples():
...     print(row)
...     print(row)
Pandas(Index='a', col1=1, col2=0.10000000000000001)
Pandas(Index='b', col1=2, col2=0.20000000000000001)
```

pandas.DataFrame.join

Dataframe.\texttt{join}(\texttt{other, on=None, how='left', lsuffix='', rsuffix='', sort=False})

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters

- **other** : DataFrame, Series with name field set, or list of DataFrame
 - Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.
- **on** : column name, tuple/list of column names, or array-like
Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.
- left: use calling frame’s index (or column if on is specified)
- right: use other frame’s index
- outer: form union of calling frame’s index (or column if on is specified) with other frame’s index, and sort it lexicographically
- inner: form intersection of calling frame’s index (or column if on is specified) with other frame’s index, preserving the order of the calling’s one

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword)

Returns joined : DataFrame

See also:

pandas.DataFrame.merge For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

```python
>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
                          'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
```

```python
>>> caller
   A  key
0  A0  K0
1  A1  K1
2  A2  K2
3  A3  K3
4  A4  K4
5  A5  K5
```

```python
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
                         'B': ['B0', 'B1', 'B2']})
```
Join DataFrames using their indexes.

```python
>>> caller.join(other, lsuffix='_caller', rsuffix='_other')
```

<table>
<thead>
<tr>
<th></th>
<th>A key_caller</th>
<th>B key_other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A0</td>
<td>K0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>K2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>NaN</td>
</tr>
</tbody>
</table>

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

```python
>>> caller.set_index('key').join(other.set_index('key'))
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>K0</td>
<td>A0</td>
</tr>
<tr>
<td></td>
<td>K1</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>K2</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>K3</td>
<td>A3</td>
</tr>
<tr>
<td></td>
<td>K4</td>
<td>A4</td>
</tr>
<tr>
<td></td>
<td>K5</td>
<td>A5</td>
</tr>
</tbody>
</table>

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

```python
>>> caller.join(other.set_index('key'), on='key')
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A0</td>
<td>K0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>K2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>NaN</td>
</tr>
</tbody>
</table>

pandas.DataFrame.keys

DataFrame.keys()

Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.
pandas.DataFrame.kurt

DataFrame.kurt (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : Series or DataFrame (if level specified)

pandas.DataFrame.kurtosis

DataFrame.kurtosis (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : Series or DataFrame (if level specified)

pandas.DataFrame.last

DataFrame.last (offset)
Convenience method for subsetting final periods of time series data based on a date offset.

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last('5M') -> Last 5 months
pandas.DataFrame.last_valid_index

DataFrame.last_valid_index()
Return label for last non-NA/null value

pandas.DataFrame.le

DataFrame.le(other, axis='columns', level=None)
Wrapper for flexible comparison methods le

pandas.DataFrame.lookup

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

Parameters:
row_labels : sequence
The row labels to use for lookup

col_labels : sequence
The column labels to use for lookup

Notes

Akin to:

```python
result = []
for row, col in zip(row_labels, col_labels):
    result.append(df.get_value(row, col))
```

Examples

values [ndarray] The found values

pandas.DataFrame.lt

DataFrame.lt(other, axis='columns', level=None)
Wrapper for flexible comparison methods lt

pandas.DataFrame.mad

DataFrame.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters:
axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mad : Series or DataFrame (if level specified)

pandas.DataFrame.mask

DataFrame.mask (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

Parameters cond : boolean NDFrame, array-like, or callable

If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used.
The signature for `DataFrame.where()` differs from `numpy.where()`. Roughly `df1.where(m, df2)` is equivalent to `np.where(m, df1, df2).

For further details and examples see the mask documentation in `indexing`.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
     A  B
0    0  -1
1    1  -2
2  -4  -5
3  6    7
4  8    9
>>> df.where(m, -df) == np.where(m, df, -df)
     A  B
0   True True
1   True True
2   True True
3   True True
4   True True
>>> df.where(m, -df) == df.mask(~m, -df)
     A  B
0   True True
1   True True
2   True True
3   True True
4   True True
```

pandas.DataFrame.max

`DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the maximum of the values in the object. If you want the index of the maximum, use `idxmax`. This is the equivalent of the `numpy.ndarray` method `argmax`.

Parameters

- `axis`: index (0), columns (1)
- `skipna`: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level`: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns max : Series or DataFrame (if level specified)

pandas.DataFrame.mean

DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mean : Series or DataFrame (if level specified)

pandas.DataFrame.median

DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns median : Series or DataFrame (if level specified)

pandas.DataFrame.melt

DataFrame.melt(id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)
“Un pivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

New in version 0.20.0.

Parameters

- **frame**: DataFrame
 - **id_vars**: tuple, list, or ndarray, optional
 - Column(s) to use as identifier variables.
 - **value_vars**: tuple, list, or ndarray, optional
 - Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
 - **var_name**: scalar
 - Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.
 - **value_name**: scalar, default ‘value’
 - Name to use for the ‘value’ column.
 - **col_level**: int or string, optional
 - If columns are a MultiIndex then use this level to melt.

See also:
melt, pivot_table, DataFrame.pivot

Examples

```python
>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
...                    'B': {0: 1, 1: 3, 2: 5},
...                    'C': {0: 2, 1: 4, 2: 6}})
>>> df
   A  B  C
0  a  1  2
1  b  3  4
2  c  5  6

>>> df.melt(id_vars=['A'], value_vars=['B'])
   A  variable  value
0  a      B    1
1  b      B    3
2  c      B    5

>>> df.melt(id_vars=['A'], value_vars=['B', 'C'])
   A  variable  value
0  a      B    1
1  b      B    3
2  c      B    5
3  a      C    2
4  b      C    4
5  c      C    6
```

The names of ‘variable’ and ‘value’ columns can be customized:
>>> df.melt(id_vars=['A'], value_vars=['B'],
... var_name='myVarname', value_name='myValname')

<table>
<thead>
<tr>
<th>A</th>
<th>myVarname</th>
<th>myValname</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>B</td>
</tr>
</tbody>
</table>

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]
>>> df

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>5</td>
</tr>
</tbody>
</table>

>>> df.melt(col_level=0, id_vars=['A'], value_vars=['B'])

<table>
<thead>
<tr>
<th>A</th>
<th>variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>B</td>
</tr>
</tbody>
</table>

>>> df.melt(id_vars=[('A', 'D')], value_vars=[('B', 'E')])

<table>
<thead>
<tr>
<th>(A, D)</th>
<th>variable_0</th>
<th>variable_1</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

pandas.DataFrame.memory_usage

*DataFrame.*memory_usage*(index=True, deep=False)*

Memory usage of DataFrame columns.

Parameters

- **index**: bool

 Specifies whether to include memory usage of DataFrame’s index in returned Series. If *index=True* (default is False) the first index of the Series is *Index*.

- **deep**: bool

 Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns

- **sizes**: Series

 A series with column names as index and memory usage of columns with units of bytes.

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if *deep=False*
DataFrame.merge

$$\text{DataFrame.merge}(\text{right}, \text{how}='inner', \text{on}=\text{None}, \text{left}_\text{on}=\text{None}, \text{right}_\text{on}=\text{None}, \text{left}_\text{index}=\text{False}, \text{right}_\text{index}=\text{False}, \text{sort}=\text{False}, \text{suffixes}=('_x', '_y'), \text{copy}=\text{True}, \text{indicator}=\text{False})$$

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

- **right** : DataFrame
 - how : {'left', 'right', 'outer', 'inner'}, default 'inner'
 - left: use only keys from left frame, similar to a SQL left outer join; preserve key order
 - right: use only keys from right frame, similar to a SQL right outer join; preserve key order
 - outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically
 - inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys
 - on : label or list
 - Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.
 - left_on : label or list, or array-like
 - Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
 - right_on : label or list, or array-like
 - Field names to join on in right DataFrame or vector/list of vectors per left_on docs
 - left_index : boolean, default False
 - Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels
 - right_index : boolean, default False
 - Use the index from the right DataFrame as the join key. Same caveats as left_index
 - sort : boolean, default False
 - Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword)
 - suffixes : 2-length sequence (tuple, list, ...)
 - Suffix to apply to overlapping column names in the left and right side, respectively
 - copy : boolean, default True
 - If False, do not copy data unnecessarily
 - indicator : boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is found in both.

New in version 0.17.0.

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge_ordered, merge_asof

Examples

```python
>>> A
lkey value
type
0 foo 1
1 bar 2
2 baz 3
3 foo 4
>>> B
rkey value
0 foo 5
1 bar 6
2 qux 7
>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y
type
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```

pandas.DataFrame.min

DataFrame.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Returns
Series or DataFrame (if level specified)

pandas.DataFrame.mod

\[\text{DataFrame} . \mod \text{(other, axis='columns', level=None, fill_value=None)}\]

Modulo of dataframe and other, element-wise (binary operator \(\mod \)).

Equivalent to \(\text{dataframe} \ % \ \text{other} \), but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other : Series, DataFrame, or constant
axis : \{0, 1, ‘index’, ‘columns’\}
 For Series input, axis to match Series index on
fill_value : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

See also:
DataFrame.rmod

Notes

Mismatched indices will be unioned together

pandas.DataFrame.mode

\[\text{DataFrame} . \mode \text{(axis=0, numeric_only=False)}\]

Gets the mode(s) of each element along the axis selected. Adds a row for each mode per label, fills in gaps with nan.

Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe \(df \), you can just do this: \(df.fillna(df.mode().iloc[0]) \)

Parameters
axis : \{0 or ‘index’, 1 or ‘columns’\}, default 0
 - 0 or ‘index’: get mode of each column
 - 1 or ‘columns’: get mode of each row
numeric_only : boolean, default False
 if True, only apply to numeric columns

Returns
modes : DataFrame (sorted)
Examples

```python
>>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]})
>>> df.mode()
    A
0  1
1  2
```

`pandas.DataFrame.mul`

DataFrame.mul *(other, axis='columns', level=None, fill_value=None)*

Multiplication of dataframe and other, element-wise (binary operator `mul`).

Equivalent to `dataframe * other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters

- **other** : Series, DataFrame, or constant
 - **axis** : {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value** : None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level** : int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result** : DataFrame

See also

`DataFrame.rmul`

Notes

Mismatched indices will be unioned together

`pandas.DataFrame.multiply`

DataFrame.multiply *(other, axis='columns', level=None, fill_value=None)*

Multiplication of dataframe and other, element-wise (binary operator `mul`).

Equivalent to `dataframe * other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters

- **other** : Series, DataFrame, or constant
 - **axis** : {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value** : None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.rmul

Notes

Mismatched indices will be unioned together

pandas.DataFrame.ne

DataFrame.ne(other, axis='columns', level=None)
Wrapper for flexible comparison methods ne

pandas.DataFrame.nlargest

DataFrame.nlargest(n, columns, keep='first')
Get the rows of a DataFrame sorted by the n largest values of columns.
New in version 0.17.0.

Parameters n : int
 Number of items to retrieve

 columns : list or str
 Column name or names to order by

 keep : {'first', 'last', False}, default 'first'
 Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence.

Returns DataFrame

Examples

```python
>>> df = DataFrame({'a': [1, 10, 8, 11, -1],
... 'b': list('abdce'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nlargest(3, 'a')
   a  b  c
0  3  1  c  3
1  1  0  b  2
2  8  2  d  NaN
```
pandas.DataFrame.notnull

Dataframe.\texttt{notnull}()
Return a boolean same-sized object indicating if the values are not null.

\textbf{See also:}

\texttt{isnull} boolean inverse of notnull

pandas.DataFrame.nsmallest

\texttt{Dataframe.nsmallest}(n, columns, keep='first')
Get the rows of a Dataframe sorted by the \textit{n} smallest values of \textit{columns}.

New in version 0.17.0.

\textbf{Parameters}
\texttt{n}: int
Number of items to retrieve

\texttt{columns}: list or str
Column name or names to order by

\texttt{keep}: \{‘first’, ‘last’, False\}, default ‘first’
Where there are duplicate values: - \texttt{first}: take the first occurrence. - \texttt{last}: take the last occurrence.

\textbf{Returns}
DataFrame

\textbf{Examples}

\begin{verbatim}
>>> df = DataFrame({'a': [1, 10, 8, 11, -1],
... 'b': list('abdce'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nsmallest(3, 'a')
 a b c
4 -1 e 4
0 1 a 1
2 8 d NaN
\end{verbatim}

pandas.DataFrame.nunique

\texttt{Dataframe.nunique}(axis=0, dropna=True)
Return Series with number of distinct observations over requested axis.

New in version 0.20.0.

\textbf{Parameters}
\texttt{axis}: {0 or ‘index’, 1 or ‘columns’}, default 0

\texttt{dropna}: boolean, default True
Don’t include NaN in the counts.

\textbf{Returns}
\texttt{nunique}: Series
Examples

```python
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]})
>>> df.nunique()
A  3
B  1
```

```python
>>> df.nunique(axis=1)
0  1
1  2
2  2
```

pandas.DataFrame.pct_change

DataFrame.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)

Percent change over given number of periods.

Parameters

- **periods** : int, default 1

 Periods to shift for forming percent change

- **fill_method** : str, default 'pad'

 How to handle NAs before computing percent changes

- **limit** : int, default None

 The number of consecutive NAs to fill before stopping

- **freq** : DateOffset, timedelta, or offset alias string, optional

 Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

- **chg** : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the **axis** keyword argument.

pandas.DataFrame.pipe

DataFrame.pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

New in version 0.16.2.

Parameters

- **func** : function

 function to apply to the NDFrame. **args** and **kwargs** are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

- **args** : positional arguments passed into func.

- **kwargs** : a dictionary of keyword arguments passed into func.
Returns object: the return type of func.

See also:

pandas.DataFrame.apply, pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipe when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(h(g(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe(f, arg2=b, arg3=c)
...)
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:

```python
>>> (df.pipe(h)
...    .pipe(g, arg1=a)
...    .pipe((f, 'arg2'), arg1=a, arg3=c)
...)
```

pandas.DataFrame.pivot

DataFrame.pivot(index=None, columns=None, values=None)

Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame.

Parameters

- **index**: string or object, optional
 - Column name to use to make new frame’s index. If None, uses existing index.

- **columns**: string or object
 - Column name to use to make new frame’s columns

- **values**: string or object, optional
 - Column name to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns

Returns pivoted: DataFrame

See also:

- DataFrame.pivot_table generalization of pivot that can handle duplicate values for one index/column pair
- DataFrame.unstack pivot based on the index values instead of a column
Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods

Examples

```python
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
                    'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
                    'baz': [1, 2, 3, 4, 5, 6]})

>>> df
   foo  bar  baz
0   one   A   1
1   one   B   2
2   one   C   3
3   two   A   4
4   two   B   5
5   two   C   6

>>> df.pivot(index='foo', columns='bar', values='baz')
   A  B  C
foo
one 1  2  3
two 4  5  6

>>> df.pivot(index='foo', columns='bar')['baz']
   A  B  C
foo
one 1  2  3
two 4  5  6
```

`pandas.DataFrame.pivot_table`

DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters

- **data**: DataFrame

 - **values**: column to aggregate, optional

 - **index**: column, Grouper, array, or list of the previous

 If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.

 - **columns**: column, Grouper, array, or list of the previous

 If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.

- **aggfunc**: function or list of functions, default numpy.mean
If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

fill_value: scalar, default None

Value to replace missing values with

margins: boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna: boolean, default True

Do not include columns whose entries are all NaN

margins_name: string, default 'All'

Name of the row / column that will contain the totals when margins is True.

Returns

- **table**: DataFrame

See also:

`DataFrame.pivot` pivot without aggregation that can handle non-numeric data

Examples

```python
>>> df
       A   B     C  D
   0  foo  one  small  1
   1  foo  one  large  2
   2  foo  one  large  2
   3  foo  two  small  3
   4  foo  two  small  3
   5  bar  one  large  4
   6  bar  one  small  5
   7  bar  two  small  6
   8  bar  two  large  7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
                      columns=['C'], aggfunc=np.sum)

>>> table
   small  large
  foo  one  1   4
       two  6  NaN
  bar  one  5   4
       two  6   7
```

pandas.DataFrame.plot

`DataFrame.plot` *(x=*, *y=*, *kind=*, *ax=*, *subplots=*, *sharex=*, *sharey=*, *layout=*, *figsize=*, *use_index=*, *title=*, *grid=*, *legend=*, *style=*, *logx=*, *logy=*, *loglog=*, *

xticks=, *yticks=*, *xlim=*, *ylim=*, *rot=*, *fontsize=*, *colormap=*, *table=*, *yerr=*, *xerr=*, *secondary_y=*, *sort_columns=*, **kwds)*

Make plots of DataFrame using matplotlib / pylab.
New in version 0.17.0: Each plot kind has a corresponding method on the DataFrame.plot accessor: df.plot(kind='line') is equivalent to df.plot.line().

Parameters

- **data**: DataFrame
 - **x**: label or position, default None
 - **y**: label or position, default None
 - Allows plotting of one column versus another
 - **kind**: str
 - ‘line’: line plot (default)
 - ‘bar’: vertical bar plot
 - ‘barh’: horizontal bar plot
 - ‘hist’: histogram
 - ‘box’: boxplot
 - ‘kde’: Kernel Density Estimation plot
 - ‘density’: same as ‘kde’
 - ‘area’: area plot
 - ‘pie’: pie plot
 - ‘scatter’: scatter plot
 - ‘hexbin’: hexbin plot
 - **ax**: matplotlib axes object, default None
 - **subplots**: boolean, default False
 - Make separate subplots for each column
 - **sharex**: boolean, default True if ax is None else False
 - In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!
 - **sharey**: boolean, default False
 - In case subplots=True, share y axis and set some y axis labels to invisible
 - **layout**: tuple (optional)
 - (rows, columns) for the layout of subplots
 - **figsize**: a tuple (width, height) in inches
 - **use_index**: boolean, default True
 - Use index as ticks for x axis
 - **title**: string or list
 - Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and subplots is True, print each item in the list above the corresponding subplot.
 - **grid**: boolean, default None (matlab style default)
 - Axis grid lines
legend: False/True/’reverse’
Place legend on axis subplots

style: list or dict
matplotlib line style per column

logx: boolean, default False
Use log scaling on x axis

logy: boolean, default False
Use log scaling on y axis

loglog: boolean, default False
Use log scaling on both x and y axes

xticks: sequence
Values to use for the xticks

yticks: sequence
Values to use for the yticks

xlim: 2-tuple/list

ylim: 2-tuple/list

rot: int, default None
Rotation for ticks (xticks for vertical, yticks for horizontal plots)

fontsize: int, default None
Font size for xticks and yticks

colormap: str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar: boolean, optional
If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position: float
Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout: tuple (optional)
(rows, columns) for the layout of the plot

table: boolean, Series or DataFrame, default False
If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr: DataFrame, Series, array-like, dict and str
See *Plotting with Error Bars* for detail.
xerr : same types as yerr.

stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis. If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns axes : matplotlib.AxesSubplot or np.array of them

Notes

• See matplotlib documentation online for more on this subject

• If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

• If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point.

• If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).

pandas.DataFrame.pop

DataFrame.pop (item)

Return item and drop from frame. Raise KeyError if not found.

pandas.DataFrame.pow

DataFrame.pow (other, axis=’columns’, level=None, fill_value=None)

Exponential power of dataframe and other, element-wise (binary operator pow).

Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on
fill_value: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result: DataFrame

See also:

DataFrame.rpow

Notes

Mismatched indices will be unioned together

pandas.DataFrame.prod

DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters axis: {index (0), columns (1)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns prod: Series or DataFrame (if level specified)

pandas.DataFrame.product

DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters axis: {index (0), columns (1)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **prod**: Series or DataFrame (if level specified)

pandas.DataFrame.quantile

DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters

- **q** : float or array-like, default 0.5 (50% quantile)

 0 <= q <= 1, the quantile(s) to compute

- **axis** : {0, 1, ‘index’, ‘columns’} (default 0)

 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

 New in version 0.18.0.

 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points \(i \) and \(j \):

 - **linear**: \(i + (j - i) \times fraction \), where \(fraction \) is the fractional part of the index surrounded by \(i \) and \(j \).

 - **lower**: \(i \).

 - **higher**: \(j \).

 - **nearest**: \(i \) or \(j \) whichever is nearest.

 - **midpoint**: \((i + j) / 2 \).

Returns

- **quantiles**: Series or DataFrame

 - If \(q \) is an array, a DataFrame will be returned where the index is \(q \), the columns are the columns of self, and the values are the quantiles.

 - If \(q \) is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                  columns=['a', 'b'])
>>> df.quantile(.1)
a  1.3
b  3.7
dtype: float64
>>> df.quantile([.1, .5])
a b
0.1 1.3 3.7
0.5 2.5 55.0
```
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.DataFrame.query

DataFrame.query(expr, inplace=False, **kwargs)
Query the columns of a frame with a boolean expression.
New in version 0.13.

Parameters

- **expr**: string
 The query string to evaluate. You can refer to variables in the environment by prefixing them with an `@` character like @a + b.

- **inplace**: bool
 Whether the query should modify the data in place or return a modified copy
 New in version 0.18.0.

- **kwargs**: dict
 See the documentation for pandas.eval() for complete details on the keyword arguments accepted by DataFrame.query().

Returns

- **q**: DataFrame

See also:

pandas.eval, DataFrame.eval

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__().

This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine='python' to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query.

For further details and examples see the query documentation in indexing.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
# same result as the previous expression
```
pandas.DataFrame.radd

DataFrame.radd(other, axis='columns', level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary operator radd).
Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns** result**: DataFrame

See also:
- DataFrame.add

Notes
Mismatched indices will be unioned together

pandas.DataFrame.rank

DataFrame.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
 - index to direct ranking
- **method**: {'average', 'min', 'max', 'first', 'dense'}
 - average: average rank of group
 - min: lowest rank in group
 - max: highest rank in group
 - first: ranks assigned in order they appear in the array
 - dense: like ‘min’, but rank always increases by 1 between groups
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. Valid only for DataFrame or Panel objects
pandas: powerful Python data analysis toolkit, Release 0.20.1

na_option: {'keep', 'top', 'bottom'}
- keep: leave NA values where they are
- top: smallest rank if ascending
- bottom: smallest rank if descending

ascending: boolean, default True
False for ranks by high (1) to low (N)

pct: boolean, default False
Computes percentage rank of data

Returns
ranks: same type as caller

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator rtruediv).
Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

See also:
DataFrame.truediv

Notes
Mismatched indices will be unioned together

pandas.DataFrame.reindex

DataFrame.reindex(index=None, columns=None, **kwargs)
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **index, columns**: array-like, optional (can be specified in order, or as
keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

method: {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional

method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

- default: don’t fill gaps
- pad / ffill: propagate last valid observation forward to next valid
- backfill / bfill: use next valid observation to fill gap
- nearest: use nearest valid observations to fill gap

copy: boolean, default True

Return a new object, even if the passed indexes are the same

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value: scalar, default np.Nan

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit: int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance: optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns **reindexed**: DataFrame

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
...     'http_status': [200, 200, 404, 404, 301],
...     'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
...     index=index}
>>> df
<table>
<thead>
<tr>
<th>http_status</th>
<th>response_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firefox</td>
<td>200</td>
</tr>
<tr>
<td>Chrome</td>
<td>200</td>
</tr>
<tr>
<td>Safari</td>
<td>404</td>
</tr>
<tr>
<td>IE10</td>
<td>404</td>
</tr>
<tr>
<td>Konqueror</td>
<td>301</td>
</tr>
</tbody>
</table>
```

Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ...
 'Chrome']
>>> df.reindex(new_index)

<table>
<thead>
<tr>
<th></th>
<th>http_status</th>
<th>response_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safari</td>
<td>404.0</td>
<td>0.07</td>
</tr>
<tr>
<td>Iceweasel</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>Comodo Dragon</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>IE10</td>
<td>404.0</td>
<td>0.08</td>
</tr>
<tr>
<td>Chrome</td>
<td>200.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

We can fill in the missing values by passing a value to the keyword `fill_value`. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword `method` to fill the `NaN` values.

>>> df.reindex(new_index, fill_value=0)

<table>
<thead>
<tr>
<th></th>
<th>http_status</th>
<th>response_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safari</td>
<td>404</td>
<td>0.07</td>
</tr>
<tr>
<td>Iceweasel</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Comodo Dragon</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>IE10</td>
<td>404</td>
<td>0.08</td>
</tr>
<tr>
<td>Chrome</td>
<td>200</td>
<td>0.02</td>
</tr>
</tbody>
</table>

>>> df.reindex(new_index, fill_value='missing')

<table>
<thead>
<tr>
<th></th>
<th>http_status</th>
<th>response_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safari</td>
<td>404</td>
<td>0.07</td>
</tr>
<tr>
<td>Iceweasel</td>
<td>missing</td>
<td>missing</td>
</tr>
<tr>
<td>Comodo Dragon</td>
<td>missing</td>
<td>missing</td>
</tr>
<tr>
<td>IE10</td>
<td>404</td>
<td>0.08</td>
</tr>
<tr>
<td>Chrome</td>
<td>200</td>
<td>0.02</td>
</tr>
</tbody>
</table>

To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2

<table>
<thead>
<tr>
<th></th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01-01</td>
<td>100</td>
</tr>
<tr>
<td>2010-01-02</td>
<td>101</td>
</tr>
<tr>
<td>2010-01-03</td>
<td>NaN</td>
</tr>
<tr>
<td>2010-01-04</td>
<td>100</td>
</tr>
<tr>
<td>2010-01-05</td>
<td>89</td>
</tr>
<tr>
<td>2010-01-06</td>
<td>88</td>
</tr>
</tbody>
</table>

Suppose we decide to expand the dataframe to cover a wider date range.

>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)

<table>
<thead>
<tr>
<th></th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-29</td>
<td>NaN</td>
</tr>
<tr>
<td>2009-12-30</td>
<td>NaN</td>
</tr>
<tr>
<td>2009-12-31</td>
<td>NaN</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>100</td>
</tr>
<tr>
<td>2010-01-02</td>
<td>101</td>
</tr>
<tr>
<td>2010-01-03</td>
<td>NaN</td>
</tr>
<tr>
<td>2010-01-04</td>
<td>100</td>
</tr>
</tbody>
</table>
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to the method keyword.

```python
>>> df2.reindex(date_index2, method='bfill')
                   prices
          2009-12-29    100
          2009-12-30    100
          2009-12-31    100
          2010-01-01    100
          2010-01-02    101
          2010-01-03   NaN
          2010-01-04    100
          2010-01-05    89
          2010-01-06    88
          2010-01-07   NaN
```

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the `fillna()` method.

pandas.DataFrame.reindex_axis

DataFrame.reindex_axis(label, axis=0, method=None, level=None, copy=True, limit=None, fill_value=None)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **labels**: array-like
 New labels/index to conform to. Preferably an Index object to avoid duplicating data
- **axis**: {0 or ‘index’, 1 or ‘columns’}
- **method**: {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
 Method to use for filling holes in reindexed DataFrame:
 - default: don’t fill gaps
 - pad/ffill: propagate last valid observation forward to next valid
 - backfill/bfill: use next valid observation to fill gap
 - nearest: use nearest valid observations to fill gap
- **copy**: boolean, default True
 Return a new object, even if the passed indexes are the same
- **level**: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation $\text{abs(index[indexer] - target)} \leq \text{tolerance}$.

New in version 0.17.0.

Returns reindexed : DataFrame

See also:

reindex, reindex_like

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.DataFrame.reindex_like

DataFrame.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Return an object with matching indices to myself.

Parameters

other : Object

method : string or None

copy : boolean, default True

limit : int, default None

Maximum number of consecutive labels to fill for inexact matches.

tolerance : optional

Maximum distance between labels of the other object and this object for inexact matches.

New in version 0.17.0.

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename(index=None, columns=None, **kwargs)

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series. name with a scalar value (Series only).
Parameters
index, *columns*: scalar, list-like, dict-like or function, optional

Scalar or list-like will alter the `Series.name` attribute, and raise on DataFrame or Panel. Dict-like or functions are transformations to apply to that axis' values

copy: boolean, default True

Also copy underlying data

inplace: boolean, default False

Whether to return a new DataFrame. If True then value of copy is ignored.

level: int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns
renamed: DataFrame (new object)

See also:

`pandas.NDFrame.rename_axis`

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: int64
>>> s.rename("my_name")  # scalar, changes Series.name
0    1
1    2
2    3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2)  # function, changes labels
0    1
1    2
4    3
dtype: int64
>>> s.rename({1: 3, 2: 5})  # mapping, changes labels
0    1
3    2
5    3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
Traceback (most recent call last):
...  
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
   a   c
0  1  4
1  2  5
2  3  6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
   a  B
0  1  4
```
pandas.DataFrame.rename_axis

DataFrame.rename_axis (mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. A scalar or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters mapper : scalar, list-like, dict-like or function, optional
 axis : int or string, default 0
 copy : boolean, default True
 Also copy underlying data
 inplace : boolean, default False

Returns renamed : type of caller

See also:
pandas.NDFrame.rename, pandas.Index.rename

Examples

```python
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo")  # scalar, alters df.index.name
   A  B
0  1  4
1  2  5
2  3  6
>>> df.rename_axis(lambda x: 2 * x)  # function: alters labels
   A  B
0  1  4
1  2  5
2  3  6
>>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns")  # mapping
   ehh  B
0  1  4
1  2  5
2  3  6
```

pandas.DataFrame.reorder_levels

DataFrame.reorder_levels (order, axis=0)

Rearrange index levels using input order. May not drop or duplicate levels

Parameters order : list of int or list of str
 List representing new level order. Reference level by number (position) or by key (label).
axis : int

Where to reorder levels.

Returns type of caller (new object)

pandas.DataFrame.replace

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in 'to_replace' with 'value'.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexs matching to_replace will be replaced with value

- list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.

- dict:
 - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column 'a' for the value 'b' and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
 - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill
regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when to_replace is a list.

Returns filled : NDFrame

Raises AssertionError

- If regex is not a bool and to_replace is not None.

TypeError

- If to_replace is a dict and value is not a list, dict, ndarray, or Series
- If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

- If to_replace and value are lists or ndarrays, but they are not the same length.

See also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

- Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.DataFrame.resample

DataFrame.resample (rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

Parameters rule : string

the offset string or object representing target conversion

axis : int, optional, default 0

closed : {'right', 'left'}
Which side of bin interval is closed

label: {'right', 'left'}

Which bin edge label to label bucket with

convention: {'start', 'end', 's', 'e'}

offset: timedelta

Adjust the resampled time labels

base: int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

on: string, optional

For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

New in version 0.19.0.

level: string or int, optional

For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.

New in version 0.19.0.

Notes

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
```
Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label “2000-01-01 00:03:00” does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00    3
2000-01-01 00:06:00   12
2000-01-01 00:09:00   21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00    0
2000-01-01 00:03:00    6
2000-01-01 00:06:00   15
2000-01-01 00:09:00   15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] # select first 5 rows
2000-01-01 00:00:00   0.0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00   1.0
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00   2.0
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the pad method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00   0
2000-01-01 00:00:30   0
2000-01-01 00:01:00   1
2000-01-01 00:01:30   1
2000-01-01 00:02:00   2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00   0
2000-01-01 00:00:30   1
2000-01-01 00:01:00   1
2000-01-01 00:01:30   2
2000-01-01 00:02:00   2
Freq: 30S, dtype: int64
```

Pass a custom function via apply.
```python
>>> def custom_resampler(array_like):
...     return np.sum(array_like) + 5

>>> series.resample('3T').apply(custom_resampler)
Freq: 3T, dtype: int64
2000-01-01 00:00:00    8
2000-01-01 00:03:00   17
2000-01-01 00:06:00   26
```

For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling.

```python
>>> df = pd.DataFrame(data=9*range(4), columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
a    b    c    d
2000-01-01 00:00:00  0  3  6  9
2000-01-01 00:03:00  0  3  6  9
2000-01-01 00:06:00  0  3  6  9
```

For a DataFrame with MultiIndex, the keyword `level` can be used to specify on level the resampling needs to take place.

```python
>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*range(4), columns=['a', 'b', 'c', 'd'],
                     index=pd.MultiIndex.from_product([time, [1, 2]])
                    )
>>> df2.resample('3T', level=0).sum()
a    b    c    d
2000-01-01 00:00:00  0  6 12 18
2000-01-01 00:03:00  0  4  8 12
```

pandas.DataFrame.reset_index

DataFrame.reset_index (level=None, drop=False, inplace=False, col_level=0, col_fill='')

For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters

- **level**: int, str, tuple, or list, default None
 - Only remove the given levels from the index. Removes all levels by default

- **drop**: boolean, default False
 - Do not try to insert index into dataframe columns. This resets the index to the default integer index.

- **inplace**: boolean, default False
 - Modify the DataFrame in place (do not create a new object)

- **col_level**: int or str, default 0
pandas: powerful Python data analysis toolkit, Release 0.20.1

If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

```
col_fill : object, default ''
```

If the columns have multiple levels, determines how the other levels are named.
If None then the index name is repeated.

Returns resetted : DataFrame

pandas.DataFrame.rfloordiv

```
DataFrame.rfloordiv(other, axis='columns', level=None, fill_value=None)
```

Integer division of dataframe and other, element-wise (binary operator `rfloordiv`).
Equivalent to `other // dataframe`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

```
axis : {0, 1, ‘index’, ‘columns’}
```
For Series input, axis to match Series index on

```
fill_value : None or float value, default None
```
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

```
level : int or name
```
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

```
DataFrame.floordiv
```

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmod

```
DataFrame.rmod(other, axis='columns', level=None, fill_value=None)
```

Modulo of dataframe and other, element-wise (binary operator `rmod`).
Equivalent to `other % dataframe`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

```
axis : {0, 1, ‘index’, ‘columns’}
```
For Series input, axis to match Series index on

```
fill_value : None or float value, default None
```
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

DataFrame.mod

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmul

DataFrame.rmul(other, axis='columns', level=None, fill_value=None)

Multiplication of dataframe and other, element-wise (binary operator rmul).

Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

DataFrame.mul

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rolling

DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None)

Provides rolling window calculations.

New in version 0.18.0.

Parameters window : int, or offset
Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1.

freq : string or DateOffset object, optional (default None) (DEPRECATED)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

win_type : string, default None

Provide a window type. See the notes below.

on : string, optional

For a DataFrame, column on which to calculate the rolling window, rather than the index.

closed : string, default None

Make the interval closed on the ‘right’, ‘left’, ‘both’ or ‘neither’ endpoints. For offset-based windows, it defaults to ‘right’. For fixed windows, defaults to ‘both’. Remaining cases not implemented for fixed windows.

New in version 0.20.0.

axis : int or string, default 0

Returns a Window or Rolling sub-classed for the particular operation

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

To learn more about the offsets & frequency strings, please see this link.

The recognized win_types are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
• bohman
• blackmanharris
• nuttall
• barthann
• kaiser (needs beta)
• gaussian (needs std)
• general_gaussian (needs power, width)
• slepian (needs width).

Examples

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
   B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0
```

Rolling sum with a window length of 2, using the ‘triang’ window type.

```python
>>> df.rolling(2, win_type='triang').sum()
   B
0  NaN
1  1.0
2  2.5
3  NaN
4  NaN
```

Rolling sum with a window length of 2, min_periods defaults to the window length.

```python
>>> df.rolling(2).sum()
   B
0  NaN
1  1.0
2  3.0
3  NaN
4  NaN
```

Same as above, but explicitly set the min_periods

```python
>>> df.rolling(2, min_periods=1).sum()
   B
0  0.0
1  1.0
2  3.0
3  2.0
4  4.0
```

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

34.4. DataFrame

1503
Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1.

```
>>> df.rolling('2s').sum()
      B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
```

pandas.DataFrame.round

DataFrames have a `round` method that rounds each column to a specified number of decimal places.

```
DataFrame.round(decimals=0, *args, **kwargs)
```

Round a DataFrame to a variable number of decimal places.

New in version 0.17.0.

Parameters

- **decimals**: int, dict, Series

 Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored.

Returns

DataFrame object

See also:

- `numpy.around`
- `Series.round`

Examples

```
>>> df = pd.DataFrame(np.random.random((3, 3)),
...                   columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
>>> df
          A         B         C
first 0.028208 0.992815 0.173891
```

1504 Chapter 34. API Reference
```python
second      0.038683  0.645646  0.577595
third       0.877076  0.149370  0.491027
>>> df.round(2)
   A    B    C
first   0.03  0.99  0.17
second  0.04  0.65  0.58
third   0.88  0.15  0.49
>>> df.round({'A': 1, 'C': 2})
   A    B    C
first  0.0  0.992815  0.17
second 0.0  0.645646  0.58
third  0.9  0.149370  0.49
>>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C'])
>>> df.round(decimals)
   A    B    C
first  0.0  1.0  0.17
second 0.0  1.0  0.58
third  0.9  0.0  0.49
```

pandas.DataFrame.pow

DataFrame `.pow(other, axis='columns', level=None, fill_value=None)`
Exponential power of dataframe and other, element-wise (binary operator `rpow`).
Equivalent to `other ** dataframe`, but with support to substitute a `fill_value` for missing data in one of the inputs.

- **Parameters**
 - `other`: Series, DataFrame, or constant
 - `axis`: {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 - `fill_value`: None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - `level`: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns** `result`: DataFrame

See also:

`DataFrame.pow`

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rsub

DataFrame `.rsub(other, axis='columns', level=None, fill_value=None)`
Subtraction of dataframe and other, element-wise (binary operator `rsub`).
Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result**: DataFrame

See also
- `DataFrame.sub`

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rtruediv

DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result**: DataFrame

See also
- `DataFrame.truediv`

Notes

Mismatched indices will be unioned together
DataFrame sample

DataFrame . sample (n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of object.

New in version 0.16.1.

Parameters:
- `n`: int, optional
 - Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None.
- `frac`: float, optional
 - Fraction of axis items to return. Cannot be used with `n`.
- `replace`: boolean, optional
 - Sample with or without replacement. Default = False.
- `weights`: str or ndarray-like, optional
 - Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.
- `random_state`: int or numpy.random.RandomState, optional
 - Seed for the random number generator (if int), or numpy RandomState object.
- `axis`: int or string, optional
 - Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns:
A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0   -0.038497
1    1.820773
2   -0.972766
3  -1.598270
4  -1.095526
dtype: float64
>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
    A         B         C         D
0  0.016443  -2.318952  -0.566372  -1.028078
1 -1.051921   0.438836   0.658280  -0.175797
2 -1.243569  -0.364626  -0.215065   0.057736
```
Next extract a random sample from both of these objects...

3 random elements from the Series:

>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64

And a random 10% of the DataFrame with replacement:

>>> df.sample(frac=0.1, replace=True)
A B C D
35 1.98180 0.1421 0.817165 -0.290805
49 1.336199 -0.46834 -0.789640 0.217116
40 0.823173 -0.788161 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
 6 -0.148339 0.832938 1.787600 -1.393767

g**data**: powerful Python data analysis toolkit, Release 0.20.1

pandas.DataFrame.select

DataFrame.select (crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters crit : function
To be called on each index (label). Should return True or False

axis : int

Returns selection : type of caller

pandas.DataFrame.select_dtypes

DataFrame.select_dtypes (include=None, exclude=None)
Return a subset of a DataFrame including/excluding columns based on their dtype.

Parameters include, exclude : list-like
A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

Returns subset : DataFrame
The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Raises ValueError
- If both of include and exclude are empty
- If include and exclude have overlapping elements
- If any kind of string dtype is passed in.
TypeError
- If either of `include` or `exclude` is not a sequence

Notes
- To select all numeric types use the numpy dtype `numpy.number`
- To select strings you must use the object dtype, but note that this will return all object dtype columns
- See the numpy dtype hierarchy
- To select datetimes, use `np.datetime64`, ‘datetime’ or ‘datetime64’
- To select timedeltas, use `np.timedelta64`, ‘timedelta’ or ‘timedelta64’
- To select Pandas categorical dtypes, use ‘category’
- To select Pandas datetimetz dtypes, use ‘datetimetz’ (new in 0.20.0), or a ‘datetime64[ns, tz]’ string

Examples

```python
>>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),
...                    'b': [True, False] * 3,
...                    'c': [1.0, 2.0] * 3})
>>> df
   a    b    c
0 0.3962 True  1
1 0.1459 False  2
2 0.2623 True  1
3 0.0764 False  2
4 -0.9703 True  1
5 -1.2094 False  2
>>> df.select_dtypes(include=['float64'])
   c
0  1
1  2
2  1
3  2
4  1
5  2
>>> df.select_dtypes(exclude=['floating'])
   b
0  True
1 False
2  True
3  False
4  True
5  False
```

`pandas.DataFrame.sem`

DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
Parameters

axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

ddf : int, default 1

degrees of freedom

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

sem : Series or DataFrame (if level specified)

pandas.DataFrame.set_axis

DataFrame.set_axis(axis, labels)

public version of axis assignment

pandas.DataFrame.set_index

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

Parameters

keys : column label or list of column labels / arrays

drop : boolean, default True

Delete columns to be used as the new index

append : boolean, default False

Whether to append columns to existing index

inplace : boolean, default False

Modify the DataFrame in place (do not create a new object)

verify_integrity : boolean, default False

Check the new index for duplicates. Otherwise defer the check until necessary.

Setting to False will improve the performance of this method

Returns

dataframe : DataFrame

Examples

>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])
pandas.DataFrame.set_value

DataFrame.set_value(index, col, value, takeable=False)

Put single value at passed column and index

Parameters
- **index**: row label
- **col**: column label
- **value**: scalar value
- **takeable**: interpret the index/col as indexers, default False

Returns
- **frame**: DataFrame

 If label pair is contained, will be reference to calling DataFrame, otherwise a new object

pandas.DataFrame.shift

Dataframe.shift(periods=1, freq=None, axis=0)

Shift index by desired number of periods with an optional time freq

Parameters
- **periods**: int

 Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, optional

 Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.
- **axis**: {0 or ‘index’, 1 or ‘columns’}

Returns
- **shifted**: DataFrame

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.DataFrame.skew

Dataframe.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Returns skew : Series or DataFrame (if level specified)

pandas.DataFrame.slice_shift

DataFrame.slice_shift(periods=1, axis=0)

Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters periods : int

Number of periods to move, can be positive or negative

Returns shifted : same type as caller

Notes

While the `slice_shift` is faster than `shift`, you may pay for it later during alignment.

pandas.DataFrame.sort_index

DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)

Sort object by labels (along an axis)

Parameters axis : index, columns to direct sorting

 level : int or level name or list of ints or list of level names

 if not None, sort on values in specified index level(s)

 ascending : boolean, default True

 Sort ascending vs. descending

 inplace : bool, default False

 if True, perform operation in-place

 kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'

 Choice of sorting algorithm. See also ndarray.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.

 na_position : {'first', 'last'}, default 'last'

 first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for MultiIndex.

 sort_remaining : bool, default True

 if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level

Returns sorted_obj : DataFrame
pandas.DataFrame.sort_values

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

Sort by the values along either axis

New in version 0.17.0.

Parameters

- **by**: str or list of str
 - Name or list of names which refer to the axis items.
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
 - Axis to direct sorting
- **ascending**: bool or list of bool, default True
 - Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- **inplace**: bool, default False
 - If True, perform operation in-place
- **kind**: {'quicksort', 'mergesort', 'heapsort'}, default ‘quicksort’
 - Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- **na_position**: {'first', 'last'}, default ‘last’
 - *first* puts NaNs at the beginning, *last* puts NaNs at the end

Returns

- **sorted_obj**: DataFrame

pandas.DataFrame.sortlevel

DataFrame.sortlevel(level=0, axis=0, ascending=True, inplace=False, sort_remaining=True)

DEPRECATED: use DataFrame.sort_index()

Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters

- **level**: int
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
- **ascending**: boolean, default True
- **inplace**: boolean, default False
 - Sort the DataFrame without creating a new instance
- **sort_remaining**: boolean, default True
 - Sort by the other levels too.

Returns

- **sorted**: DataFrame

See also:

DataFrame.sort_index
pandas.DataFrame.squeeze

DataFrame.squeeze(axis=None)
Squeeze length 1 dimensions.

Parameters axis : None, integer or string axis name, optional
The axis to squeeze if 1-sized.
New in version 0.20.0.

Returns scalar if 1-sized, else original object

pandas.DataFrame.stack

DataFrame.stack(level=-1, dropna=True)
Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted.

Parameters level : int, string, or list of these, default last level
Level(s) to stack, can pass level name
dropna : boolean, default True
Whether to drop rows in the resulting Frame/Series with no valid values

Returns stacked : DataFrame or Series

Examples

```python
>>> s
  a  b
one 1. 2.
two 3. 4.

>>> s.stack()
  one  a  1
     b  2
  two  a  3
     b  4
```

pandas.DataFrame.std

DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

ddof: int, default 1
degrees of freedom

numeric_only: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

std: Series or DataFrame (if level specified)

pandas.DataFrame.sub

DataFrame.sub(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result: DataFrame

See also

DataFrame.rsub

Notes

Mismatched indices will be unioned together

pandas.DataFrame.subtract

DataFrame.subtract(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.rsub

Notes
Mismatched indices will be unioned together

pandas.DataFrame.sum

DataFrame.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns sum : Series or DataFrame (if level specified)

pandas.DataFrame.swapaxes

DataFrame.swapaxes (axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns y : same as input

pandas.DataFrame.swaplevel

DataFrame.swaplevel (i=-2, j=-1, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns swapped: type of caller (new object)

Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

pandas.DataFrame.tail

DataFrame.tail($n=5$)

Returns last n rows

pandas.DataFrame.take

DataFrame.take($indices$, $axis=0$, $convert=True$, $is_copy=True$, **kwargs)

Analogous to ndarray.take

Parameters indices: list / array of ints

axis: int, default 0

convert: translate neg to pos indices (default)

is_copy: mark the returned frame as a copy

Returns taken: type of caller

pandas.DataFrame.to_clipboard

DataFrame.to_clipboard($excel=None$, $sep=None$, **kwargs)

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters excel: boolean, defaults to True

if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard

sep: optional, defaults to tab

other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.DataFrame.to_csv

DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='"', line_terminator='
', chunksize=None, tupleize_cols=False, date_format=None, doublequote=True, escapechar=None, decimal='.

Write DataFrame to a comma-separated values (csv) file

Parameters

path_or_buf : string or file handle, default None
 File path or object, if None is provided the result is returned as a string.

 sep : character, default ','
 Field delimiter for the output file.

 na_rep : string, default ''
 Missing data representation

 float_format : string, default None
 Format string for floating point numbers

 columns : sequence, optional
 Columns to write

 header : boolean or list of string, default True
 Write out column names. If a list of string is given it is assumed to be aliases for the column names

 index : boolean, default True
 Write row names (index)

 index_label : string or sequence, or False, default None
 Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R

 mode : str
 Python write mode, default ‘w’

 encoding : string, optional
 A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

 compression : string, optional
 A string representing the compression to use in the output file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument is a filename

 quoting : optional constant from csv module

 line_terminator : string, default '

 The newline character or character sequence to use in the output file
defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.

quotechar : string (length 1), default ‘”’
character used to quote fields

doublequote : boolean, default True
Control quoting of quotechar inside a field

escapechar : string (length 1), default None
character used to escape sep and quotechar when appropriate

chunksize : int or None
rows to write at a time

tupleize_cols : boolean, default False
write multi_index columns as a list of tuples (if True) or new (expanded format) if False

date_format : string, default None
Format string for datetime objects

decimal : string, default ‘.’
Character recognized as decimal separator. E.g. use ‘,’ for European data

New in version 0.16.0.

pandas.DataFrame.to_dense

DataFrame.to_dense()

Return dense representation of NDFrame (as opposed to sparse)

pandas.DataFrame.to_dict

DataFrame.to_dict(orient='dict')

Convert DataFrame to dictionary.

Parameters orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}

Determines the type of the values of the dictionary.

- dict (default) : dict like {column -> {index -> value}}
- list : dict like {column -> [values]}
- series : dict like {column -> Series(values)}
- split : dict like {index -> [index], columns -> [columns], data -> [values]}
- records : list like [{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value]}

New in version 0.17.0.

Abbreviations are allowed. s indicates series and sp indicates split.
Returns result: dict like `{column -> {index -> value}}`

pandas.DataFrame.to_excel

`DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)`

Write DataFrame to an excel sheet

Parameters

- **excel_writer**: string or ExcelWriter object
 - File path or existing ExcelWriter
- **sheet_name**: string, default ‘Sheet1’
 - Name of sheet which will contain DataFrame
- **na_rep**: string, default ‘’
 - Missing data representation
- **float_format**: string, default None
 - Format string for floating point numbers
- **columns**: sequence, optional
 - Columns to write
- **header**: boolean or list of string, default True
 - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
 - Write row names (index)
- **index_label**: string or sequence, default None
 - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **startrow**: upper left cell row to dump data frame
- **startcol**: upper left cell column to dump data frame
- **engine**: string, default None
 - Write engine to use - you can also set this via the options `io.excel.xlsx.writer`, `io.excel.xls.writer`, and `io.excel.xlsa.writer`.
- **merge_cells**: boolean, default True
 - Write MultiIndex and Hierarchical Rows as merged cells.
- **encoding**: string, default None
 - Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.
inf_rep : string, default ‘inf’
 Representation for infinity (there is no native representation for infinity in Excel)

freeze_panes : tuple of integer (length 2), default None
 Specifies the one-based bottommost row and rightmost column that is to be frozen
 New in version 0.20.0.

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can
be used to save different DataFrames to one workbook:

```python
>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

pandas.DataFrame.to_feather

DataFrame.to_feather(fname)

write out the binary feather-format for DataFrames
 New in version 0.20.0.

 Parameters
 fname : str
 string file path

pandas.DataFrame.to_gbq

DataFrame.to_gbq(destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists=’fail’, private_key=None)

Write a DataFrame to a Google BigQuery table.

The main method a user calls to export pandas DataFrame contents to Google BigQuery table.

Google BigQuery API Client Library v2 for Python is used. Documentation is available here

Authentication to the Google BigQuery service is via OAuth 2.0.

• If “private_key” is not provided:
 By default “application default credentials” are used.
 If default application credentials are not found or are restrictive, user account credentials are used.
 In this case, you will be asked to grant permissions for product name ‘pandas GBQ’.

• If “private_key” is provided:
 Service account credentials will be used to authenticate.

 Parameters
 dataframe : DataFrame
 DataFrame to be written
destination_table : string

Name of table to be written, in the form ‘dataset.tablename’

project_id : str

Google BigQuery Account project ID.

chunksize : int (default 10000)

Number of rows to be inserted in each chunk from the dataframe.

verbose : boolean (default True)

Show percentage complete

reauth : boolean (default False)

Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’

‘fail’: If table exists, do nothing. ‘replace’: If table exists, drop it, recreate it, and insert data. ‘append’: If table exists, insert data. Create if does not exist.

private_key : str (optional)

Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host)

pandas.DataFrame.to_hdf

DataFrame.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Parameters path_or_buf : the path (string) or HDFStore object

key : string
identifier for the group in the store

mode : optional, {'a', 'w', 'r+'}, default 'a'

'w' Write; a new file is created (an existing file with the same name would be deleted).

'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

'r+' It is similar to 'a', but the file must already exist.

format : ‘fixed(f)|table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

For Table formats, append the input data to the existing

data_columns : list of columns, or True, default None
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.

Applicable only to format='table'.

complevel : int, 1-9, default 0
If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False
If applying compression use the fletcher32 checksum

dropna : boolean, default False.
If true, ALL nan rows will not be written to store.

pandas.DataFrame.to_html

DataFrame.to_html(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.', border=None)

Render a DataFrame as an HTML table.

to_html-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output

classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table

escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.

max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all.

max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all.

decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe

New in version 0.18.0.

border [int] A border=border attribute is included in the opening <table> tag. Default pd.options.html.border.

New in version 0.19.0.

Parameters buf : StringIO-like, optional
buffer to write to

columns : sequence, optional
the subset of columns to write; default None writes all columns

col_space : int, optional
the minimum width of each column

header : bool, optional
whether to print column labels, default True

index : bool, optional
whether to print index (row) labels, default True

na_rep : string, optional
string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional
formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional
formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional
Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

index_names : bool, optional
Prints the names of the indexes, default True

line_width : int, optional
Width to wrap a line in characters, default no wrap

justify : {‘left’, ‘right’}, default None
Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

Returns formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_json

DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters path_or_buf : the path or buffer to write the result string
if this is None, return a StringIO of the converted string

orient : string
- Series
 - default is ‘index’
 - allowed values are: {‘split’,’records’,’index’}
- DataFrame
 - default is ‘columns’
 - allowed values are: {‘split’,’records’,’index’,’columns’,’values’}
• The format of the JSON string
 – split : dict like {index -> [index], columns -> [columns], data -> [values]}
 – records : list like [{column -> value}, ... , {column -> value}]
 – index : dict like {index -> {column -> value}}
 – columns : dict like {column -> {index -> value}}
 – values : just the values array
 – table : dict like {'schema': {schema}, 'data': {data}} describing the data, and the
data component is like orient='records'.

 Changed in version 0.20.0.

date_format : {None, ‘epoch’, ‘iso’}

 Type of date conversion. epoch = epoch milliseconds, iso = ISO8601. The default
depends on the orient. For orient= ‘table’, the default is ‘iso’. For all other orients,
the default is ‘epoch’.

double_precision : The number of decimal places to use when encoding
 floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)

 The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond re-
fpectively.

default_handler : callable, default None

 Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.

lines : boolean, default False

 If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.

 New in version 0.19.0.

 Returns same type as input object with filtered info axis

See also:

pd.read_json

Examples

```python
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
                      index=['row 1', 'row 2'],
                      columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns": ["col 1", "col 2"],
  "index": ["row 1", "row 2"],
  "data": ["a", "b"], ["c", "d"]}'
```
Encoding/decoding a DataFrame using 'index' formatted JSON:

```python
>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
```

Encoding/decoding a DataFrame using 'records' formatted JSON. Note that index labels are not preserved with this encoding.

```python
>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
```

Encoding with Table Schema

```python
>>> df.to_json(orient='table')
'{"schema": {"fields": [{"name": "index", "type": "string"},
                   {"name": "col 1", "type": "string"},
                   {"name": "col 2", "type": "string"}],
                   "primaryKey": "index",
                   "pandas_version": "0.20.0"},
"data": [{"index": "row 1", "col 1": "a", "col 2": "b"},
         {"index": "row 2", "col 1": "c", "col 2": "d"}]}
'
```

pandas.DataFrame.to_latex

DataFrame.to_latex(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparse=None, index_names=True, bold_rows=True, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None)

Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires `usepackage{booktabs}`.

to_latex-specific options:

- **bold_rows** [boolean, default True] Make the row labels bold in the output
- **column_format** [str, default None] The columns format as specified in LaTeX table format e.g. ‘rcI’ for 3 columns
- **longtable** [boolean, default will be read from the pandas config module] Default: False. Use a longtable environment instead of tabular. Requires adding a `usepackage{longtable}` to your LaTeX preamble.
- **escape** [boolean, default will be read from the pandas config module] Default: True. When set to False prevents from escaping latex special characters in column names.
- **encoding** [str, default None] A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.
- **decimal** [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe.

New in version 0.18.0.
- **multicolumn** [boolean, default True] Use multicolumn to enhance MultiIndex columns. The default will be read from the config module.

New in version 0.20.0.
- **multicolumn_format** [str, default ‘l’] The alignment for multicolumns, similar to `column_format` The default will be read from the config module.
New in version 0.20.0.

multirow [boolean, default False] Use multirow to enhance MultiIndex rows. Requires adding a usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module.

New in version 0.20.0.

Parameters
- **buf**: StringIO-like, optional
 - buffer to write to
- **columns**: sequence, optional
 - the subset of columns to write; default None writes all columns
- **col_space**: int, optional
 - the minimum width of each column
- **header**: bool, optional
 - Write out column names. If a list of string is given, it is assumed to be aliases for the column names.
- **index**: bool, optional
 - whether to print index (row) labels, default True
- **na_rep**: string, optional
 - string representation of NAN to use, default ‘NaN’
- **formatters**: list or dict of one-parameter functions, optional
 - formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.
- **float_format**: one-parameter function, optional
 - formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.
- **sparsify**: bool, optional
 - Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True
- **index_names**: bool, optional
 - Prints the names of the indexes, default True
- **line_width**: int, optional
 - Width to wrap a line in characters, default no wrap

Returns
- **formatted**: string (or unicode, depending on data and options)

pandas.DataFrame.to_msgpack

DataFrame.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs)

msgpack (serialize) object to input file path
THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters
- **path**: string
 - File path, buffer-like, or None
 - If None, return generated string
- **append**: boolean
 - Whether to append to an existing msgpack
 - (default is False)
- **compress**: type of compressor (zlib or blosc), default to None (no compression)

pandas.DataFrame.to_panel

DataFrame.to_panel()

Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

Returns
- **panel**: Panel

pandas.DataFrame.to_period

DataFrame.to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

Parameters
- **freq**: string, default
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
 - The axis to convert (the index by default)
- **copy**: boolean, default True
 - If False then underlying input data is not copied

Returns
- **ts**: TimeSeries with PeriodIndex

pandas.DataFrame.to_pickle

DataFrame.to_pickle(path, compression=’infer’)

Pickle (serialize) object to input file path.

Parameters
- **path**: string
 - File path
 - A string representing the compression to use in the output file
 - New in version 0.20.0.
pandas.DataFrame.to_records

DataFrame.to_records(index=True, convert_datetime64=True)
Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested

Parameters
- **index**: boolean, default True
 Include index in resulting record array, stored in ‘index’ field
- **convert_datetime64**: boolean, default True
 Whether to convert the index to datetime.datetime if it is a DatetimeIndex

Returns
- **y**: recarray

pandas.DataFrame.to_sparse

DataFrame.to_sparse(fill_value=None, kind='block')
Convert to SparseDataFrame

Parameters
- **fill_value**: float, default NaN
- **kind**: {'block', 'integer'}

Returns
- **y**: SparseDataFrame

pandas.DataFrame.to_stata

DataFrame.to_stata(fname, convert_dates=None, write_index=True, encoding='latin-1', byteorder=None, time_stamp=None, data_label=None, variable_labels=None)
A class for writing Stata binary dta files from array-like objects

Parameters
- **fname**: str or buffer
 String path of file-like object
- **convert_dates**: dict
 Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information
- **write_index**: bool
 Write the index to Stata dataset.
- **encoding**: str
 Default is latin-1. Unicode is not supported
- **byteorder**: str
 Can be “>”, “<”, “little”, or “big”. default is sys.byteorder
- **time_stamp**: datetime
 A datetime to use as file creation date. Default is the current time.
- **data_label**: str
 A label for the data set. Must be 80 characters or smaller.
variable_labels : dict

Dictionary containing columns as keys and variable labels as values. Each label
must be 80 characters or smaller.

New in version 0.19.0.

Raises NotImplementedError

• If datetimes contain timezone information
• Column dtype is not representable in Stata

ValueError

• Columns listed in convert_dates are not either datetime64[ns] or date-
time.datetime
• Column listed in convert_dates is not in DataFrame
• Categorical label contains more than 32,000 characters

New in version 0.19.0.

Examples

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()
```

Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()
```

pandas.DataFrame.to_string

DataFrame.to_string (buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame to a console-friendly tabular output.

Parameters buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

header : bool, optional

Write out column names. If a list of string is given, it is assumed to be aliases for
the column names

index : bool, optional

whether to print index (row) labels, default True
na_rep : string, optional
 string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional
 formatter functions to apply to columns’ elements by position or name, default
 None. The result of each function must be a unicode string. List must be of length
 equal to the number of columns.

float_format : one-parameter function, optional
 formatter function to apply to columns’ elements if they are floats, default None.
 The result of this function must be a unicode string.

sparsify : bool, optional
 Set to False for a DataFrame with a hierarchical index to print every multiindex
 key at each row, default True

index_names : bool, optional
 Prints the names of the indexes, default True

line_width : int, optional
 Width to wrap a line in characters, default no wrap

justify : {'left', 'right'}, default None
 Left or right-justify the column labels. If None uses the option from the print
 configuration (controlled by set_option), ‘right’ out of the box.

Returns formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_timestamp

DataFrame.to_timestamp(freq=None, how='start', axis=0, copy=True)
 Cast to DatetimeIndex of timestamps, at beginning of period

Parameters freq : string, default frequency of PeriodIndex
 Desired frequency

how : {'s', 'e', 'start', 'end'}
 Convention for converting period to timestamp; start of period vs. end

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
 The axis to convert (the index by default)

copy : boolean, default True
 If false then underlying input data is not copied

Returns df : DataFrame with DatetimeIndex

pandas.DataFrame.to_xarray

DataFrame.to_xarray()
 Return an xarray object from the pandas object.
Returns

- a DataArray for a Series
- a Dataset for a DataFrame
- a DataArray for higher dims

Notes

See the `xarray` docs

Examples

```python
>>> df = pd.DataFrame({'A' : [1, 1, 2],
                    'B' : ['foo', 'bar', 'foo'],
                    'C' : np.arange(4.,7))

>>> df
   A  B  C
0  1  foo  4.0
1  1  bar  5.0
2  2  foo  6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
  * index (index) int64 0 1 2
Data variables:
  A (index) int64 1 1 2
  B (index) object 'foo' 'bar' 'foo'
  C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
                    'B' : ['foo', 'bar', 'foo'],
                    'C' : np.arange(4.,7)}
                     ).set_index(['B','A'])

>>> df
   C
A  B
foo 1  4.0
bar 1  5.0
foo 2  6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
  * B (B) object 'bar' 'foo'
  * A (A) int64 1 2
Data variables:
  C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
           items=list('ABCD'),
           major_axis=pd.date_range('20130101', periods=3),
```

1532 Chapter 34. API Reference
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[0, 1],
 [2, 3],
 [4, 5],
 [6, 7],
 [8, 9],
 [10, 11],
 [12, 13],
 [14, 15],
 [16, 17],
 [18, 19],
 [20, 21],
 [22, 23]])
Coordinates:
* items (items) object 'A' 'B' 'C' 'D'
* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
* minor_axis (minor_axis) object 'first' 'second'

pandas.DataFrame.transform

DataFrame.transform(func, *args, **kwargs)
Call function producing a like-indexed NDFrame and return a NDFrame with the transformed values'
New in version 0.20.0.

Parameters func : callable, string, dictionary, or list of string/callables
 To apply to column

Accepted Combinations are:

 • string function name
 • function
 • list of functions
 • dict of column names -> functions (or list of functions)

Returns transformed : NDFrame

See also:
pandas.NDFrame.aggregate, pandas.NDFrame.apply

34.4. DataFrame
Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
                    index=pd.date_range('1/1/2000', periods=10))
>>> df.iloc[3:7] = np.nan

>>> df.transform(lambda x: (x - x.mean()) / x.std())
   A         B          C
2000-01-01 0.579457  1.236184  0.123424
2000-01-02 0.370357 -0.605875 -1.231325
2000-01-03 1.455756 -0.277446  0.288967
2000-01-04 NaN      NaN       NaN
2000-01-05 NaN      NaN       NaN
2000-01-06 NaN      NaN       NaN
2000-01-07 NaN      NaN       NaN
2000-01-08 -0.498658  1.274522  1.642524
2000-01-09 -0.540524 -1.012676 -0.828968
2000-01-10 -1.366388 -0.614710  0.005378
```

pandas.DataFrame.transpose

DataFrame.transpose(*args, **kwargs)

Transpose index and columns

pandas.DataFrame.truediv

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other** : Series, DataFrame, or constant
- **axis** : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
- **fill_value** : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level** : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

DataFrame

See also

DataFrame.rtruediv

Notes

Mismatched indices will be unioned together
DataFrame.truncate

DataFrame.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted DataFrame before and/or after some particular index value. If the axis contains only
datetime values, before/after parameters are converted to datetime values.

Parameters
- **before**: date
 - Truncate before index value
- **after**: date
 - Truncate after index value
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 - return a copy of the truncated section

Returns truncated : type of caller

DataFrame.tshift

DataFrame.tshift(periods=1, freq=None, axis=0)

Shift the time index, using the index’s frequency if available.

Parameters
- **periods**: int
 - Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, default None
 - Increment to use from the tseries module or time rule (e.g. ‘EOM’)
- **axis**: int or basestring
 - Corresponds to the axis that contains the Index

Returns shifted : NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

DataFrame.tz_convert

DataFrame.tz_convert(tz, axis=0, level=None, copy=True)

Convert tz-aware axis to target time zone.

Parameters
- **tz**: string or pytz.timezone object
- **axis**: the axis to convert
- **level**: int, str, default None
 - If axis is a MultiIndex, convert a specific level. Otherwise must be None
- **copy**: boolean, default True
Also make a copy of the underlying data

Raises **TypeError**

If the axis is tz-naive.

pandas.DataFrame.tz_localize

DataFrame.tz_localize (tz, axis=0, level=None, copy=True, ambiguous='raise')

Localize tz-naive TimeSeries to target time zone.

Parameters

- **tz**: string or pytz.timezone object
 - axis: the axis to localize
 - level: int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
 - copy: boolean, default True
 - Also make a copy of the underlying data
 - ambiguous: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
 - infer_dst: boolean, default False (DEPRECATED)
 - Attempt to infer fall dst-transition hours based on order

Raises **TypeError**

If the TimeSeries is tz-aware and tz is not None.

pandas.DataFrame.unstack

DataFrame.unstack (level=-1, fill_value=None)

Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted.

Parameters

- **level**: int, string, or list of these, default -1 (last level)
 - Level(s) of index to unstack, can pass level name
- **fill_value**: replace NaN with this value if the unstack produces missing values

Returns

- **unstacked**: DataFrame or Series

See also:

DataFrame.pivot Pivot a table based on column values.
DataFrame.stack Pivot a level of the column labels (inverse operation from `unstack`).

Examples

```python
def index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ...
   ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1.0  
  b 2.0
two a 3.0  
  b 4.0
```
```
dtype: float64
```
```python
>>> s.unstack(level=-1)
a b
one 1.0 2.0
two 3.0 4.0
```
```
```
```python
>>> s.unstack(level=0)
one two
a 1.0 3.0
b 2.0 4.0
```
```
```
```python
>>> df = s.unstack(level=0)
>>> df.unstack()
one a 1.0
  b 2.0
two a 3.0
  b 4.0
dtype: float64
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
DataFrame.var

DataFrame.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis: {index (0), columns (1)}
skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series
ddof: int, default 1
degrees of freedom
numeric_only: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns
var: Series or DataFrame (if level specified)

DataFrame.where

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False,
raise_on_error=True)
Return an object of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters
cond: boolean NDFrame, array-like, or callable
If cond is callable, it is computed on the NDFrame and should return boolean
NDFrame or array. The callable must not change input NDFrame (though pandas
doesn’t check it).
New in version 0.18.1: A callable can be used as cond.
other: scalar, NDFrame, or callable
If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).
New in version 0.18.1: A callable can be used as other.
inplace: boolean, default False
Whether to perform the operation in place on the data
axis: alignment axis if needed, default None
level: alignment level if needed, default None
try_cast: boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error: boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
   A  B
0  0  -1
1  1   3
2  2  -5
3  3  -7
4  4   9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```
pandas.DataFrame.xs

DataFrame.xs(key, axis=0, level=None, drop_level=True)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters

- **key**: object

 Some label contained in the index, or partially in a MultiIndex

- **axis**: int, default 0

 Axis to retrieve cross-section on

- **level**: object, defaults to first n levels (n=1 or len(key))

 In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

- **drop_level**: boolean, default True

 If False, returns object with same levels as self.

Returns

xs: Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see *MultiIndex Slicers*

Examples

```python
>>> df
   A  B  C
a  4  5  2
b  4  0  9
c  9  7  3
>>> df.xs('a')
   A  B  C
   4  5  2
Name: a
>>> df.xs('C', axis=1)
   a  2
   b  9
   c  3
Name: C
```

```python
>>> df
   A  B  C  D
first second third
bar  one  1  4  1  8  9
     two  1  7  5  5  0
baz  one  1  6  6  8  0
     three 2  5  3  5  3
>>> df.xs(('baz', 'three'))
```

1540 Chapter 34. API Reference
34.4.2 Attributes and underlying data

Axes

- **index**: row labels
- **columns**: column labels

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.as_matrix([columns])</code></td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td><code>DataFrame.dtypes</code></td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td><code>DataFrame.ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td><code>DataFrame.get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>DataFrame.get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>DataFrame.select_dtypes(include, exclude)</code></td>
<td>Return a subset of a DataFrame including/excluding columns based on their dtype.</td>
</tr>
<tr>
<td><code>DataFrame.values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td><code>DataFrame.axes</code></td>
<td>Return a list with the row axis labels and column axis labels as the only members.</td>
</tr>
<tr>
<td><code>DataFrame.ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>DataFrame.size</code></td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td><code>DataFrame.shape</code></td>
<td>Return a tuple representing the dimensionality of the DataFrame.</td>
</tr>
<tr>
<td><code>DataFrame.memory_usage([index, deep])</code></td>
<td>Memory usage of DataFrame columns.</td>
</tr>
</tbody>
</table>

34.4.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.astype(dtype[, copy, errors])</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>DataFrame.convert_objects([convert_dates, ...])</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>DataFrame.copy([deep])</code></td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>DataFrame.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>DataFrame.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
</tbody>
</table>

34.4.4 Indexing, iteration
DataFrame.head([n]) Returns first n rows
DataFrame.at Fast label-based scalar accessor
DataFrame.iat Fast integer location scalar accessor.
DataFrame.loc Purely label-location based indexer for selection by label.
DataFrame.iloc Purely integer-location based indexing for selection by position.
DataFrame.insert(loc, column, value[, ...]) Insert column into DataFrame at specified location.
DataFrame.__iter__() Iterate over info axis
DataFrame.iteritems() Iterator over (column name, Series) pairs.
DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs.
DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame.
DataFrame.pop(item) Return item and drop from frame.
DataFrame.tail([n]) Returns last n rows
DataFrame.xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
DataFrame.isin(values) Return boolean DataFrame showing whether each element in the DataFrame is contained in values.
DataFrame.where(cond[, other, inplace, ...]) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.
DataFrame.mask(cond[, other, inplace, axis, ...]) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
DataFrame.query(expr[, inplace]) Query the columns of a frame with a boolean expression.

34.4.4.1 pandas.DataFrame.__iter__

DataFrame.__iter__() Iterate over info axis

For more information on .at, .iat, .loc, and .iloc, see the indexing documentation.

34.4.5 Binary operator functions

DataFrame.add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator add).
DataFrame.sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator sub).
DataFrame.mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator mul).
DataFrame.div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).
DataFrame.truediv(other[, axis, level, ...]) Floating division of dataframe and other, element-wise (binary operator truediv).
DataFrame.floordiv(other[, axis, level, ...]) Integer division of dataframe and other, element-wise (binary operator floordiv).
DataFrame.mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary operator mod).
34.4.6 Function application, GroupBy & Window

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.apply</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td>DataFrame.applymap</td>
<td>Apply a function to a DataFrame that is intended to operate elementwise, i.e.</td>
</tr>
<tr>
<td>DataFrame.aggregate</td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td>DataFrame.transform</td>
<td>Call function producing a like-indexed NDFrame</td>
</tr>
<tr>
<td>DataFrame.groupby</td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td>DataFrame.rolling</td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td>DataFrame.expanding</td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td>DataFrame.ewm</td>
<td>Provides exponential weighted functions</td>
</tr>
</tbody>
</table>

34.4.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.abs()</td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.58 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.all([axis, bool_only, skipna, level])</code></td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>DataFrame.any([axis, bool_only, skipna, level])</code></td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>DataFrame.clip([lower, upper, axis])</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>DataFrame.clip_lower(threshold[, axis])</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>DataFrame.clip_upper(threshold[, axis])</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>DataFrame.corr([method, min_periods])</code></td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrame.corrwith(other[, axis, drop])</code></td>
<td>Compute pairwise correlation between rows or columns of two DataFrame objects.</td>
</tr>
<tr>
<td><code>DataFrame.count([axis, level, numeric_only])</code></td>
<td>Return Series with number of non-NA/null observations over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cov([min_periods])</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrame.cummax([axis, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cummin([axis, skipna])</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cumprod([axis, skipna])</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cumsum([axis, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.describe([percentiles, include, ...])</code></td>
<td>Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.</td>
</tr>
<tr>
<td><code>DataFrame.diff([periods, axis])</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>DataFrame.eval(expr[, inplace])</code></td>
<td>Evaluate an expression in the context of the calling DataFrame instance.</td>
</tr>
<tr>
<td><code>DataFrame.kurt([axis, skipna, level, ...])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>DataFrame.max([axis, skipna, level, ...])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>DataFrame.mean([axis, skipna, level, ...])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrame.median([axis, skipna, level, ...])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrame.min([axis, skipna, level, ...])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>DataFrame.mode([axis, numeric_only])</code></td>
<td>Gets the mode(s) of each element along the axis selected.</td>
</tr>
<tr>
<td><code>DataFrame.pct_change([periods, fill_method, ...])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>DataFrame.prod([axis, skipna, level, ...])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrame.quantile([percentiles, include, ...])</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>DataFrame.rank([axis, method, numeric_only, ...])</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>DataFrame.round([decimals])</code></td>
<td>Round a DataFrame to a variable number of decimal places.</td>
</tr>
<tr>
<td><code>DataFrame.sem([axis, skipna, level, ddof, ...])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.skew([axis, skipna, level, ...])</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>DataFrame.sum([axis, skipna, level, ...])</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrame.std([axis, skipna, level, ddof, ...])</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.var([axis, skipna, level, ddof, ...])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

34.4.8 Reindexing / Selection / Label manipulation
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.add_prefix</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>DataFrame.add_suffix</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>DataFrame.align</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>DataFrame.drop</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>DataFrame.drop_duplicates</td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
<tr>
<td>DataFrame.duplicated</td>
<td>Return boolean Series denoting duplicate rows, optionally only</td>
</tr>
<tr>
<td>DataFrame.equals</td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td>DataFrame.filter</td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td>DataFrame.first</td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>DataFrame.head</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>DataFrame.idxmax</td>
<td>Return index of first occurrence of maximum over requested axis</td>
</tr>
<tr>
<td>DataFrame.idxmin</td>
<td>Return index of first occurrence of minimum over requested axis</td>
</tr>
<tr>
<td>DataFrame.last</td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>DataFrame.reindex</td>
<td>Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>DataFrame.reindex_axis</td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>DataFrame.reindex_like</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>DataFrame.rename</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>DataFrame.rename_axis</td>
<td>Alter index and/or columns using input function or functions.</td>
</tr>
<tr>
<td>DataFrame.reset_index</td>
<td>For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.</td>
</tr>
<tr>
<td>DataFrame.sample</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>DataFrame.select</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>DataFrame.set_index</td>
<td>Set the DataFrame index (row labels) using one or more existing columns.</td>
</tr>
<tr>
<td>DataFrame.tail</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>DataFrame.take</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>DataFrame.truncate</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
</tbody>
</table>

34.4.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.dropna</td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td>DataFrame.fillna</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>DataFrame.replace</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
</tbody>
</table>

34.4. Dataframe 1545
34.4.10 Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.pivot</td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td>DataFrame.reorder_levels</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>DataFrame.sort_values</td>
<td>Sort by the values along either axis</td>
</tr>
<tr>
<td>DataFrame.sort_index</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>DataFrame.nlargest</td>
<td>Get the rows of a DataFrame sorted by the (n) largest values of columns.</td>
</tr>
<tr>
<td>DataFrame.nsmallest</td>
<td>Get the rows of a DataFrame sorted by the (n) smallest values of columns.</td>
</tr>
<tr>
<td>DataFrame.swaplevel</td>
<td>Swap levels (i) and (j) in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td>DataFrame.stack</td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.</td>
</tr>
<tr>
<td>DataFrame.unstack</td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.</td>
</tr>
<tr>
<td>DataFrame.melt</td>
<td>“Unpivots” a DataFrame from wide format to long format, optionally</td>
</tr>
<tr>
<td>DataFrame.T</td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td>DataFrame.to_panel</td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.</td>
</tr>
<tr>
<td>DataFrame.to_xarray</td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td>DataFrame.transpose</td>
<td>Transpose index and columns</td>
</tr>
</tbody>
</table>

34.4.11 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.append</td>
<td>Append rows of (other) to the end of this frame, returning a new object.</td>
</tr>
<tr>
<td>DataFrame.assign</td>
<td>Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.</td>
</tr>
<tr>
<td>DataFrame.join</td>
<td>Join columns with other DataFrame either on index or on a key column.</td>
</tr>
<tr>
<td>DataFrame.merge</td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td>DataFrame.update</td>
<td>Modify DataFrame in place using non-NA values from passed DataFrame.</td>
</tr>
</tbody>
</table>

34.4.12 Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.asfreq</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td>DataFrame.asof</td>
<td>The last row without any NaN is taken (or the last row without)</td>
</tr>
<tr>
<td>DataFrame.shift</td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.63 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.first_valid_index()</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>DataFrame.last_valid_index()</code></td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td><code>DataFrame.resample(rule[, how, axis, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>DataFrame.to_period([freq, axis, copy])</code></td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>DataFrame.to_timestamp([freq, how, axis, copy])</code></td>
<td>Cast to DatetimeIndex of timestamps, at beginning of period</td>
</tr>
<tr>
<td><code>DataFrame.tz_convert(tz[, axis, level, copy])</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>DataFrame.tz_localize(tz[, axis, level, ...])</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>

34.4.13 Plotting

`DataFrame.plot` is both a callable method and a namespace attribute for specific plotting methods of the form `DataFrame.plot.<kind>`.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.plot([x, y, kind, ax,])</code></td>
<td>DataFrame plotting accessor and method</td>
</tr>
<tr>
<td><code>DataFrame.plot.area([x, y])</code></td>
<td>Area plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.bar([x, y])</code></td>
<td>Vertical bar plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.barh([x, y])</code></td>
<td>Horizontal bar plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.box([by])</code></td>
<td>Boxplot</td>
</tr>
<tr>
<td><code>DataFrame.plot.density(**kwds)</code></td>
<td>Kernel Density Estimate plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.hexbin(x, y[, C, ...])</code></td>
<td>Hexbin plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.hist([by, bins])</code></td>
<td>Histogram</td>
</tr>
<tr>
<td><code>DataFrame.plot.kde(**kwds)</code></td>
<td>Kernel Density Estimate plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.line([x, y])</code></td>
<td>Line plot</td>
</tr>
<tr>
<td><code>DataFrame.plot.pie([y])</code></td>
<td>Pie chart</td>
</tr>
<tr>
<td><code>DataFrame.plot.scatter(x, y[, s, c])</code></td>
<td>Scatter plot</td>
</tr>
</tbody>
</table>

34.4.13.1 pandas.DataFrame.plot.area

`DataFrame.plot.area(x=None, y=None, **kwds)`
Area plot
New in version 0.17.0.

Parameters
- `x`, `y` : label or position, optional
 Coordinates for each point.

kwds : optional
Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns
`axes` : matplotlib.AxesSubplot or np.array of them

34.4.13.2 pandas.DataFrame.plot.bar

`DataFrame.plot.bar(x=None, y=None, **kwds)`
Vertical bar plot
New in version 0.17.0.

Parameters
\texttt{x, y} : label or position, optional
Coordinates for each point.
\texttt{**kwds} : optional
Keyword arguments to pass on to \texttt{pandas.DataFrame.plot()}.

Returns
\texttt{axes} : matplotlib.AxesSubplot or np.array of them

34.4.13.3 pandas.DataFrame.plot.barh

\texttt{DataFrame.plot.barh(x=None, y=None, **kwds)}
Horizontal bar plot
New in version 0.17.0.

Parameters
\texttt{x, y} : label or position, optional
Coordinates for each point.
\texttt{**kwds} : optional
Keyword arguments to pass on to \texttt{pandas.DataFrame.plot()}.

Returns
\texttt{axes} : matplotlib.AxesSubplot or np.array of them

34.4.13.4 pandas.DataFrame.plot.box

\texttt{DataFrame.plot.box(by=None, **kwds)}
Boxplot
New in version 0.17.0.

Parameters
\texttt{by} : string or sequence
Column in the DataFrame to group by.
\texttt{**kwds} : optional
Keyword arguments to pass on to \texttt{pandas.DataFrame.plot()}.

Returns
\texttt{axes} : matplotlib.AxesSubplot or np.array of them

34.4.13.5 pandas.DataFrame.plot.density

\texttt{DataFrame.plot.density(**kwds)}
Kernel Density Estimate plot
New in version 0.17.0.

Parameters
\texttt{**kwds} : optional
Keyword arguments to pass on to \texttt{pandas.DataFrame.plot()}.

Returns
\texttt{axes} : matplotlib.AxesSubplot or np.array of them
34.4.13.6 pandas.DataFrame.plot.hexbin

Dataframe.plot.hexbin(x, y, C=None, reduce_C_function=None, gridsize=None, **kwds)

Hexbin plot

New in version 0.17.0.

Parameters

- **x, y**: label or position, optional
 Coordinates for each point.
- **C**: label or position, optional
 The value at each (x, y) point.
- **reduce_C_function**: callable, optional
 Function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).
- **gridsize**: int, optional
 Number of bins.
- ****kwds**: optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns

- **axes**: matplotlib.AxesSubplot or np.array of them

34.4.13.7 pandas.DataFrame.plot.hist

Dataframe.plot.hist(by=None, bins=10, **kwds)

Histogram

New in version 0.17.0.

Parameters

- **by**: string or sequence
 Column in the DataFrame to group by.
- **bins**: integer, default 10
 Number of histogram bins to be used
- ****kwds**: optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns

- **axes**: matplotlib.AxesSubplot or np.array of them

34.4.13.8 pandas.DataFrame.plot.kde

Dataframe.plot.kde(**kwds)

Kernel Density Estimate plot

New in version 0.17.0.

Parameters

- ****kwds**: optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns

- **axes**: matplotlib.AxesSubplot or np.array of them
34.4.13.9 pandas.DataFrame.plot.line

DataFrame.plot.line(x=None, y=None, **kwds)

Line plot

New in version 0.17.0.

Parameters x, y : label or position, optional

Coordinates for each point.

**kwds : optional

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

34.4.13.10 pandas.DataFrame.plot.pie

DataFrame.plot.pie(y=None, **kwds)

Pie chart

New in version 0.17.0.

Parameters y : label or position, optional

Column to plot.

**kwds : optional

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

34.4.13.11 pandas.DataFrame.plot.scatter

DataFrame.plot.scatter(x, y, s=None, c=None, **kwds)

Scatter plot

New in version 0.17.0.

Parameters x, y : label or position, optional

Coordinates for each point.

s : scalar or array_like, optional

Size of each point.

c : label or position, optional

Color of each point.

**kwds : optional

Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

DataFrame.boxplot([column, by, ax, ...])

Make a box plot from DataFrame column optionally grouped by some columns or

DataFrame.hist(data[, column, by, grid, ...])

Draw histogram of the DataFrame’s series using matplotlib / pylab.
34.4.14 Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.from_csv</code></td>
<td>Read CSV file (DISCOURAGED, please use <code>pandas.read_csv()</code> instead).</td>
</tr>
<tr>
<td><code>DataFrame.from_dict</code></td>
<td>Construct DataFrame from dict of array-like or dicts.</td>
</tr>
<tr>
<td><code>DataFrame.from_items</code></td>
<td>Convert (key, value) pairs to DataFrame.</td>
</tr>
<tr>
<td><code>DataFrame.from_records</code></td>
<td>Convert structured or record ndarray to DataFrame.</td>
</tr>
<tr>
<td><code>DataFrame.info</code></td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td><code>DataFrame.to_pickle</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>DataFrame.to_csv</code></td>
<td>Write DataFrame to a comma-separated values (csv) file.</td>
</tr>
<tr>
<td><code>DataFrame.to_hdf</code></td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td><code>DataFrame.to_sql</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>DataFrame.to_dict</code></td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td><code>DataFrame.to_excel</code></td>
<td>Write DataFrame to an excel sheet</td>
</tr>
<tr>
<td><code>DataFrame.to_json</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>DataFrame.to_html</code></td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td><code>DataFrame.to_feather</code></td>
<td>Write out the binary feather-format for DataFrames</td>
</tr>
<tr>
<td><code>DataFrame.to_stata</code></td>
<td>A class for writing Stata binary dta files from array-like objects</td>
</tr>
<tr>
<td><code>DataFrame.to_msgpack</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>DataFrame.to_gbq</code></td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td><code>DataFrame.to_records</code></td>
<td>Convert DataFrame to record array.</td>
</tr>
<tr>
<td><code>DataFrame.to_sparse</code></td>
<td>Convert to SparseDataFrame</td>
</tr>
<tr>
<td><code>DataFrame.to_dense</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>DataFrame.to_string</code></td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td><code>DataFrame.to_clipboard</code></td>
<td>Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.</td>
</tr>
</tbody>
</table>

34.4.15 Sparse

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SparseDataFrame.to_coo</code></td>
<td>Return the contents of the frame as a sparse SciPy COO matrix.</td>
</tr>
</tbody>
</table>

34.4.15.1 pandas.SparseDataFrame.to_coo

`SparseDataFrame.to_coo()`

Return the contents of the frame as a sparse SciPy COO matrix.

New in version 0.20.0.

Returns

`coo_matrix : scipy.sparse.spmatrix`

If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.
Notes

The dtype will be the lowest-common-denominator type (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. By numpy.find_common_type convention, mixing int64 and and uint64 will result in a float64 dtype.

34.5 Panel

34.5.1 Constructor

\[\text{Panel}([\text{data, items, major_axis, minor_axis, ...}]) \]

Represents wide format panel data, stored as 3-dimensional array

34.5.1.1 pandas.Panel

class pandas.Panel (data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)

Represents wide format panel data, stored as 3-dimensional array

Parameters

- **data**: ndarray (items x major x minor), or dict of DataFrames
- **items**: Index or array-like
- **major_axis**: Index or array-like
- **minor_axis**: Index or array-like
- **dtype**: dtype, default None
 - Data type to force, otherwise infer
- **copy**: boolean, default False
 - Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

- **at**: Fast label-based scalar accessor
- **axes**: Return index label(s) of the internal NDFrame
- **blocks**: Internal property, property synonym for as_blocks()
- **dtypes**: Return the dtypes in this object.
- **empty**: True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.
- **ftypes**: Return the ftypes (indication of sparse/dense and dtype) in this object.

Continued on next page
Table 34.70 – continued from previous page

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>is_copy</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>ix</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>loc</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>Return a tuple of axis dimensions</td>
</tr>
<tr>
<td><code>size</code></td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td><code>values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>

pandas.Panel.at

Panel.at
Fast label-based scalar accessor
Similarly to `loc`, `at` provides label based scalar lookups. You can also set using these indexers.

pandas.Panel.axes

Panel.axes
Return index label(s) of the internal NDFrame

pandas.Panel.blocks

Panel.blocks
Internal property, property synonym for as_blocks()

pandas.Panel.dtypes

Panel.dtypes
Return the dtypes in this object.

pandas.Panel.empty

Panel.empty
True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.

See also:

pandas.Series.dropna, pandas.DataFrame.dropna

Notes

If NDFrame contains only NaNs, it is still not considered empty. See the example below.
Examples

An example of an actual empty DataFrame. Notice the index is empty:

```
>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True
```

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```
>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df
   A
0  NaN
>>> df.empty
False
>>> df.dropna().empty
True
```

pandas.Panel.ftypes

`Panel.ftypes`

Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel.iat

`Panel.iat`

Fast integer location scalar accessor.

Similarly to `iloc`, `iat` provides integer based lookups. You can also set using these indexers.

pandas.Panel.iloc

`Panel.iloc`

Purely integer-location based indexing for selection by position.

`.iloc[]` is primarily integer position based (from 0 to `length-1` of the axis), but may also be used with a boolean array.

Allowed inputs are:

- An integer, e.g. 5.
- A list or array of integers, e.g. `[4, 3, 0]`.
- A slice object with ints, e.g. `1:7`.
- A boolean array.
- A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)
.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Panel.is_copy

Panel.is_copy = None

pandas.Panel.ix

Panel.ix
A primarily label-location based indexer, with integer position fallback.

.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.

.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

pandas.Panel.loc

Panel.loc
Purely label-location based indexer for selection by label.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

* A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

* A list or array of labels, e.g. ['a', 'b', 'c'].

* A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!).

* A boolean array.

* A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

pandas.Panel.ndim

Panel.ndim
Number of axes / array dimensions
pandas.Panel.shape

Panel.shape
Return a tuple of axis dimensions

pandas.Panel.size

Panel.size
number of elements in the NDFrame

pandas.Panel.values

Panel.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken–only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td>add(other[, axis])</td>
<td>Addition of series and other, element-wise (binary operator add).</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>agg(func, *args, **kwargs)</td>
<td>Aggregate function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td>aggregate(func, *args, **kwargs)</td>
<td>Aggregate function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td>align(other, **kwargs)</td>
<td>Align other Series or DataFrame with this Panel.</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td>any([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td>apply(func, axis)</td>
<td>Applies function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td>as_blocks([copy])</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.</td>
</tr>
<tr>
<td>as_matrix()</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize, ...])</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td>asof(where[, subset])</td>
<td>The last row without any NaN is taken (or the last row without NaN).</td>
</tr>
<tr>
<td>astype(dtype[, copy, errors])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g. asof).</td>
</tr>
</tbody>
</table>
Table 34.71 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>between_time</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM).</td>
</tr>
<tr>
<td>bfill()</td>
<td>Synonym for DataFrame.fillna(method='bfill').</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td>clip([lower, upper, axis])</td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td>clip_lower(threshold[, axis])</td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td>clip_upper(threshold[, axis])</td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis.</td>
</tr>
<tr>
<td>conform(frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>DEPRECATED: consolidate will be an internal implementation only.</td>
</tr>
<tr>
<td>convert_objects([convert_dates, ...])</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>copy([deep])</td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td>count([axis])</td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td>cummax([axis, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>cummin([axis, skipna])</td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td>cumprod([axis, skipna])</td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td>cumsum([axis, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>describe([percentiles, include, exclude])</td>
<td>Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.</td>
</tr>
<tr>
<td>div(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
<tr>
<td>divide(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
<tr>
<td>drop(labels[, axis, level, inplace, errors])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>drops([axis, how, inplace])</td>
<td>Drop 2D from panel, holding passed axis constant.</td>
</tr>
<tr>
<td>eq(other[, axis])</td>
<td>Wrapper for comparison method eq</td>
</tr>
<tr>
<td>equals(other)</td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td>ffill([axis, inplace, limit, downcast])</td>
<td>Synonym for DataFrame.fillna(method='ffill').</td>
</tr>
<tr>
<td>fillna([value, method, axis, inplace, ...])</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>filter([items, like, regex, axis])</td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td>first(offset)</td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>floordiv(other[, axis])</td>
<td>Integer division of series and other, element-wise (binary operator floordiv).</td>
</tr>
<tr>
<td>fromDict(data[, intersect, orient, dtype])</td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td>from_dict(data[, intersect, orient, dtype])</td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td>ge(other[, axis])</td>
<td>Wrapper for comparison method ge</td>
</tr>
<tr>
<td>get(key[, default])</td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.).</td>
</tr>
<tr>
<td>get_dtype_counts()</td>
<td>Return the counts of dtypes in this object.</td>
</tr>
</tbody>
</table>
Table 34.71 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>get_value(*args, **kwargs)</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>groupby(function[, axis])</code></td>
<td>Group data on given axis, returning GroupBy object</td>
</tr>
<tr>
<td><code>gt(other[, axis])</code></td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>join(other[, how, lsuffix, rsuffix])</code></td>
<td>Join items with other Panel either on major and minor axes column</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the ‘into axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>le(other[, axis])</code></td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td><code>lt(other[, axis])</code></td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>major_xs(key)</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>mask(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td><code>max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs(key)</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
<tr>
<td><code>mod(other[, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator mod).</td>
</tr>
<tr>
<td><code>mul(other[, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator mul).</td>
</tr>
<tr>
<td><code>multiply(other[, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator mul).</td>
</tr>
<tr>
<td><code>ne(other[, axis])</code></td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>pct_change([periods, fill_method, limit, freq])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe(func, *args, **kwargs)</code></td>
<td>Apply func(self, *args, **kwargs)</td>
</tr>
<tr>
<td><code>pop(item)</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow(other[, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator pow).</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>prod(axis, skipna, level, numeric_only)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>product(axis, skipna, level, numeric_only)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>radd(other[, axis])</td>
<td>Addition of series and other, element-wise (binary operator radd).</td>
</tr>
<tr>
<td>rank(axis, method, numeric_only, ...)</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>rdiv(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator rtruediv).</td>
</tr>
<tr>
<td>reindex(items, major_axis, minor_axis)</td>
<td>Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>reindex_axis(labels[, axis, method, level, ...])</td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>reindex_like(other[, method, copy, limit, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>rename(items, major_axis, minor_axis)</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>replace(to_replace, value, inplace, limit, ...)</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample(rule[, how, axis, fill_method, ...])</td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td>rfloordiv(other[, axis])</td>
<td>Integer division of series and other, element-wise (binary operator rfloordiv).</td>
</tr>
<tr>
<td>rmod(other[, axis])</td>
<td>Modulo of series and other, element-wise (binary operator rmod).</td>
</tr>
<tr>
<td>rmul(other[, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator rmul).</td>
</tr>
<tr>
<td>round([decimals])</td>
<td>Round each value in Panel to a specified number of decimal places.</td>
</tr>
<tr>
<td>rpow(other[, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator rpow).</td>
</tr>
<tr>
<td>rsub(other[, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator rsub).</td>
</tr>
<tr>
<td>rtruediv(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator rtruediv).</td>
</tr>
<tr>
<td>sample(n, frac, replace, weights, ...)</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>sem(axis, skipna, level, ddof, numeric_only)</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>set_axis(axis, labels)</td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td>set_value(*args, **kwargs)</td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td>shift(periods, freq, axis)</td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td>skew(axis, skipna, level, numeric_only)</td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td>slice_shift([periods, axis])</td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td>sort_index(axis, level, ascending, ...)</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>sort_values(by[, axis, ascending, inplace, ...])</td>
<td>Sort values of the panel along the specified axis.</td>
</tr>
<tr>
<td>squeeze(axis)</td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td>std(axis, skipna, level, ddof, numeric_only)</td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.71 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sub(other[, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td><code>subtract(other[, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td><code>sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><code>swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td><code>swaplevel([i, j, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis.</td>
</tr>
<tr>
<td><code>tail([n])</code></td>
<td>Analogous to ndarray.take.</td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Attempt to write text representation of object to the system clipboard.</td>
</tr>
<tr>
<td><code>to_clipboard([excel, sep])</code></td>
<td>Attempt to write text representation of object to the system clipboard.</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td><code>to_excel(path[, na_rep, engine])</code></td>
<td>Write each DataFrame in Panel to a separate excel sheet.</td>
</tr>
<tr>
<td><code>to_frame([filter_observations])</code></td>
<td>Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_long(*args, **kwargs)</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_msgpack([path_or_buf, encoding])</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_sparse(*args, **kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, schema, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>truediv(other[, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
<tr>
<td><code>truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td><code>tz_convert(tz[, axis, level, copy])</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize(tz[, axis, level, ambiguous])</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>update(other[, join, overwrite, ...])</code></td>
<td>Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel.</td>
</tr>
<tr>
<td><code>var([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>where(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td><code>xs(key[, axis])</code></td>
<td>Return slice of panel along selected axis.</td>
</tr>
</tbody>
</table>

pandas.Panel.abs

`Panel.abs()`

Return an object with absolute value taken–only applicable to objects that are all numeric.
Returns abs: type of caller

pandas.Panel.add

Panel.add(other, axis=0)
Addition of series and other, element-wise (binary operator add). Equivalent to panel + other.

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

See also:
Panel.radd

pandas.Panel.add_prefix

Panel.add_prefix(prefix)
Concatenate prefix string with panel items names.

Parameters prefix : string

Returns with_prefix : type of caller

pandas.Panel.add_suffix

Panel.add_suffix(suffix)
Concatenate suffix string with panel items names.

Parameters suffix : string

Returns with_suffix : type of caller

pandas.Panel.agg

Panel.agg(func, *args, **kwargs)

pandas.Panel.aggregate

Panel.aggregate(func, *args, **kwargs)

pandas.Panel.align

Panel.align(other, **kwargs)
pandas.Panel.all

Panel.all (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether all elements are True over requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
bool_only : boolean, default None
 Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns
all : DataFrame or Panel (if level specified)

pandas.Panel.any

Panel.any (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether any element is True over requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
bool_only : boolean, default None
 Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns
any : DataFrame or Panel (if level specified)

pandas.Panel.apply

Panel.apply (func, axis='major', **kwargs)
Applies function along axis (or axes) of the Panel

Parameters
func : function
 Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, the combination of major_axis/minor_axis will each be passed as a Series; if axis = ('items', 'major'), DataFrames of items & major axis will be passed
axis : {‘items’, ‘minor’, ‘major’}, or {0, 1, 2}, or a tuple with two axes

Additional keyword arguments will be passed as keywords to the function
Returns result: Panel, DataFrame, or Series

Examples

Returns a Panel with the square root of each element

```python
>>> p = pd.Panel(np.random.rand(4,3,2))
>>> p.apply(np.sqrt)
```

Equivalent to `p.sum(1)`, returning a DataFrame

```python
>>> p.apply(lambda x: x.sum(), axis=1)
```

Equivalent to previous:

```python
>>> p.apply(lambda x: x.sum(), axis='minor')
```

Return the shapes of each DataFrame over axis 2 (i.e. the shapes of items x major), as a Series

```python
>>> p.apply(lambda x: x.shape, axis=(0,1))
```

pandas.Panel.as_blocks

`Panel.as_blocks(copy=True)`

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

Parameters

- `copy` : boolean, default True

- **Returns**
 - `values` : a dict of dtype -> Constructor Types

pandas.Panel.as_matrix

`Panel.as_matrix()`

pandas.Panel.asfreq

`Panel.asfreq(freq=None, method=None, how=None, normalize=False, fill_value=None)`

Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values.

Returns the original data conformed to a new index with the specified frequency. `resample` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency.

Parameters

- `freq` : DateOffset object, or string
- `method` : {'backfill'/'bfill', 'pad'/'ffill'}, default None

Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
• ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid
• ‘backfill’ / ‘bfill’: use NEXT valid observation to fill

how : {'start', 'end'}, default end
 For PeriodIndex only, see PeriodIndex.asfreq

normalize : bool, default False
 Whether to reset output index to midnight

fill_value : scalar, optional
 Value to use for missing values, applied during upsampling (note this does not fill
 NaNs that already were present).
 New in version 0.20.0.

Returns converted : type of caller

See also:
 reindex

Notes

To learn more about the frequency strings, please see this link.

Examples

Start by creating a series with 4 one minute timestamps.

```
>>> index = pd.date_range('1/1/2000', periods=4, freq='T')
>>> series = pd.Series([0.0, None, 2.0, 3.0], index=index)
>>> df = pd.DataFrame({'s':series})
>>> df
            s
2000-01-01 00:00:00  0.0
2000-01-01 00:01:00  NaN
2000-01-01 00:02:00  2.0
2000-01-01 00:03:00  3.0
```

Upsample the series into 30 second bins.

```
>>> df.asfreq(freq='30S')
            s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  NaN
2000-01-01 00:02:00  2.0
2000-01-01 00:02:30  NaN
2000-01-01 00:03:00  3.0
```

Upsample again, providing a fill value.
Upsample again, providing a method.

```python
df.asfreq(freq='30S', method='bfill')
```

```
s
2000-01-01 00:00:00  0.0
2000-01-01 00:00:30  9.0
2000-01-01 00:01:00  NaN
2000-01-01 00:01:30  2.0
2000-01-01 00:02:00  2.0
2000-01-01 00:02:30  3.0
2000-01-01 00:03:00  3.0
```

pandas.Panel.asof

Panel.asof(where, subset=None)

The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned for a Series a Series of NaN values for a DataFrame

Parameters where : date or array of dates

subset : string or list of strings, default None
 if not None use these columns for NaN propagation

Returns where is scalar

• value or NaN if input is Series
• Series if input is DataFrame

where is Index: same shape object as input

See also:

merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case
pandas.Panel.astype

Panel.astype(dtype, copy=True, errors='raise', **kwargs)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters dtype : data type, or dict of column name -> data type
Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

errors : {'raise', 'ignore'}, default 'raise'.
Control raising of exceptions on invalid data for provided dtype.
• raise: allow exceptions to be raised
• ignore: suppress exceptions. On error return original object
New in version 0.20.0.

raise_on_error : DEPRECATED use errors instead

kwargs : keyword arguments to pass on to the constructor

Returns casted : type of caller

pandas.Panel.at_time

Panel.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters time : datetime.time or string

Returns values_at_time : type of caller

pandas.Panel.between_time

Panel.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

Parameters start_time : datetime.time or string
end_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True

Returns values_between_time : type of caller

pandas.Panel.bfill

Panel.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for DataFrame.fillna(method='bfill')
pandas.Panel.bool

Panel.bool()

Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a `ValueError` if the PandasObject does not have exactly 1 element, or that element is not boolean.

pandas.Panel.clip

Panel.clip(lower=None, upper=None, axis=None, *args, **kwargs)

Trim values at input threshold(s).

Parameters:
- **lower**: float or array_like, default None
- **upper**: float or array_like, default None
- **axis**: int or string axis name, optional

Align object with lower and upper along the given axis.

Returns:
- **clipped**: Series

Examples

```python
def
0 1
0 0.335232 -1.256177
1 -1.367855 0.746646
2 0.027753 -1.176076
3 0.230930 -0.679613
4 1.261967 0.570967
>>> df.clip(-1.0, 0.5)
0 1
0 0.335232 -1.000000
1 -1.000000 0.500000
2 0.027753 -1.000000
3 0.230930 -0.679613
4 0.500000 0.500000
>>> t
0 -0.3
1 -0.2
2 -0.1
3 0.0
4 0.1
dtype: float64
>>> df.clip(t, t + 1, axis=0)
0 1
0 0.335232 -0.300000
1 -0.200000 0.746646
2 0.027753 -0.100000
3 0.230930 0.000000
4 1.100000 0.570967
```
pandas.Panel.clip_lower

Panel.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns clipped : same type as input

See also:
clip

pandas.Panel.clip_upper

Panel.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns clipped : same type as input

See also:
clip

pandas.Panel.compound

Panel.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns compounded : DataFrame or Panel (if level specified)
pandas.Panel.conform

Panel.conform(frame, axis='items')
Conform input DataFrame to align with chosen axis pair.

Parameters
frame : DataFrame
 Axis the input corresponds to. E.g., if axis='major', then the frame’s columns
 would be items, and the index would be values of the minor axis

Returns
DataFrame

pandas.Panel.consolidate

Panel.consolidate(inplace=False)
DEPRECATED: consolidate will be an internal implementation only.

pandas.Panel.convert_objects

Panel.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Deprecated.

Attempt to infer better dtype for object columns

Parameters
convert_dates : boolean, default True
 If True, convert to date where possible. If ‘coerce’, force conversion, with uncon-
 vertible values becoming NaT.

convert_numeric : boolean, default False
 If True, attempt to coerce to numbers (including strings), with unconvertible val-
 ues becoming NaN.

convert_timedeltas : boolean, default True
 If True, convert to timedelta where possible. If ‘coerce’, force conversion, with
 unconvertible values becoming NaT.

copy : boolean, default True
 If True, return a copy even if no copy is necessary (e.g. no conversion was done).
 Note: This is meant for internal use, and should not be confused with inplace.

Returns
converted : same as input object

See also:
pandas.to_datetime Convert argument to datetime.
pandas.to_timedelta Convert argument to timedelta.
pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.
pandas.Panel.copy

Panel.copy(deep=True)
Make a copy of this objects data.

Parameters deep : boolean or string, default True
Make a deep copy, including a copy of the data and the indices. With
dep=\text{False} neither the indices or the data are copied.

Note that when \text{deep=\text{True}} data is copied, actual python objects will not be
copied recursively, only the reference to the object. This is in contrast to \text{copy}.
deepcopy in the Standard Library, which recursively copies object data.

Returns copy : type of caller

pandas.Panel.count

Panel.count(axis='major')
Return number of observations over requested axis.

Parameters axis : {'items', 'major', 'minor'} or \{0, 1, 2\}

Returns count : DataFrame

pandas.Panel.cummax

Panel.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative max over requested axis.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummax : DataFrame

See also:

pandas.core.window.Expanding.max Similar functionality but ignores NaN values.

pandas.Panel.cummin

Panel.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over requested axis.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummin : DataFrame

See also:

pandas.core.window.Expanding.min Similar functionality but ignores NaN values.
pandas.Panel.cumprod

Panel.cumprod(
 axis=None, skipna=True, *args, **kwargs)

Return cumulative product over requested axis.

Parameters

- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns **cumprod** : DataFrame

See also:

- pandas.core.window.Expanding.prod: Similar functionality but ignores NaN values.

pandas.Panel.cumsum

Panel.cumsum(
 axis=None, skipna=True, *args, **kwargs)

Return cumulative sum over requested axis.

Parameters

- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns **cumsum** : DataFrame

See also:

- pandas.core.window.Expanding.sum: Similar functionality but ignores NaN values.

pandas.Panel.describe

Panel.describe(
 percentiles=None, include=None, exclude=None)

Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters

- **percentiles** : list-like of numbers, optional
 The percentiles to include in the output. All should fall between 0 and 1. The default is [0.25, 0.5, 0.75], which returns the 25th, 50th, and 75th percentiles.

- **include** : ‘all’, list-like of dtypes or None (default), optional
 A white list of data types to include in the result. Ignored for Series. Here are the options:
 - ‘all’ : All columns of the input will be included in the output.
 - A list-like of dtypes: Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to categorical objects submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O']))
 - None (default) : The result will include all numeric columns.
exclude: list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for `Series`. Here are the options:

- A list-like of dtypes: Excludes the provided data types from the result. To select numeric types submit `numpy.number`. To select categorical objects submit the data type `numpy.object`. Strings can also be used in the style of `select_dtypes` (e.g. `df.describe(include=['O'])`)

- None (default): The result will exclude nothing.

Returns summary: Series/DataFrame of summary statistics

See also:

`DataFrame.count`, `DataFrame.max`, `DataFrame.min`, `DataFrame.mean`, `DataFrame.std`, `DataFrame.select_dtypes`

Notes

For numeric data, the result’s index will include `count`, `mean`, `std`, `min`, `max` as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include `count`, `unique`, `top`, and `freq`. The `top` is the most common value. The `freq` is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the `count` and `top` results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a `DataFrame`, the default is to return only an analysis of numeric columns. If `include='all'` is provided as an option, the result will include a union of attributes of each type.

The `include` and `exclude` parameters can be used to limit which columns in a `DataFrame` are analyzed for the output. The parameters are ignored when analyzing a `Series`.

Examples

Describing a numeric `Series`.

```python
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
          count     mean      std      min   25%  50%    75%   max
count    3.0   2.000000  1.0000  1.0000  1.50  2.00  2.500  3.00
```

Describing a categorical `Series`.
```python
>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
count    4
unique   3
top      a
dtype: object

Describing a timestamp Series.

```
Including only numeric columns in a DataFrame description.

```python
>>> df.describe(include=[np.number])
        numeric
       count  3.0
       mean  2.0
        std  1.0
        min  1.0
       25%  1.5
       50%  2.0
       75%  2.5
       max  3.0
Name: numeric, dtype: float64
```

Including only string columns in a DataFrame description.

```python
>>> df.describe(include=[np.object])
        object
       count  3
       unique  3
        top  b
        freq  1
```

Excluding numeric columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.number])
        object
       count  3
       unique  3
        top  b
        freq  1
```

Excluding object columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.object])
        numeric
       count  3.0
       mean  2.0
        std  1.0
        min  1.0
       25%  1.5
       50%  2.0
       75%  2.5
       max  3.0
```
pandas.Panel.div

Panel.div(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

- **Parameters**
 - other : DataFrame or Panel
 - axis : {items, major_axis, minor_axis}
 Axis to broadcast over

- **Returns**
 - Panel

See also:
Panel.rtruediv

pandas.Panel.divide

Panel.divide(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

- **Parameters**
 - other : DataFrame or Panel
 - axis : {items, major_axis, minor_axis}
 Axis to broadcast over

- **Returns**
 - Panel

See also:
Panel.rtruediv

pandas.Panel.drop

Panel.drop(labels, axis=0, level=None, inplace=False, errors='raise')
Return new object with labels in requested axis removed.

- **Parameters**
 - labels : single label or list-like
 - axis : int or axis name
 - level : int or level name, default None
 For MultiIndex
 - inplace : bool, default False
 If True, do operation inplace and return None.
 - errors : {'ignore', 'raise'}, default 'raise'
 If 'ignore', suppress error and existing labels are dropped.

- **Returns**
 - dropped : type of caller
pandas.Panel.dropna

```
pandas.Panel.dropna(axis=0, how='any', inplace=False)
```

Drop 2D from panel, holding passed axis constant

Parameters
- `axis`: int, default 0
 - Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data
- `how`: {'all', 'any'}, default 'any'
 - 'all': all NA values along the axis
 - 'any': one or more values are NA in the DataFrame along the axis. For 'all' they all must be.
- `inplace`: bool, default False
 - If True, do operation inplace and return None.

Returns
- `dropped`: Panel

pandas.Panel.eq

```
pandas.Panel.eq(other, axis=None)
```

Wrapper for comparison method `eq`

pandas.Panel.equals

```
pandas.Panel.equals(other)
```

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Panel.ffill

```
pandas.Panel.ffill(axis=None, inplace=False, limit=None, downcast=None)
```

Synonym for `DataFrame.fillna(method='ffill')`

pandas.Panel.fillna

```
pandas.Panel.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
```

Fill NA/NaN values using the specified method

Parameters
- `value`: scalar, dict, Series, or DataFrame
 - Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
- `method`: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
axis : \{0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’\}

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : Panel

See also:
reindex, asfreq

pandas.Panel.filter

Panel.filter\((items=\text{None}, like=\text{None}, regex=\text{None}, axis=\text{None})\)

Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters items : list-like

List of info axis to restrict to (must not all be present)

like : string

Keep info axis where “arg in col == True”

regex : string (regular expression)

Keep info axis with re.search(regex, col) == True

axis : int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

Returns same type as input object

See also:
pandas.DataFrame.select

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].
Examples

```python
>>> df
one  two  three
mouse 1  2  3
rabbit 4  5  6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one  three
mouse 1  3
rabbit 4  6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one  three
mouse 1  3
rabbit 4  6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one  two  three
rabbit 4  5  6
```

pandas.Panel.first

Panel.first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters

- **offset**: string, DateOffset, dateutil.relativedelta

Returns

- **subset**: type of caller

Examples

```python
ts.first('10D') -> First 10 days
```

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)

Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel // other.

Parameters

- **other**: DataFrame or Panel
 - **axis**: {items, major_axis, minor_axis}

 Axis to broadcast over

Returns

- **Panel**

See also:

Panel.rfloordiv
pandas.Panel.fromDict

classmethod Panel.fromDict(data, intersect=False, orient='items', dtype=None)

Construct Panel from dict of DataFrame objects

Parameters
data : dict
 {field : DataFrame}
intersect : boolean
 Intersect indexes of input DataFrames
orient : {'items', 'minor'}, default 'items'
 The “orientation” of the data. If the keys of the passed dict should be the items of
 the result panel, pass ‘items’ (default). Otherwise if the columns of the values of
 the passed DataFrame objects should be the items (which in the case of mixed-
dtype data you should do), instead pass ‘minor’
dtype : dtype, default None
 Data type to force, otherwise infer

Returns Panel

pandas.Panel.from_dict

classmethod Panel.from_dict(data, intersect=False, orient='items', dtype=None)

Construct Panel from dict of DataFrame objects

Parameters
data : dict
 {field : DataFrame}
intersect : boolean
 Intersect indexes of input DataFrames
orient : {'items', 'minor'}, default 'items'
 The “orientation” of the data. If the keys of the passed dict should be the items of
 the result panel, pass ‘items’ (default). Otherwise if the columns of the values of
 the passed DataFrame objects should be the items (which in the case of mixed-
dtype data you should do), instead pass ‘minor’
dtype : dtype, default None
 Data type to force, otherwise infer

Returns Panel

pandas.Panel.ge

Panel.ge(other, axis=None)

Wrapper for comparison method ge
pandas.Panel.get

Panel.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

Parameters
key: object

Returns
value: type of items contained in object

pandas.Panel.get_dtype_counts

Panel.get_dtype_counts()
Return the counts of dtypes in this object.

pandas.Panel.get_ftype_counts

Panel.get_ftype_counts()
Return the counts of ftypes in this object.

pandas.Panel.get_value

Panel.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location

Parameters
item: item label (panel item)
major: major axis label (panel item row)
minor: minor axis label (panel item column)
takeable: interpret the passed labels as indexers, default False

Returns
value: scalar value

pandas.Panel.get_values

Panel.get_values()
same as values (but handles sparseness conversions)

pandas.Panel.groupby

Panel.groupby(function, axis='major')
Group data on given axis, returning GroupBy object

Parameters
function: callable
Mapping function for chosen access
axis: {'major', 'minor', 'items'}, default 'major'

Returns
grouped: PanelGroupBy
Pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.Panel.gt

```
Panel.gt(other, axis=None)
```

Wrapper for comparison method gt

pandas.Panel.head

```
Panel.head(n=5)
```

pandas.Panel.interpolate

```
Panel.interpolate(method='linear', axis=0, limit=None, inplace=False,
limit_direction='forward', downcast=None, **kwargs)
```

Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters

- `method`: {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}
 - 'linear': ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
 - 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
 - 'index', 'values': use the actual numerical values of the index
 - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to scipy.interpolate.interp1d. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.
 - 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. For more information on their behavior, see the scipy documentation and tutorial documentation
 - 'from_derivatives' refers to BPoly.from_derivatives which replaces 'piecewise_polynomial' interpolation method in scipy 0.18

New in version 0.18.1: Added support for the 'akima' method Added interpolate method 'from_derivatives' which replaces 'piecewise_polynomial' in scipy 0.18; backwards-compatible with scipy < 0.18

- `axis`: {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row

- `limit`: int, default None.
 - Maximum number of consecutive NaNs to fill. Must be greater than 0.

- `limit_direction`: {'forward', 'backward', 'both'}, default 'forward'
If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

inplace: bool, default False

Update the NDFrame in place if possible.

downcast: optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs: keyword arguments to pass on to the interpolating function.

Returns Series or DataFrame of same shape interpolated at the NaNs

See also: `reindex, replace, fillna`

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0   0
1   1
2   2
3   3
dtype: float64
```

pandas.Panel.isnull

Panel.isnull()

Return a boolean same-sized object indicating if the values are null.

See also:

notnull boolean inverse of isnull

pandas.Panel.iteritems

Panel.iteritems()

Iterate over (label, values) on info axis

This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel.join

Panel.join(other, how='left', lsuffix='', rsuffix='')

Join items with other Panel either on major and minor axes column

Parameters

other : Panel or list of Panels

Index should be similar to one of the columns in this one
how : {‘left’, ‘right’, ‘outer’, ‘inner’}

How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise
* left: use calling frame’s index
* right: use input frame’s index
* outer: form union of indexes
* inner: use intersection of indexes

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

Returns joined : Panel

pandas.Panel.keys

Panel.keys()

Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel.kurt

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : DataFrame or Panel (if level specified)

pandas.Panel.kurtosis

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : DataFrame or Panel (if level specified)

pandas.Panel.last

Panel.last(offset)

Convenience method for subsetting final periods of time series data based on a date offset.

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Panel.le

Panel.le(other, axis=None)

Wrapper for comparison method le

pandas.Panel.lt

Panel.lt(other, axis=None)

Wrapper for comparison method lt

pandas.Panel.mad

Panel.mad(axis=None, skipna=None, level=None)

Return the mean absolute deviation of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mad : DataFrame or Panel (if level specified)
pandas.Panel.major_xs

Panel.major_xs(key)
 Return slice of panel along major axis

 Parameters key: object
 Major axis label

 Returns y: DataFrame
 index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of major_xs functionality, see MultiIndex Slicers

pandas.Panel.mask

Panel.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
 Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

 Parameters cond: boolean NDFrame, array-like, or callable
 If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).
 New in version 0.18.1: A callable can be used as cond.

 other: scalar, NDFrame, or callable
 If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).
 New in version 0.18.1: A callable can be used as other.

 inplace: boolean, default False
 Whether to perform the operation in place on the data

 axis: alignment axis if needed, default None

 level: alignment level if needed, default None

 try_cast: boolean, default False
 try to cast the result back to the input type (if possible),

 raise_on_error: boolean, default True
 Whether to raise on invalid data types (e.g. trying to where on strings)

 Returns wh: same type as caller
See also:

`DataFrame.where()`

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if `cond` is `False` the element is used; otherwise the corresponding element from the DataFrame `other` is used.

The signature for `DataFrame.where()` differs from `numpy.where()`. Roughly `df1.where(m, df2)` is equivalent to `np.where(m, df1, df2).

For further details and examples see the `mask` documentation in `indexing`.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1     1.0
2     2.0
3     3.0
4     4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
   A  B
0  0  -1
1 -2   3
2 -4  -5
3  6  -7
4 -8   9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```

```
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
   A  B
0  0  -1
1 -2   3
2 -4  -5
3  6  -7
4 -8   9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```

pandas.Panel.max

`Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the maximum of the values in the object. If you want the index of the maximum, use `idxmax`. This is the equivalent of the `numpy.ndarray` method `argmax`.

1586 Chapter 34. API Reference
Parameters

- `axis` : {items (0), major_axis (1), minor_axis (2)}
- `skipna` : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `numeric_only` : boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- `max` : DataFrame or Panel (if level specified)

pandas.Panel.mean

```
Panel.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the mean of the values for the requested axis

- `axis` : {items (0), major_axis (1), minor_axis (2)}
- `skipna` : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `numeric_only` : boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- `mean` : DataFrame or Panel (if level specified)

pandas.Panel.median

```
Panel.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the median of the values for the requested axis

- `axis` : {items (0), major_axis (1), minor_axis (2)}
- `skipna` : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `numeric_only` : boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- `median` : DataFrame or Panel (if level specified)
pandas.Panel.min

Panel.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
 numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns min : DataFrame or Panel (if level specified)

pandas.Panel.minor_xs

Panel.minor_xs(key)

Return slice of panel along minor axis

Parameters key : object
 Minor axis label

Returns y : DataFrame
 index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of minor_xs functionality, see MultiIndex Slicers

pandas.Panel.mod

Panel.mod(other, axis=0)

Modulo of series and other, element-wise (binary operator mod). Equivalent to panel % other.

Parameters other : DataFrame or Panel
 axis : {items, major_axis, minor_axis}
 Axis to broadcast over

Returns Panel
See also:

Panel.rmod

pandas.Panel.mul

Panel.mul(\text{other, axis=0})

Multiplication of series and other, element-wise (binary operator \textit{mul}). Equivalent to \texttt{panel * other}.

\begin{description}
\item[Parameters] other : DataFrame or Panel
\item[axis]: \{items, major_axis, minor_axis\}
\item[Returns] Panel
\end{description}

See also:

Panel.rmul

pandas.Panel.multiply

Panel.multiply(\text{other, axis=0})

Multiplication of series and other, element-wise (binary operator \textit{mul}). Equivalent to \texttt{panel * other}.

\begin{description}
\item[Parameters] other : DataFrame or Panel
\item[axis]: \{items, major_axis, minor_axis\}
\item[Returns] Panel
\end{description}

See also:

Panel.rmul

pandas.Panel.ne

Panel.ne(\text{other, axis=None})

Wrapper for comparison method \texttt{ne}

pandas.Panel.notnull

Panel.notnull()

Return a boolean same-sized object indicating if the values are not null.

See also:

\textit{isnull} boolean inverse of notnull
pandas.Panel.pct_change

Panel.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)

Percent change over given number of periods.

Parameters

- **periods**: int, default 1

 Periods to shift for forming percent change

- **fill_method**: str, default ‘pad’

 How to handle NAs before computing percent changes

- **limit**: int, default None

 The number of consecutive NAs to fill before stopping

- **freq**: DateOffset, timedelta, or offset alias string, optional

 Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

- **chg**: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the **axis** keyword argument.

pandas.Panel.pipe

Panel.pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

New in version 0.16.2.

Parameters

- **func**: function

 function to apply to the NDFrame. *args, and **kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

- **args**: positional arguments passed into func.

- **kwargs**: a dictionary of keyword arguments passed into func.

Returns

- **object**: the return type of func.

See also:

pandas.DataFrame.apply, pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipe when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write
If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose \(f \) takes its data as \(\text{arg2} \):

```python
>>> (df.pipe(h)
...   .pipe(g, arg1=a)
...   .pipe(f, arg2=b, arg3=c)
... )
```

pandas.Panel.pop

```
Panel.pop(item)
Return item and drop from frame. Raise KeyError if not found.
```

pandas.Panel.pow

```
Panel.pow(other, axis=0)
Exponential power of series and other, element-wise (binary operator pow). Equivalent to panel ** other.

Parameters
- **other**: DataFrame or Panel
  - **axis**: {items, major_axis, minor_axis}
    - Axis to broadcast over

Returns
- Panel

See also:
- Panel.rpow
```

pandas.Panel.prod

```
Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
- prod: DataFrame or Panel (if level specified)
pandas.Panel.product

Panel.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
   Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
   If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None
   Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns prod : DataFrame or Panel (if level specified)

pandas.Panel.radd

Panel.radd(other, axis=0)
Addition of series and other, element-wise (binary operator radd). Equivalent to other + panel.

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
   Axis to broadcast over

Returns Panel

See also:
Panel.add

pandas.Panel.rank

Panel.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0
   index to direct ranking
method : {'average', 'min', 'max', 'first', 'dense'}
   • average: average rank of group
   • min: lowest rank in group
   • max: highest rank in group
   • first: ranks assigned in order they appear in the array
   • dense: like ‘min’, but rank always increases by 1 between groups
numeric_only : boolean, default None
    Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option : {'keep', 'top', 'bottom'}
    • keep: leave NA values where they are
    • top: smallest rank if ascending
    • bottom: smallest rank if descending

ascending : boolean, default True
    False for ranks by high (1) to low (N)

pct : boolean, default False
    Computes percentage rank of data

Returns ranks : same type as caller

pandas.Panel.rdiv

Panel.rdiv(other, axis=0)
    Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other / panel.

    Parameters other : DataFrame or Panel
    axis : {items, major_axis, minor_axis}
        Axis to broadcast over

    Returns Panel

See also:
Panel.truediv

pandas.Panel.reindex

Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
    Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

    Parameters items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

        method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

        • default: don’t fill gaps
        • pad / ffill: propagate last valid observation forward to next valid
• backfill / bfill: use next valid observation to fill gap
• nearest: use nearest valid observations to fill gap

copy : boolean, default True
Return a new object, even if the passed indexes are the same

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None
Maximum number of consecutive elements to forward or backward fill

tolerance : optional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation
abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns reindexed : Panel

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200, 200, 404, 404, 301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
... index=index})
>>> df
 http_status response_time
Firefox 200.00 0.04
Chrome 200.00 0.02
Safari 404.00 0.07
IE10 404.00 0.08
Konqueror 301.00 1.00
```

Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

```python
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10',
... 'Chrome']
>>> df.reindex(new_index)
 http_status response_time
Safari 404.00 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.00 0.08
Chrome 200.00 0.02
```
We can fill in the missing values by passing a value to the keyword `fill_value`. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword `method` to fill the `NaN` values.

```python
>>> df.reindex(new_index, fill_value=0)
 http_status response_time
Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02

>>> df.reindex(new_index, fill_value='missing')
 http_status response_time
Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02
```

To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```python
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
 index=date_index)
>>> df2
 prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
```

Suppose we decide to expand the dataframe to cover a wider date range.

```python
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
 prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with `NaN`. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the `NaN` values, pass `bfill` as an argument to the `method` keyword.
Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the `fillna()` method.

**pandas.Panel.reindex_axis**

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)
Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- **labels**: array-like
  
  New labels / index to conform to. Preferably an Index object to avoid duplicating data

- **axis**: {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}

- **method**: {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
  
  Method to use for filling holes in reindexed DataFrame:
  - default: don’t fill gaps
  - pad / ffill: propagate last valid observation forward to next valid
  - backfill / bfill: use next valid observation to fill gap
  - nearest: use nearest valid observations to fill gap

- **copy**: boolean, default True
  
  Return a new object, even if the passed indexes are the same

- **level**: int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level

- **limit**: int, default None
  
  Maximum number of consecutive elements to forward or backward fill

- **tolerance**: optional
  
  Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.
New in version 0.17.0.

Returns reindexed : Panel

See also:

reindex, reindex_like

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.Panel.reindex_like

Panel.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
Return an object with matching indices to myself.

Parameters other : Object

   method : string or None
   copy : boolean, default True
   limit : int, default None
     Maximum number of consecutive labels to fill for inexact matches.
   tolerance : optional
     Maximum distance between labels of the other object and this object for inexact matches.
New in version 0.17.0.

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel.rename

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series. name with a scalar value (Series only).

Parameters items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional

   Scalar or list-like will alter the Series.name attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values

   copy : boolean, default True
     Also copy underlying data
   inplace : boolean, default False
Whether to return a new Panel. If True then value of copy is ignored.

level : int or level name, default None

In case of a MultiIndex, only rename labels in the specified level.

Returns renamed : Panel (new object)

See also:
pandas.NDFrame.rename_axis

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0 1
3 2
5 3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
Traceback (most recent call last):
...
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
a b
0 1 4
1 2 5
2 3 6
```

pandas.Panel.rename_axis

Panel.rename_axis(mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. A scalar or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the
labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters** mapper : scalar, list-like, dict-like or function, optional

- **axis** : int or string, default 0
- **copy** : boolean, default True
  - Also copy underlying data
- **inplace** : boolean, default False

**Returns** renamed : type of caller

**See also:**

pandas.NDFrame.rename, pandas.Index.rename

**Examples**

```python
def = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
def.rename_axis("foo") # scalar, alters df.index.name
 A B
foo 0 1 4
 1 2 5
 2 3 6

def.rename_axis(lambda x: 2 * x) # function: alters labels
 A B
 0 1 4
 2 2 5
 4 3 6

def.rename_axis({"A": "ehh", "C": "see"}, axis="columns") # mapping
 ehh B
 0 1 4
 1 2 5
 2 3 6
```

**pandas.Panel.replace**

Panel.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

**Parameters** to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching to_replace will be replaced with value
  - regex: regexes matching to_replace will be replaced with value
- list of str, regex, or numeric:
  - First, if to_replace and value are both lists, they must be the same length.
  - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter
much for value since there are only a few possible substitution regexes you can use.

- str and regex rules apply as above.

- dict:
  - Nested dictionaries, e.g., `{a: {b: nan}}`, are read as follows: look in column `a` for the value `b` and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
  - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {‘pad’, ‘ffill’, ‘bfill’}

The method to use when for replacement, when to_replace is a list.

Returns filled : NDFrame

Raises AssertionError

- If regex is not a bool and to_replace is not None.

TypeError

- If to_replace is a dict and value is not a list, dict, ndarray, or Series

ValueError

- If to_replace and value are lists or ndarrays, but they are not the same length.
See also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Panel.resample

Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

Parameters:

rule : string
    the offset string or object representing target conversion

axis : int, optional, default 0

closed : {'right', 'left'}
    Which side of bin interval is closed

label : {'right', 'left'}
    Which bin edge label to label bucket with

convention : {'start', 'end', 's', 'e'}

loffset : timedelta
    Adjust the resampled time labels

base : int, default 0
    For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

on : string, optional
    For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

    New in version 0.19.0.

level : string or int, optional
For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.

New in version 0.19.0.

Notes

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
```

```python
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label ‘2000-01-01 00:03:00’ does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```
Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] # select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the pad method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Pass a custom function via apply

```python
>>> def custom_resampler(array_like):
... return np.sum(array_like) + 5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
```

For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling.

```python
>>> df = pd.DataFrame(data=9*range(4), columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
```

```python
 a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9
```

For a DataFrame with MultiIndex, the keyword `level` can be used to specify on level the resampling needs to take place.
pandas: powerful Python data analysis toolkit, Release 0.20.1

```python
>>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],
 columns=['a', 'b', 'c', 'd'],
 index=pd.MultiIndex.from_product([time, [1, 2]])
)
>>> df2.resample('3T', level=0).sum()
 a b c d
2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12
```

**pandas.Panel.rfloordiv**

Panel.rfloordiv(other, axis=0)

Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // panel.

Parameters

- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

Returns

Panel

See also:

Panel.floordiv

**pandas.Panel.rmod**

Panel.rmod(other, axis=0)

Modulo of series and other, element-wise (binary operator rmod). Equivalent to other % panel.

Parameters

- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

Returns

Panel

See also:

Panel.mod

**pandas.Panel.rmul**

Panel.rmul(other, axis=0)

Multiplication of series and other, element-wise (binary operator rmul). Equivalent to other * panel.

Parameters

- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

Returns

Panel
See also:

Panel.mul

pandas.Panel.round

Panel.round (decimals=0, *args, **kwargs)
Round each value in Panel to a specified number of decimal places.
New in version 0.18.0.

Parameters decimals : int
Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns Panel object

See also:
numpy.around

pandas.Panel.rpow

Panel.rpow (other, axis=0)
Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other ** panel.

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

See also:
Panel.pow

pandas.Panel.rsub

Panel.rsub (other, axis=0)
Subtraction of series and other, element-wise (binary operator rsub). Equivalent to other - panel.

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

See also:
Panel.sub
**pandas.Panel.rtruediv**

Panels `rtruediv other, axis=0`  
Floating division of series and other, element-wise (binary operator `rtruediv`). Equivalent to `other / panel`.

**Parameters**
- **other**: DataFrame or Panel  
- **axis**: {items, major_axis, minor_axis}  
  Axis to broadcast over

**Returns**
- Panel

**See also:**
- `Panel.truediv`

**pandas.Panel.sample**

Panels `sample n=None, frac=None, replace=False, weights=None, random_state=None, axis=None`  
Returns a random sample of items from an axis of object. New in version 0.16.1.

**Parameters**
- **n**: int, optional  
  Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac = None`.
- **frac**: float, optional  
  Fraction of axis items to return. Cannot be used with `n`.
- **replace**: boolean, optional  
  Sample with or without replacement. Default = False.
- **weights**: str or ndarray-like, optional  
  Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.
- **random_state**: int or `numpy.random.RandomState`, optional  
  Seed for the random number generator (if int), or `numpy RandomState` object.
- **axis**: int or string, optional  
  Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

**Returns**
- A new object of same type as caller.
Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270
4 -1.095526
dtype: float64

>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
 A B C D
0 -1.051921 0.438836 0.658280 -0.175797
1 -1.243569 -0.364626 -0.215065 0.057736
2 1.768216 0.404512 -0.385604 -1.457834
3 1.072446 -1.137172 0.314194 -0.046661
```

Next extract a random sample from both of these objects...

3 random elements from the Series:

```python
>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64
```

And a random 10% of the DataFrame with replacement:

```python
>>> df.sample(frac=0.1, replace=True)
 A B C D
35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
 6 0.148339 0.832938 1.787600 -1.383767
```

**pandas.Panel.select**

Panel.select(crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters

- crit : function
  
  To be called on each index (label). Should return True or False

- axis : int

Returns

- selection : type of caller
pandas.Panel.sem

Panelsem\(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kw\)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : \{items (0), major_axis (1), minor_axis (2)\}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
ddof : int, default 1
degrees of freedom
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns sem : DataFrame or Panel (if level specified)

pandas.Panel.set_axis

Panel.set_axis\(axis, labels\)
public version of axis assignment

pandas.Panel.set_value

Panel.set_value\(*args, **kwargs\)
Quickly set single value at (item, major, minor) location

Parameters item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
value : scalar
takeable : interpret the passed labels as indexers, default False

Returns panel : Panel
If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel.shift

Panel.shift\(periods=1, freq=None, axis=’major’\)
Shift index by desired number of periods with an optional time freq. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. This is different from the behavior of DataFrame.shift()
Parameters **periods**: int

Number of periods to move, can be positive or negative

**freq**: DateOffset, timedelta, or time rule string, optional

**axis** : {‘items’, ‘major’, ‘minor’} or {0, 1, 2}

Returns **shifted**: Panel

**pandas.Panel.skew**

**Panel.skew** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return unbiased skew over requested axis Normalized by N-1

**Parameters**

**axis** : {items (0), major_axis (1), minor_axis (2)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

**numeric_only** : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns **skew**: DataFrame or Panel (if level specified)

**pandas.Panel.slice_shift**

**Panel.slice_shift** *(periods=1, axis=0)*

Equivalent to *shift* without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

**Parameters**

**periods**: int

Number of periods to move, can be positive or negative

Returns **shifted**: same type as caller

**Notes**

While the *slice_shift* is faster than *shift*, you may pay for it later during alignment.

**pandas.Panel.sort_index**

**Panel.sort_index** *(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True)*

Sort object by labels (along an axis)

**Parameters**

**axis** : axes to direct sorting

**level** : int or level name or list of ints or list of level names

34.5. Panel
if not None, sort on values in specified index level(s)

**ascending**: boolean, default True

Sort ascending vs. descending

**inplace**: bool, default False

if True, perform operation in-place

**kind**: {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'

Choice of sorting algorithm. See also ndarray.np.sort for more information. 

**na_position**: {'first', 'last'}, default 'last'

*first* puts NaNs at the beginning, *last* puts NaNs at the end. Not implemented for MultiIndex.

**sort_remaining**: bool, default True

if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level

Returns **sorted_obj**: NDFrame

### pandas.Panel.sort_values

```python
Panel.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
```

### pandas.Panel.squeeze

```python
Panel.squeeze(axis=None)
```

Squeeze length 1 dimensions.

**Parameters**

**axis**: None, integer or string axis name, optional

The axis to squeeze if 1-sized.

New in version 0.20.0.

**Returns**

scalar if 1-sized, else original object

### pandas.Panel.std

```python
Panel.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
```

Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

**axis**: {items (0), major_axis (1), minor_axis (2)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame.

- **ddof**: int, default 1
  - degrees of freedom
- **numeric_only**: boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**
- **std**: DataFrame or Panel (if level specified)

### pandas.Panel.sub

**Panel.sub** *(other, axis=None)*

Subtraction of series and other, element-wise (binary operator `sub`). Equivalent to `panel - other`.

**Parameters**
- **other**: DataFrame or Panel
- **axis**: `{items, major_axis, minor_axis}`
  - Axis to broadcast over

**Returns**
- **Panel**

**See also:**
- `Panel.rsub`

### pandas.Panel.subtract

**Panel.subtract** *(other, axis=None)*

Subtraction of series and other, element-wise (binary operator `sub`). Equivalent to `panel - other`.

**Parameters**
- **other**: DataFrame or Panel
- **axis**: `{items, major_axis, minor_axis}`
  - Axis to broadcast over

**Returns**
- **Panel**

**See also:**
- `Panel.rsub`

### pandas.Panel.sum

**Panel.sum** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the sum of the values for the requested axis.

**Parameters**
- **axis**: `{items (0), major_axis (1), minor_axis (2)}`
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

**numeric_only**: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns** `sum` : DataFrame or Panel (if level specified)

### pandas.Panel.swapaxes

`Panel.swapaxes(axis1, axis2, copy=True)`

Interchange axes and swap values axes appropriately

**Returns** `y`: same as input

### pandas.Panel.swaplevel

`Panel.swaplevel(i=-2, j=-1, axis=0)`

Swap levels i and j in a MultiIndex on a particular axis

**Parameters** `i, j`: int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

**Returns** `swapped`: type of caller (new object)

Changed in version 0.18.1: The indexes `i` and `j` are now optional, and default to the two innermost levels of the index.

### pandas.Panel.tail

`Panel.tail(n=5)`

### pandas.Panel.take

`Panel.take(indices, axis=0, convert=True, is_copy=True, **kwargs)`

Analogous to ndarray.take

**Parameters** `indices`: list / array of ints

`axis`: int, default 0

`convert`: translate neg to pos indices (default)

`is_copy`: mark the returned frame as a copy

**Returns** `taken`: type of caller

### pandas.Panel.toLong

`Panel.toLong(*args, **kwargs)`
pandas.Panel.to_clipboard

Panel.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters excel : boolean, defaults to True
    if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard

    sep : optional, defaults to tab
    other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

pandas.Panel.to_dense

Panel.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel.to_excel

Panel.to_excel(path, na_rep='', engine=None, **kwargs)
Write each DataFrame in Panel to a separate excel sheet

Parameters path : string or ExcelWriter object
    File path or existing ExcelWriter

    na_rep : string, default ‘’
        Missing data representation

    engine : string, default None
        write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

Other Parameters float_format : string, default None
    Format string for floating point numbers

    cols : sequence, optional
        Columns to write

    header : boolean or list of string, default True
        Write out column names. If a list of string is given it is assumed to be aliases for the column names
index : boolean, default True
Write row names (index)

index_label : string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

startrow : upper left cell row to dump data frame
startcol : upper left cell column to dump data frame

Notes
Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.

pandas.Panel.to_frame

Panel.to_frame (filter_observations=True)
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.

Parameters filter_observations : boolean, default True
Drop (major, minor) pairs without a complete set of observations across all the items

Returns y : DataFrame

pandas.Panel.to_hdf

Panel.to_hdf (path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Parameters path_or_buf : the path (string) or HDFStore object
key : string
identifier for the group in the store
mode : optional, {'a', 'w', 'r+'}, default 'a'
'w' Write; a new file is created (an existing file with the same name would be deleted).
'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
'r+' It is similar to 'a', but the file must already exist.
format : ‘fixed(f)|table(t)’, default is ‘fixed’
fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
**append** : boolean, default False

For Table formats, append the input data to the existing

**data_columns** : list of columns, or True, default None

List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.

Applicable only to format='table'.

**complevel** : int, 1-9, default 0

If a complib is specified compression will be applied where possible

**complib** : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

**fletcher32** : bool, default False

If applying compression use the fletcher32 checksum

**dropna** : boolean, default False.

If true, ALL nan rows will not be written to store.

---

**pandas.Panel.to_json**

Panel.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters**

- **path_or_buf** : the path or buffer to write the result string

  - if this is None, return a StringIO of the converted string

- **orient** : string

  - Series
    - default is ‘index’
    - allowed values are: {‘split’, ’records’, ’index’}
  
  - DataFrame
    - default is ‘columns’
    - allowed values are: {‘split’, ’records’, ’index’, ’columns’, ’values’}

- **The format of the JSON string**

  - split : dict like {index -> [index], columns -> [columns], data -> [values]}
  
  - records : list like [{column -> value}, ..., {column -> value}]
  
  - index : dict like {index -> {column -> value}}
  
  - columns : dict like {column -> {index -> value}}
  
  - values : just the values array
pandas: powerful Python data analysis toolkit, Release 0.20.1

– table : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data, and the
data component is like orient='records'.
Changed in version 0.20.0.
date_format : {None, ‘epoch’, ‘iso’}
Type of date conversion. epoch = epoch milliseconds, iso = ISO8601. The default
depends on the orient. For orient=’table’, the default is ‘iso’. For all other orients,
the default is ‘epoch’.
double_precision : The number of decimal places to use when encoding
floating point values, default 10.
force_ascii : force encoded string to be ASCII, default True.
date_unit : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of
‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for
JSON. Should receive a single argument which is the object to convert and return
a serialisable object.
lines : boolean, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError
if incorrect ‘orient’ since others are not list like.
New in version 0.19.0.
Returns same type as input object with filtered info axis
See also:
pd.read_json
Examples
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
...
index=['row 1', 'row 2'],
...
columns=['col 1', 'col 2'])
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'

Encoding/decoding a Dataframe using 'index' formatted JSON:
>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.
>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'

1616

Chapter 34. API Reference


Encoding with Table Schema

```python
>>> df.to_json(orient='table')
'"schema": {
"fields": [
{"name": "index", "type": "string"},
{"name": "col 1", "type": "string"},
{"name": "col 2", "type": "string"}
],
"primaryKey": "index",
"pandas_version": "0.20.0"},
"data": [
{"index": "row 1", "col 1": "a", "col 2": "b"},
{"index": "row 2", "col 1": "c", "col 2": "d"}]
'
```

**pandas.Panel.to_long**

`Panel.to_long(*args, **kwargs)`

**pandas.Panel.to_msgpack**

`Panel.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs)`

Msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**

- `path`: string File path, buffer-like, or None
  - if None, return generated string
- `append`: boolean whether to append to an existing msgpack
  - (default is False)
- `compress`: type of compressor (zlib or blosc), default to None (no compression)

**pandas.Panel.to_pickle**

`Panel.to_pickle(path, compression='infer')`

Pickle (serialize) object to input file path.

**Parameters**

- `path`: string
  - File path
- `compression`: {'infer', 'gzip', 'bz2', 'xz', None}, default 'infer'
  - a string representing the compression to use in the output file
  - New in version 0.20.0.

**pandas.Panel.to_sparse**

`Panel.to_sparse(*args, **kwargs)`

NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.

Convert to SparsePanel
Panel.to_sql

Panel.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)

Write records stored in a DataFrame to a SQL database.

Parameters

name : string
    Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
    Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : 'sqlite', default None
    DEPRECATED: this parameter will be removed in a future version, as 'sqlite' is the only supported option if SQLAlchemy is not installed.

schema : string, default None
    Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
    - fail: If table exists, do nothing.
    - replace: If table exists, drop it, recreate it, and insert data.
    - append: If table exists, insert data. Create if does not exist.

index : boolean, default True
    Write DataFrame index as a column.

index_label : string or sequence, default None
    Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None
    If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

dtype : dict of column name to SQL type, default None
    Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.

Panel.to_xarray

Panel.to_xarray()

Return an xarray object from the pandas object.

Returns

- a DataArray for a Series
- a Dataset for a DataFrame
- a DataArray for higher dims
Notes

See the xarray docs

Examples

```python
>>> df = pd.DataFrame({'A' : [1, 1, 2],
 'B' : ['foo', 'bar', 'foo'],
 'C' : np.arange(4.,7))
>>> df
 A B C
0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
 * index (index) int64 0 1 2
Data variables:
 A (index) int64 1 1 2
 B (index) object 'foo' 'bar' 'foo'
 C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
 'B' : ['foo', 'bar', 'foo'],
 'C' : np.arange(4.,7)})
/>.set_index(['B','A])
>>> df
 C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
 * B (B) object 'bar' 'foo'
 * A (A) int64 1 2
Data variables:
 C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
 items=list('ABCD'),
 major_axis=pd.date_range('20130101', periods=3),
 minor_axis=['first', 'second'])
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second
```
```python
>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[0, 1],
 [2, 3],
 [4, 5]],
 [[6, 7],
 [8, 9],
 [10,11]],
 [[12,13],
 [14,15],
 [16,17]],
 [[18,19],
 [20,21],
 [22,23]])
Coordinates:
 * items (items) object 'A' 'B' 'C' 'D'
 * major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
 * minor_axis (minor_axis) object 'first' 'second'
```

**pandas.Panel.transpose**

Panel.transpose(*args, **kwargs)

Permute the dimensions of the Panel

- **Parameters**
  - *args*: three positional arguments: each one of
    - {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}
  - **kwargs**: `copy` [boolean, default False] Make a copy of the underlying data. Mixed-dtype data will always result in a copy

- **Returns**
  - y: same as input

**Examples**

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

**pandas.Panel.truediv**

Panel.truediv(other, axis=0)

Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

- **Parameters**
  - other: DataFrame or Panel
  - axis : {items, major_axis, minor_axis}

- **Returns**
  - Panel
See also:

*Panel.rtruediv*

**pandas.Panel.truncate**

Panel.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only datetime values, before/after parameters are converted to datetime values.

**Parameters**

- **before**: date
  - Truncate before index value
- **after**: date
  - Truncate after index value
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
  - return a copy of the truncated section

**Returns**

- **truncated**: type of caller

**pandas.Panel.tshift**

Panel.tshift(periods=1, freq=None, axis='major')

**pandas.Panel.tz_convert**

Panel.tz_convert(tz, axis=0, level=None, copy=True)

Convert tz-aware axis to target time zone.

**Parameters**

- **tz**: string or pytz.timezone object
- **axis**: the axis to convert
- **level**: int, str, default None
  - If axis ia a MultiIndex, convert a specific level. Otherwise must be None
- **copy**: boolean, default True
  - Also make a copy of the underlying data

**Raises**

- **TypeError**
  - If the axis is tz-naive.

**pandas.Panel.tz_localize**

Panel.tz_localize(tz, axis=0, level=None, copy=True, ambiguous='raise')

Localize tz-naive TimeSeries to target time zone.
Parameters  

**tz** : string or pytz.timezone object

**axis** : the axis to localize

**level** : int, str, default None

If axis ia a MultiIndex, localize a specific level. Otherwise must be None

**copy** : boolean, default True

Also make a copy of the underlying data

**ambiguous** : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

**infer_dst** : boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order

Raises  

**TypeError**

If the TimeSeries is tz-aware and tz is not None.

**pandas.Panel.update**

Panel.update(
other, join='left', overwrite=True, filter_func=None, raise_conflict=False)

Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

**Parameters**  

**other** : Panel, or object coercible to Panel

**join** : How to join individual DataFrames

{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’

**overwrite** : boolean, default True

If True then overwrite values for common keys in the calling panel

**filter_func** : callable(1d-array) -> 1d-array<boolean>, default None

Can choose to replace values other than NA. Return True for values that should be updated

**raise_conflict** : bool

If True, will raise an error if a DataFrame and other both contain data in the same place.

**pandas.Panel.var**

Panel.var(
axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument
Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Excluding NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

ddf : int, default 1
degrees of freedom

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns var : DataFrame or Panel (if level specified)

pandas.Panel.where

Panel.where (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters

cond : boolean NDFrame, array-like, or callable
If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable
If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False
Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False
try to cast the result back to the input type (if possible).

raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.mask()
Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

pandas.Panel.xs

Panel.xls(key, axis=1)

Return slice of panel along selected axis

Parameters key : object

Label

axis : {'items', 'major', 'minor'}, default 1/major
Returns $y : \text{ndim(self)-1}$

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs functionality, see *MultiIndex Slicers*

### 34.5.2 Attributes and underlying data

**Axes**

- **items**: axis 0; each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1; the index (rows) of each of the DataFrames
- **minor_axis**: axis 2; the columns of each of the DataFrames

<table>
<thead>
<tr>
<th>Panel.values</th>
<th>Numpy representation of NDFrame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.axes</td>
<td>Return index label(s) of the internal NDFrame</td>
</tr>
<tr>
<td>Panel.ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>Panel.size</td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td>Panel.shape</td>
<td>Return a tuple of axis dimensions</td>
</tr>
<tr>
<td>Panel.dtypes</td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td>Panel.ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td>Panel.get_dtype_counts()</td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td>Panel.get_ftype_counts()</td>
<td>Return the counts of ftypes in this object.</td>
</tr>
</tbody>
</table>

### 34.5.3 Conversion

Panel.astype(dtype[, copy, errors])	Cast object to input numpy.dtype
Panel.copy([deep])	Make a copy of this objects data.
Panel.isnull()	Return a boolean same-sized object indicating if the values are null.
Panel.notnull()	Return a boolean same-sized object indicating if the values are not null.

### 34.5.4 Getting and setting

| Panel.get_value(*args, **kwargs) | Quickly retrieve single value at (item, major, minor) location         |
| Panel.set_value(*args, **kwargs) | Quickly set single value at (item, major, minor) location              |

### 34.5.5 Indexing, iteration, slicing

<table>
<thead>
<tr>
<th>Panel.at</th>
<th>Fast label-based scalar accessor</th>
</tr>
</thead>
</table>

Continued on next page
### 34.5.5.1 pandas.Panel.__iter__

Panel.__iter__()  
Iterate over info axis

For more information on .at, .iat, .loc, and .iloc, see the [indexing documentation](#).

### 34.5.6 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.add</td>
<td>Addition of series and other, element-wise (binary operator <code>add</code>).</td>
</tr>
<tr>
<td>Panel.sub</td>
<td>Subtraction of series and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td>Panel.mul</td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td>Panel.div</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td>Panel.truediv</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td>Panel.floordiv</td>
<td>Integer division of series and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td>Panel.mod</td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td>Panel.pow</td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td>Panel.radd</td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td>Panel.rsub</td>
<td>Subtraction of series and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td>Panel.rmul</td>
<td>Multiplication of series and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td>Panel.rdiv</td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td>Panel.rtruediv</td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td>Panel.rfloordiv</td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td>Panel.rmod</td>
<td>Modulo of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
</tbody>
</table>
Table 34.76 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.rpow</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>Panel.lt</code></td>
<td>Wrapper for comparison method <code>lt</code>.</td>
</tr>
<tr>
<td><code>Panel.gt</code></td>
<td>Wrapper for comparison method <code>gt</code>.</td>
</tr>
<tr>
<td><code>Panel.le</code></td>
<td>Wrapper for comparison method <code>le</code>.</td>
</tr>
<tr>
<td><code>Panel.ge</code></td>
<td>Wrapper for comparison method <code>ge</code>.</td>
</tr>
<tr>
<td><code>Panel.ne</code></td>
<td>Wrapper for comparison method <code>ne</code>.</td>
</tr>
<tr>
<td><code>Panel.eq</code></td>
<td>Wrapper for comparison method <code>eq</code>.</td>
</tr>
<tr>
<td><code>Panel.apply</code></td>
<td>Applies function along axis (or axes) of the Panel.</td>
</tr>
<tr>
<td><code>Panel.groupby</code></td>
<td>Group data on given axis, returning GroupBy object.</td>
</tr>
</tbody>
</table>

34.5.7 Function application, GroupBy

34.5.8 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.abs</code></td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td><code>Panel.clip</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>Panel.clip_lower</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>Panel.clip_upper</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>Panel.count</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummax</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummin</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumprod</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumsum</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>Panel.max</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.mean</code></td>
<td>Return the mean of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.median</code></td>
<td>Return the median of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.min</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.pct_change</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>Panel.prod</code></td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.sem</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>Panel.skew</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><code>Panel.sum</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.std</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>Panel.var</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

34.5.9 Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.add_prefix</code></td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
</tbody>
</table>
Table 34.79 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.add_suffix</code> (suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td><code>Panel.drop</code> (labels[, axis, level, inplace, ...])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>Panel.equals</code> (other)</td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>Panel.filter</code> (items, like, regex, axis)</td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>Panel.first</code> (offset)</td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>Panel.last</code> (offset)</td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>Panel.reindex</code> (items, major_axis, minor_axis)</td>
<td>Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>Panel.reindex_axis</code> (labels[, axis, method, ...])</td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>Panel.reindex_like</code> (other[, method, copy, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>Panel.rename</code> (items, major_axis, minor_axis)</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>Panel.sample</code> (n, frac, replace, weights, ...)</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>Panel.select</code> (crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>Panel.take</code> (indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>Panel.truncate</code> (before, after, axis, copy)</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
</tbody>
</table>

### 34.5.10 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.dropna</code> (axis, how, inplace)</td>
<td>Drop 2D from panel, holding passed axis constant</td>
</tr>
<tr>
<td><code>Panel.fillna</code> (value, method, axis, inplace, ...)</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
</tbody>
</table>

### 34.5.11 Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.sort_index</code> (axis, level, ascending, ...)</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>Panel.swaplevel</code> ([i, j, axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>Panel.transpose</code> (*args, **kwargs)</td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td><code>Panel.swapaxes</code> (axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>Panel.conform</code> (frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
</tbody>
</table>

### 34.5.12 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.join</code> (other[, how, lsuffix, rsuffix])</td>
<td>Join items with other Panel either on major and minor axes column</td>
</tr>
<tr>
<td><code>Panel.update</code> (other[, join, overwrite, ...])</td>
<td>Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel.</td>
</tr>
</tbody>
</table>

### 34.5.13 Time series-related
Panel.asfreq(freq[, method, how, normalize, ...]) Convert TimeSeries to specified frequency.

Panel.shift([periods, freq, axis]) Shift index by desired number of periods with an optional time freq.

Panel.resample(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of time series.

Panel.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.

Panel.tz_localize(tz[, axis, level, copy, ...]) Localize tz-naive TimeSeries to target time zone.

34.5.14 Serialization / IO / Conversion

Panel.from_dict(data[, intersect, orient, dtype]) Construct Panel from dict of DataFrame objects

Panel.to_pickle(path[, compression]) Pickle (serialize) object to input file path.

Panel.to_excel(path[, na_rep, engine]) Write each DataFrame in Panel to a separate excel sheet

Panel.to_hdf(path_or_buf, key, **kwargs) Write the contained data to an HDF5 file using HDFStore.

Panel.to_sparse(*args, **kwargs) NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.

Panel.to_frame([filter_observations]) Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.

Panel.to_xarray() Return an xarray object from the pandas object.

Panel.to_clipboard([excel, sep]) Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

34.6 Index

Many of these methods or variants thereof are available on the objects that contain an index (Series/Dataframe) and those should most likely be used before calling these methods directly.

Index Immutable ndarray implementing an ordered, sliceable set.

34.6.1 pandas.Index

class pandas.Index

Immutuable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects

Parameters data : array-like (1-dimensional)
dtype : NumPy dtype (default: object)
copy : bool
Make a copy of input ndarray
name : object
Name to be stored in the index
tupleize_cols : bool (default: True)
When True, attempt to create a MultiIndex if possible

**Notes**

An Index instance can **only** contain hashable objects

**Attributes**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>asi8</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>dtype_str</td>
<td></td>
</tr>
<tr>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>has_duplicates</td>
<td></td>
</tr>
<tr>
<td>hasnans</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td>is_monotonic</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td></td>
<td>or)</td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td></td>
<td>or)</td>
</tr>
<tr>
<td>is_unique</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td>itemsize</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>names</td>
<td></td>
</tr>
<tr>
<td>nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>ndim</td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td>nlevels</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>values</td>
<td>return the underlying data as an ndarray</td>
</tr>
</tbody>
</table>

34.6.1.1 **pandas.Index.T**

Index.T

return the transpose, which is by definition self

34.6.1.2 **pandas.Index.asi8**

Index.asi8 = None
34.6.1.3 pandas.Index.base

Index.base
return the base object if the memory of the underlying data is shared

34.6.1.4 pandas.Index.data

Index.data
return the data pointer of the underlying data

34.6.1.5 pandas.Index.dtype

Index.dtype = None

34.6.1.6 pandas.Index.dtype_str

Index.dtype_str = None

34.6.1.7 pandas.Index.empty

Index.empty

34.6.1.8 pandas.Index.flags

Index.flags

34.6.1.9 pandas.Index.has_duplicates

Index.has_duplicates

34.6.1.10 pandas.Index.hasnans

Index.hasnans = None

34.6.1.11 pandas.Index.inferred_type

Index.inferred_type = None

34.6.1.12 pandas.Index.is_all_dates

Index.is_all_dates = None

34.6.1.13 pandas.Index.is_monotonic

Index.is_monotonic
alias for is_monotonic_increasing (deprecated)
34.6.1.14 pandas.Index.is_monotonic_decreasing

Index.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing) values.

34.6.1.15 pandas.Index.is_monotonic_increasing

Index.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values.

34.6.1.16 pandas.Index.is_unique

Index.is_unique = None

34.6.1.17 pandas.Index.itemsize

Index.itemsize
return the size of the dtype of the item of the underlying data

34.6.1.18 pandas.Index.name

Index.name = None

34.6.1.19 pandas.Index.names

Index.names

34.6.1.20 pandas.Index.nbytes

Index.nbytes
return the number of bytes in the underlying data

34.6.1.21 pandas.Index.ndim

Index.ndim
return the number of dimensions of the underlying data, by definition 1

34.6.1.22 pandas.Index.nlevels

Index.nlevels

34.6.1.23 pandas.Index.shape

Index.shape
return a tuple of the shape of the underlying data
34.6.1.24 pandas.Index.size

**Index.size**

return the number of elements in the underlying data

34.6.1.25 pandas.Index.strides

**Index.strides**

return the strides of the underlying data

34.6.1.26 pandas.Index.values

**Index.values**

return the underlying data as an ndarray

**Methods**

- `all(*args, **kwargs)` Return whether all elements are True
- `any(*args, **kwargs)` Return whether any element is True
- `append(other)` Append a collection of Index options together
- `argmax([axis])` return a ndarray of the maximum argument indexer
- `argmin([axis])` return a ndarray of the minimum argument indexer
- `argsort(*args, **kwargs)` Returns the indices that would sort the index and its underlying data.
- `asof(label)` For a sorted index, return the most recent label up to and including the passed label.
- `asof_locs(where, mask)` where : array of timestamps
- `astype(dtype[, copy])` Create an Index with values cast to dtypes.
- `contains(key)` return a boolean if this key is IN the index
- `copy([name, deep, dtype])` Make a copy of this object.
- `delete(loc)` Make new Index with passed location(-s) deleted
- `difference(other)` Return a new Index with elements from the index that are not in other.
- `drop(labels[, errors])` Make new Index with passed list of labels deleted
- `drop_duplicates([keep])` Return Index with duplicate values removed
- `dropna([how])` Return Index without NA/NaN values
- `duplicated([keep])` Return boolean np.ndarray denoting duplicate values
- `equals(other)` Determines if two Index objects contain the same elements.
- `factorize([sort, na_sentinel])` Encode the object as an enumerated type or categorical variable
- `fillna([value, downcast])` Fill NA/NaN values with the specified value
- `format([name, formatter])` Render a string representation of the Index
- `get_duplicates()`
- `get_indexer(target, method, limit, tolerance)` Compute indexer and mask for new index given the current index.
- `get_indexer_for(target, **kwargs)` guaranteed return of an indexer even when non-unique
- `get_indexer_non_unique(target)` Compute indexer and mask for new index given the current index.

Continued on next page
Table 34.87 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return an Index of values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method, tolerance])</code></td>
<td>Get integer location for requested label.</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location.</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two Index objects.</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like is but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_interval()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Detect missing values</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers, sort])</code></td>
<td>this is an internal non-public method</td>
</tr>
<tr>
<td><code>map(mapper)</code></td>
<td>Apply mapper function to an index.</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Reversed of isnull</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat(repeats, *args, **kwargs)</code></td>
<td>Repeat elements of an Index.</td>
</tr>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>searchsorted(value[, side, sorter])</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
</tbody>
</table>
### Table 34.87 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>shift([periods, freq])</code></td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
<tr>
<td><code>slice_indexer([start, end, step, kind])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs([start, end, step, kind])</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>sort(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>sort_values([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>str</code></td>
<td>alias of <code>StringMethods</code></td>
</tr>
<tr>
<td><code>summary([name])</code></td>
<td></td>
</tr>
<tr>
<td><code>sym_diff(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>symmetric_difference(other[, result_name])</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>take(indices[, axis, allow_fill, fill_value])</code></td>
<td>return a new Index of the values selected by the indices</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>DEPRECATED: use <code>pandas.to_datetime()</code> instead.</td>
</tr>
<tr>
<td><code>to_native_types([slicer])</code></td>
<td>Format specified values of <code>self</code> and return them.</td>
</tr>
<tr>
<td><code>to_series(**kwargs)</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the Index values</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union(other)</code></td>
<td>Form the union of two Index objects and sorts if possible.</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
<tr>
<td><code>where(cond[, other])</code></td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>

#### 34.6.1.27 pandas.Index.all

Index.

```
all(*args, **kwargs)
```

Return whether all elements are True

**Parameters** All arguments to numpy.all are accepted.

**Returns** all : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.

#### 34.6.1.28 pandas.Index.any

Index.

```
any(*args, **kwargs)
```

Return whether any element is True

**Parameters** All arguments to numpy.any are accepted.

**Returns** any : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.

#### 34.6.1.29 pandas.Index.append

Index.

```
append(other)
```

Append a collection of Index options together
34.6.1.30 pandas.Index.argmax

Index.argmax(axis=None)
return a ndarray of the maximum argument indexer
See also:
    numpy.ndarray.argmax

34.6.1.31 pandas.Index.argmin

Index.argmin(axis=None)
return a ndarray of the minimum argument indexer
See also:
    numpy.ndarray.argmin

34.6.1.32 pandas.Index.argsort

Index.argsort(*args, **kwargs)
Returns the indices that would sort the index and its underlying data.
    Returns argsorted : numpy array
See also:
    numpy.ndarray.argsort

34.6.1.33 pandas.Index.asof

Index.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.
See also:
    get_loc asof is a thin wrapper around get_loc with method='pad'

34.6.1.34 pandas.Index.asof_locs

Index.asof_locs(where, mask)
    where : array of timestamps mask : array of booleans where data is not NA

34.6.1.35 pandas.Index.astype

Index.astype(dtype, copy=True)
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.
Parameters dtype: numpy dtype or pandas type

    copy: bool, default True

By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.

34.6.1.36 pandas.Index.contains

Index.contains(key)

    return a boolean if this key is IN the index

Parameters key: object

Returns boolean

34.6.1.37 pandas.Index.copy

Index.copy(name=None, deep=False, dtype=None, **kwargs)

    Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters name: string, optional

    deep: boolean, default False

    dtype: numpy dtype or pandas type

Returns copy: Index

Notes

    In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

34.6.1.38 pandas.Index.delete

Index.delete(loc)

    Make new Index with passed location(-s) deleted

Returns new_index: Index

34.6.1.39 pandas.Index.difference

Index.difference(other)

    Return a new Index with elements from the index that are not in other.

This is the set difference of two Index objects. It’s sorted if sorting is possible.

Parameters other: Index or array-like

Returns difference: Index
Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

### 34.6.1.40 pandas.Index.drop

Index.drop (labels, errors='raise')

Make new Index with passed list of labels deleted

**Parameters**

- **labels** : array-like
  
  **errors** : {'ignore', 'raise'}, default 'raise'
  
  If 'ignore', suppress error and existing labels are dropped.

**Returns**

- **dropped** : Index

### 34.6.1.41 pandas.Index.drop_duplicates

Index.drop_duplicates (keep='first')

Return Index with duplicate values removed

**Parameters**

- **keep** : {'first', 'last', False}, default 'first'
  
  - **first** : Drop duplicates except for the first occurrence.
  
  - **last** : Drop duplicates except for the last occurrence.
  
  - **False** : Drop all duplicates.

**Returns**

- **deduplicated** : Index

### 34.6.1.42 pandas.Index.dropna

Index.dropna (how='any')

Return Index without NA/NaN values

**Parameters**

- **how** : {'any', 'all'}, default 'any'
  
  If the Index is a MultiIndex, drop the value when any or all levels are NaN.

**Returns**

- **valid** : Index

### 34.6.1.43 pandas.Index.duplicated

Index.duplicated (keep='first')

Return boolean np.ndarray denoting duplicate values

**Parameters**

- **keep** : {'first', 'last', False}, default 'first'
  
  - **first** : Mark duplicates as True except for the first occurrence.
  
  - **last** : Mark duplicates as True except for the last occurrence.
  
  - **False** : Mark all duplicates as True.
Returns duplicated : np.ndarray

34.6.1.44 pandas.Index.equals

Index.equals(other)
Determines if two Index objects contain the same elements.

34.6.1.45 pandas.Index.factorize

Index.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values
na_sentinel: int, default -1
Value to mark “not found”

Returns labels : the indexer to the original array
uniques : the unique Index

34.6.1.46 pandas.Index.fillna

Index.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.
downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : %(klass)s

34.6.1.47 pandas.Index.format

Index.format(name=False, formatter=None, **kwargs)
Render a string representation of the Index

34.6.1.48 pandas.Index.get_duplicates

Index.get_duplicates()

34.6.1.49 pandas.Index.get_indexer

Index.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.
Parameters  

target : Index

method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
  • default: exact matches only.
  • pad / ffill: find the PREVIOUS index value if no exact match.
  • backfill / bfill: use NEXT index value if no exact match
  • nearest: use the NEAREST index value if no exact match. Tied distances are broken
    by preferring the larger index value.

limit : int, optional
  Maximum number of consecutive labels in target to match for inexact
  matches.

tolerance : optional
  Maximum distance between original and new labels for inexact matches.
  The values of the index at the matching locations most satisfy the equation
  abs(index[indexer] - target) <= tolerance.
  New in version 0.17.0.

Returns  

indexer : ndarray of int
  Integers from 0 to n - 1 indicating that the index at these positions matches the
  corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

34.6.1.50 pandas.Index.get_indexer_for

Index.get_indexer_for(target, **kwargs)
guaranteed return of an indexer even when non-unique This dispatches to get_indexer or
get_indexer_nonunique as appropriate

34.6.1.51 pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target)
Compute indexer and mask for new index given the current index. The indexer should be then used as an
input to ndarray.take to align the current data to the new index.

Parameters  

target : Index

Returns  

indexer : ndarray of int
  Integers from 0 to n - 1 indicating that the index at these positions matches the
  corresponding target values. Missing values in the target are marked by -1.

missing : ndarray of int
  An indexer into the target of the values not found. These correspond to the -1 in
  the indexer array
34.6.1.52 pandas.Index.get_level_values

Index.get_level_values(level)
Return an Index of values for requested level, equal to the length of the index

Parameters level : int
Returns values : Index

34.6.1.53 pandas.Index.get_loc

Index.get_loc(key, method=None, tolerance=None)
Get integer location for requested label.

Parameters key : label
method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
  • default: exact matches only.
  • pad / ffill: find the PREVIOUS index value if no exact match.
  • backfill / bfill: use NEXT index value if no exact match
  • nearest: use the NEAREST index value if no exact match. Tied distances are broken
  by preferring the larger index value.

tolerance : optional
  Maximum distance from index value for inexact matches. The value of the index
  at the matching location most satisfy the equation abs(index[loc] - key) <= tolerance.
  New in version 0.17.0.

Returns loc : int if unique index, possibly slice or mask if not

34.6.1.54 pandas.Index.get_slice_bound

Index.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.

Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}

34.6.1.55 pandas.Index.get_value

Index.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

34.6.1.56 pandas.Index.get_values

Index.get_values()
return the underlying data as an ndarray

34.6. Index 1641
### 34.6.1.57 pandas.Index.groupby

**Index.groupby(values)**

Group the index labels by a given array of values.

**Parameters**

- `values`: array
  - Values used to determine the groups.

**Returns**

- `groups`: dict
  - `{group name -> group labels}`

### 34.6.1.58 pandas.Index.holds_integer

**Index.holds_integer()**

### 34.6.1.59 pandas.Index.identical

**Index.identical(other)**

Similar to equals, but check that other comparable attributes are also equal.

### 34.6.1.60 pandas.Index.insert

**Index.insert(loc, item)**

Make new Index inserting new item at location. Follows Python list.append semantics for negative values.

**Parameters**

- `loc`: int
- `item`: object

**Returns**

- `new_index`: Index

### 34.6.1.61 pandas.Index.intersection

**Index.intersection(other)**

Form the intersection of two Index objects.

This returns a new Index with elements common to the index and `other`, preserving the order of the calling index.

**Parameters**

- `other`: Index or array-like

**Returns**

- `intersection`: Index

#### Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.intersection(idx2)
Int64Index([3, 4], dtype='int64')
```
34.6.1.62 pandas.Index.is_

`Index.is_(other)`
More flexible, faster check like `is` but that works through views

Note: this is *not* the same as `Index.identical()`, which checks that metadata is also the same.

**Parameters**  
- `other`: object

**Returns**  
True if both have same underlying data, False otherwise

```
34.6.1.63 pandas.Index.is_boolean
Index.is_boolean()
```

```
34.6.1.64 pandas.Index.is_categorical
Index.is_categorical()
```

```
34.6.1.65 pandas.Index.is_floating
Index.is_floating()
```

```
34.6.1.66 pandas.Index.is_integer
Index.is_integer()
```

```
34.6.1.67 pandas.Index.is_interval
Index.is_interval()
```

```
34.6.1.68 pandas.Index.is_lexsorted_for_tuple
Index.is_lexsorted_for_tuple(tup)
```

```
34.6.1.69 pandas.Index.is_mixed
Index.is_mixed()
```

```
34.6.1.70 pandas.Index.is_numeric
Index.is_numeric()
```

```
34.6.1.71 pandas.Index.is_object
Index.is_object()
```
34.6.1.72 pandas.Index.is_type_compatible

Index.is_type_compatible(kind)

34.6.1.73 pandas.Index.isin

Index.isin(values, level=None)

Compute boolean array of whether each index value is found in the passed set of values.

Parameters values : set or list-like
    Sought values.
    New in version 0.18.1.
    Support for values as a set

level : str or int, optional
    Name or position of the index level to use (if the index is a MultiIndex).

Returns is_contained : ndarray (boolean dtype)

Notes

If level is specified:

• if it is the name of one and only one index level, use that level;
• otherwise it should be a number indicating level position.

34.6.1.74 pandas.Index.isnull

Index.isnull()

Detect missing values

New in version 0.20.0.

Returns a boolean array of whether my values are null

See also:

pandas.isnull pandas version

34.6.1.75 pandas.Index.item

Index.item()

return the first element of the underlying data as a python scalar

34.6.1.76 pandas.Index.join

Index.join(other, how='left', level=None, return_indexers=False, sort=False)

this is an internal non-public method

Compute join_index and indexers to conform data structures to the new index.
Parameters `other` : Index

- `how` : {'left', 'right', 'inner', 'outer'}
- `level` : int or level name, default None
- `return_indexers` : boolean, default False
- `sort` : boolean, default False

Sort the join keys lexicographically in the result Index. If False, the order of the
join keys depends on the join type (how keyword)
New in version 0.20.0.

Returns join_index, (left_indexer, right_indexer)

34.6.1.77 pandas.Index.map

`Index.map(mapper)`

Apply mapper function to an index.

- Parameters `mapper` : callable

Function to be applied.

- Returns applied : Union[Index, MultiIndex], inferred

The output of the mapping function applied to the index. If the function returns a
tuple with more than one element a MultiIndex will be returned.

34.6.1.78 pandas.Index.max

`Index.max()`

The maximum value of the object

34.6.1.79 pandas.Index.memory_usage

`Index.memory_usage(deep=False)`

Memory usage of my values

- Parameters `deep` : bool

Introspect the data deeply, interrogate object dtypes for system-level memory
consumption

- Returns bytes used

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if
deep=False
34.6.1.80 pandas.Index.min

Index.min()

The minimum value of the object

34.6.1.81 pandas.Index.notnull

Index.notnull()

Reverse of isnull

New in version 0.20.0.

Returns a boolean array of whether my values are not null

See also:

pandas.notnull pandas version

34.6.1.82 pandas.Index.nunique

Index.nunique(dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns nunique : int

34.6.1.83 pandas.Index.putmask

Index.putmask(mask, value)

return a new Index of the values set with the mask

See also:

numpy.ndarray.putmask

34.6.1.84 pandas.Index.ravel

Index.ravel(order='C')

return an ndarray of the flattened values of the underlying data

See also:

numpy.ndarray.ravel

34.6.1.85 pandas.Index.reindex

Index.reindex(target, method=None, level=None, limit=None, tolerance=None)

Create index with target’s values (move/add/delete values as necessary)

Parameters target : an iterable

Returns new_index : pd.Index
Resulting index

**indexer**: np.ndarray or None

Indices of output values in original index

### 34.6.1.86 pandas.Index.rename

**Index.rename**(name, inplace=False)

Set new names on index. Defaults to returning new index.

**Parameters**

- **name**: str or list
  
  name to set

- **inplace**: bool
  
  if True, mutates in place

**Returns**

new index (of same type and class...etc) [if inplace, returns None]

### 34.6.1.87 pandas.Index.repeat

**Index.repeat**(repeats, *args, **kwargs)

Repeat elements of an Index. Refer to numpy.ndarray.repeat for more information about the repeats argument.

**See also:**

numpy.ndarray.repeat

### 34.6.1.88 pandas.Index.reshape

**Index.reshape**(*args, **kwargs)

NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.

### 34.6.1.89 pandas.Index.searchsorted

**Index.searchsorted**(value, side='left', sorter=None)

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted IndexOpsMixin **self** such that, if the corresponding elements in value were inserted before the indices, the order of **self** would be preserved.

**Parameters**

- **value**: array_like
  
  Values to insert into **self**.

- **side**: {'left', 'right'}, optional
  
  If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of **self**).

- **sorter**: 1-D array_like, optional
Optional array of integer indices that sort \textit{self} into ascending order. They are typically the result of \texttt{np.argsort}.

**Returns** indices : array of ints

Array of insertion points with the same shape as \textit{value}.

**See also:**

\texttt{numpy.searchsorted}

**Notes**

Binary search is used to find the required insertion points.

**Examples**

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
```

```python
>>> x.searchsorted(4)
array([3])
```

```python
>>> x.searchsorted([0, 4])
array([0, 3])
```

```python
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
```

```python
>>> x.searchsorted([1, 3], side='right')
array([1, 3])
```

```python
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
Categories (4, object): [apple < bread < cheese < milk]
```

```python
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
```

```python
>>> x.searchsorted(['bread'])
array([1])
```

```python
>>> x.searchsorted(['bread'])
array([1])
```

```python
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4]) # eggs before milk
```
34.6.1.90 pandas.Index.set_names

Index.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

**Parameters**
- **names**: str or sequence
  
  name(s) to set
- **level**: int, level name, or sequence of int/level names (default None)
  
  If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
  Otherwise level must be None
- **inplace**: bool
  
  if True, mutates in place

**Returns**
new index (of same type and class...etc) [if inplace, returns None]

**Examples**

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
 (2, 'one'), (2, 'two')],
 names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], ['one', 'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['baz', 'quz'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], ['one', 'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['baz', 'bar'])
```

34.6.1.91 pandas.Index.set_value

Index.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

34.6.1.92 pandas.Index.shift

Index.shift(periods=1, freq=None)
Shift Index containing datetime objects by input number of periods and DateOffset

**Returns**
shifted : Index

34.6.1.93 pandas.Index.slice_indexer

Index.slice_indexer(start=None, end=None, step=None, kind=None)
For an ordered Index, compute the slice indexer for input labels and step

**Parameters**
- **start**: label, default None
If None, defaults to the beginning

**end**: label, default None
If None, defaults to the end

**step**: int, default None

**kind**: string, default None

**Returns**

*indexer*: ndarray or slice

**Notes**

This function assumes that the data is sorted, so use at your own peril

### 34.6.1.94 pandas.Index.slice_locs

**Index.slice_locs**(start=None, end=None, step=None, kind=None)

Compute slice locations for input labels.

**Parameters**

- **start**: label, default None
  If None, defaults to the beginning
- **end**: label, default None
  If None, defaults to the end
- **step**: int, defaults None
  If None, defaults to 1
- **kind**: {'ix', 'loc', 'getitem'} or None

**Returns**

*start, end*: int

### 34.6.1.95 pandas.Index.sort

**Index.sort**(args, **kwargs)

### 34.6.1.96 pandas.Index.sort_values

**Index.sort_values**(return_indexer=False, ascending=True)

Return sorted copy of Index

### 34.6.1.97 pandas.Index.sortlevel

**Index.sortlevel**(level=None, ascending=True, sort_remaining=None)
For internal compatibility with with the Index API

Sort the Index. This is for compat with MultiIndex

**Parameters**

- **ascending**: boolean, default True
  False to sort in descending order
- **level, sort_remaining are compat parameters**
Returns `sorted_index`: `Index`

34.6.1.98 `pandas.Index.str`

`Index.str()`
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

**Examples**

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

34.6.1.99 `pandas.Index.summary`

`Index.summary` *(name=None)*

34.6.1.100 `pandas.Index.sym_diff`

`Index.sym_diff(*args, **kwargs)`

34.6.1.101 `pandas.Index.symmetric_difference`

`Index.symmetric_difference` *(other, result_name=None)*
Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

**Parameters**

- `other`: Index or array-like
- `result_name`: str

**Returns**

- `symmetric_difference`: `Index`

**Notes**

`symmetric_difference` contains elements that appear in either `idx1` or `idx2` but not both. Equivalent to the Index created by `idx1.difference(idx2) | idx2.difference(idx1)` with duplicates dropped.

**Examples**

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```
34.6.1.102 pandas.Index.take

Index.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)
return a new Index of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters:
- **indices**: list
  Indices to be taken
- **axis**: int, optional
  The axis over which to select values, always 0.
- **allow_fill**: bool, default True
- **fill_value**: bool, default None
  If allow_fill=True and fill_value is not None, indices specified by -1 is regarded
  as NA. If Index doesn’t hold NA, raise ValueError

See also:
- numpy.ndarray.take

34.6.1.103 pandas.Index.to_datetime

Index.to_datetime(dayfirst=False)
DEPRECATED: use pandas.to_datetime() instead.

For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

34.6.1.104 pandas.Index.to_native_types

Index.to_native_types(slicer=None, **kwargs)
Format specified values of self and return them.

Parameters:
- **slicer**: int, array-like
  An indexer into self that specifies which values are used in the formatting process.
- **kwargs**: dict
  Options for specifying how the values should be formatted. These options include
  the following:
  1. **na_rep**: [str] The value that serves as a placeholder for NULL values
  2. **quoting**: [bool or None] Whether or not there are quoted values in self
  3. **date_format**: [str] The format used to represent date-like values

34.6.1.105 pandas.Index.to_series

Index.to_series(**kwargs)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index

Returns:
- **Series**: dtype will be based on the type of the Index values.
34.6.1.106 pandas.Index.tolist

Index.tolist()
return a list of the Index values

34.6.1.107 pandas.Index.transpose

Index.transpose(*args, **kwargs)
return the transpose, which is by definition self

34.6.1.108 pandas.Index.union

Index.union(other)
Form the union of two Index objects and sorts if possible.

Parameters other : Index or array-like

Returns union : Index

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.union(idx2)
Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')
```

34.6.1.109 pandas.Index.unique

Index.unique()
Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.

Parameters values : 1d array-like

Returns unique values.

- If the input is an Index, the return is an Index
- If the input is a Categorical dtype, the return is a Categorical
- If the input is a Series/ndarray, the return will be an ndarray

See also:
unique, Index.unique, Series.unique

34.6.1.110 pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

**sort**: boolean, default True
Sort by values

**ascending**: boolean, default False
Sort in ascending order

**bins**: integer, optional
Rather than count values, group them into half-open bins, a convenience for `pd.cut`, only works with numeric data

**dropna**: boolean, default True
Don’t include counts of NaN.

Returns **counts**: Series

### 34.6.1.111 pandas.Index.view

`Index.view(cls=None)`

### 34.6.1.112 pandas.Index.where

`Index.where(cond, other=None)`
New in version 0.19.0.
Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

**Parameters**

- **cond**: boolean array-like with the same length as self
- **other**: scalar, or array-like

### 34.6.2 Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>Index.is_monotonic</code></td>
<td>alias for <code>is_monotonic_increasing</code> (deprecated)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or decreasing)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or increasing)</td>
</tr>
<tr>
<td><code>Index.is_unique</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.has_duplicates</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.is_all_dates</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>Index.nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>Index.ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>Index.size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>Index.empty</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
</tbody>
</table>
Table 34.88 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.itemsize</code></td>
<td>Return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>Index.base</code></td>
<td>Return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>Index.T</code></td>
<td>Return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>Index.memory_usage(deep)</code></td>
<td>Memory usage of my values</td>
</tr>
</tbody>
</table>

### 34.6.3 Modifying and Computations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.all(*args, **kwargs)</code></td>
<td>Return whether all elements are True</td>
</tr>
<tr>
<td><code>Index.any(*args, **kwargs)</code></td>
<td>Return whether any element is True</td>
</tr>
<tr>
<td><code>Index.argmax([axis])</code></td>
<td>Return a ndarray of the maximum argument indexer</td>
</tr>
<tr>
<td><code>Index.argmin([axis])</code></td>
<td>Return a ndarray of the minimum argument indexer</td>
</tr>
<tr>
<td><code>Index.copy([name, deep, dtype])</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>Index.delete(loc)</code></td>
<td>Make new Index with passed location(-s) deleted</td>
</tr>
<tr>
<td><code>Index.drop(labels[, errors])</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>Index.drop_duplicates([keep])</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>Index.equals(other)</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>Index.factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>Index.identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>Index.insert(loc, item)</code></td>
<td>Make new Index inserting new item at location.</td>
</tr>
<tr>
<td><code>Index.min()</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>Index.max()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>Index.reindex(target[, method, level, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>Index.repeat(repeats, *args, **kwargs)</code></td>
<td>Repeat elements of an Index.</td>
</tr>
<tr>
<td><code>Index.where(cond, other)</code></td>
<td>New in version 0.19.0.</td>
</tr>
<tr>
<td><code>Index.take(indices[, axis, allow_fill, ...])</code></td>
<td>return a new Index of the values selected by the indices</td>
</tr>
<tr>
<td><code>Index.putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>Index.set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>Index.unique()</code></td>
<td>Return unique values in the object</td>
</tr>
<tr>
<td><code>Index.nunique()</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>Index.value_counts([normalize, sort, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

### 34.6.4 Missing Values

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.fillna([value, downcast])</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>Index.dropna([how])</code></td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td><code>Index.isnull()</code></td>
<td>Detect missing values</td>
</tr>
<tr>
<td><code>Index.notnull()</code></td>
<td>Reverse of isnull</td>
</tr>
</tbody>
</table>

### 34.6.5 Conversion
Index.astype(dtype[, copy]) Create an Index with values cast to dtypes.
Index.tolist() return a list of the Index values
Index.to_datetime([dayfirst]) DEPRECATED: use pandas.to_datetime() instead.
Index.to_series(**kwargs) Create a Series with both index and values equal to the index keys

### 34.6.6 Sorting

Index.argsort(*args, **kwargs) Returns the indices that would sort the index and its underlying data.
Index.sort_values([return_indexer, ascending]) Return sorted copy of Index

### 34.6.7 Time-specific operations

Index.shift([periods, freq]) Shift Index containing datetime objects by input number of periods and

### 34.6.8 Combining / joining / set operations

Index.append(other) Append a collection of Index options together
Index.join(other[, how, level, ...]) this is an internal non-public method
Index.intersection(other) Form the intersection of two Index objects.
Index.union(other) Form the union of two Index objects and sorts if possible.
Index.difference(other) Return a new Index with elements from the index that are not in other.
Index.symmetric_difference(other[, result_name]) Compute the symmetric difference of two Index objects.

### 34.6.9 Selecting

Index.get_indexer(target[, method, limit, ...]) Compute indexer and mask for new index given the current index.
Index.get_indexer_non_unique(target) Compute indexer and mask for new index given the current index.
Index.get_level_values(level) Return an Index of values for requested level, equal to the length
Index.get_loc(key[, method, tolerance]) Get integer location for requested label.
Index.get_value(series, key) Fast lookup of value from 1-dimensional ndarray.
Index.isin(values[, level]) Compute boolean array of whether each index value is found in the passed set of values.
Index.slice_indexer([start, end, step, kind]) For an ordered Index, compute the slice indexer for input labels and
Index.slice_locs([start, end, step, kind]) Compute slice locations for input labels.
34.7 CategoricalIndex

**CategoricalIndex**
Immutable Index implementing an ordered, sliceable set.

### 34.7.1 pandas.CategoricalIndex

**class pandas.CategoricalIndex**
Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical.

New in version 0.16.1.

**Parameters**
- **data**: array-like or Categorical, (1-dimensional)
- **categories**: optional, array-like
- **ordered**: boolean,
  designating if the categories are ordered
- **copy**: bool
  Make a copy of input ndarray
- **name**: object
  Name to be stored in the index

See also:
- Categorical, Index

### 34.7.2 Categorical Components

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CategoricalIndex.codes</code></td>
<td>Renames categories.</td>
</tr>
<tr>
<td><code>CategoricalIndex.categories</code></td>
<td></td>
</tr>
<tr>
<td><code>CategoricalIndex.ordered</code></td>
<td></td>
</tr>
<tr>
<td><code>CategoricalIndex.rename_categories(*args, ...)</code></td>
<td></td>
</tr>
<tr>
<td><code>CategoricalIndex.reorder_categories(*args, ...)</code></td>
<td>Reorders categories as specified in new_categories.</td>
</tr>
<tr>
<td><code>CategoricalIndex.add_categories(*args, **kwargs)</code></td>
<td>Add new categories.</td>
</tr>
<tr>
<td><code>CategoricalIndex.remove_categories(*args, ...)</code></td>
<td>Removes the specified categories.</td>
</tr>
<tr>
<td><code>CategoricalIndex.remove_unused_categories</code></td>
<td>Removes categories which are not used.</td>
</tr>
<tr>
<td><code>CategoricalIndex.set_categories(*args, **kwargs)</code></td>
<td>Sets the categories to the specified new_categories.</td>
</tr>
<tr>
<td><code>CategoricalIndex.as_ordered(*args, **kwargs)</code></td>
<td>Sets the Categorical to be ordered</td>
</tr>
<tr>
<td><code>CategoricalIndex.as_unordered(*args, **kwargs)</code></td>
<td>Sets the Categorical to be unordered</td>
</tr>
</tbody>
</table>
34.7.2.1 pandas.CategoricalIndex.codes

CategoricalIndex.codes

34.7.2.2 pandas.CategoricalIndex.categories

CategoricalIndex.categories

34.7.2.3 pandas.CategoricalIndex.ordered

CategoricalIndex.ordered

34.7.2.4 pandas.CategoricalIndex.rename_categories

CategoricalIndex.rename_categories(*args, **kwargs)

Renames categories.

The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Parameters new_categories : Index-like

   The renamed categories.

   inplace : boolean (default: False)

   Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories.

Returns cat : Categorical with renamed categories added or None if inplace.

Raises ValueError

   If the new categories do not have the same number of items than the current categories or do not validate as categories

See also:

   reorder_categories, add_categories, remove_categories, remove_unused_categories, set_categories

34.7.2.5 pandas.CategoricalIndex.reorder_categories

CategoricalIndex.reorder_categories(*args, **kwargs)

Reorders categories as specified in new_categories.

   new_categories need to include all old categories and no new category items.

Parameters new_categories : Index-like

   The categories in new order.

   ordered : boolean, optional

   Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

   inplace : boolean (default: False)
Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns cat : Categorical with reordered categories or None if inplace.

Raises ValueError

If the new categories do not contain all old category items or any new ones

See also:
rename_categories, add_categories, remove_categories, remove_unused_categories, set_categories

34.7.2.6 pandas.CategoricalIndex.add_categories

CategoricalIndex.add_categories(*args, **kwargs)

Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after this call.

Parameters new_categories : category or list-like of category

The new categories to be included.

inplace : boolean (default: False)

Whether or not to add the categories inplace or return a copy of this categorical with added categories.

Returns cat : Categorical with new categories added or None if inplace.

Raises ValueError

If the new categories include old categories or do not validate as categories

See also:
rename_categories, reorder_categories, remove_categories, remove_unused_categories, set_categories

34.7.2.7 pandas.CategoricalIndex.remove_categories

CategoricalIndex.remove_categories(*args, **kwargs)

Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to NaN

Parameters removals : category or list of categories

The categories which should be removed.

inplace : boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

Returns cat : Categorical with removed categories or None if inplace.

Raises ValueError

If the removals are not contained in the categories
See also:

rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories

34.7.2.8 pandas.CategoricalIndex.remove_unused_categories

CategoricalIndex.remove_unused_categories(*args, **kwargs)

Removes categories which are not used.

Parameters inplace : boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

Returns cat : Categorical with unused categories dropped or None if inplace.

See also:

rename_categories, reorder_categories, add_categories, remove_categories, set_categories

34.7.2.9 pandas.CategoricalIndex.set_categories

CategoricalIndex.set_categories(*args, **kwargs)

Sets the categories to the specified new_categories.

new_categories can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters new_categories : Index-like

The categories in new order.

ordered : boolean, (default: False)

Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

rename : boolean (default: False)

Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns cat : Categorical with reordered categories or None if inplace.

Raises ValueError

If new_categories does not validate as categories
See also:

rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

34.7.2.10 pandas.CategoricalIndex.as_ordered

CategoricalIndex.as_ordered(*args, **kwargs)
Sets the Categorical to be ordered

Parameters inplace : boolean (default: False)
Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True

34.7.2.11 pandas.CategoricalIndex.as_unordered

CategoricalIndex.as_unordered(*args, **kwargs)
Sets the Categorical to be unordered

Parameters inplace : boolean (default: False)
Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False

34.8 IntervalIndex

| IntervalIndex | Immutable Index implementing an ordered, sliceable set. |

34.8.1 pandas.IntervalIndex

class pandas.IntervalIndex
Immutable Index implementing an ordered, sliceable set. IntervalIndex represents an Index of intervals that are all closed on the same side.

New in version 0.20.0.

Warning: the indexing behaviors are provisional and may change in a future version of pandas.

See also:
Index

34.8.2 IntervalIndex Components

IntervalIndex.from_arrays(left, right[, ...])	Construct an IntervalIndex from a a left and right array
IntervalIndex.from_tuples(data[, closed, ...])	Construct an IntervalIndex from a list/array of tuples
IntervalIndex.from_breaks(breaks[, closed, ...])	Construct an IntervalIndex from an array of splits
intervalIndex.from_intervals(data[, name, copy])	Construct an IntervalIndex from a 1d array of Interval objects

34.8. IntervalIndex
### 34.8.2.1 pandas.IntervalIndex.from_arrays

**classmethod** `IntervalIndex.from_arrays(left, right, closed='right', name=None, copy=False)`  
Construct an IntervalIndex from a a left and right array

**Parameters**
- `left`: array-like (1-dimensional)  
  Left bounds for each interval.
- `right`: array-like (1-dimensional)  
  Right bounds for each interval.
- `closed`: {'left', 'right', 'both', 'neither'}, optional  
  Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'.
- `name`: object, optional  
  Name to be stored in the index.
- `copy`: boolean, default False  
  copy the data

**Examples**

```python
>>> IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3])
IntervalIndex(left=[0, 1, 2],
 right=[1, 2, 3],
 closed='right')
```

### 34.8.2.2 pandas.IntervalIndex.from_tuples

**classmethod** `IntervalIndex.from_tuples(data, closed='right', name=None, copy=False)`  
Construct an IntervalIndex from a list/array of tuples

**Parameters**
- `data`: array-like (1-dimensional)  
  Array of tuples
- `closed`: {'left', 'right', 'both', 'neither'}, optional  
  Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'.
- `name`: object, optional  
  Name to be stored in the index.
- `copy`: boolean, default False  
  by-default copy the data, this is compat only and ignored

### 34.8.2.3 pandas.IntervalIndex.from_breaks

**classmethod** `IntervalIndex.from_breaks(breaks, closed='right', name=None, copy=False)`  
Construct an IntervalIndex from an array of splits

**Parameters**
- `breaks`: array-like (1-dimensional)
Left and right bounds for each interval.

closed : {'left', 'right', 'both', 'neither'}, optional
    Whether the intervals are closed on the left-side, right-side, both or neither. Defaults to 'right'.
	name : object, optional
    Name to be stored in the index.

copy : boolean, default False
    copy the data

Examples

```python
>>> IntervalIndex.from_breaks([0, 1, 2, 3])
IntervalIndex(left=[0, 1, 2],
 right=[1, 2, 3],
 closed='right')
```

34.8.2.4 pandas.IntervalIndex.from_intervals

classmethod IntervalIndex.from_intervals (data, name=None, copy=False)
    Construct an IntervalIndex from a 1d array of Interval objects

    Parameters data : array-like (1-dimensional)
        Array of Interval objects. All intervals must be closed on the same sides.

    name : object, optional
        Name to be stored in the index.

    copy : boolean, default False
        by-default copy the data, this is compat only and ignored

Examples

```python
>>> IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)])
IntervalIndex(left=[0, 1],
 right=[1, 2],
 closed='right')
```

The generic Index constructor work identically when it infers an array of all intervals:

```python
>>> Index([Interval(0, 1), Interval(1, 2)])
IntervalIndex(left=[0, 1],
 right=[1, 2],
 closed='right')
```

34.9 MultiIndex
pandas: powerful Python data analysis toolkit, Release 0.20.1

<table>
<thead>
<tr>
<th>MultiIndex</th>
<th>A multi-level, or hierarchical, index object for pandas objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexSlice</td>
<td>Create an object to more easily perform multi-index slicing</td>
</tr>
</tbody>
</table>

### 34.9.1 pandas.MultiIndex

class pandas.MultiIndex
A multi-level, or hierarchical, index object for pandas objects

**Parameters**
- **levels**: sequence of arrays
  The unique labels for each level
- **labels**: sequence of arrays
  Integers for each level designating which label at each location
- **sortorder**: optional int
  Level of sortedness (must be lexicographically sorted by that level)
- **names**: optional sequence of objects
  Names for each of the index levels. (name is accepted for compat)
- **copy**: boolean, default False
  Copy the meta-data
- **verify_integrity**: boolean, default True
  Check that the levels/labels are consistent and valid

**Attributes**

<table>
<thead>
<tr>
<th>T</th>
<th>return the transpose, which is by definition self</th>
</tr>
</thead>
<tbody>
<tr>
<td>asis</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>dtype_str</td>
<td></td>
</tr>
<tr>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>has_duplicates</td>
<td></td>
</tr>
<tr>
<td>hasnans</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td></td>
</tr>
<tr>
<td>is_monotonic</td>
<td></td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_increasing</td>
<td></td>
</tr>
<tr>
<td>is_unique</td>
<td></td>
</tr>
<tr>
<td>itemsize</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.101 – continued from previous page

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>labels</td>
<td>Names of levels in MultiIndex</td>
</tr>
<tr>
<td>levels</td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td>levshape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>lexsort_depth</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>name</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>names</td>
<td></td>
</tr>
<tr>
<td>nbytes</td>
<td></td>
</tr>
<tr>
<td>ndim</td>
<td></td>
</tr>
<tr>
<td>nlevels</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td></td>
</tr>
<tr>
<td>strides</td>
<td></td>
</tr>
<tr>
<td>values</td>
<td></td>
</tr>
</tbody>
</table>

### 34.9.1.1 pandas.MultiIndex.T

```
MultiIndex.T
```

return the transpose, which is by definition self

### 34.9.1.2 pandas.MultiIndex.asi8

```
MultiIndex.asi8 = None
```

### 34.9.1.3 pandas.MultiIndex.base

```
MultiIndex.base
```

return the base object if the memory of the underlying data is shared

### 34.9.1.4 pandas.MultiIndex.data

```
MultiIndex.data
```

return the data pointer of the underlying data

### 34.9.1.5 pandas.MultiIndex.dtype

```
MultiIndex.dtype = None
```

### 34.9.1.6 pandas.MultiIndex.dtype_str

```
MultiIndex.dtype_str = None
```

### 34.9.1.7 pandas.MultiIndex.empty

```
MultiIndex.empty
```
34.9.1.8 pandas.MultiIndex.flags

MultiIndex.flags

34.9.1.9 pandas.MultiIndex.has_duplicates

MultiIndex.has_duplicates

34.9.1.10 pandas.MultiIndex.hasnans

MultiIndex.hasnans = None

34.9.1.11 pandas.MultiIndex.inferred_type

MultiIndex.inferred_type = None

34.9.1.12 pandas.MultiIndex.is_all_dates

MultiIndex.is_all_dates

34.9.1.13 pandas.MultiIndex.is_monotonic

MultiIndex.is_monotonic = None

34.9.1.14 pandas.MultiIndex.is_monotonic_decreasing

MultiIndex.is_monotonic_decreasing
    return if the index is monotonic decreasing (only equal or decreasing) values.

34.9.1.15 pandas.MultiIndex.is_monotonic_increasing

MultiIndex.is_monotonic_increasing = None

34.9.1.16 pandas.MultiIndex.is_unique

MultiIndex.is_unique = None

34.9.1.17 pandas.MultiIndex.itemsize

MultiIndex.itemsize
    return the size of the dtype of the item of the underlying data

34.9.1.18 pandas.MultiIndex.labels

MultiIndex.labels
34.9.1.19 pandas.MultiIndex.levels

34.9.1.20 pandas.MultiIndex.levshape

34.9.1.21 pandas.MultiIndex.lexsort_depth

34.9.1.22 pandas.MultiIndex.name

34.9.1.23 pandas.MultiIndex.names

34.9.1.24 pandas.MultiIndex.nbytes

34.9.1.25 pandas.MultiIndex.ndim

34.9.1.26 pandas.MultiIndex.nlevels

34.9.1.27 pandas.MultiIndex.shape

34.9.1.28 pandas.MultiIndex.size
34.9.1.29 pandas.MultiIndex.strides

`MultiIndex.strides`  
return the strides of the underlying data

34.9.1.30 pandas.MultiIndex.values

`MultiIndex.values`

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all([other])</code></td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td><code>any([other])</code></td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td><code>argmax([axis])</code></td>
<td>return a ndarray of the maximum argument indexer</td>
</tr>
<tr>
<td><code>argmin([axis])</code></td>
<td>return a ndarray of the minimum argument indexer</td>
</tr>
<tr>
<td><code>argsort(*args, **kwargs)</code></td>
<td>For a sorted index, return the most recent label up to and including the passed label.</td>
</tr>
<tr>
<td><code>asof(label)</code></td>
<td>Where : array of timestamps</td>
</tr>
<tr>
<td><code>astype(dtype[, copy])</code></td>
<td>Create an Index with values cast to dtypes.</td>
</tr>
<tr>
<td><code>contains(key)</code></td>
<td>return a boolean if this key is IN the index</td>
</tr>
<tr>
<td><code>copy([names, dtype, levels, labels, deep, ...])</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>delete(loc)</code></td>
<td>Make new index with passed location deleted</td>
</tr>
<tr>
<td><code>difference(other)</code></td>
<td>Compute sorted set difference of two MultiIndex objects</td>
</tr>
<tr>
<td><code>drop(labels[, level, errors])</code></td>
<td>Make new MultiIndex with passed list of labels deleted</td>
</tr>
<tr>
<td><code>drop_duplicates([keep])</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>droplevel([level])</code></td>
<td>Return Index with requested level removed.</td>
</tr>
<tr>
<td><code>dropna([how])</code></td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td><code>duplicated([keep])</code></td>
<td>Return boolean np.ndarray denoting duplicate values</td>
</tr>
<tr>
<td><code>equal_levels(other)</code></td>
<td>Return True if the levels of both MultiIndex objects are the same</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two MultiIndex objects have the same labeling information</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>fillna([value, downcast])</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>format([space, sparsify, adjoin, names, ...])</code></td>
<td>Convert arrays to MultiIndex</td>
</tr>
<tr>
<td><code>from_arrays(arrays[, sortorder, names])</code></td>
<td>Make a MultiIndex from the cartesian product of multiple iterables</td>
</tr>
<tr>
<td><code>from_product(iterables[, sortorder, names])</code></td>
<td>Convert list of tuples to MultiIndex</td>
</tr>
<tr>
<td><code>get_duplicates()</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer(target[, method, limit, tolerance])</code></td>
<td>Guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target)</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level.</td>
</tr>
</tbody>
</table>
### Table 34.102 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_loc(key[, method])</code></td>
<td>Get integer location, slice or boolean mask for requested label or tuple.</td>
</tr>
<tr>
<td><code>get_loc_level(key[, level, drop_level])</code></td>
<td>Get integer location slice for requested label or tuple.</td>
</tr>
<tr>
<td><code>get_locs(tup)</code></td>
<td>Given a tuple of slices/lists/labels/boolean indexer to a level-wise.</td>
</tr>
<tr>
<td><code>get_major_bounds([start, end, step, kind])</code></td>
<td>For an ordered MultiIndex, compute the slice locations for input labels.</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>return the underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are.</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new MultiIndex inserting new item at location.</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two MultiIndex objects, sorting if possible.</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like <code>is</code> but that works through views.</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_interval()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted()</code></td>
<td>Return True if the labels are lexicographically sorted.</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td>Return True if we are correctly lexsorted given the passed tuple.</td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Detect missing values.</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python.</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers, sort])</code></td>
<td><em>this is an internal non-public method</em></td>
</tr>
<tr>
<td><code>map(mapper)</code></td>
<td>Apply mapper function to an index.</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>The maximum value of the object.</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values.</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>The minimum value of the object.</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Reverse of isnull.</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask.</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>return an ndarray of the flattened values of the underlying data.</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with <code>target</code>’s values (move/add/delete values as necessary).</td>
</tr>
<tr>
<td><code>remove_unused_levels()</code></td>
<td>create a new MultiIndex from the current that removing.</td>
</tr>
<tr>
<td><code>rename(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.102 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reorder_levels(order)</td>
<td>Rearrange levels using input order.</td>
</tr>
<tr>
<td>repeat(repeats, *args, **kwargs)</td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td>reshape(*args, **kwargs)</td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td>searchsorted(value[, side, sorter])</td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td>set_labels(labels[, level, inplace, ...])</td>
<td>Set new labels on MultiIndex.</td>
</tr>
<tr>
<td>set_levels(levels[, level, inplace, ...])</td>
<td>Set new levels on MultiIndex.</td>
</tr>
<tr>
<td>set_names(names[, level, inplace])</td>
<td>Set new names on index.</td>
</tr>
<tr>
<td>set_value(arr, key, value)</td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
<tr>
<td>slice_indexer([start, end, step, kind])</td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td>slice_locs([start, end, step, kind])</td>
<td>For an ordered MultiIndex, compute the slice locations for input labels.</td>
</tr>
<tr>
<td>sort(*args, **kwargs)</td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td>sort_values([return_indexer, ascending])</td>
<td>Sort MultiIndex at the requested level.</td>
</tr>
<tr>
<td>str()</td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td>summary([name])</td>
<td>Swap level i with level j.</td>
</tr>
<tr>
<td>swaplevel([i, j])</td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td>symmetric_difference(other[, result_name])</td>
<td>return a new MultiIndex of the values selected by the indices</td>
</tr>
<tr>
<td>take(indices[, axis, allow_fill, fill_value])</td>
<td>DEPRECATED: use pandas.to_datetime() instead.</td>
</tr>
<tr>
<td>to_datetime([dayfirst])</td>
<td>Create a DataFrame with the columns the levels of the MultiIndex</td>
</tr>
<tr>
<td>to_frame([index])</td>
<td>Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.</td>
</tr>
<tr>
<td>to_hierarchical(n_repeat[, n_shuffle])</td>
<td>Format specified values of self and return them.</td>
</tr>
<tr>
<td>to_native_types([slicer])</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td>tolist()</td>
<td>return a list of the Index values</td>
</tr>
<tr>
<td>transpose(*args, **kwargs)</td>
<td>Slice index between two labels/tuples, return new MultiIndex</td>
</tr>
<tr>
<td>truncate([before, after])</td>
<td>Form the union of two MultiIndex objects, sorting if possible</td>
</tr>
<tr>
<td>union(other)</td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td>unique()</td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td>value_counts([normalize, sort, ascending, ...])</td>
<td>this is defined as a copy with the same identity</td>
</tr>
<tr>
<td>view([cls])</td>
<td>MultiIndex.all(other=None)</td>
</tr>
</tbody>
</table>

34.9.1.31 pandas.MultiIndex.all

MultiIndex.all(Other=None)
34.9.1.32 pandas.MultiIndex.any

`MultiIndex.any(other=None)`

34.9.1.33 pandas.MultiIndex.append

`MultiIndex.append(other)`

Append a collection of Index options together

Parameters

other : Index or list/tuple of indices

Returns

appended : Index

34.9.1.34 pandas.MultiIndex.argmax

`MultiIndex.argmax(axis=None)`

return a ndarray of the maximum argument indexer

See also:

`numpy.ndarray.argmax`

34.9.1.35 pandas.MultiIndex.argmin

`MultiIndex.argmin(axis=None)`

return a ndarray of the minimum argument indexer

See also:

`numpy.ndarray.argmin`

34.9.1.36 pandas.MultiIndex.argsort

`MultiIndex.argsort(*args, **kwargs)`

34.9.1.37 pandas.MultiIndex.asof

`MultiIndex.asof(label)`

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

See also:

`get_loc` asof is a thin wrapper around get_loc with method=’pad’

34.9.1.38 pandas.MultiIndex.asof_locs

`MultiIndex.asof_locs(where, mask)`

where : array of timestamps
mask : array of booleans where data is not NA
34.9.1.39 pandas.MultiIndex.astype

```
MultiIndex.astype(dtype, copy=True)
```

Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

- **Parameters**
  - `dtype`: numpy dtype or pandas type
  - `copy`: bool, default True

  By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

  New in version 0.19.0.

34.9.1.40 pandas.MultiIndex.contains

```
MultiIndex.contains(key)
```

return a boolean if this key is IN the index

- **Parameters**
  - `key`: object

- **Returns**
  - boolean

34.9.1.41 pandas.MultiIndex.copy

```
MultiIndex.copy(names=None, dtype=None, levels=None, labels=None, deep=False, _set_identity=False, **kwargs)
```

Make a copy of this object. Names, dtype, levels and labels can be passed and will be set on new copy.

- **Parameters**
  - `names`: sequence, optional
  - `dtype`: numpy dtype or pandas type, optional
  - `levels`: sequence, optional
  - `labels`: sequence, optional

- **Returns**
  - `copy` : MultiIndex

**Notes**

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects.

34.9.1.42 pandas.MultiIndex.delete

```
MultiIndex.delete(loc)
```

Make new index with passed location deleted

- **Returns**
  - `new_index` : MultiIndex
34.9.1.43 pandas.MultiIndex.difference

```
MultiIndex.difference(other)
```

Compute sorted set difference of two MultiIndex objects

Returns diff : MultiIndex

34.9.1.44 pandas.MultiIndex.drop

```
MultiIndex.drop(labels, level=None, errors=’raise’)
```

Make new MultiIndex with passed list of labels deleted

Parameters labels : array-like
  Must be a list of tuples

level : int or level name, default None

Returns dropped : MultiIndex

34.9.1.45 pandas.MultiIndex.drop_duplicates

```
MultiIndex.drop_duplicates(keep=’first’)
```

Return Index with duplicate values removed

Parameters keep : {'first', 'last', False}, default ‘first’
  • first : Drop duplicates except for the first occurrence.
  • last : Drop duplicates except for the last occurrence.
  • False : Drop all duplicates.

Returns deduplicated : Index

34.9.1.46 pandas.MultiIndex.droplevel

```
MultiIndex.droplevel(level=0)
```

Return Index with requested level removed. If MultiIndex has only 2 levels, the result will be of Index type not MultiIndex.

Parameters level : int/level name or list thereof

Returns index : Index or MultiIndex

Notes

Does not check if result index is unique or not

34.9.1.47 pandas.MultiIndex.dropna

```
MultiIndex.dropna(how=’any’)
```

Return Index without NA/NaN values

Parameters how : {'any', ‘all’}, default ‘any’
  If the Index is a MultiIndex, drop the value when any or all levels are NaN.
Returns valid: Index

34.9.1.48 pandas.MultiIndex.duplicated

MultiIndex.duplicated(keep='first')
Return boolean np.ndarray denoting duplicate values

Parameters keep: {'first', 'last', False}, default ‘first’
- first: Mark duplicates as True except for the first occurrence.
- last: Mark duplicates as True except for the last occurrence.
- False: Mark all duplicates as True.

Returns duplicated: np.ndarray

34.9.1.49 pandas.MultiIndex.equal_levels

MultiIndex.equal_levels(other)
Return True if the levels of both MultiIndex objects are the same

34.9.1.50 pandas.MultiIndex.equals

MultiIndex.equals(other)
Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same)

See also:
equal_levels

34.9.1.51 pandas.MultiIndex.factorize

MultiIndex.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort: boolean, default False
- Sort by values

na_sentinel: int, default -1
- Value to mark “not found”

Returns labels: the indexer to the original array
uniques: the unique Index

34.9.1.52 pandas.MultiIndexfillna

MultiIndex.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value: scalar
- Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.
downcast : dict, default is None

- a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : %klass%s

34.9.1.53 pandas.MultiIndex.format

MultiIndex.format (space=2, sparsify=None, adjoin=True, names=False, na_rep=None, formatter=None)

34.9.1.54 pandas.MultiIndex.from_arrays

classmethod MultiIndex.from_arrays (arrays, sortorder=None, names=None)

Convert arrays to MultiIndex

Parameters arrays : list / sequence of array-likes

- Each array-like gives one level’s value for each data point. len(arrays) is the number of levels.

sortorder : int or None

- Level of sortedness (must be lexicographically sorted by that level)

Returns index : MultiIndex

See also:

MultiIndex.from_tuples Convert list of tuples to MultiIndex

MultiIndex.from_product Make a MultiIndex from cartesian product of iterables

Examples

```python
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> MultiIndex.from_arrays(arrays, names=('number', 'color'))
```

34.9.1.55 pandas.MultiIndex.from_product

classmethod MultiIndex.from_product (iterables, sortorder=None, names=None)

Make a MultiIndex from the cartesian product of multiple iterables

Parameters iterables : list / sequence of iterables

- Each iterable has unique labels for each level of the index.

sortorder : int or None

- Level of sortedness (must be lexicographically sorted by that level).

names : list / sequence of strings or None

- Names for the levels in the index.

Returns index : MultiIndex

See also:
**MultiIndex.from_arrays** Convert list of arrays to MultiIndex

**MultiIndex.from_tuples** Convert list of tuples to MultiIndex

**Examples**

```python
>>> numbers = [0, 1, 2]
>>> colors = [u'green', u'purple']
>>> MultiIndex.from_product([numbers, colors],
 names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], [u'green', u'purple']],
 labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
 names=['number', 'color'])
```

34.9.1.56 **pandas.MultiIndex.from_tuples**

**classmethod MultiIndex.from_tuples**(tuples, sortorder=None, names=None)
Convert list of tuples to MultiIndex

**Parameters**
- **tuples**: list / sequence of tuple-likes
  Each tuple is the index of one row/column.
- **sortorder**: int or None
  Level of sortedness (must be lexicographically sorted by that level)

**Returns**
- **index**: MultiIndex

**See also:**
- **MultiIndex.from_arrays** Convert list of arrays to MultiIndex
- **MultiIndex.from_product** Make a MultiIndex from cartesian product of iterables

**Examples**

```python
>>> tuples = [(1, u'red'), (1, u'blue'),
 (2, u'red'), (2, u'blue')]
>>> MultiIndex.from_tuples(tuples, names=('number', 'color'))
```

34.9.1.57 **pandas.MultiIndex.get_duplicates**

**MultiIndex.get_duplicates**( )

34.9.1.58 **pandas.MultiIndex.get_indexer**

**MultiIndex.get_indexer**(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

**Parameters**
- **target**: MultiIndex or list of tuples
- **method**: {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
• default: exact matches only.
• pad / ffill: find the PREVIOUS index value if no exact match.
• backfill / bfill: use NEXT index value if no exact match
• nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.

limit : int, optional
Maximum number of consecutive labels in target to match for inexact matches.

tolerance : optional
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns indexer : ndarray of int
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

34.9.1.59 pandas.MultiIndex.get_indexer_for

MultiIndex.get_indexer_for(target, **kwargs)
guaranteed return of an indexer even when non-unique This dispatches to get_indexer or get_indexer_nonunique as appropriate

34.9.1.60 pandas.MultiIndex.get_indexer_non_unique

MultiIndex.get_indexer_non_unique(target)
Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters target : MultiIndex or list of tuples

Returns indexer : ndarray of int
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

missing : ndarray of int
An indexer into the target of the values not found. These correspond to the -1 in the indexer array
34.9.1.61 pandas.MultiIndex.get_level_values

MultiIndex.get_level_values(level)
   Return vector of label values for requested level, equal to the length of the index
   
   Parameters  level : int or level name
   Returns values : Index

34.9.1.62 pandas.MultiIndex.get_loc

MultiIndex.get_loc(key, method=None)
   Get integer location, slice or boolean mask for requested label or tuple. If the key is past the lexsort depth,
   the return may be a boolean mask array, otherwise it is always a slice or int.
   
   Parameters  key : label or tuple
   method : None
   Returns loc : int, slice object or boolean mask

34.9.1.63 pandas.MultiIndex.get_loc_level

MultiIndex.get_loc_level(key, level=0, drop_level=True)
   Get integer location slice for requested label or tuple
   
   Parameters  key : label or tuple
   level : int/level name or list thereof
   Returns loc : int or slice object

34.9.1.64 pandas.MultiIndex.get_locs

MultiIndex.get_locs(tup)
   Given a tuple of slices/lists/labels/boolean indexer to a level-wise spec produce an indexer to extract those
   locations
   
   Parameters  key : tuple of (slices/list/labels)
   Returns locs : integer list of locations or boolean indexer suitable
   for passing to iloc

34.9.1.65 pandas.MultiIndex.get_major_bounds

MultiIndex.get_major_bounds(start=None, end=None, step=None, kind=None)
   For an ordered MultiIndex, compute the slice locations for input labels. They can be tuples representing
   partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first
   level), or a 1-, 2-, or 3-tuple.
   
   Parameters  start : label or tuple, default None
   end : label or tuple
   Returns locs : integer list of locations or boolean indexer suitable
   for passing to iloc
step : int or None
    Slice step

kind : string, optional, defaults None

Returns (start, end) : (int, int)

Notes

This function assumes that the data is sorted by the first level

34.9.1.66 pandas.MultiIndex.get_slice_bound

MultiIndex.get_slice_bound(label, side, kind)

34.9.1.67 pandas.MultiIndex.get_value

MultiIndex.get_value(series, key)

34.9.1.68 pandas.MultiIndex.get_values

MultiIndex.get_values()
    return the underlying data as an ndarray

34.9.1.69 pandas.MultiIndex.groupby

MultiIndex.groupby(values)
    Group the index labels by a given array of values.
    Parameters values : array
        Values used to determine the groups.
    Returns groups : dict
        {group name -> group labels}

34.9.1.70 pandas.MultiIndex.holds_integer

MultiIndex.holds_integer()

34.9.1.71 pandas.MultiIndex.identical

MultiIndex.identical(other)
    Similar to equals, but check that other comparable attributes are also equal
34.9.1.72 pandas.MultiIndex.insert

```
MultiIndex.insert(loc, item)
```

Make new MultiIndex inserting new item at location

**Parameters**
- **loc**: int
- **item**: tuple

Must be same length as number of levels in the MultiIndex

**Returns**
- **new_index**: Index

34.9.1.73 pandas.MultiIndex.intersection

```
MultiIndex.intersection(other)
```

Form the intersection of two MultiIndex objects, sorting if possible

**Parameters**
- **other**: MultiIndex or array / Index of tuples

**Returns**
- **Index**

34.9.1.74 pandas.MultiIndex.is_

```
MultiIndex.is_(other)
```

More flexible, faster check like `is` but that works through views

**Note**: this is *not* the same as `Index.identical()`, which checks that metadata is also the same.

**Parameters**
- **other**: object
  - other object to compare against.

**Returns**
- **True if both have same underlying data, False otherwise**: bool

34.9.1.75 pandas.MultiIndex.is_boolean

```
MultiIndex.is_boolean()
```

34.9.1.76 pandas.MultiIndex.is_categorical

```
MultiIndex.is_categorical()
```

34.9.1.77 pandas.MultiIndex.is_floating

```
MultiIndex.is_floating()
```

34.9.1.78 pandas.MultiIndex.is_integer

```
MultiIndex.is_integer()
```

34.9.1.79 pandas.MultiIndex.is_interval

```
MultiIndex.is_interval()
```
34.9.1.80 pandas.MultiIndex.is_lexsorted

MultiIndex.is_lexsorted()  
Return True if the labels are lexicographically sorted

34.9.1.81 pandas.MultiIndex.is_lexsorted_for_tuple

MultiIndex.is_lexsorted_for_tuple(tup)  
Return True if we are correctly lexsorted given the passed tuple

34.9.1.82 pandas.MultiIndex.is_mixed

MultiIndex.is_mixed()

34.9.1.83 pandas.MultiIndex.is_numeric

MultiIndex.is_numeric()

34.9.1.84 pandas.MultiIndex.is_object

MultiIndex.is_object()

34.9.1.85 pandas.MultiIndex.is_type_compatible

MultiIndex.is_type_compatible(kind)

34.9.1.86 pandas.MultiIndex.isin

MultiIndex.isin(values, level=None)  
Compute boolean array of whether each index value is found in the passed set of values.

Parameters values : set or list-like  
Sought values.
New in version 0.18.1.
Support for values as a set
level : str or int, optional  
Name or position of the index level to use (if the index is a MultiIndex).

Returns is_contained : ndarray (boolean dtype)

Notes

If level is specified:

• if it is the name of one and only one index level, use that level;
• otherwise it should be a number indicating level position.
**34.9.1.87 pandas.MultiIndex.isnull**

```python
MultiIndex.isnull()
```

Detect missing values

New in version 0.20.0.

**Returns** a boolean array of whether my values are null

**See also:**

`pandas.isnull` pandas version

**34.9.1.88 pandas.MultiIndex.item**

```python
MultiIndex.item()
```

return the first element of the underlying data as a python scalar

**34.9.1.89 pandas.MultiIndex.join**

```python
MultiIndex.join(other, how='left', level=None, return_indexers=False, sort=False)
```

this is an internal non-public method

Compute join_index and indexers to conform data structures to the new index.

**Parameters**

- `other` : Index
  - `how` : {'left', 'right', 'inner', 'outer'}
  - `level` : int or level name, default None
  - `return_indexers` : boolean, default False
  - `sort` : boolean, default False

  Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword)

New in version 0.20.0.

**Returns** join_index, (left_indexer, right_indexer)

**34.9.1.90 pandas.MultiIndex.map**

```python
MultiIndex.map(mapper)
```

Apply mapper function to an index.

**Parameters**

- `mapper` : callable

  Function to be applied.

**Returns**

- `applied` : Union[Index, MultiIndex], inferred

  The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned.
34.9.1.91 pandas.MultiIndex.max

MultiIndex.max()

The maximum value of the object

34.9.1.92 pandas.MultiIndex.memory_usage

MultiIndex.memory_usage(deep=False)

Memory usage of my values

Parameters deep : bool

Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns bytes used

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

34.9.1.93 pandas.MultiIndex.min

MultiIndex.min()

The minimum value of the object

34.9.1.94 pandas.MultiIndex.notnull

MultiIndex.notnull()

Reverse of isnull

New in version 0.20.0.

Returns a boolean array of whether my values are not null

See also:

pandas.notnull pandas version

34.9.1.95 pandas.MultiIndex.nunique

MultiIndex.nunique(dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns nunique : int
34.9.1.96 pandas.MultiIndex.putmask

MultiIndex.putmask(mask, value)
return a new Index of the values set with the mask

See also:
numpy.ndarray.putmask

34.9.1.97 pandas.MultiIndex.ravel

MultiIndex.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See also:
numpy.ndarray.ravel

34.9.1.98 pandas.MultiIndex.reindex

MultiIndex.reindex(target, method=None, level=None, limit=None, tolerance=None)
Create index with target’s values (move/add/delete values as necessary)

Returns new_index : pd.MultiIndex
Resulting index

indexer : np.ndarray or None
Indices of output values in original index

34.9.1.99 pandas.MultiIndex.remove_unused_levels

MultiIndex.remove_unused_levels()
create a new MultiIndex from the current that removing unused levels, meaning that they are not expressed in the labels

The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original.

New in version 0.20.0.

Returns MultiIndex

Examples

```python
>>> i = pd.MultiIndex.from_product([range(2), list('ab')])
MultiIndex(levels=[[0, 1], ['a', 'b']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

>>> i[2:]
MultiIndex(levels=[[0, 1], ['a', 'b']],
labels=[[1, 1], [0, 1]])

The 0 from the first level is not represented and can be removed
```
>>> i[2:].remove_unused_levels()
MultiIndex(levels=[[[1], ['a', 'b']]],
          labels=[[0, 0], [0, 1]])

34.9.1.100 pandas.MultiIndex.rename

```
MultiIndex.rename(names, level=None, inplace=False)
```

Set new names on index. Defaults to returning new index.

**Parameters**

- **names**: str or sequence
  - name(s) to set
- **level**: int, level name, or sequence of int/level names (default None)
  - If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
  - Otherwise level must be None
- **inplace**: bool
  - if True, mutates in place

**Returns**

- new index (of same type and class...etc) [if inplace, returns None]

**Examples**

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples(((1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two)),
 names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])
```

34.9.1.101 pandas.MultiIndex.reorder_levels

```
MultiIndex.reorder_levels(order)
```

Rearrange levels using input order. May not drop or duplicate levels

34.9.1.102 pandas.MultiIndex.repeat

```
MultiIndex.repeat(repeats, *args, **kwargs)
```

34.9. MultiIndex
34.9.1.103 pandas.MultiIndex.reshape

```
MultiIndex.reshape(*args, **kwargs)
```

NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.

34.9.1.104 pandas.MultiIndex.searchsorted

```
MultiIndex.searchsorted(value, side='left', sorter=None)
```

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted IndexOpsMixin `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved.

**Parameters**

- **value**: array_like
  - Values to insert into `self`.
- **side**: {'left', 'right'}, optional
  - If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`).
- **sorter**: 1-D array_like, optional
  - Optional array of integer indices that sort `self` into ascending order. They are typically the result of `np.argsort`.

**Returns**

- **indices**: array of ints
  - Array of insertion points with the same shape as `value`.

**See also**

- `numpy.searchsorted`

**Notes**

Binary search is used to find the required insertion points.

**Examples**

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])
```
>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1])  # Note: an array, not a scalar

>>> x.searchsorted(['bread'])
array([1])

>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])

>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4])  # eggs before milk

### 34.9.1.105 pandas.MultiIndex.set_labels

MultiIndex.set_labels(labels, level=None, inplace=False, verify_integrity=True)

Set new labels on MultiIndex. Defaults to returning new index.

**Parameters**

- **labels** : sequence or list of sequence
  - new labels to apply
- **level** : int, level name, or sequence of int/level names (default None)
  - level(s) to set (None for all levels)
- **inplace** : bool
  - if True, mutates in place
- **verify_integrity** : bool (default True)
  - if True, checks that levels and labels are compatible

**Returns**

new index (of same type and class...etc)

**Examples**

```python
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])
>>> idx.set_labels([[1, 0, 1, 0], [0, 0, 1, 1]],
 inplace=False)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
 names=['foo', 'bar'])
```

```python
>>> idx.set_labels([[1, 0, 1, 0], [0, 0, 1, 1]], level=0)
```
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_labels([0,0,1,1], level='bar')
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])

>>> idx.set_labels([[1,0,1,0], [0,0,1,1]], level=[0,1])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
names=[u'foo', u'bar'])

34.9.1.106 pandas.MultiIndex.set_levels

MultiIndex.set_levels(levels, level=None, inplace=False, verify_integrity=True)
Set new levels on MultiIndex. Defaults to returning new index.

Parameters:
levels : sequence or list of sequence
  new level(s) to apply
level : int, level name, or sequence of int/level names (default None)
  level(s) to set (None for all levels)
inplace : bool
  if True, mutates in place
verify_integrity : bool (default True)
  if True, checks that levels and labels are compatible

Returns:
new index (of same type and class...etc)

Examples

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
(2, u'one'), (2, u'two')],
names=['foo', 'bar'])

>>> idx.set_levels([['a','b'], [1,2]])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels([['a','b'], level=0])
MultiIndex(levels=[[u'a', u'b'], [u'one', u'two']]},
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels([['a','b'], level='bar')
MultiIndex(levels=[[1, 2], [u'a', u'b']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels([['a','b'], [1,2], level=0])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])

>>> idx.set_levels([['a','b'], [1,2], level=[0,1])
MultiIndex(levels=[[u'a', u'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[u'foo', u'bar'])
34.9.1.107 pandas.MultiIndex.set_names

MultiIndex.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters:
- names: str or sequence of name(s) to set
- level: int, level name, or sequence of int/level names (default None)
  - If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
  - Otherwise level must be None
- inplace: bool
  - if True, mutates in place

Returns:
- new index (of same type and class...etc) [if inplace, returns None]

Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar'])
```

34.9.1.108 pandas.MultiIndex.set_value

MultiIndex.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

34.9.1.109 pandas.MultiIndex.shift

MultiIndex.shift(periods=1, freq=None)
Shift Index containing datetime objects by input number of periods and DateOffset

Returns:
- shifted: Index

34.9.1.110 pandas.MultiIndex.slice_indexer

MultiIndex.slice_indexer(start=None, end=None, step=None, kind=None)
For an ordered Index, compute the slice indexer for input labels and step

Parameters:
- start: label, default None

If None, defaults to the beginning

**end**: label, default None
If None, defaults to the end

**step**: int, default None

**kind**: string, default None

**Returns** `indexer`: ndarray or slice

**Notes**

This function assumes that the data is sorted, so use at your own peril

### 34.9.1.111 pandas.MultiIndex.slice_locs

```
MultiIndex.slice_locs(start=None, end=None, step=None, kind=None)
```

For an ordered MultiIndex, compute the slice locations for input labels. They can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple.

**Parameters**

**start**: label or tuple, default None
If None, defaults to the beginning

**end**: label or tuple
If None, defaults to the end

**step**: int or None
Slice step

**kind**: string, optional, defaults None

**Returns** `start, end`: (int, int)

**Notes**

This function assumes that the data is sorted by the first level

### 34.9.1.112 pandas.MultiIndex.sort

```
MultiIndex.sort(*args, **kwargs)
```

### 34.9.1.113 pandas.MultiIndex.sort_values

```
MultiIndex.sort_values(return_indexer=False, ascending=True)
```

Return sorted copy of Index
34.9.1.114 pandas.MultiIndex.sortlevel

MultiIndex.sortlevel(level=0, ascending=True, sort_remaining=True)
Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level.

Parameters
- level : list-like, int or str, default 0
  If a string is given, must be a name of the level If list-like must be names or ints of levels.
- ascending : boolean, default True
  False to sort in descending order Can also be a list to specify a directed ordering
- sort_remaining : sort by the remaining levels after level.

Returns
- sorted_index : pd.MultiIndex
  Resulting index
- indexer : np.ndarray
  Indices of output values in original index

34.9.1.115 pandas.MultiIndex.str

MultiIndex.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

34.9.1.116 pandas.MultiIndex.summary

MultiIndex.summary(name=None)

34.9.1.117 pandas.MultiIndex.swaplevel

MultiIndex.swaplevel(i=-2, j=-1)
Swap level i with level j. Do not change the ordering of anything

Parameters
- i, j : int, string (can be mixed)
  Level of index to be swapped. Can pass level name as string.

Returns
- swapped : MultiIndex
  Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.
34.9.1.118 pandas.MultiIndex.sym_diff

MultiIndex.sym_diff(*args, **kwargs)

34.9.1.119 pandas.MultiIndex.symmetric_difference

MultiIndex.symmetric_difference(other, result_name=None)

Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters other : Index or array-like
    result_name : str

Returns symmetric_difference : Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equiv-
alent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with du-
plicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

34.9.1.120 pandas.MultiIndex.take

MultiIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)

return a new MultiIndex of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters indices : list
    Indices to be taken

axis : int, optional
    The axis over which to select values, always 0.

allow_fill : bool, default True

fill_value : bool, default None
    If allow_fill=True and fill_value is not None, indices specified by -1 is regarded
    as NA. If Index doesn’t hold NA, raise ValueError
34.9.1.121 pandas.MultiIndex.to_datetime

MultiIndex.to_datetime (dayfirst=False)
DEPRECATED: use pandas.to_datetime() instead.
For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

34.9.1.122 pandas.MultiIndex.to_frame

MultiIndex.to_frame (index=True)
Create a DataFrame with the columns the levels of the MultiIndex
New in version 0.20.0.
Parameters  index : boolean, default True
  return this MultiIndex as the index
Returns  DataFrame

34.9.1.123 pandas.MultiIndex.to_hierarchical

MultiIndex.to_hierarchical (n_repeat, n_shuffle=1)
Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.
Useful to replicate and rearrange a MultiIndex for combination with another Index with n_repeat items.
Parameters  n_repeat : int
  Number of times to repeat the labels on self
  n_shuffle : int
  Controls the reordering of the labels. If the result is going to be an inner level in a MultiIndex, n_shuffle will need to be greater than one. The size of each label must divisible by n_shuffle.
Returns  MultiIndex

Examples

```python
>>> idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
 (2, 'one'), (2, 'two')])
>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], ['one', 'two']],
 labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
 [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]])
```
34.9.1.124 pandas.MultiIndex.to_native_types

```
MultiIndex.to_native_types(slicer=None, **kwargs)
```

Format specified values of `self` and return them.

**Parameters**

- `slicer`: int, array-like
  
  An indexer into `self` that specifies which values are used in the formatting process.

- `kwargs`: dict
  
  Options for specifying how the values should be formatted. These options include the following:

  1. `na_rep`: str
     The value that serves as a placeholder for NULL values
  
  2. `quoting`: bool or None
     Whether or not there are quoted values in `self`
  
  3. `date_format`: str
     The format used to represent date-like values

34.9.1.125 pandas.MultiIndex.to_series

```
MultiIndex.to_series(**kwargs)
```

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

**Returns**

`Series`: dtype will be based on the type of the Index values.

34.9.1.126 pandas.MultiIndex.tolist

```
MultiIndex.tolist()
```

return a list of the Index values

34.9.1.127 pandas.MultiIndex.transpose

```
MultiIndex.transpose(*args, **kwargs)
```

return the transpose, which is by definition self

34.9.1.128 pandas.MultiIndex.truncate

```
MultiIndex.truncate(before=None, after=None)
```

Slice index between two labels / tuples, return new MultiIndex

**Parameters**

- `before`: label or tuple, can be partial. Default None
  
  None defaults to start

- `after`: label or tuple, can be partial. Default None
  
  None defaults to end

**Returns**

`truncated`: MultiIndex
34.9.1.129 pandas.MultiIndex.union

MultiIndex.union(other)
Form the union of two MultiIndex objects, sorting if possible

Parameters other : MultiIndex or array / Index of tuples

Returns Index

```python
>>> index.union(index2)
```

34.9.1.130 pandas.MultiIndex.unique

MultiIndex.unique()
Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.

Parameters values : 1d array-like

Returns unique values.

- If the input is an Index, the return is an Index
- If the input is a Categorical dtype, the return is a Categorical
- If the input is a Series/ndarray, the return will be an ndarray

See also:
unique, Index.unique, Series.unique

34.9.1.131 pandas.MultiIndex.value_counts

MultiIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False
    If True then the object returned will contain the relative frequencies of the unique values.

    sort : boolean, default True
        Sort by values

    ascending : boolean, default False
        Sort in ascending order

    bins : integer, optional
        Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

    dropna : boolean, default True
        Don’t include counts of NaN.

Returns counts : Series
34.9.1.132 pandas.MultiIndex.view

```python
MultiIndex.view(cls=None)
```

This is defined as a copy with the same identity.

34.9.1.133 pandas.MultiIndex.where

```python
MultiIndex.where(cond, other=None)
```

34.9.2 pandas.IndexSlice

```python
pandas.IndexSlice = <pandas.core.indexing._IndexSlice object>
```

Create an object to more easily perform multi-index slicing.

**Examples**

```python
>>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']])
>>> columns = ['foo', 'bar']
>>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))),
 index=midx, columns=columns)
Using the default slice command:
```python
>>> dfmi.loc[(slice(None), slice('B0', 'B1')), :]
foo  bar
    A0  B0  0  1
        B1  2  3
        A1  B0  8  9
        B1 10 11

Using the IndexSlice class for a more intuitive command:
```python
>>> idx = pd.IndexSlice
>>> dfmi.loc[idx[:, 'B0':'B1'], :]
foo bar
 A0 B0 0 1
 B1 2 3
 A1 B0 8 9
 B1 10 11

34.9.3 MultiIndex Components

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiIndex.from_arrays(arrays[, sortorder, ...])</td>
<td>Convert arrays to MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.from_tuples(tuples[, sortorder, ...])</td>
<td>Convert list of tuples to MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.from_product(iterables[, ...])</td>
<td>Make a MultiIndex from the cartesian product of multiple iterables</td>
</tr>
<tr>
<td>MultiIndex.set_levels(levels[, level, ...])</td>
<td>Set new levels on MultiIndex.</td>
</tr>
<tr>
<td>MultiIndex.set_labels(labels[, level, ...])</td>
<td>Set new labels on MultiIndex.</td>
</tr>
<tr>
<td>MultiIndex.to_hierarchical(n_repeat[, n_shuffle])</td>
<td>Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.</td>
</tr>
</tbody>
</table>
Table 34.103 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MultiIndex.to_frame([index])</code></td>
<td>Create a DataFrame with the columns the levels of the MultiIndex</td>
</tr>
<tr>
<td><code>MultiIndex.is_lexsorted()</code></td>
<td>Return True if the labels are lexicographically sorted</td>
</tr>
<tr>
<td><code>MultiIndex.droplevel([level])</code></td>
<td>Return Index with requested level removed.</td>
</tr>
<tr>
<td><code>MultiIndex.swaplevel(i, j)</code></td>
<td>Swap level i with level j.</td>
</tr>
<tr>
<td><code>MultiIndex.reorder_levels(order)</code></td>
<td>Rearrange levels using input order.</td>
</tr>
<tr>
<td><code>MultiIndex.remove_unused_levels()</code></td>
<td>create a new MultiIndex from the current that removing</td>
</tr>
</tbody>
</table>

34.10 DatetimeIndex

DatetimeIndex

Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.

34.10.1 pandas.DatetimeIndex

Parameters

data : array-like (1-dimensional), optional

Optional datetime-like data to construct index with

- **copy** : bool
 Make a copy of input ndarray

- **freq** : string or pandas offset object, optional
 One of pandas date offset strings or corresponding objects

- **start** : starting value, datetime-like, optional
 If data is None, start is used as the start point in generating regular timestamp data

- **periods** : int, optional, > 0
 Number of periods to generate, if generating index. Takes precedence over end argument

- **end** : end time, datetime-like, optional
 If periods is None, generated index will extend to first conforming time on or just past end argument

- **closed** : string or None, default None
 Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

- **tz** : pytz.timezone or dateutil.tz.tzfile

- **ambiguous** : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order

34.10. DatetimeIndex 1697
• bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
• ‘NaT’ will return NaT where there are ambiguous times
• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst : boolean, default False (DEPRECATED)
Attempting to infer fall dst-transition hours based on order

name : object
Name to be stored in the index

Notes

To learn more about the frequency strings, please see this link.

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>asi8</code></td>
<td>return object Index which contains boxed values</td>
</tr>
<tr>
<td><code>asobject</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>base</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>date</code></td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
<tr>
<td><code>day</code></td>
<td>The days of the datetime</td>
</tr>
<tr>
<td><code>dayofweek</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>dayofyear</code></td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td><code>days_in_month</code></td>
<td>The number of days in the month</td>
</tr>
<tr>
<td><code>daysinmonth</code></td>
<td>The number of days in the month</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>dtype_str</code></td>
<td></td>
</tr>
<tr>
<td><code>empty</code></td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td><code>freq</code></td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td><code>freqstr</code></td>
<td></td>
</tr>
<tr>
<td><code>has_duplicates</code></td>
<td></td>
</tr>
<tr>
<td><code>hasnans</code></td>
<td></td>
</tr>
<tr>
<td><code>hour</code></td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td><code>inferred_freq</code></td>
<td></td>
</tr>
<tr>
<td><code>inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>is_all_dates</code></td>
<td></td>
</tr>
<tr>
<td><code>is_leap_year</code></td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>Return if the index is monotonic decreasing (only equal or</td>
</tr>
</tbody>
</table>
Table 34.105 – continued from previous page

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or greater)</td>
</tr>
<tr>
<td><code>is_month_end</code></td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_month_start</code></td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_normalized</code></td>
<td></td>
</tr>
<tr>
<td><code>is_quarter_end</code></td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_quarter_start</code></td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_unique</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_end</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_start</code></td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>microsecond</code></td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td><code>minute</code></td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td><code>month</code></td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td><code>name</code></td>
<td></td>
</tr>
<tr>
<td><code>names</code></td>
<td></td>
</tr>
<tr>
<td><code>nanosecond</code></td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td></td>
</tr>
<tr>
<td><code>offset</code></td>
<td></td>
</tr>
<tr>
<td><code>quarter</code></td>
<td>The quarter of the date</td>
</tr>
<tr>
<td><code>resolution</code></td>
<td></td>
</tr>
<tr>
<td><code>second</code></td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td><code>tz</code></td>
<td>Alias for tz attribute</td>
</tr>
<tr>
<td><code>values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>week</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>weekday</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>week_of_year</code></td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
<tr>
<td><code>weekofyear</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>year</code></td>
<td>The year of the datetime</td>
</tr>
</tbody>
</table>

34.10.1.1 pandas.DatetimeIndex.T

`datetimeindex.T` return the transpose, which is by definition self
34.10.1.2 pandas.DatetimeIndex.asi8

DatetimeIndex.asi8

34.10.1.3 pandas.DatetimeIndex.asobject

DatetimeIndex.asobject
return object Index which contains boxed values
this is an internal non-public method

34.10.1.4 pandas.DatetimeIndex.base

DatetimeIndex.base
return the base object if the memory of the underlying data is shared

34.10.1.5 pandas.DatetimeIndex.data

DatetimeIndex.data
return the data pointer of the underlying data

34.10.1.6 pandas.DatetimeIndex.date

DatetimeIndex.date
Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without time-zone information).

34.10.1.7 pandas.DatetimeIndex.day

DatetimeIndex.day
The days of the datetime

34.10.1.8 pandas.DatetimeIndex.dayofweek

DatetimeIndex.dayofweek
The day of the week with Monday=0, Sunday=6

34.10.1.9 pandas.DatetimeIndex.dayofyear

DatetimeIndex.dayofyear
The ordinal day of the year

34.10.1.10 pandas.DatetimeIndex.days_in_month

DatetimeIndex.days_in_month
The number of days in the month
New in version 0.16.0.
34.10.1.11 pandas.DatetimeIndex.daysinmonth

```
DatetimeIndex.daysinmonth
    The number of days in the month
    New in version 0.16.0.
```

34.10.1.12 pandas.DatetimeIndex.dtype

```
DatetimeIndex.dtype = None
```

34.10.1.13 pandas.DatetimeIndex.dtype_str

```
DatetimeIndex.dtype_str = None
```

34.10.1.14 pandas.DatetimeIndex.empty

```
DatetimeIndex.empty
```

34.10.1.15 pandas.DatetimeIndex.flags

```
DatetimeIndex.flags
```

34.10.1.16 pandas.DatetimeIndex.freq

```
DatetimeIndex.freq
    get/set the frequency of the Index
```

34.10.1.17 pandas.DatetimeIndex.freqstr

```
DatetimeIndex.freqstr
    Return the frequency object as a string if its set, otherwise None
```

34.10.1.18 pandas.DatetimeIndex.has_duplicates

```
DatetimeIndex.has_duplicates
```

34.10.1.19 pandas.DatetimeIndex.hasnans

```
DatetimeIndex.hasnans = None
```

34.10.1.20 pandas.DatetimeIndex.hour

```
DatetimeIndex.hour
    The hours of the datetime
```
34.10.1.21 pandas.DatetimeIndex.inferred_freq

datetime_index.inferred_freq = None

34.10.1.22 pandas.DatetimeIndex.inferred_type

datetime_index.inferred_type

34.10.1.23 pandas.DatetimeIndex.is_all_dates

datetime_index.is_all_dates

34.10.1.24 pandas.DatetimeIndex.is_leap_year

datetime_index.is_leap_year
 Logical indicating if the date belongs to a leap year

34.10.1.25 pandas.DatetimeIndex.is_monotonic

datetime_index.is_monotonic
 alias for is_monotonic_increasing (deprecated)

34.10.1.26 pandas.DatetimeIndex.is_monotonic_decreasing

datetime_index.is_monotonic_decreasing
 return if the index is monotonic decreasing (only equal or decreasing) values.

34.10.1.27 pandas.DatetimeIndex.is_monotonic_increasing

datetime_index.is_monotonic_increasing
 return if the index is monotonic increasing (only equal or increasing) values.

34.10.1.28 pandas.DatetimeIndex.is_month_end

datetime_index.is_month_end
 Logical indicating if last day of month (defined by frequency)

34.10.1.29 pandas.DatetimeIndex.is_month_start

datetime_index.is_month_start
 Logical indicating if first day of month (defined by frequency)

34.10.1.30 pandas.DatetimeIndex.is_normalized

datetime_index.is_normalized = None
34.10.1.31 pandas.DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)

34.10.1.32 pandas.DatetimeIndex.is_quarter_start

DatetimeIndex.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

34.10.1.33 pandas.DatetimeIndex.is_unique

DatetimeIndex.is_unique = None

34.10.1.34 pandas.DatetimeIndex.is_year_end

DatetimeIndex.is_year_end
Logical indicating if last day of year (defined by frequency)

34.10.1.35 pandas.DatetimeIndex.is_year_start

DatetimeIndex.is_year_start
Logical indicating if first day of year (defined by frequency)

34.10.1.36 pandas.DatetimeIndex.itemsize

DatetimeIndex.itemsize
return the size of the dtype of the item of the underlying data

34.10.1.37 pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

34.10.1.38 pandas.DatetimeIndex.minute

DatetimeIndex.minute
The minutes of the datetime

34.10.1.39 pandas.DatetimeIndex.month

DatetimeIndex.month
The month as January=1, December=12

34.10.1.40 pandas.DatetimeIndex.name

DatetimeIndex.name = None
34.10.1.41 pandas.DatetimeIndex.names

DatetimeIndex.names

34.10.1.42 pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond

The nanoseconds of the datetime

34.10.1.43 pandas.DatetimeIndex.nbytes

DatetimeIndex.nbytes

return the number of bytes in the underlying data

34.10.1.44 pandas.DatetimeIndex.ndim

DatetimeIndex.ndim

return the number of dimensions of the underlying data, by definition 1

34.10.1.45 pandas.DatetimeIndex.nlevels

DatetimeIndex.nlevels

34.10.1.46 pandas.DatetimeIndex.offset

DatetimeIndex.offset = None

34.10.1.47 pandas.DatetimeIndex.quarter

DatetimeIndex.quarter

The quarter of the date

34.10.1.48 pandas.DatetimeIndex.resolution

DatetimeIndex.resolution = None

34.10.1.49 pandas.DatetimeIndex.second

DatetimeIndex.second

The seconds of the datetime

34.10.1.50 pandas.DatetimeIndex.shape

DatetimeIndex.shape

return a tuple of the shape of the underlying data
34.10.1.51 pandas.DatetimeIndex.size

DatetimeIndex.size
return the number of elements in the underlying data

34.10.1.52 pandas.DatetimeIndex.strides

DatetimeIndex.strides
return the strides of the underlying data

34.10.1.53 pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps.

34.10.1.54 pandas.DatetimeIndex.tz

DatetimeIndex.tz = None

34.10.1.55 pandas.DatetimeIndex.tzinfo

DatetimeIndex.tzinfo
Alias for tz attribute

34.10.1.56 pandas.DatetimeIndex.values

DatetimeIndex.values
return the underlying data as an ndarray

34.10.1.57 pandas.DatetimeIndex.week

DatetimeIndex.week
The week ordinal of the year

34.10.1.58 pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
The day of the week with Monday=0, Sunday=6

34.10.1.59 pandas.DatetimeIndex.weekday_name

DatetimeIndex.weekday_name
The name of day in a week (ex: Friday)
New in version 0.18.1.
34.10.1.60 pandas.DatetimeIndex.weekofyear

`DatetimeIndex.weekofyear`
The week ordinal of the year

34.10.1.61 pandas.DatetimeIndex.year

`DatetimeIndex.year`
The year of the datetime

Methods

```
all([other])
any([other])
append(other) Append a collection of Index options together
argmax([axis]) Returns the indices of the maximum values along an
argmin([axis]) Returns the indices of the minimum values along an
argsort(*args, **kwargs) Returns the indices that would sort the index and its un-
asof(label) For a sorted index, return the most recent label up to and
asof_locs(where, mask) where : array of timestamps
astype(dtype[, copy]) Create an Index with values cast to dtypes.
ceil(freq) ceil the index to the specified freq
contains(key) return a boolean if this key is IN the index
copy([name, deep, dtype]) Make a copy of this object.
delete(loc) Make a new DatetimeIndex with passed location(s)
difference(other) Return a new Index with elements from the index that are not in other.
drop(labels[, errors]) Make new Index with passed list of labels deleted
drop_duplicates([keep]) Return Index with duplicate values removed
dropna([how]) Return Index without NA/NaN values
duplicated([keep]) Return boolean np.ndarray denoting duplicate values
equals(other) Determines if two Index objects contain the same ele-
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical variable
fillna([value, downcast]) Fill NA/NaN values with the specified value
floor(freq) floor the index to the specified freq
format([name, formatter]) Render a string representation of the Index
get_duplicates()
get_indexer(target[, method, limit, tolerance]) Compute indexer and mask for new index given the current index.
get_indexer_for(target, **kwargs) guaranteed return of an indexer even when non-unique
get_indexer_non_unique(target) Compute indexer and mask for new index given the current index.
```
Table 34.106 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return an Index of values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method, tolerance])</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_value_maybe_box(series, key)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>indexer_at_time(time[, asof])</code></td>
<td>Select values at particular time of day (e.g., 9:00-9:30AM).</td>
</tr>
<tr>
<td><code>indexer_between_time(start_time, end_time[, ...])</code></td>
<td>Select values between particular times of day (e.g., 9:00-9:30AM).</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Specialized intersection for DatetimeIndex objects.</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like <code>is</code> but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_interval()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(typ)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Detect missing values</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers, sort])</code></td>
<td>See Index.join</td>
</tr>
<tr>
<td><code>map(f)</code></td>
<td></td>
</tr>
<tr>
<td><code>max([axis])</code></td>
<td>Return the maximum value of the Index or maximum along an axis.</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values</td>
</tr>
<tr>
<td><code>min([axis])</code></td>
<td>Return the minimum value of the Index or minimum along an axis.</td>
</tr>
<tr>
<td><code>normalize()</code></td>
<td>Return DatetimeIndex with times to midnight.</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Reverse of isnull</td>
</tr>
<tr>
<td><code>nunigue([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat(repeats, *args, **kwargs)</code></td>
<td>Analogous to ndarray.repeat</td>
</tr>
</tbody>
</table>

34.10. DatetimeIndex 1707
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reshape(*args, **kwargs)</td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td>round(freq, *args, **kwargs)</td>
<td>round the index to the specified freq</td>
</tr>
<tr>
<td>searchsorted(value, side, sorter)</td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td>set_names(names[, level, inplace])</td>
<td>Set new names on index.</td>
</tr>
<tr>
<td>set_value(arr, key, value)</td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td>shift(n[, freq])</td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td>slice_indexer([start, end, step, kind])</td>
<td>Return indexer for specified label slice.</td>
</tr>
<tr>
<td>slice_locs([start, end, step, kind])</td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td>snap([freq])</td>
<td>Snap time stamps to nearest occurring frequency</td>
</tr>
<tr>
<td>sort(*args, **kwargs)</td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td>sort_values([return_indexer, ascending])</td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td>str</td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td>strftime(date_format)</td>
<td>Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library.</td>
</tr>
<tr>
<td>summary([name])</td>
<td>return a summarized representation</td>
</tr>
<tr>
<td>sym_diff(*args, **kwargs)</td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td>symmetric_difference(other[, result_name])</td>
<td>return a new Index of the values selected by the indices</td>
</tr>
<tr>
<td>take(indices[, axis, allow_fill, fill_value])</td>
<td>Convert DatetimeIndex to Float64Index of Julian Dates.</td>
</tr>
<tr>
<td>to_datetime([dayfirst])</td>
<td>Convert DatetimeIndex to Float64Index of Julian Dates.</td>
</tr>
<tr>
<td>to_julian_date()</td>
<td>Format specified values of self and return them.</td>
</tr>
<tr>
<td>to_period()</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>to_perioddelta(freq)</td>
<td>Calculates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq.</td>
</tr>
<tr>
<td>to_pydatetime()</td>
<td>Return DatetimeIndex as object ndarray of datetime.datetime objects</td>
</tr>
<tr>
<td>to_series([keep_tz])</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td>tolist()</td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td>transpose(*args, **kwargs)</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>tz_convert(tz)</td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using</td>
</tr>
<tr>
<td>tz_localize(tz[, ambiguous, errors])</td>
<td>Localize tz-naive DatetimeIndex to given time zone (using</td>
</tr>
<tr>
<td>union(other)</td>
<td>Specialized union for DatetimeIndex objects.</td>
</tr>
<tr>
<td>union_many(others)</td>
<td>A bit of a hack to accelerate unioning a collection of indexes</td>
</tr>
<tr>
<td>unique()</td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td>value_counts([normalise, sort, ascending, ...])</td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td>view([cls])</td>
<td>New in version 0.19.0.</td>
</tr>
<tr>
<td>where(cond[, other])</td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>
34.10.1.62 pandas.DatetimeIndex.all

DatetimeIndex.all(\texttt{other=None})

34.10.1.63 pandas.DatetimeIndex.any

DatetimeIndex.any(\texttt{other=None})

34.10.1.64 pandas.DatetimeIndex.append

DatetimeIndex.append(\texttt{other})

Append a collection of Index options together

\textbf{Parameters}
\texttt{other} : Index or list/tuple of indices

\textbf{Returns}
\texttt{appended} : Index

34.10.1.65 pandas.DatetimeIndex.argmax

DatetimeIndex.argmax(\texttt{axis=None, *args, **kwargs})

Returns the indices of the maximum values along an axis. See \texttt{numpy.ndarray.argmax} for more information on the \texttt{axis} parameter.

\textbf{See also:}

\texttt{numpy.ndarray.argmax}

34.10.1.66 pandas.DatetimeIndex.argmin

DatetimeIndex.argmin(\texttt{axis=None, *args, **kwargs})

Returns the indices of the minimum values along an axis. See \texttt{numpy.ndarray.argmin} for more information on the \texttt{axis} parameter.

\textbf{See also:}

\texttt{numpy.ndarray.argmin}

34.10.1.67 pandas.DatetimeIndex.argsort

DatetimeIndex.argsort(*args, **kwargs)

Returns the indices that would sort the index and its underlying data.

\textbf{Returns}
\texttt{argsorted} : numpy array

\textbf{See also:}

\texttt{numpy.ndarray.argsort}

34.10.1.68 pandas.DatetimeIndex.asof

DatetimeIndex.asof(\texttt{label})

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

\textbf{See also:}
get_loc asof is a thin wrapper around get_loc with method='pad'

34.10.1.69 pandas.DatetimeIndex.asof_locs

DatetimeIndex.asof_locs(\texttt{where, mask})
\texttt{where} : array of timestamps \texttt{mask} : array of booleans where data is not NA

34.10.1.70 pandas.DatetimeIndex.astype

DatetimeIndex.astype(\texttt{dtype, copy=True})
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

\textbf{Parameters} dtype : numpy dtype or pandas type
\texttt{copy} : bool, default True
By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.
New in version 0.19.0.

34.10.1.71 pandas.DatetimeIndex.ceil

DatetimeIndex.ceil(\texttt{freq})
ceil the index to the specified freq

\textbf{Parameters} freq : freq string/object
\textbf{Returns} index of same type
\textbf{Raises} ValueError if the freq cannot be converted

34.10.1.72 pandas.DatetimeIndex.contains

DatetimeIndex.contains(\texttt{key})
return a boolean if this key is IN the index

\textbf{Parameters} key : object
\textbf{Returns} boolean

34.10.1.73 pandas.DatetimeIndex.copy

DatetimeIndex.copy(\texttt{name=None, deep=False, dtype=None, **kwargs})
Make a copy of this object. Name and dtype sets those attributes on the new object.

\textbf{Parameters} name : string, optional
\texttt{deep} : boolean, default False
\texttt{dtype} : numpy dtype or pandas type
\textbf{Returns} copy : Index
Notes

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy.

34.10.1.74 pandas.DatetimeIndex.delete

`DatetimeIndex.delete(loc)`
Make a new DatetimeIndex with passed location(s) deleted.

Parameters
loc: int, slice or array of ints
Indicate which sub-arrays to remove.

Returns
new_index : DatetimeIndex

34.10.1.75 pandas.DatetimeIndex.difference

`DatetimeIndex.difference(other)`
Return a new Index with elements from the index that are not in `other`.
This is the set difference of two Index objects. It’s sorted if sorting is possible.

Parameters
other : Index or array-like

Returns
difference : Index

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

34.10.1.76 pandas.DatetimeIndex.drop

`DatetimeIndex.drop(labels, errors='raise')`
Make new Index with passed list of labels deleted.

Parameters
labels : array-like

errors : {‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and existing labels are dropped.

Returns
dropped : Index

34.10.1.77 pandas.DatetimeIndex.drop_duplicates

`DatetimeIndex.drop_duplicates(keep='first')`
Return Index with duplicate values removed.

Parameters
keep : {‘first’, ‘last’, False}, default ‘first’

• first : Drop duplicates except for the first occurrence.
• last: Drop duplicates except for the last occurrence.
• False: Drop all duplicates.

Returns deduplicated: Index

34.10.1.78 pandas.DatetimeIndex.dropna

DatetimeIndex.dropna (how='any')
Return Index without NA/NaN values

Parameters how: {'any', 'all'}, default 'any'
If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns valid: Index

34.10.1.79 pandas.DatetimeIndex.duplicated

DatetimeIndex.duplicated (keep='first')
Return boolean np.ndarray denoting duplicate values

Parameters keep: {'first', 'last', False}, default 'first'
• first: Mark duplicates as True except for the first occurrence.
• last: Mark duplicates as True except for the last occurrence.
• False: Mark all duplicates as True.

Returns duplicated: np.ndarray

34.10.1.80 pandas.DatetimeIndex.equals

DatetimeIndex.equals (other)
Determines if two Index objects contain the same elements.

34.10.1.81 pandas.DatetimeIndex.factorize

DatetimeIndex.factorize (sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort: boolean, default False
Sort by values

na_sentinel: int, default -1
Value to mark “not found”

Returns labels: the indexer to the original array
uniques: the unique Index
34.10.1.82 pandas.DatetimeIndex.fillna

DatetimeIndex.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters

- **value**: scalar

 Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

- **downcast**: dict, default is None

 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

- **filled**: %(klass)s

34.10.1.83 pandas.DatetimeIndex.floor

DatetimeIndex.floor(freq)

floor the index to the specified freq

Parameters

- **freq**: freq string/object

Returns

- **index of same type**

Raises

- **ValueError if the freq cannot be converted**

34.10.1.84 pandas.DatetimeIndex.format

DatetimeIndex.format(name=False, formatter=None, **kwargs)

Render a string representation of the Index

34.10.1.85 pandas.DatetimeIndex.get_duplicates

DatetimeIndex.get_duplicates()

34.10.1.86 pandas.DatetimeIndex.get_indexer

DatetimeIndex.get_indexer(target, method=None, limit=None, tolerance=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters

- **target**: Index

 - **method**: {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional

 - default: exact matches only.

 - pad / ffill: find the PREVIOUS index value if no exact match.

 - backfill / bfill: use NEXT index value if no exact match

 - nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.

 - **limit**: int, optional

 Maximum number of consecutive labels in target to match for inexact matches.
tolerance: optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation

\[
\text{abs(index[indexer] - target)} \leq \text{tolerance}
\]

New in version 0.17.0.

Returns `indexer`: ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

34.10.1.87 pandas.DatetimeIndex.get_indexer_for

`DatetimeIndex.get_indexer_for(target, **kwargs)`

Guaranteed return of an indexer even when non-unique. This dispatches to `get_indexer` or `get_indexer_nonunique` as appropriate.

34.10.1.88 pandas.DatetimeIndex.get_indexer_non_unique

`DatetimeIndex.get_indexer_non_unique(target)`

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to `ndarray.take` to align the current data to the new index.

Parameters

- `target`: Index

Returns

- `indexer`: ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

- `missing`: ndarray of int

An indexer into the target of the values not found. These correspond to the -1 in the indexer array.

34.10.1.89 pandas.DatetimeIndex.get_level_values

`DatetimeIndex.get_level_values(level)`

Return an Index of values for requested level, equal to the length of the index.

Parameters

- `level`: int

Returns

- `values`: Index
34.10.1.90 pandas.DatetimeIndex.get_loc

DatetimeIndex.get_loc(key, method=None, tolerance=None)
Get integer location for requested label

Returns loc : int

34.10.1.91 pandas.DatetimeIndex.get_slice_bound

DatetimeIndex.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.
Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters label : object
 side : {'left', 'right'}
 kind : {'ix', 'loc', 'getitem'}

34.10.1.92 pandas.DatetimeIndex.get_value

DatetimeIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

34.10.1.93 pandas.DatetimeIndex.get_value_maybe_box

DatetimeIndex.get_value_maybe_box(series, key)

34.10.1.94 pandas.DatetimeIndex.get_values

DatetimeIndex.get_values()
return the underlying data as an ndarray

34.10.1.95 pandas.DatetimeIndex.groupby

DatetimeIndex.groupby(values)
Group the index labels by a given array of values.

Parameters values : array
 Values used to determine the groups.

Returns groups : dict
 {group name -> group labels}

34.10.1.96 pandas.DatetimeIndex.holds_integer

DatetimeIndex.holds_integer()
34.10.1.97 pandas.DatetimeIndex.identical

DatetimeIndex.<code>identical(other)</code>
Similar to equals, but check that other comparable attributes are also equal

34.10.1.98 pandas.DatetimeIndex.indexer_at_time

DatetimeIndex.<code>indexer_at_time(time, asof=False)</code>
Select values at particular time of day (e.g. 9:30AM)

Parameters
<code>time</code> : datetime.time or string

Returns
<code>values_at_time</code> : TimeSeries

34.10.1.99 pandas.DatetimeIndex.indexer_between_time

DatetimeIndex.<code>indexer_between_time(start_time, end_time, include_start=True, include_end=True)</code>
Select values between particular times of day (e.g., 9:00-9:30AM).

Return values of the index between two times. If start_time or end_time are strings then
tseres.tools.to_time is used to convert to a time object.

Parameters
<code>start_time</code>, <code>end_time</code> : datetime.time, str
<code>datetime.time or string in appropriate format (“%H:%M”, “%H%M”,
“%I:%M%p”, “%I%M%p”, “%H:%M:%S”, “%H%M%S”, “%I:%M:%S%p”,
“%I%M%S%p”)

<code>include_start</code> : boolean, default True
<code>include_end</code> : boolean, default True

Returns
<code>values_between_time</code> : TimeSeries

34.10.1.100 pandas.DatetimeIndex.insert

DatetimeIndex.<code>insert(loc, item)</code>
Make new Index inserting new item at location

Parameters
<code>loc</code> : int
<code>item</code> : object

if not either a Python datetime or a numpy integer-like, returned Index dtype will
be object rather than datetime.

Returns
<code>new_index</code> : Index

34.10.1.101 pandas.DatetimeIndex.intersection

DatetimeIndex.<code>intersection(other)</code>
Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection

Parameters
<code>other</code> : DatetimeIndex or array-like

Returns
<code>y</code> : Index or DatetimeIndex
34.10.1.102 pandas.DatetimeIndex.is_

DatetimeIndex.is_(other)
 More flexible, faster check like is but that works through views

 Note: this is not the same as Index.identical(), which checks that metadata is also the same.

 Parameters other : object

 other object to compare against.

 Returns True if both have same underlying data, False otherwise : bool

34.10.1.103 pandas.DatetimeIndex.is_boolean

DatetimeIndex.is_boolean()

34.10.1.104 pandas.DatetimeIndex.is_categorical

DatetimeIndex.is_categorical()

34.10.1.105 pandas.DatetimeIndex.is_floating

DatetimeIndex.is_floating()

34.10.1.106 pandas.DatetimeIndex.is_integer

DatetimeIndex.is_integer()

34.10.1.107 pandas.DatetimeIndex.is_interval

DatetimeIndex.is_interval()

34.10.1.108 pandas.DatetimeIndex.is_lexsorted_for_tuple

DatetimeIndex.is_lexsorted_for_tuple(tup)

34.10.1.109 pandas.DatetimeIndex.is_mixed

DatetimeIndex.is_mixed()

34.10.1.110 pandas.DatetimeIndex.is_numeric

DatetimeIndex.is_numeric()

34.10.1.111 pandas.DatetimeIndex.is_object

DatetimeIndex.is_object()
34.10.1.112 pandas.DatetimeIndex.is_type_compatible

```
DatetimeIndex.is_type_compatible(typ)
```

34.10.1.113 pandas.DatetimeIndex.isin

```
DatetimeIndex.isin(values)
```

- **Parameters**
 - `values`: set or sequence of values

- **Returns**
 - `is_contained`: ndarray (boolean dtype)

34.10.1.114 pandas.DatetimeIndex.isnull

```
DatetimeIndex.isnull()
```

- **Returns**
 - a boolean array of whether my values are null

See also:

- `pandas.isnull` pandas version

34.10.1.115 pandas.DatetimeIndex.item

```
DatetimeIndex.item()
```

- return the first element of the underlying data as a python scalar

34.10.1.116 pandas.DatetimeIndex.join

```
DatetimeIndex.join(other, how='left', level=None, return_indexers=False, sort=False)
```

See `Index.join`

34.10.1.117 pandas.DatetimeIndex.map

```
DatetimeIndex.map(f)
```

34.10.1.118 pandas.DatetimeIndex.max

```
DatetimeIndex.max(axis=None, *args, **kwargs)
```

- Return the maximum value of the Index or maximum along an axis.

See also:

- `numpy.ndarray.max`
34.10.1.119 pandas.DatetimeIndex.memory_usage

```python
DatetimeIndex.memory_usage(deep=False)
```

Memory usage of my values

Parameters

- `deep` : bool

 Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption

Returns

- `bytes used`

See also:

- `numpy.ndarray.nbytes`

Notes

Memory usage does not include memory consumed by elements that are not components of the array if `deep=False`

34.10.1.120 pandas.DatetimeIndex.min

```python
DatetimeIndex.min(axis=None, *args, **kwargs)
```

Return the minimum value of the Index or minimum along an axis.

See also:

- `numpy.ndarray.min`

34.10.1.121 pandas.DatetimeIndex.normalize

```python
DatetimeIndex.normalize()
```

Return DatetimeIndex with times to midnight. Length is unaltered

Returns

- `normalized : DatetimeIndex`

34.10.1.122 pandas.DatetimeIndex.notnull

```python
DatetimeIndex.notnull()
```

Reverse of isnull

New in version 0.20.0.

Returns

- `a boolean array of whether my values are not null`

See also:

- `pandas.notnull` pandas version

34.10.1.123 pandas.DatetimeIndex.nunique

```python
DatetimeIndex.nunique(dropna=True)
```

Return number of unique elements in the object.

Excludes NA values by default.
Parameters **dropna** : boolean, default True

Don’t include NaN in the count.

Returns **nunique** : int

34.10.1.124 pandas.DatetimeIndex.putmask

DatetimeIndex.**putmask**(mask, value)

return a new Index of the values set with the mask

See also:

numpy.ndarray.putmask

34.10.1.125 pandas.DatetimeIndex.ravel

DatetimeIndex.**ravel**(order='C')

return an ndarray of the flattened values of the underlying data

See also:

numpy.ndarray.ravel

34.10.1.126 pandas.DatetimeIndex.reindex

DatetimeIndex.**reindex**(target, method=None, level=None, limit=None, tolerance=None)

Create index with target’s values (move/add/delete values as necessary)

Parameters **target** : an iterable

Returns **new_index** : pd.Index

Resulting index

indexer : np.ndarray or None

Indices of output values in original index

34.10.1.127 pandas.DatetimeIndex.rename

DatetimeIndex.**rename**(name, inplace=False)

Set new names on index. Defaults to returning new index.

Parameters **name** : str or list

name to set

inplace : bool

if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

34.10.1.128 pandas.DatetimeIndex.repeat

DatetimeIndex.**repeat**(repeats, *args, **kwargs)

Analogous to ndarray.repeat
34.10.1.129 pandas.DatetimeIndex.reshape

```
DatetimeIndex.reshape(*args, **kwargs)

NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.
```

34.10.1.130 pandas.DatetimeIndex.round

```
DatetimeIndex.round(freq, *args, **kwargs)

round the index to the specified freq

Parameters freq : freq string/object

Returns index of same type

Raises ValueError if the freq cannot be converted
```

34.10.1.131 pandas.DatetimeIndex.searchsorted

```
DatetimeIndex.searchsorted(value, side='left', sorter=None)

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted DatetimeIndex self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved.

Parameters value : array_like

Values to insert into self.

side : {'left', 'right'}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self).

sorter : 1-D array_like, optional

Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort.

Returns indices : array of ints

Array of insertion points with the same shape as value.

See also:

numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples
>>> x = pd.Series([1, 2, 3])
>>> x
0    1
1    2
2    3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])

>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1])  # Note: an array, not a scalar

>>> x.searchsorted(['bread'])
array([1])

>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])

>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4])  # eggs before milk

34.10.1.132 pandas.DatetimeIndex.set_names

DatetimeIndex.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters names : str or sequence

level : int, level name, or sequence of int/level names (default None)

If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
Otherwise level must be None

inplace : bool
if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]
Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')

>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])
```

34.10.1.133 pandas.DatetimeIndex.set_value

DatetimeIndex.set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing.

34.10.1.134 pandas.DatetimeIndex.shift

DatetimeIndex.shift(n, freq=None)

Specialized shift which produces a DatetimeIndex.

Parameters

- **n** : int
  Periods to shift by

- **freq** : DateOffset or timedelta-like, optional

Returns

- **shifted** : DatetimeIndex

34.10.1.135 pandas.DatetimeIndex.slice_indexer

DatetimeIndex.slice_indexer(start=None, end=None, step=None, kind=None)

Return indexer for specified label slice. Index.slice_indexer, customized to handle time slicing.

In addition to functionality provided by Index.slice_indexer, does the following:

- if both start and end are instances of datetime.time, it invokes indexer_between_time

- if start and end are both either string or None perform value-based selection in non-monotonic cases.

34.10.1.136 pandas.DatetimeIndex.slice_locs

DatetimeIndex.slice_locs(start=None, end=None, step=None, kind=None)

Compute slice locations for input labels.

Parameters

- **start** : label, default None

  If None, defaults to the beginning
end : label, default None
   If None, defaults to the end
step : int, defaults None
   If None, defaults to 1
kind : {‘ix’, ‘loc’, ‘getitem’} or None

Returns start, end : int

34.10.1.137 pandas.DatetimeIndex.snap

DatetimeIndex.snap(freq='S')
Snap time stamps to nearest occurring frequency

34.10.1.138 pandas.DatetimeIndex.sort

DatetimeIndex.sort(*args, **kwargs)

34.10.1.139 pandas.DatetimeIndex.sort_values

DatetimeIndex.sort_values(return_indexer=False, ascending=True)
Return sorted copy of Index

34.10.1.140 pandas.DatetimeIndex.sortlevel

DatetimeIndex.sortlevel(level=None, ascending=True, sort_remaining=None)
For internal compatibility with with the Index API
Sort the Index. This is for compat with MultiIndex
   Parameters ascending : boolean, default True
   False to sort in descending order
   level, sort_remaining are compat parameters

Returns sorted_index : Index

34.10.1.141 pandas.DatetimeIndex.str

DatetimeIndex.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

>>> s.str.split('_')
>>> s.str.replace('_', '')
34.10.1.142 pandas.DatetimeIndex.strftime

DatetimeIndex.strftime(date_format)

Return an array of formated strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc

New in version 0.17.0.

Parameters
date_format: str
date format string (e.g. “%Y-%m-%d”)

Returns
ndarray of formatted strings

34.10.1.143 pandas.DatetimeIndex.summary

DatetimeIndex.summary(name=None)

return a summarized representation

34.10.1.144 pandas.DatetimeIndex.sym_diff

DatetimeIndex.sym_diff(*args, **kwargs)

34.10.1.145 pandas.DatetimeIndex.symmetric_difference

DatetimeIndex.symmetric_difference(other, result_name=None)

Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters
other: Index or array-like
result_name: str

Returns
symmetric_difference: Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```
34.10.1.146 pandas.DatetimeIndex.take

`DatetimeIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)`

return a new Index of the values selected by the indices

For internal compatibility with numpy arrays.

**Parameters**

- `indices`: list
  - Indices to be taken

- `axis`: int, optional
  - The axis over which to select values, always 0.

- `allow_fill`: bool, default True

- `fill_value`: bool, default None
  - If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn’t hold NA, raise ValueError

**See also:**

- `numpy.ndarray.take`

34.10.1.147 pandas.DatetimeIndex.to_datetime

`DatetimeIndex.to_datetime(dayfirst=False)`

34.10.1.148 pandas.DatetimeIndex.to_julian_date

`DatetimeIndex.to_julian_date()`

Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC.


34.10.1.149 pandas.DatetimeIndex.to_native_types

`DatetimeIndex.to_native_types(slicer=None, **kwargs)`

Format specified values of `self` and return them.

**Parameters**

- `slicer`: int, array-like
  - An indexer into `self` that specifies which values are used in the formatting process.

- `kwargs`: dict
  - Options for specifying how the values should be formatted. These options include the following:
    1. `na_rep` [str] The value that serves as a placeholder for NULL values
    2. `quoting` [bool or None] Whether or not there are quoted values in `self`
    3. `date_format` [str] The format used to represent date-like values

34.10.1.150 pandas.DatetimeIndex.to_period

`DatetimeIndex.to_period(freq=None)`

Cast to PeriodIndex at a particular frequency
34.10.1.151 pandas.DatetimeIndex.to_perioddelta

DatetimeIndex.to_perioddelta(freq)
Calculates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. Used for vectorized offsets
New in version 0.17.0.

Parameters freq : Period frequency

Returns y : TimedeltaIndex

34.10.1.152 pandas.DatetimeIndex.to_pydatetime

DatetimeIndex.to_pydatetime()
Return DatetimeIndex as object ndarray of datetime.datetime objects

Returns datetimes : ndarray

34.10.1.153 pandas.DatetimeIndex.to_series

DatetimeIndex.to_series(keep_tz=False)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Parameters keep_tz : optional, defaults False.

return the data keeping the timezone.
If keep_tz is True:
If the timezone is not set, the resulting Series will have a datetime64[ns] dtype.
Otherwise the Series will have an datetime64[ns, tz] dtype; the tz will be preserved.
If keep_tz is False:
Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed.

Returns Series

34.10.1.154 pandas.DatetimeIndex.tolist

DatetimeIndex.tolist()
return a list of the underlying data

34.10.1.155 pandas.DatetimeIndex.transpose

DatetimeIndex.transpose(*args, **kwargs)
return the transpose, which is by definition self
34.10.1.156 pandas.DatetimeIndex.tz_convert

DatetimeIndex.tz_convert(tz)
Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None
   Time zone for time. Corresponding timestamps would be converted to time zone
   of the TimeSeries. None will remove timezone holding UTC time.

Returns normalized : DatetimeIndex

Raises TypeError
   If DatetimeIndex is tz-naive.

34.10.1.157 pandas.DatetimeIndex.tz_localize

DatetimeIndex.tz_localize(tz, ambiguous='raise', errors='raise')
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-
aware DatetimeIndex

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None
   Time zone for time. Corresponding timestamps would be converted to time zone
   of the TimeSeries. None will remove timezone holding local time.

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
   • ‘infer’ will attempt to infer fall dst-transition hours based on order
   • bool-ndarray where True signifies a DST time, False signifies a non-DST time (note
     that this flag is only applicable for ambiguous times)
   • ‘NaT’ will return NaT where there are ambiguous times
   • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

errors : ‘raise’, ‘coerce’, default ‘raise’
   • ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in
     the specified timezone (e.g. due to a transition from or to DST time)
   • ‘coerce’ will return NaT if the timestamp can not be converted into the specified
     timezone

New in version 0.19.0.

infer_dst : boolean, default False (DEPRECATED)
   Attempt to infer fall dst-transition hours based on order

Returns localized : DatetimeIndex

Raises TypeError
   If the DatetimeIndex is tz-aware and tz is not None.

34.10.1.158 pandas.DatetimeIndex.union

DatetimeIndex.union(other)
Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset,
will be much faster than Index.union
**Parameters** other : DatetimeIndex or array-like

**Returns** y : Index or DatetimeIndex

### 34.10.1.159 pandas.DatetimeIndex.union_many

```python
DatetimeIndex.union_many(others)
```

A bit of a hack to accelerate unioning a collection of indexes

### 34.10.1.160 pandas.DatetimeIndex.unique

```python
DatetimeIndex.unique()
```

Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.

**Parameters** values : 1d array-like

**Returns** unique values.

- If the input is an Index, the return is an Index
- If the input is a Categorical dtype, the return is a Categorical
- If the input is a Series/ndarray, the return will be an ndarray

**See also:**

unique, Index.unique, Series.unique

### 34.10.1.161 pandas.DatetimeIndex.value_counts

```python
DatetimeIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
```

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters** normalize : boolean, default False

- If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True

- Sort by values

ascending : boolean, default False

- Sort in ascending order

bins : integer, optional

- Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna : boolean, default True

- Don’t include counts of NaN.

**Returns** counts : Series
34.10.1.162 pandas.DatetimeIndex.view

DatetimeIndex.<code>view</code>(<code>cls=None</code>)

34.10.1.163 pandas.DatetimeIndex.where

DatetimeIndex.<code>where</code>(<code>cond, other=None</code>)

New in version 0.19.0.

Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters

- <code>cond</code>: boolean array-like with the same length as self
- <code>other</code>: scalar, or array-like

34.10.2 Time/Date Components

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>DatetimeIndex.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.date</td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
<tr>
<td>DatetimeIndex.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td>DatetimeIndex.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>DatetimeIndex.weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.weekday_name</td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
<tr>
<td>DatetimeIndex.quarter</td>
<td>The quarter of the date</td>
</tr>
<tr>
<td>DatetimeIndex.tz</td>
<td></td>
</tr>
<tr>
<td>DatetimeIndex.freq</td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td>DatetimeIndex.freqstr</td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.107 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DatetimeIndex.is_year_end</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_leap_year</code></td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td><code>DatetimeIndex.inferred_freq</code></td>
<td></td>
</tr>
</tbody>
</table>

34.10.3 Selecting

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DatetimeIndex.indexer_at_time(time[, asof])</code></td>
<td>Select values at particular time of day (e.g., 9:00-9:30AM).</td>
</tr>
<tr>
<td><code>DatetimeIndex.indexer_between_time(...[, ...])</code></td>
<td>Select values between particular times of day (e.g., 9:00-9:30AM).</td>
</tr>
</tbody>
</table>

34.10.4 Time-specific operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DatetimeIndex.normalize()</code></td>
<td>Return DatetimeIndex with times to midnight.</td>
</tr>
<tr>
<td><code>DatetimeIndex.strftime(date_format)</code></td>
<td>Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library.</td>
</tr>
<tr>
<td><code>DatetimeIndex.snap([freq])</code></td>
<td>Snap time stamps to nearest occurring frequency</td>
</tr>
<tr>
<td><code>DatetimeIndex.tz_convert(tz)</code></td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using)</td>
</tr>
<tr>
<td><code>DatetimeIndex.tz_localize(tz[, ambiguous, ...])</code></td>
<td>Localize tz-naive DatetimeIndex to given time zone (using)</td>
</tr>
<tr>
<td><code>DatetimeIndex.round(freq, *args, **kwargs)</code></td>
<td>Round the index to the specified freq</td>
</tr>
<tr>
<td><code>DatetimeIndex.floor(freq)</code></td>
<td>Floor the index to the specified freq</td>
</tr>
<tr>
<td><code>DatetimeIndex.ceil(freq)</code></td>
<td>Ceil the index to the specified freq</td>
</tr>
</tbody>
</table>

34.10.5 Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DatetimeIndex.to_datetime([dayfirst])</code></td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td><code>DatetimeIndex.to_period([freq])</code></td>
<td>Calculate TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq.</td>
</tr>
<tr>
<td><code>DatetimeIndex.to_perioddelta(freq)</code></td>
<td></td>
</tr>
<tr>
<td><code>DatetimeIndex.to_pydatetime()</code></td>
<td>Return DatetimeIndex as object ndarray of datetime.datetime objects</td>
</tr>
<tr>
<td><code>DatetimeIndex.to_series([keep_tz])</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

34.11 TimedeltaIndex

`TimedeltaIndex` Immutable ndarray of timedelta64 data, represented internally as int64, and

34.11.1 pandas.TimedeltaIndex

`class pandas.TimedeltaIndex`

Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta
objects

Parameters:

- **data**: array-like (1-dimensional), optional
  
  Optional timedelta-like data to construct index with

- **unit**: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional

  which is an integer/float number

- **freq**: a frequency for the index, optional

- **copy**: bool

  Make a copy of input ndarray

- **start**: starting value, timedelta-like, optional

  If data is None, start is used as the start point in generating regular timedelta data.

- **periods**: int, optional, > 0

  Number of periods to generate, if generating index. Takes precedence over end argument

- **end**: end time, timedelta-like, optional

  If periods is none, generated index will extend to first conforming time on or just past end argument

- **closed**: string or None, default None

  Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

- **name**: object

  Name to be stored in the index

Notes

To learn more about the frequency strings, please see this link.

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>asi8</td>
<td>return object Index which contains boxed values</td>
</tr>
<tr>
<td>asobject</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return data pointer of the underlying data</td>
</tr>
<tr>
<td>components</td>
<td>Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.</td>
</tr>
<tr>
<td>dtype</td>
<td>Number of days for each element.</td>
</tr>
<tr>
<td>empty</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.112 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>freq</td>
<td></td>
</tr>
<tr>
<td>freqstr</td>
<td></td>
</tr>
<tr>
<td>has_duplicates</td>
<td></td>
</tr>
<tr>
<td>hashans</td>
<td></td>
</tr>
<tr>
<td>inferred_freq</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td></td>
</tr>
<tr>
<td>is_monotonic</td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_increasing</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_unique</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td>itemsize</td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td>microseconds</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>names</td>
<td></td>
</tr>
<tr>
<td>nanoseconds</td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td>nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>ndim</td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td>nlevels</td>
<td></td>
</tr>
<tr>
<td>resolution</td>
<td></td>
</tr>
<tr>
<td>seconds</td>
<td>Number of seconds (&gt;= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td>shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>values</td>
<td>return the underlying data as an ndarray</td>
</tr>
</tbody>
</table>

### 34.11.1.1 pandas.TimedeltaIndex.T

TimedeltaIndex.T

return the transpose, which is by definition self

### 34.11.1.2 pandas.TimedeltaIndex.asi8

TimedeltaIndex.asi8

### 34.11.1.3 pandas.TimedeltaIndex.asobject

TimedeltaIndex.asobject

return object Index which contains boxed values

this is an internal non-public method

34.11. TimedeltaIndex
34.11.1.4 pandas.TimedeltaIndex.base

TimedeltaIndex.\texttt{base}
return the base object if the memory of the underlying data is shared

34.11.1.5 pandas.TimedeltaIndex.components

TimedeltaIndex.\texttt{components}
Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.

\textbf{Returns} a DataFrame

34.11.1.6 pandas.TimedeltaIndex.data

TimedeltaIndex.\texttt{data}
return the data pointer of the underlying data

34.11.1.7 pandas.TimedeltaIndex.days

TimedeltaIndex.\texttt{days}
Number of days for each element.

34.11.1.8 pandas.TimedeltaIndex.dtype

TimedeltaIndex.\texttt{dtype}

34.11.1.9 pandas.TimedeltaIndex.dtype_str

TimedeltaIndex.\texttt{dtype_str} = None

34.11.1.10 pandas.TimedeltaIndex.empty

TimedeltaIndex.\texttt{empty}

34.11.1.11 pandas.TimedeltaIndex.flags

TimedeltaIndex.\texttt{flags}

34.11.1.12 pandas.TimedeltaIndex.freq

TimedeltaIndex.\texttt{freq} = None

34.11.1.13 pandas.TimedeltaIndex.freqstr

TimedeltaIndex.\texttt{freqstr}
Return the frequency object as a string if its set, otherwise None
34.11.1.14 pandas.TimedeltaIndex.has_duplicates

TimedeltaIndex.has_duplicates

34.11.1.15 pandas.TimedeltaIndex.hasnans

TimedeltaIndex.hasnans = None

34.11.1.16 pandas.TimedeltaIndex.inferred_freq

TimedeltaIndex.inferred_freq = None

34.11.1.17 pandas.TimedeltaIndex.inferred_type

TimedeltaIndex.inferred_type

34.11.1.18 pandas.TimedeltaIndex.is_all_dates

TimedeltaIndex.is_all_dates

34.11.1.19 pandas.TimedeltaIndex.is_monotonic

TimedeltaIndex.is_monotonic

    alias for is_monotonic_increasing (deprecated)

34.11.1.20 pandas.TimedeltaIndex.is_monotonic_decreasing

TimedeltaIndex.is_monotonic_decreasing

    return if the index is monotonic decreasing (only equal or decreasing) values.

34.11.1.21 pandas.TimedeltaIndex.is_monotonic_increasing

TimedeltaIndex.is_monotonic_increasing

    return if the index is monotonic increasing (only equal or increasing) values.

34.11.1.22 pandas.TimedeltaIndex.is_unique

TimedeltaIndex.is_unique = None

34.11.1.23 pandas.TimedeltaIndex.itemsize

TimedeltaIndex.itemsize

    return the size of the dtype of the item of the underlying data
34.11.1.24 pandas.TimedeltaIndex.microseconds

TimedeltaIndex.microseconds
Number of microseconds (>= 0 and less than 1 second) for each element.

34.11.1.25 pandas.TimedeltaIndex.name

TimedeltaIndex.name = None

34.11.1.26 pandas.TimedeltaIndex.names

TimedeltaIndex.names

34.11.1.27 pandas.TimedeltaIndex.nanoseconds

TimedeltaIndex.nanoseconds
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.

34.11.1.28 pandas.TimedeltaIndex.nbytes

TimedeltaIndex.nbytes
return the number of bytes in the underlying data

34.11.1.29 pandas.TimedeltaIndex.ndim

TimedeltaIndex.ndim
return the number of dimensions of the underlying data, by definition 1

34.11.1.30 pandas.TimedeltaIndex.nlevels

TimedeltaIndex.nlevels

34.11.1.31 pandas.TimedeltaIndex.resolution

TimedeltaIndex.resolution = None

34.11.1.32 pandas.TimedeltaIndex.seconds

TimedeltaIndex.seconds
Number of seconds (>= 0 and less than 1 day) for each element.

34.11.1.33 pandas.TimedeltaIndex.shape

TimedeltaIndex.shape
return a tuple of the shape of the underlying data
### 34.11.1.34 pandas.TimedeltaIndex.size

**TimedeltaIndex.size**
- return the number of elements in the underlying data

### 34.11.1.35 pandas.TimedeltaIndex.strides

**TimedeltaIndex.strides**
- return the strides of the underlying data

### 34.11.1.36 pandas.TimedeltaIndex.values

**TimedeltaIndex.values**
- return the underlying data as an ndarray

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all([other])</code></td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td><code>any([other])</code></td>
<td>For a sorted index, return the most recent label up to and including the passed label.</td>
</tr>
<tr>
<td><code>append(other)</code></td>
<td>Append the indices of the maximum values along an axis.</td>
</tr>
<tr>
<td><code>argmax([axis])</code></td>
<td>Returns the indices of the maximum values along an axis.</td>
</tr>
<tr>
<td><code>argmin([axis])</code></td>
<td>Returns the indices of the minimum values along an axis.</td>
</tr>
<tr>
<td><code>argsort(*args, **kwargs)</code></td>
<td>Returns the indices that would sort the index and its underlying data.</td>
</tr>
<tr>
<td><code>asof(label)</code></td>
<td>For a sorted index, return the most recent label up to and including the passed label.</td>
</tr>
<tr>
<td><code>asof_locs(where, mask)</code></td>
<td>where : array of timestamps</td>
</tr>
<tr>
<td><code>astype(dtype[, copy])</code></td>
<td>Create an Index with values cast to dtypes.</td>
</tr>
<tr>
<td><code>ceil(freq)</code></td>
<td>ceil the index to the specified freq</td>
</tr>
<tr>
<td><code>contains(key)</code></td>
<td>return a boolean if this key is IN the index</td>
</tr>
<tr>
<td><code>copy([name, deep, dtype])</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>delete(loc)</code></td>
<td>Make a new DatetimeIndex with passed location(s) deleted.</td>
</tr>
<tr>
<td><code>difference(other)</code></td>
<td>Return a new Index with elements from the index that are not in other.</td>
</tr>
<tr>
<td><code>drop(labels[, errors])</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>drop_duplicates([keep])</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([how])</code></td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td><code>duplicated([keep])</code></td>
<td>Return boolean np.ndarray denoting duplicate values</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>fillna([value, downcast])</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>floor(freq)</code></td>
<td>floor the index to the specified freq</td>
</tr>
<tr>
<td><code>format([name, formatter])</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_dummies()</code></td>
<td></td>
</tr>
</tbody>
</table>
Table 34.113 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_indexer</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for</code></td>
<td>Guaranteed return of an indexer even when non-unique.</td>
</tr>
<tr>
<td><code>get_indexer_non_unique</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_level_values</code></td>
<td>Return an Index of values for requested level, equal to the length.</td>
</tr>
<tr>
<td><code>get_loc</code></td>
<td>Get integer location for requested label.</td>
</tr>
<tr>
<td><code>get_slice_bound</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_value_maybe_box</code></td>
<td>Return the underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>Hold a pandas index representation of values.</td>
</tr>
<tr>
<td><code>identical</code></td>
<td>Similar to equals, but check that other comparable attributes are.</td>
</tr>
<tr>
<td><code>insert</code></td>
<td>Make new Index inserting new item at location.</td>
</tr>
<tr>
<td><code>intersection</code></td>
<td>Specialized intersection for TimedeltaIndex objects.</td>
</tr>
<tr>
<td><code>is_</code></td>
<td>More flexible, faster check like is but that works through views.</td>
</tr>
<tr>
<td><code>is_boolean</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer</code></td>
<td></td>
</tr>
<tr>
<td><code>is_interval</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible</code></td>
<td></td>
</tr>
<tr>
<td><code>isin</code></td>
<td>Compute boolean array of whether each index value is found in the.</td>
</tr>
<tr>
<td><code>isnull</code></td>
<td>Detect missing values.</td>
</tr>
<tr>
<td><code>item</code></td>
<td>Return the first element of the underlying data as a python.</td>
</tr>
<tr>
<td><code>join</code></td>
<td>See Index.join.</td>
</tr>
<tr>
<td><code>map</code></td>
<td></td>
</tr>
<tr>
<td><code>max</code></td>
<td>Return the maximum value of the Index or maximum along an axis.</td>
</tr>
<tr>
<td><code>memory_usage</code></td>
<td>Memory usage of my values.</td>
</tr>
<tr>
<td><code>min</code></td>
<td>Return the minimum value of the Index or minimum along an axis.</td>
</tr>
<tr>
<td><code>notnull</code></td>
<td>Reverse of isnull.</td>
</tr>
<tr>
<td><code>nunique</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>putmask</code></td>
<td>Return a new Index of the values set with the mask.</td>
</tr>
<tr>
<td><code>ravel</code></td>
<td>Return an ndarray of the flattened values of the underlying data.</td>
</tr>
<tr>
<td><code>reindex</code></td>
<td>Create index with target’s values (move/add/delete values as necessary).</td>
</tr>
<tr>
<td><code>rename</code></td>
<td>Set new names on index.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>repeat</code></td>
<td>Analogous to ndarray.repeat</td>
</tr>
<tr>
<td><code>reshape</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>round</code></td>
<td>round the index to the specified freq</td>
</tr>
<tr>
<td><code>searchsorted</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>set_names</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift</code></td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td><code>slice_indexer</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>sort</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>sort_values</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>str</code></td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>return a summarized representation</td>
</tr>
<tr>
<td><code>sym_diff</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>symmetric_difference</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>take</code></td>
<td>return a new Index of the values selected by the indices</td>
</tr>
<tr>
<td><code>to_datetime</code></td>
<td>DEPRECATED: use pandas.to_datetime() instead.</td>
</tr>
<tr>
<td><code>to_native_types</code></td>
<td>Format specified values of self and return them.</td>
</tr>
<tr>
<td><code>to_pytimedelta</code></td>
<td>Return TimedeltaIndex as object ndarray of datetime.timedelta objects</td>
</tr>
<tr>
<td><code>to_series</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist</code></td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td><code>total_seconds</code></td>
<td>Total duration of each element expressed in seconds.</td>
</tr>
<tr>
<td><code>transpose</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union</code></td>
<td>Specialized union for TimedeltaIndex objects.</td>
</tr>
<tr>
<td><code>unique</code></td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view</code></td>
<td></td>
</tr>
<tr>
<td><code>where</code></td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>

**34.11.1.37 pandas.TimedeltaIndex.all**

TimedeltaIndex.all(\(other=None\))

**34.11.1.38 pandas.TimedeltaIndex.any**

TimedeltaIndex.any(\(other=None\))

**34.11.1.39 pandas.TimedeltaIndex.append**

TimedeltaIndex.append(\(other\))

Append a collection of Index options together
Parameters `other` : Index or list/tuple of indices

Returns `appended` : Index

### 34.11.1.40 pandas.TimedeltaIndex.argmax

`TimedeltaIndex.argmax(axis=None, *args, **kwargs)`

Returns the indices of the maximum values along an axis. See `numpy.ndarray.argmax` for more information on the `axis` parameter.

See also:

`numpy.ndarray.argmax`

### 34.11.1.41 pandas.TimedeltaIndex.argmin

`TimedeltaIndex.argmin(axis=None, *args, **kwargs)`

Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter.

See also:

`numpy.ndarray.argmin`

### 34.11.1.42 pandas.TimedeltaIndex.argsort

`TimedeltaIndex.argsort(*args, **kwargs)`

Returns the indices that would sort the index and its underlying data.

Returns `argsorted` : numpy array

See also:

`numpy.ndarray.argsort`

### 34.11.1.43 pandas.TimedeltaIndex.asof

`TimedeltaIndex.asof(label)`

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

See also:

`get_loc` asof is a thin wrapper around `get_loc` with method='pad'

### 34.11.1.44 pandas.TimedeltaIndex.asof_locs

`TimedeltaIndex.asof_locs(where, mask)`

where : array of timestamps mask : array of booleans where data is not NA
34.11.1.45 pandas.TimedeltaIndex.astype

TimedeltaIndex.astype(dtype, copy=True)
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

Parameters
dtype : numpy dtype or pandas type

copy : bool, default True

By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.

34.11.1.46 pandas.TimedeltaIndex.ceil

TimedeltaIndex.ceil(freq)
ceil the index to the specified freq

Parameters
freq : freq string/object

Returns
index of same type

Raises ValueError if the freq cannot be converted

34.11.1.47 pandas.TimedeltaIndex.contains

TimedeltaIndex.contains(key)
return a boolean if this key is IN the index

Parameters
key : object

Returns
boolean

34.11.1.48 pandas.TimedeltaIndex.copy

TimedeltaIndex.copy(name=None, deep=False, dtype=None, **kwargs)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters
name : string, optional

deep : boolean, default False

dtype : numpy dtype or pandas type

Returns
copy : Index

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.
34.11.1.49 pandas.TimedeltaIndex.delete

TimedeltaIndex.delete(loc)
Make a new DatetimeIndex with passed location(s) deleted.

Parameters  loc: int, slice or array of ints
Indicate which sub-arrays to remove.

Returns  new_index : TimedeltaIndex

34.11.1.50 pandas.TimedeltaIndex.difference

TimedeltaIndex.difference(other)
Return a new Index with elements from the index that are not in other.

This is the set difference of two Index objects. It's sorted if sorting is possible.

Parameters  other : Index or array-like

Returns  difference : Index

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

34.11.1.51 pandas.TimedeltaIndex.drop

TimedeltaIndex.drop(labels, errors='raise')
Make new Index with passed list of labels deleted

Parameters  labels : array-like
errors : {‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and existing labels are dropped.

Returns  dropped : Index

34.11.1.52 pandas.TimedeltaIndex.drop_duplicates

TimedeltaIndex.drop_duplicates(keep='first')
Return Index with duplicate values removed

Parameters  keep : {‘first’, ‘last’, False}, default ‘first’
  • first : Drop duplicates except for the first occurrence.
  • last : Drop duplicates except for the last occurrence.
  • False : Drop all duplicates.

Returns  deduplicated : Index
34.11.1.53 pandas.TimedeltaIndex.dropna

TimedeltaIndex.dropna (how='any')
Return Index without NA/NaN values

Parameters how : {'any', 'all'}, default 'any'
If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns valid : Index

34.11.1.54 pandas.TimedeltaIndex.duplicated

TimedeltaIndex.duplicated (keep='first')
Return boolean np.ndarray denoting duplicate values

Parameters keep : {'first', 'last', False}, default 'first'
• first : Mark duplicates as True except for the first occurrence.
• last : Mark duplicates as True except for the last occurrence.
• False : Mark all duplicates as True.

Returns duplicated : np.ndarray

34.11.1.55 pandas.TimedeltaIndex.equals

TimedeltaIndex.equals (other)
Determines if two Index objects contain the same elements.

34.11.1.56 pandas.TimedeltaIndex.factorize

TimedeltaIndex.factorize (sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values

na_sentinel : int, default -1
Value to mark “not found”

Returns labels : the indexer to the original array
uniques : the unique Index

34.11.1.57 pandas.TimedeltaIndex.fillna

TimedeltaIndex.fillna (value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

**Returns filled**: %(klass)s

### 34.11.1.58 pandas.TimedeltaIndex.floor

```python
timedeltaIndex.floor(freq)
```

Floor the index to the specified freq

**Parameters freq**: freq string/object

**Returns**: index of same type

**Raises**: ValueError if the freq cannot be converted

### 34.11.1.59 pandas.TimedeltaIndex.format

```python
timedeltaIndex.format(name=False, formatter=None, **kwargs)
```

Render a string representation of the Index

### 34.11.1.60 pandas.TimedeltaIndex.get_duplicates

```python
timedeltaIndex.get_duplicates()
```

### 34.11.1.61 pandas.TimedeltaIndex.get_indexer

```python
timedeltaIndex.get_indexer(target, method=None, limit=None, tolerance=None)
```

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

**Parameters target**: Index

- **method**: {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
  - default: exact matches only.
  - pad / ffill: find the PREVIOUS index value if no exact match.
  - backfill / bfill: use NEXT index value if no exact match
  - nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.

- **limit**: int, optional
  - Maximum number of consecutive labels in target to match for inexact matches.

- **tolerance**: optional
  - Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation \( \text{abs(index[indexer] - target)} \leq \text{tolerance} \).
  - New in version 0.17.0.

**Returns indexer**: ndarray of int
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

34.11.1.62 pandas.TimedeltaIndex.get_indexer_for

TimedeltaIndex.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate

34.11.1.63 pandas.TimedeltaIndex.get_indexer_non_unique

TimedeltaIndex.get_indexer_non_unique(target)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters

target : Index

Returns

indexer : ndarray of int

Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

missing : ndarray of int

An indexer into the target of the values not found. These correspond to the -1 in the indexer array

34.11.1.64 pandas.TimedeltaIndex.get_level_values

TimedeltaIndex.get_level_values(level)

Return an Index of values for requested level, equal to the length of the index

Parameters

level : int

Returns

values : Index

34.11.1.65 pandas.TimedeltaIndex.get_loc

TimedeltaIndex.get_loc(key, method=None, tolerance=None)

Get integer location for requested label

Returns

loc : int
34.11.1.66 pandas.TimedeltaIndex.get_slice_bound

TimedeltaIndex.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.
Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters label : object
    side : {'left', 'right'}
    kind : {'ix', 'loc', 'getitem'}

34.11.1.67 pandas.TimedeltaIndex.get_value

TimedeltaIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

34.11.1.68 pandas.TimedeltaIndex.get_value_maybe_box

TimedeltaIndex.get_value_maybe_box(series, key)

34.11.1.69 pandas.TimedeltaIndex.get_values

TimedeltaIndex.get_values()
return the underlying data as an ndarray

34.11.1.70 pandas.TimedeltaIndex.groupby

TimedeltaIndex.groupby(values)
Group the index labels by a given array of values.

Parameters values : array
    Values used to determine the groups.

Returns groups : dict
    {group name -> group labels}

34.11.1.71 pandas.TimedeltaIndex.holds_integer

TimedeltaIndex.holds_integer()

34.11.1.72 pandas.TimedeltaIndex.identical

TimedeltaIndex.identical(other)
Similar to equals, but check that other comparable attributes are also equal
34.11.1.73 pandas.TimedeltaIndex.insert

TimedeltaIndex.insert(loc, item)
Make new Index inserting new item at location

Parameters
loc : int
item : object
  if not either a Python datetime or a numpy integer-like, returned Index dtype will
  be object rather than datetime.

Returns
new_index : Index

34.11.1.74 pandas.TimedeltaIndex.intersection

TimedeltaIndex.intersection(other)
Specialized intersection for TimedeltaIndex objects. May be much faster than Index.intersection

Parameters
other : TimedeltaIndex or array-like

Returns
y : Index or TimedeltaIndex

34.11.1.75 pandas.TimedeltaIndex.is_

TimedeltaIndex.is_(other)
More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters
other : object
  other object to compare against.

Returns
True if both have same underlying data, False otherwise : bool

34.11.1.76 pandas.TimedeltaIndex.is_boolean

TimedeltaIndex.is_boolean()

34.11.1.77 pandas.TimedeltaIndex.is_categorical

TimedeltaIndex.is_categorical()

34.11.1.78 pandas.TimedeltaIndex.is_floating

TimedeltaIndex.is_floating()

34.11.1.79 pandas.TimedeltaIndex.is_integer

TimedeltaIndex.is_integer()
34.11.1.80 pandas.TimedeltaIndex.is_interval
TimedeltaIndex.is_interval()

34.11.1.81 pandas.TimedeltaIndex.is_lexsorted_for_tuple
TimedeltaIndex.is_lexsorted_for_tuple(tup)

34.11.1.82 pandas.TimedeltaIndex.is_mixed
TimedeltaIndex.is_mixed()

34.11.1.83 pandas.TimedeltaIndex.is_numeric
TimedeltaIndex.is_numeric()

34.11.1.84 pandas.TimedeltaIndex.is_object
TimedeltaIndex.is_object()

34.11.1.85 pandas.TimedeltaIndex.is_type_compatible
TimedeltaIndex.is_type_compatible(typ)

34.11.1.86 pandas.TimedeltaIndex.isin
TimedeltaIndex.isin(values)
    Compute boolean array of whether each index value is found in the passed set of values
    Parameters values: set or sequence of values
    Returns iscontained: ndarray (boolean dtype)

34.11.1.87 pandas.TimedeltaIndex.isnull
TimedeltaIndex.isnull()
    Detect missing values
    New in version 0.20.0.
    Returns a boolean array of whether my values are null
    See also:
        pandas.isnull pandas version

34.11.1.88 pandas.TimedeltaIndex.item
TimedeltaIndex.item()
    return the first element of the underlying data as a python scalar
34.11.1.89 pandas.TimedeltaIndex.join

TimedeltaIndex.join(other, how='left', level=None, return_indexers=False)

See Index.join

34.11.1.90 pandas.TimedeltaIndex.map

TimedeltaIndex.map(f)

34.11.1.91 pandas.TimedeltaIndex.max

TimedeltaIndex.max(axis=None, *args, **kwargs)

Return the maximum value of the Index or maximum along an axis.

See also:

numpy.ndarray.max

34.11.1.92 pandas.TimedeltaIndex.memory_usage

TimedeltaIndex.memory_usage(deep=False)

Memory usage of my values

Parameters deep : bool

Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns bytes used

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

34.11.1.93 pandas.TimedeltaIndex.min

TimedeltaIndex.min(axis=None, *args, **kwargs)

Return the minimum value of the Index or minimum along an axis.

See also:

numpy.ndarray.min

34.11.1.94 pandas.TimedeltaIndex.notnull

TimedeltaIndex.notnull()

Reverse of isnull

New in version 0.20.0.
**Returns**  a boolean array of whether my values are not null

**See also:**

`pandas.notnull` pandas version

### 34.11.1.95 pandas.TimedeltaIndex.nunique

TimedeltaIndex.\texttt{nunique} \texttt{(dropna=True)}

Return number of unique elements in the object.

Excludes NA values by default.

**Parameters** \texttt{dropna} : boolean, default True

Don’t include NaN in the count.

**Returns** \texttt{nunique} : int

### 34.11.1.96 pandas.TimedeltaIndex.putmask

TimedeltaIndex.\texttt{putmask} \texttt{(mask, value)}

return a new Index of the values set with the mask

**See also:**

numpy.ndarray.putmask

### 34.11.1.97 pandas.TimedeltaIndex.ravel

TimedeltaIndex.\texttt{ravel} \texttt{(order='C')}

return an ndarray of the flattened values of the underlying data

**See also:**

numpy.ndarray.ravel

### 34.11.1.98 pandas.TimedeltaIndex.reindex

TimedeltaIndex.\texttt{reindex} \texttt{(target, method=None, level=None, limit=None, tolerance=None)}

Create index with target’s values (move/add/delete values as necessary)

**Parameters** \texttt{target} : an iterable

**Returns** \texttt{new_index} : pd.Index

Resulting index

\texttt{indexer} : np.ndarray or None

Indices of output values in original index
34.11.1.99 pandas.TimedeltaIndex.rename

TimedeltaIndex.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters name : str or list
    name to set

inplace : bool
    if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

34.11.1.100 pandas.TimedeltaIndex.repeat

TimedeltaIndex.repeat(repeats, *args, **kwargs)
Analogous to ndarray.repeat

34.11.1.101 pandas.TimedeltaIndex.reshape

TimedeltaIndex.reshape(*args, **kwargs)
NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.
Reshape an Index.

34.11.1.102 pandas.TimedeltaIndex.round

TimedeltaIndex.round(freq, *args, **kwargs)
round the index to the specified freq

Parameters freq : freq string/object

Returns index of same type

Raises ValueError if the freq cannot be converted

34.11.1.103 pandas.TimedeltaIndex.searchsorted

TimedeltaIndex.searchsorted(value, side='left', sorter=None)
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted TimedeltaIndex self such that, if the corresponding elements in value were inserted before the indices, the order of self would be preserved.

Parameters value : array_like
    Values to insert into self.

side : {'left', 'right'}, optional
    If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self).

sorter : 1-D array_like, optional

34.11. TimedeltaIndex
Optional array of integer indices that sort \textit{self} into ascending order. They are typically the result of \texttt{np.argsort}.

**Returns** \texttt{indices} : array of ints

Array of insertion points with the same shape as \texttt{value}.

**See also:**

\texttt{numpy.searchsorted}

**Notes**

Binary search is used to find the required insertion points.

**Examples**

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64

>>> x.searchsorted(4)
array([3])

>>> x.searchsorted([0, 4])
array([0, 3])

>>> x.searchsorted([1, 3], side='left')
array([0, 2])

>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]

>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar

>>> x.searchsorted(['bread'])
array([1])

>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])

>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk
```
34.11.1.104 pandas.TimedeltaIndex.set_names

TimedeltaIndex.set_names(names, level=None, inplace=False)

Set new names on index. Defaults to returning new index.

**Parameters**

- **names**: str or sequence
  name(s) to set
- **level**: int, level name, or sequence of int/level names (default None)
  If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
  Otherwise level must be None
- **inplace**: bool
  if True, mutates in place

**Returns**
new index (of same type and class...etc) [if inplace, returns None]

**Examples**

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])
```

34.11.1.105 pandas.TimedeltaIndex.set_value

TimedeltaIndex.set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

34.11.1.106 pandas.TimedeltaIndex.shift

TimedeltaIndex.shift(n, freq=None)

Specialized shift which produces a DatetimeIndex

**Parameters**

- **n**: int
  Periods to shift by
- **freq**: DateOffset or timedelta-like, optional

**Returns**
shifted: DatetimeIndex
34.11.1.107 pandas.TimedeltaIndex.slice_indexer

TimedeltaIndex.slice_indexer (start=None, end=None, step=None, kind=None)
For an ordered Index, compute the slice indexer for input labels and step

Parameters
- **start**: label, default None
  - If None, defaults to the beginning
- **end**: label, default None
  - If None, defaults to the end
- **step**: int, default None
- **kind**: string, default None

Returns
- **indexer**: ndarray or slice

Notes
This function assumes that the data is sorted, so use at your own peril

34.11.1.108 pandas.TimedeltaIndex.slice_locs

TimedeltaIndex.slice_locs (start=None, end=None, step=None, kind=None)
Compute slice locations for input labels.

Parameters
- **start**: label, default None
  - If None, defaults to the beginning
- **end**: label, default None
  - If None, defaults to the end
- **step**: int, default None
  - If None, defaults to 1
- **kind**: string, default None
  - If None, defaults to ‘ix’, ‘loc’, ‘getitem’

Returns
- **start, end**: int

34.11.1.109 pandas.TimedeltaIndex.sort

TimedeltaIndex.sort (*args, **kwargs)

34.11.1.110 pandas.TimedeltaIndex.sort_values

TimedeltaIndex.sort_values (return_indexer=False, ascending=True)
Return sorted copy of Index
34.11.1.111 pandas.TimedeltaIndex.sortlevel

TimedeltaIndex.sortlevel (level=None, ascending=True, sort_remaining=None)
For internal compatibility with the Index API
Sort the Index. This is for compat with MultiIndex

Parameters ascending : boolean, default True
False to sort in descending order
level, sort_remaining are compat parameters

Returns sorted_index : Index

34.11.1.112 pandas.TimedeltaIndex.str

TimedeltaIndex.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

34.11.1.113 pandas.TimedeltaIndex.summary

TimedeltaIndex.summary (name=None)
return a summarized representation

34.11.1.114 pandas.TimedeltaIndex.sym_diff

TimedeltaIndex.sym_diff(*args, **kwargs)

34.11.1.115 pandas.TimedeltaIndex.symmetric_difference

TimedeltaIndex.symmetric_difference (other, result_name=None)
Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters other : Index or array-like
result_name : str

Returns symmetric_difference : Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.
Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the `^` operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

34.11.1.116 pandas.TimedeltaIndex.take

TimedeltaIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)

return a new Index of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters
indices : list
Indices to be taken
axis : int, optional
The axis over which to select values, always 0.
allow_fill : bool, default True
fill_value : bool, default None
If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn’t hold NA, raise ValueError

See also:
numpy.ndarray.take

34.11.1.117 pandas.TimedeltaIndex.to_datetime

TimedeltaIndex.to_datetime(dayfirst=False)

DEPRECATED: use pandas.to_datetime() instead.

For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

34.11.1.118 pandas.TimedeltaIndex.to_native_types

TimedeltaIndex.to_native_types(slicer=None, **kwargs)

Format specified values of self and return them.

Parameters
slicer : int, array-like
An indexer into self that specifies which values are used in the formatting process.

kwargs : dict
Options for specifying how the values should be formatted. These options include the following:
1. **na_rep** [str] The value that serves as a placeholder for NULL values
2. **quoting** [bool or None] Whether or not there are quoted values in `self`
3. **date_format** [str] The format used to represent date-like values

### 34.11.1.119 pandas.TimedeltaIndex.to_pytimedelta

TimedeltaIndex.**to_pytimedelta**()

Return TimedeltaIndex as object ndarray of datetime.timedelta objects

**Returns**
- **datetimes**: ndarray

### 34.11.1.120 pandas.TimedeltaIndex.to_series

TimedeltaIndex.**to_series**(**kwargs)

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

**Returns**
- **Series**: dtype will be based on the type of the Index values.

### 34.11.1.121 pandas.TimedeltaIndex.tolist

TimedeltaIndex.**tolist**()

return a list of the underlying data

### 34.11.1.122 pandas.TimedeltaIndex.total_seconds

TimedeltaIndex.**total_seconds**()

Total duration of each element expressed in seconds.

New in version 0.17.0.

### 34.11.1.123 pandas.TimedeltaIndex.transpose

TimedeltaIndex.**transpose**(*args, **kwargs)

return the transpose, which is by definition self

### 34.11.1.124 pandas.TimedeltaIndex.union

TimedeltaIndex.**union**(other)

Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

**Parameters**
- **other**: TimedeltaIndex or array-like

**Returns**
- **y**: Index or TimedeltaIndex
### 34.11.1.125 pandas.TimedeltaIndex.unique

TimedeltaIndex.unique()

Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.

**Parameters** values : 1d array-like

**Returns** unique values.

- If the input is an Index, the return is an Index
- If the input is a Categorical dtype, the return is a Categorical
- If the input is a Series/ndarray, the return will be an ndarray

**See also:**
unique, Index.unique, Series.unique

### 34.11.1.126 pandas.TimedeltaIndex.value_counts

TimedeltaIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters**

-normalize : boolean, default False
  If True then the object returned will contain the relative frequencies of the unique values.

-sort : boolean, default True
  Sort by values

-ascending : boolean, default False
  Sort in ascending order

-bins : integer, optional
  Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

-dropna : boolean, default True
  Don’t include counts of NaN.

**Returns** counts : Series

### 34.11.1.127 pandas.TimedeltaIndex.view

TimedeltaIndex.view(cls=None)
34.11.1.128 pandas.TimedeltaIndex.where

TimedeltaIndex.where(cond, other=None)
New in version 0.19.0.
Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters
cond : boolean array-like with the same length as self
other : scalar, or array-like

34.11.2 Components

<table>
<thead>
<tr>
<th>TimedeltaIndex.days</th>
<th>Number of days for each element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.seconds</td>
<td>Number of seconds (&gt;= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.microseconds</td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.nanoseconds</td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.components</td>
<td>Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.</td>
</tr>
</tbody>
</table>

34.11.3 Conversion

<table>
<thead>
<tr>
<th>TimedeltaIndex.to_pytimedelta()</th>
<th>Return TimedeltaIndex as object ndarray of datetime.timedelta objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.to_series(**kwargs)</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td>TimedeltaIndex.round(freq, *args, **kwargs)</td>
<td>round the index to the specified freq</td>
</tr>
<tr>
<td>TimedeltaIndex.floor(freq)</td>
<td>floor the index to the specified freq</td>
</tr>
<tr>
<td>TimedeltaIndex.ceil(freq)</td>
<td>ceil the index to the specified freq</td>
</tr>
</tbody>
</table>

34.12 Window

Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. EWM objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc.

34.12.1 Standard moving window functions

<table>
<thead>
<tr>
<th>Rolling.count()</th>
<th>rolling count of number of non-NaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling.sum(*args, **kwargs)</td>
<td>rolling sum</td>
</tr>
<tr>
<td>Rolling.mean(*args, **kwargs)</td>
<td>rolling mean</td>
</tr>
</tbody>
</table>
Table 34.116 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Rolling.median(**kwargs)</code></td>
<td>rolling median</td>
</tr>
<tr>
<td><code>Rolling.var([ddof])</code></td>
<td>rolling variance</td>
</tr>
<tr>
<td><code>Rolling.std([ddof])</code></td>
<td>rolling standard deviation</td>
</tr>
<tr>
<td><code>Rolling.min(*args, **kwargs)</code></td>
<td>rolling minimum</td>
</tr>
<tr>
<td><code>Rolling.max(*args, **kwargs)</code></td>
<td>rolling maximum</td>
</tr>
<tr>
<td><code>Rolling.corr([other, pairwise])</code></td>
<td>rolling sample correlation</td>
</tr>
<tr>
<td><code>Rolling.cov([other, pairwise, ddof])</code></td>
<td>rolling sample covariance</td>
</tr>
<tr>
<td><code>Rolling.skew(**kwargs)</code></td>
<td>Unbiased rolling skewness</td>
</tr>
<tr>
<td><code>Rolling.kurt(**kwargs)</code></td>
<td>Unbiased rolling kurtosis</td>
</tr>
<tr>
<td><code>Rolling.apply(func[, args, kwargs])</code></td>
<td>rolling function apply</td>
</tr>
<tr>
<td><code>Rolling.quantile(quantile, **kwargs)</code></td>
<td>rolling quantile</td>
</tr>
<tr>
<td><code>Window.mean(*args, **kwargs)</code></td>
<td>window mean</td>
</tr>
<tr>
<td><code>Window.sum(*args, **kwargs)</code></td>
<td>window sum</td>
</tr>
</tbody>
</table>

34.12.1.1 pandas.core.window.Rolling.count

`Rolling.count()`

    rolling count of number of non-NaN observations inside provided window.

    Returns same type as input

    See also: `pandas.Series.rolling`, `pandas.DataFrame.rolling`

34.12.1.2 pandas.core.window.Rolling.sum

`Rolling.sum(*args, **kwargs)`

    rolling sum

    Parameters how : string, default None (DEPRECATED)

    Method for down- or re-sampling

    Returns same type as input

    See also: `pandas.Series.rolling`, `pandas.DataFrame.rolling`

34.12.1.3 pandas.core.window.Rolling.mean

`Rolling.mean(*args, **kwargs)`

    rolling mean

    Parameters how : string, default None (DEPRECATED)

    Method for down- or re-sampling

    Returns same type as input

    See also: `pandas.Series.rolling`, `pandas.DataFrame.rolling`
34.12.1.4 pandas.core.window.Rolling.median

Rolling.median(**kwargs)

rolling median

Parameters how : string, default ‘median’ (DEPRECATED)
    Method for down- or re-sampling

Returns same type as input

See also:
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.1.5 pandas.core.window.Rolling.var

Rolling.var(ddof=1, *args, **kwargs)

rolling variance

Parameters ddof : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is N – ddof, where N represents the number of elements.

Returns same type as input

See also:
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.1.6 pandas.core.window.Rolling.std

Rolling.std(ddof=1, *args, **kwargs)

rolling standard deviation

Parameters ddof : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is N – ddof, where N represents the number of elements.

Returns same type as input

See also:
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.1.7 pandas.core.window.Rolling.min

Rolling.min(*args, **kwargs)

rolling minimum

Parameters how : string, default ‘min’ (DEPRECATED)
    Method for down- or re-sampling

Returns same type as input

See also:
    pandas.Series.rolling, pandas.DataFrame.rolling
34.12.1.8 pandas.core.window.Rolling.max

Rolling.max(*args, **kwargs)
rolling maximum

Parameters how : string, default 'max' (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.rolling, pandas.DataFrame.rolling

34.12.1.9 pandas.core.window.Rolling.corr

Rolling.corr(other=None, pairwise=None, **kwargs)
rolling sample correlation

Parameters other : Series, DataFrame, or ndarray, optional
if not supplied then will default to self and produce pairwise output

pairwise : bool, default None
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns same type as input

See also:
pandas.Series.rolling, pandas.DataFrame.rolling

34.12.1.10 pandas.core.window.Rolling.cov

Rolling.cov(other=None, pairwise=None, ddof=1, **kwargs)
rolling sample covariance

Parameters other : Series, DataFrame, or ndarray, optional
if not supplied then will default to self and produce pairwise output

pairwise : bool, default None
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

Returns same type as input

See also:
pandas.Series.rolling, pandas.DataFrame.rolling
34.12.11 pandas.core.window.Rolling.skew

Rolling.skew(**kwargs)
    Unbiased rolling skewness

    **Returns** same type as input

    **See also:**
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.12 pandas.core.window.Rolling.kurt

Rolling.kurt(**kwargs)
    Unbiased rolling kurtosis

    **Returns** same type as input

    **See also:**
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.13 pandas.core.window.Rolling.apply

Rolling.apply(func, args=(), kwags={})
    rolling function apply

    **Parameters** func : function
        Must produce a single value from an ndarray input *args and **kwags are passed to the function

    **Returns** same type as input

    **See also:**
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.14 pandas.core.window.Rolling.quantile

Rolling.quantile(quantile, **kwargs)
    rolling quantile

    **Parameters** quantile : float
        0 <= quantile <= 1

    **Returns** same type as input

    **See also:**
    pandas.Series.rolling, pandas.DataFrame.rolling

34.12.15 pandas.core.window.Window.mean

Window.mean(*args, **kwargs)
    window mean

    **Parameters** how : string, default None (DEPRECATED)
34.12.1.16 pandas.core.window.Window.sum

Window.sum(*args, **kwargs)
window sum

Parameters how : string, default None (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.window, pandas.DataFrame.window

34.12.2 Standard expanding window functions

<table>
<thead>
<tr>
<th>Expanding.count(**kwargs)</th>
<th>expanding count of number of non-NaN observations inside provided window.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding.sum(*args, **kwargs)</td>
<td>expanding sum</td>
</tr>
<tr>
<td>Expanding.mean(*args, **kwargs)</td>
<td>expanding mean</td>
</tr>
<tr>
<td>Expanding.median(**kwargs)</td>
<td>expanding median</td>
</tr>
<tr>
<td>Expanding.var([ddof])</td>
<td>expanding variance</td>
</tr>
<tr>
<td>Expanding.std([ddof])</td>
<td>expanding standard deviation</td>
</tr>
<tr>
<td>Expanding.min(*args, **kwargs)</td>
<td>expanding minimum</td>
</tr>
<tr>
<td>Expanding.max(*args, **kwargs)</td>
<td>expanding maximum</td>
</tr>
<tr>
<td>Expanding.corr([other, pairwise])</td>
<td>expanding sample correlation</td>
</tr>
<tr>
<td>Expanding.cov([other, pairwise, ddof])</td>
<td>expanding sample covariance</td>
</tr>
<tr>
<td>Expanding.skew(**kwargs)</td>
<td>Unbiased expanding skewness</td>
</tr>
<tr>
<td>Expanding.kurt(**kwargs)</td>
<td>Unbiased expanding kurtosis</td>
</tr>
<tr>
<td>Expanding.apply(func[, args, kwags])</td>
<td>expanding function apply</td>
</tr>
<tr>
<td>Expanding.quantile(quantile, **kwargs)</td>
<td>expanding quantile</td>
</tr>
</tbody>
</table>

34.12.2.1 pandas.core.window.Expanding.count

Expanding.count(**kwargs)

expanding count of number of non-NaN observations inside provided window.

Returns same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding
34.12.2.2 pandas.core.window.Expanding.sum

Expanding.sum(*args, **kwargs)
expanding sum

Parameters how : string, default None (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.3 pandas.core.window.Expanding.mean

Expanding.mean(*args, **kwargs)
expanding mean

Parameters how : string, default None (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.4 pandas.core.window.Expanding.median

Expanding.median(**kwargs)
expanding median

Parameters how : string, default ‘median’ (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.5 pandas.core.window.Expanding.var

Expanding.var(ddof=1, *args, **kwargs)
expanding variance

Parameters ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is \( N - ddof \), where \( N \) represents the number of elements.

Returns same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding
34.12.2.6 pandas.core.window.Expanding.std

Expanding.std(ddof=1, *args, **kwargs)
expanding standard deviation

Parameters
- ddof : int, default 1
  Delta Degrees of Freedom. The divisor used in calculations is \( N - ddof \), where \( N \)
  represents the number of elements.

Returns
- same type as input

See also:
- pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.7 pandas.core.window.Expanding.min

Expanding.min(*args, **kwargs)
expanding minimum

Parameters
- how : string, default ‘min’ (DEPRECATED)
  Method for down- or re-sampling

Returns
- same type as input

See also:
- pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.8 pandas.core.window.Expanding.max

Expanding.max(*args, **kwargs)
expanding maximum

Parameters
- how : string, default ‘max’ (DEPRECATED)
  Method for down- or re-sampling

Returns
- same type as input

See also:
- pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.9 pandas.core.window.Expanding.corr

Expanding.corr(other=None, pairwise=None, **kwargs)
expanding sample correlation

Parameters
- other : Series, DataFrame, or ndarray, optional
  if not supplied then will default to self and produce pairwise output

- pairwise : bool, default None
  If False then only matching columns between self and other will be used and the output
  will be a DataFrame. If True then all pairwise combinations will be calculated
  and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In
  the case of missing elements, only complete pairwise observations will be used.
**Returns**  same type as input

**See also:**

```
pandas.Series.expanding, pandas.DataFrame.expanding
```

### 34.12.2.10 pandas.core.window.Expanding.cov

```
Expanding.cov(other=None, pairwise=None, ddof=1, **kwargs)
```

Expanding sample covariance

**Parameters**

- `other`: Series, DataFrame, or ndarray, optional
  - if not supplied then will default to self and produce pairwise output

- `pairwise`: bool, default None
  - If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

- `ddof`: int, default 1
  - Delta Degrees of Freedom. The divisor used in calculations is $N - ddof$, where $N$ represents the number of elements.

**Returns**  same type as input

**See also:**

```
pandas.Series.expanding, pandas.DataFrame.expanding
```

### 34.12.2.11 pandas.core.window.Expanding.skew

```
Expanding.skew(**kwargs)
```

Unbiased expanding skewness

**Returns**  same type as input

**See also:**

```
pandas.Series.expanding, pandas.DataFrame.expanding
```

### 34.12.2.12 pandas.core.window.Expanding.kurt

```
Expanding.kurt(**kwargs)
```

Unbiased expanding kurtosis

**Returns**  same type as input

**See also:**

```
pandas.Series.expanding, pandas.DataFrame.expanding
```
34.12.2.13 pandas.core.window.Expanding.apply

Expanding.apply (func, args=(), kwarsg=*)
expanding function apply

Parameters:
func: function
Must produce a single value from an ndarray input *args and **kwarsgs are passed
to the function

Returns:
same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

34.12.2.14 pandas.core.window.Expanding.quantile

Expanding.quantile (quantile, **kwarsgs)
expanding quantile

Parameters:
quantile: float
0 <= quantile <= 1

Returns:
same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

34.12.3 Exponentially-weighted moving window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWM.mean</td>
<td>exponential weighted moving average</td>
</tr>
<tr>
<td>EWM.std</td>
<td>exponential weighted moving stddev</td>
</tr>
<tr>
<td>EWM.var</td>
<td>exponential weighted moving variance</td>
</tr>
<tr>
<td>EWM.corr</td>
<td>exponential weighted sample correlation</td>
</tr>
<tr>
<td>EWM.cov</td>
<td>exponential weighted sample covariance</td>
</tr>
</tbody>
</table>

34.12.3.1 pandas.core.window.EWM.mean

EWM.mean (*args, **kwarsgs)
expponential weighted moving average

Returns:
same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

34.12.3.2 pandas.core.window.EWM.std

EWM.std (bias=False, *args, **kwarsgs)
expponential weighted moving stddev

Parameters:
bias: boolean, default False
Use a standard estimation bias correction
Returns same type as input

See also:

\[ \text{pandas.Series.ewm, pandas.DataFrame.ewm} \]

### 34.12.3.3 pandas.core.window.EWM.var

`EWM.var(bias=False, *args, **kwargs)`

exponential weighted moving variance

**Parameters**

- **bias** : boolean, default False
  
  Use a standard estimation bias correction

**Returns** same type as input

See also:

\[ \text{pandas.Series.ewm, pandas.DataFrame.ewm} \]

### 34.12.3.4 pandas.core.window.EWM.corr

`EWM.corr(other=None, pairwise=None, **kwargs)`

exponential weighted sample correlation

**Parameters**

- **other** : Series, DataFrame, or ndarray, optional
  
  if not supplied then will default to self and produce pairwise output

- **pairwise** : bool, default None
  
  If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

- **bias** : boolean, default False
  
  Use a standard estimation bias correction

**Returns** same type as input

See also:

\[ \text{pandas.Series.ewm, pandas.DataFrame.ewm} \]

### 34.12.3.5 pandas.core.window.EWM.cov

`EWM.cov(other=None, pairwise=None, bias=False, **kwargs)`

exponential weighted sample covariance

**Parameters**

- **other** : Series, DataFrame, or ndarray, optional
  
  if not supplied then will default to self and produce pairwise output

- **pairwise** : bool, default None
  
  If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
bias : boolean, default False
Use a standard estimation bias correction

Returns same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

34.13 GroupBy

GroupBy objects are returned by groupby calls: pandas.DataFrame.groupby(), pandas.Series.groupby(), etc.

34.13.1 Indexing, iteration

<table>
<thead>
<tr>
<th>GroupBy.<strong>init</strong>()</th>
<th>Groupby iterator</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.groups</td>
<td>dict {group name -&gt; group labels}</td>
</tr>
<tr>
<td>GroupBy.indices</td>
<td>dict {group name -&gt; group indices}</td>
</tr>
<tr>
<td>GroupBy.get_group(name[, obj])</td>
<td>Constructs NDFrame from group with provided name</td>
</tr>
</tbody>
</table>

34.13.1.1 pandas.core.groupby.GroupBy.__iter__

GroupBy.__iter__()

Groupby iterator

Returns Generator yielding sequence of (name, subsetted object)

for each group

34.13.1.2 pandas.core.groupby.GroupBy.groups

GroupBy.groups
dict {group name -> group labels}

34.13.1.3 pandas.core.groupby.GroupBy.indices

GroupBy.indices
dict {group name -> group indices}

34.13.1.4 pandas.core.groupby.GroupBy.get_group

GroupBy.get_group(name, obj=None)

Constructs NDFrame from group with provided name

Parameters name : object

the name of the group to get as a DataFrame

obj : NDFrame, default None
the NDFrame to take the DataFrame out of. If it is None, the object groupby was
called on will be used

Returns group : type of obj

Grouper([key, level, freq, axis, sort]) A Grouper allows the user to specify a groupby instruction
for a target

34.13.1.5 pandas.Grouper
class pandas.Grouper(key=None, level=None, freq=None, axis=0, sort=False)
A Grouper allows the user to specify a groupby instruction for a target object

This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a
level of the index of the target object.

These are local specifications and will override 'global' settings, that is the parameters axis and level which are
passed to the groupby itself.

Parameters key : string, defaults to None
groupby key, which selects the grouping column of the target

level : name/number, defaults to None
the level for the target index

freq : string / frequency object, defaults to None
This will groupby the specified frequency if the target selection (via key or level) is a
datetime-like object. For full specification of available frequencies, please see here.

axis : number/name of the axis, defaults to 0

sort : boolean, default to False
whether to sort the resulting labels

additional kwargs to control time-like groupers (when freq is passed)
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
convention : {'start', 'end', 'e', 's'}

If grouper is PeriodIndex

Returns A specification for a groupby instruction

Examples

Syntactic sugar for df.groupby('A')

>>> df.groupby(Grouper(key='A'))

Specify a resample operation on the column ‘date’

>>> df.groupby(Grouper(key='date', freq='60s'))

Specify a resample operation on the level ‘date’ on the columns axis with a frequency of 60s
>>> df.groupby(Grouper(level='date', freq='60s', axis=1))

Attributes

- `ax`
- `groups`

**pandas.Grouper.ax**

Grouper.ax

**pandas.Grouper.groups**

Grouper.groups

### 34.13.2 Function application

<table>
<thead>
<tr>
<th>GroupBy.apply</th>
<th>Apply function and combine results together in an intelligent way.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.aggregate</td>
<td>(func, *args, **kwargs)</td>
</tr>
<tr>
<td>GroupBy.transform</td>
<td>(func, *args, **kwargs)</td>
</tr>
</tbody>
</table>

#### 34.13.2.1 pandas.core.groupby.GroupBy.apply

**GroupBy.apply** *(func, *args, **kwargs)*

Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example:

- **case 1**: group DataFrame apply aggregation function (f(chunk) \(\rightarrow\) Series) yield DataFrame, with group axis having group labels
- **case 2**: group DataFrame apply transform function ((f(chunk) \(\rightarrow\) DataFrame with same indexes) yield DataFrame with resulting chunks glued together
- **case 3**: group Series apply function with f(chunk) \(\rightarrow\) DataFrame yield DataFrame with result of chunks glued together

**Parameters**

- **func**: function

**See also:**

- aggregate, transform

**Notes**

See online documentation for full exposition on how to use apply.

In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for
the first group.

### 34.13.22 pandas.core.groupby.GroupBy.aggregate

**GroupBy**. **aggregate** *(func, *args, **kwargs)*

### 34.13.23 pandas.core.groupby.GroupBy.transform

**GroupBy**. **transform** *(func, *args, **kwargs)*

### 34.13.3 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GroupBy.count</strong> ()</td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.cumcount</strong> ([ascending])</td>
<td>Number each item in each group from 0 to the length of that group - 1.</td>
</tr>
<tr>
<td><strong>GroupBy.first</strong> (<strong>kwargs</strong>)</td>
<td>Compute first of group values</td>
</tr>
<tr>
<td><strong>GroupBy.head</strong> ([n])</td>
<td>Returns first n rows of each group.</td>
</tr>
<tr>
<td><strong>GroupBy.last</strong> (<strong>kwargs</strong>)</td>
<td>Compute last of group values</td>
</tr>
<tr>
<td><strong>GroupBy.max</strong> (<strong>kwargs</strong>)</td>
<td>Compute max of group values</td>
</tr>
<tr>
<td><strong>GroupBy.mean</strong> (**args, <strong>kwargs</strong>)</td>
<td>Compute mean of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.median</strong> (<strong>kwargs</strong>)</td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.min</strong> (<strong>kwargs</strong>)</td>
<td>Compute min of group values</td>
</tr>
<tr>
<td><strong>GroupBy.nth</strong> ([n, dropna])</td>
<td>Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.</td>
</tr>
<tr>
<td><strong>GroupBy.ohlc</strong> ()</td>
<td>Compute sum of values, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.prod</strong> (<strong>kwargs</strong>)</td>
<td>Compute prod of group values</td>
</tr>
<tr>
<td><strong>GroupBy.size</strong> ()</td>
<td>Compute group sizes</td>
</tr>
<tr>
<td><strong>GroupBy.sem</strong> ([ddof])</td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.std</strong> ([ddof])</td>
<td>Compute standard deviation of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.sum</strong> (<strong>kwargs</strong>)</td>
<td>Compute sum of group values</td>
</tr>
<tr>
<td><strong>GroupBy.var</strong> ([ddof])</td>
<td>Compute variance of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>GroupBy.tail</strong> ([n])</td>
<td>Returns last n rows of each group.</td>
</tr>
</tbody>
</table>

### 34.13.3.1 pandas.core.groupby.GroupBy.count

**GroupBy**. **count** ()

Compute count of group, excluding missing values

See also:

`pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby`

### 34.13.3.2 pandas.core.groupby.GroupBy.cumcount

**GroupBy**. **cumcount** *(ascending=True)*

Number each item in each group from 0 to the length of that group - 1.

Essentially this is equivalent to
```python
>>> self.apply(lambda x: Series(np.arange(len(x)), x.index))
```

**Parameters ascending**: bool, default True

If False, number in reverse, from length of group - 1 to 0.

**See also**:

`pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby`

**Examples**

```python
>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']],
 columns=['A'])
>>> df
 A
0 a
1 a
2 a
3 b
4 b
5 a
>>> df.groupby('A').cumcount()
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False)
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64
```

### 34.13.3.3 pandas.core.groupby.GroupBy.first

**GroupBy.first(**kwargs**)

Compute first of group values

**See also**:

`pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby`

### 34.13.3.4 pandas.core.groupby.GroupBy.head

**GroupBy.head**(n=5)

Returns first n rows of each group.

Essentially equivalent to `apply(lambda x: x.head(n))`, except ignores as_index flag.
See also:

- pandas.Series.groupby
- pandas.DataFrame.groupby
- pandas.Panel.groupby

**Examples**

```python
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
 columns=['A', 'B'])
>>> df.groupby('A', as_index=False).head(1)
 A B
0 1 2
2 5 6
```

**34.13.3.5 pandas.core.groupby.GroupBy.last**

```
>>> df.groupby('A').last()
A B
0 1 2
2 5 6
```

**34.13.3.6 pandas.core.groupby.GroupBy.max**

```
>>> df.groupby('A').max()
A B
0 1 2
2 5 6
```

**34.13.3.7 pandas.core.groupby.GroupBy.mean**

```
>>> df.groupby('A').mean()
0 1 2
2 5 6
```

**34.13.3.8 pandas.core.groupby.GroupBy.median**

```
>>> df.groupby('A').median()
0 1 2
2 5 6
```
34.13.3.9 pandas.core.groupby.GroupBy.min

GroupBy.min(**kwargs)
   Compute min of group values

   See also:
     pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.10 pandas.core.groupby.GroupBy.nth

GroupBy.nth(n, dropna=None)
   Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.

   If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or ‘all’, ‘any’ (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby.

   Parameters n : int or list of ints
      a single nth value for the row or a list of nth values

   dropna : None or str, optional
      apply the specified dropna operation before counting which row is the nth row. Needs to be None, ‘any’ or ‘all’

   See also:
     pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Examples

```python
>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2],
... 'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B'])
>>> g = df.groupby('A')
>>> g.nth(0)
 B
 A
 1 NaN
 2 3.0
>>> g.nth(1)
 B
 A
 1 2.0
 2 5.0
>>> g.nth(-1)
 B
 A
 1 4.0
 2 5.0
>>> g.nth([0, 1])
 B
 A
 1 NaN
 1 2.0
 2 3.0
 2 5.0
```
Specifying `dropna` allows count ignoring NaN:

```python
>>> g.nth(0, dropna='any')
 B
A
 1 2.0
 2 3.0
```

NaNs denote group exhausted when using `dropna`:

```python
>>> g.nth(3, dropna='any')
 B
A
 1 NaN
 2 NaN
```

Specifying `as_index=False` in `groupby` keeps the original index:

```python
>>> df.groupby('A', as_index=False).nth(1)
 A B
 1 1 2.0
 4 2 5.0
```

34.13.3.11 `pandas.core.groupby.GroupBy.ohlc`

`GroupBy.ohlc()`

- Compute sum of values, excluding missing values
- For multiple groupings, the result index will be a MultiIndex

See also:


34.13.3.12 `pandas.core.groupby.GroupBy.prod`

`GroupBy.prod(**kwargs)`

- Compute prod of group values

See also:


34.13.3.13 `pandas.core.groupby.GroupBy.size`

`GroupBy.size()`

- Compute group sizes

See also:


34.13.3.14 `pandas.core.groupby.GroupBy.sem`

`GroupBy.sem(ddof=1)`

- Compute standard error of the mean of groups, excluding missing values
- For multiple groupings, the result index will be a MultiIndex
Parameters  

**ddof**: integer, default 1

degrees of freedom

See also:

[1778 Chapter 34. API Reference](#)
Examples

```python
>>> df = DataFrame([['a', 1], ['a', 2], ['b', 1], ['b', 2]], columns=['A', 'B'])
>>> df.groupby('A').tail(1)
 A B
0 a 2
3 b 2
>>> df.groupby('A').head(1)
 A B
0 a 1
2 b 1
```

The following methods are available in both `SeriesGroupBy` and `DataFrameGroupBy` objects, but may differ slightly, usually in that the `DataFrameGroupBy` version usually permits the specification of an axis argument, and often an argument indicating whether to restrict application to columns of a specific data type.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrameGroupBy.agg</code></td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.all</code></td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.any</code></td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.bfill</code></td>
<td>Backward fill the values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.corr</code></td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.count()</code></td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cov</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cummax</code></td>
<td>Cumulative max for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cummin</code></td>
<td>Cumulative min for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cumprod</code></td>
<td>Cumulative product for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cumsum</code></td>
<td>Cumulative sum for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.describe</code></td>
<td>Parameters for data description</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.diff</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.ffill</code></td>
<td>Forward fill the values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.fillna</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.hist</code></td>
<td>Draw histogram of the DataFrame’s series using matplotlib / pylab.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.idxmax</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.idxmin</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.mad</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.percent</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.plot</code></td>
<td>Class implementing the .plot attribute for groupby objects</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.quantile</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.rank</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.resample</code></td>
<td>Provide resampling when using a TimeGrouper</td>
</tr>
</tbody>
</table>

Continued on next page
DataFrameGroupBy.shift([periods, freq, axis])  Shift each group by periods observations

DataFrameGroupBy.size()  Compute group sizes

DataFrameGroupBy.skew  Return unbiased skew over requested axis

DataFrameGroupBy.take  Analogous to ndarray.take

DataFrameGroupBy.tshift  Shift the time index, using the index’s frequency if available.

34.13.3.19 pandas.core.groupby.DataFrameGroupBy.agg

DataFrameGroupBy.agg(*args, **kwargs)
Aggregate using callable, string, dict, or list of string/callables

Parameters

func : callable, string, dictionary, or list of string/callables
Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names.

Accepted Combinations are:
- string function name
- function
- list of functions
- dict of column names -> functions (or list of functions)

Returns

aggregated : DataFrame

See also:
pandas.DataFrame.groupby.apply, pandas.DataFrame.groupby.transform, pandas.DataFrame.aggregate

Notes

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.

Examples

```python
>>> df = pd.DataFrame({'A': [1, 1, 2, 2],
... 'B': [1, 2, 3, 4],
... 'C': np.random.randn(4)})

>>> df
 A B C
0 1 1 0.362838
1 1 2 0.227877
2 2 3 1.267767
3 2 4 -0.562860
```
The aggregation is for each column.

```python
>>> df.groupby('A').agg('min')
B C
A
1 1 0.227877
2 3 -0.562860
```

Multiple aggregations

```python
>>> df.groupby('A').agg(['min', 'max'])
B C
min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.562860 1.267767
```

Select a column for aggregation

```python
>>> df.groupby('A')['B'].agg(['min', 'max'])
min max
A
1 1 2
2 3 4
```

Different aggregations per column

```python
>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
B C
min max sum
A
1 1 2 0.590716
2 3 4 0.704907
```

34.13.3.20 pandas.core.groupby.DataFrameGroupBy.all

DataFrameGroupBy.all

Return whether all elements are True over requested axis

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **bool_only**: boolean, default None
  Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns

- **all**: Series or DataFrame (if level specified)
34.13.3.21 pandas.core.groupby.DataFrameGroupBy.any

DataFrameGroupBy.any
Return whether any element is True over requested axis

Parameters
axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns
any : Series or DataFrame (if level specified)

34.13.3.22 pandas.core.groupby.DataFrameGroupBy.bfill

DataFrameGroupBy.bfill(limit=None)
Backward fill the values

Parameters
limit : integer, optional
limit of how many values to fill

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.23 pandas.core.groupby.DataFrameGroupBy.corr

DataFrameGroupBy.corr
Compute pairwise correlation of columns, excluding NA/null values

Parameters
method : {'pearson', 'kendall', 'spearman'}

- pearson : standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns
y : DataFrame

34.13.3.24 pandas.core.groupby.DataFrameGroupBy.count

DataFrameGroupBy.count()
Compute count of group, excluding missing values
34.13.3.25 pandas.core.groupby.DataFrameGroupBy.cov

DataFrameGroupBy.cov
Compute pairwise covariance of columns, excluding NA/null values

**Parameters**
- `min_periods`: int, optional
  Minimum number of observations required per pair of columns to have a valid result.

**Returns**
- `y`: DataFrame

**Notes**
y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

34.13.3.26 pandas.core.groupby.DataFrameGroupBy.cummax

DataFrameGroupBy.cummax
Cumulative max for each group

**See also:**
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.27 pandas.core.groupby.DataFrameGroupBy.cummin

DataFrameGroupBy.cummin
Cumulative min for each group

**See also:**
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.28 pandas.core.groupby.DataFrameGroupBy.cumprod

DataFrameGroupBy.cumprod
Cumulative product for each group

**See also:**
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.29 pandas.core.groupby.DataFrameGroupBy.cumsum

DataFrameGroupBy.cumsum
Cumulative sum for each group

**See also:**
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
DataFrameGroupBy.describe(**kwargs)

**Parameters**

percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include ['all', list-like of dtypes or None (default), optional] A white list of data types to include in the result. Ignored for Series. Here are the options:

- 'all': All columns of the input will be included in the output.
- A list-like of dtypes: Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to categorical objects submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O']))
- None (default): The result will include all numeric columns.

exclude [list-like of dtypes or None (default), optional] A black list of data types to omit from the result. Ignored for Series. Here are the options:

- A list-like of dtypes: Excludes the provided data types from the result. To select numeric types submit numpy.number. To select categorical objects submit the data type numpy.object. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O']))
- None (default): The result will exclude nothing.

**Returns**

summary: Series/DataFrame of summary statistics

**Notes**

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

**Examples**

Describing a numeric Series.
>>> s = pd.Series([1, 2, 3])
>>> s.describe()
   count 3.0
   mean 2.0
   std  1.0
   min  1.0
   25%  1.5
   50%  2.0
   75%  2.5
   max  3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])
>>> s.describe()
   count 4
   unique 3
      top a
     freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([...
...     np.datetime64("2000-01-01"),
...     np.datetime64("2010-01-01"),
...     np.datetime64("2010-01-01")
... ])
>>> s.describe()
   count 3
   unique 2
      top 2010-01-01 00:00:00
     freq 2
   first 2000-01-01 00:00:00
   last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame([...[1, 'a'], [2, 'b'], [3, 'c']],
...                    columns=['numeric', 'object'])
>>> df.describe()
   numeric
   count 3.0
   mean 2.0
   std  1.0
   min  1.0
   25%  1.5
   50%  2.0
   75%  2.5
   max  3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')
   numeric    object
   count  3.0    3
   unique NaN    3
Describing a column from a DataFrame by accessing it as an attribute.

```python
>>> df.numeric.describe()
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64
```

Including only numeric columns in a DataFrame description.

```python
>>> df.describe(include=[np.number])
 numeric
 count 3.0
 mean 2.0
 std 1.0
 min 1.0
 25% 1.5
 50% 2.0
 75% 2.5
 max 3.0
```

Including only string columns in a DataFrame description.

```python
>>> df.describe(include=[np.object])
 object
 count 3
 unique 3
 top b
 freq 1
```

Excluding numeric columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.number])
 object
 count 3
 unique 3
 top b
 freq 1
```

Excluding object columns from a DataFrame description.

```python
>>> df.describe(exclude=[np.object])
 numeric
```
34.13.3.31 pandas.core.groupby.DataFrameGroupBy.diff

DataFrameGroupBy.diff
1st discrete difference of object

Parameters
- periods : int, default 1
  Periods to shift for forming difference
- axis : {0 or ‘index’, 1 or ‘columns’}, default 0
  Take difference over rows (0) or columns (1).

Returns
diffed : DataFrame

34.13.3.32 pandas.core.groupby.DataFrameGroupBy.ffill

DataFrameGroupBy.ffill(limit=None)
Forward fill the values

Parameters
- limit : integer, optional
  limit of how many values to fill

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.33 pandas.core.groupby.DataFrameGroupBy.fillna

DataFrameGroupBy.fillna
Fill NA/NaN values using the specified method

Parameters
- value : scalar, dict, Series, or DataFrame
  Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
  Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- axis : {0 or ‘index’, 1 or ‘columns’}
- inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

**limit** : int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

**downcast** : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

**Returns** filled : DataFrame

**See also:**

reindex, asfreq

34.13.3.34 pandas.core.groupby.DataFrameGroupBy.hist

**DataFrameGroupBy.hist**

Draw histogram of the DataFrame’s series using matplotlib / pylab.

**Parameters**

**data** : DataFrame

**column** : string or sequence

If passed, will be used to limit data to a subset of columns

**by** : object, optional

If passed, then used to form histograms for separate groups

**grid** : boolean, default True

Whether to show axis grid lines

**xlabelsize** : int, default None

If specified changes the x-axis label size

**xrot** : float, default None

rotation of x axis labels

**ylabelsize** : int, default None

If specified changes the y-axis label size

**yrot** : float, default None

rotation of y axis labels

**ax** : matplotlib axes object, default None

**sharex** : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure!

**sharey** : boolean, default False
In case subplots=True, share y axis and set some y axis labels to invisible

**figsize** : tuple

The size of the figure to create in inches by default

**layout** : tuple, optional

Tuple of (rows, columns) for the layout of the histograms

**bins** : integer, default 10

Number of histogram bins to be used

**kwds** : other plotting keyword arguments

To be passed to hist function

### 34.13.3.35 pandas.core.groupby.DataFrameGroupBy.idxmax

DataFrameGroupBy.[idxmax](pandas: powerful Python data analysis toolkit, Release 0.20.1)

Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

**Parameters**

- **axis** : {0 or ‘index’, 1 or ‘columns’}, default 0
  
  0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

- **skipna** : boolean, default True

  Exclude NA/null values. If an entire row/column is NA, the result will be first index.

**Returns**

- **idxmax** : Series

  See also:

  - Series.idxmax

**Notes**

This method is the DataFrame version of [ndarray.argmax](pandas: powerful Python data analysis toolkit, Release 0.20.1).

### 34.13.3.36 pandas.core.groupby.DataFrameGroupBy.idxmin

DataFrameGroupBy.[idxmin](pandas: powerful Python data analysis toolkit, Release 0.20.1)

Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

**Parameters**

- **axis** : {0 or ‘index’, 1 or ‘columns’}, default 0
  
  0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

- **skipna** : boolean, default True

  Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**

- **idxmin** : Series

  See also:

  - Series.idxmin
Notes

This method is the DataFrame version of \texttt{ndarray.argmin}.

34.13.3.37 pandas.core.groupby.DataFrameGroupBy.mad

\texttt{DataFrameGroupBy.mad}

Return the mean absolute deviation of the values for the requested axis

\textbf{Parameters}

\texttt{axis} : \{index (0), columns (1)\}

\texttt{skipna} : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

\texttt{level} : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

\texttt{numeric_only} : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

\textbf{Returns}

\texttt{mad} : Series or DataFrame (if level specified)

34.13.3.38 pandas.core.groupby.DataFrameGroupBy.pct_change

\texttt{DataFrameGroupBy.pct_change}

Percent change over given number of periods.

\textbf{Parameters}

\texttt{periods} : int, default 1

Periods to shift for forming percent change

\texttt{fill_method} : str, default ‘pad’

How to handle NAs before computing percent changes

\texttt{limit} : int, default None

The number of consecutive NAs to fill before stopping

\texttt{freq} : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

\textbf{Returns}

\texttt{chg} : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or \texttt{Index}, for \texttt{DataFrame} and 1, or \texttt{minor} for \texttt{Panel}. You can change this with the \texttt{axis} keyword argument.

34.13.3.39 pandas.core.groupby.DataFrameGroupBy.plot

\texttt{DataFrameGroupBy.plot}

Class implementing the \texttt{.plot} attribute for groupby objects
34.13.3.40 pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile
Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters
- **q**: float or array-like, default 0.5 (50% quantile)
  - 0 <= q <= 1, the quantile(s) to compute
- **axis**: {0, 1, ‘index’, ‘columns’} (default 0)
  - 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
  - New in version 0.18.0.
  - This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
    - linear: \( i + (j - i) \times \text{fraction} \), where \( \text{fraction} \) is the fractional part of the index surrounded by i and j.
    - lower: i.
    - higher: j.
    - nearest: i or j whichever is nearest.
    - midpoint: \( (i + j) / 2 \).

Returns
- **quantiles**: Series or DataFrame
  - If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
  - If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
 columns=['a', 'b'])
>>> df.quantile(.1)
 a b
0.1 1.3 3.7
```

34.13.3.41 pandas.core.groupby.DataFrameGroupBy.rank

DataFrameGroupBy.rank
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values.

Parameters
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
  - index to direct ranking
**method**: \{'average', 'min', 'max', 'first', 'dense'\}
- **average**: average rank of group
- **min**: lowest rank in group
- **max**: highest rank in group
- **first**: ranks assigned in order they appear in the array
- **dense**: like 'min', but rank always increases by 1 between groups

**numeric_only**: boolean, default None
Include only float, int, boolean data. Valid only for DataFrame or Panel objects

**na_option**: \{'keep', 'top', 'bottom'\}
- **keep**: leave NA values where they are
- **top**: smallest rank if ascending
- **bottom**: smallest rank if descending

**ascending**: boolean, default True
False for ranks by high (1) to low (N)

**pct**: boolean, default False
Computes percentage rank of data

**Returns**

**ranks**: same type as caller

### 34.13.3.42 pandas.core.groupby.DataFrameGroupBy.resample

**DataFrameGroupBy**.resample(**rule**, *args, **kwargs**)
Provide resampling when using a TimeGrouper Return a new grouper with our resampler appended

See also:

* pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

### 34.13.3.43 pandas.core.groupby.DataFrameGroupBy.shift

**DataFrameGroupBy**.shift(**periods=1, freq=None, axis=0**)
Shift each group by periods observations

**Parameters**

**periods**: integer, default 1
number of periods to shift

**freq**: frequency string

**axis**: axis to shift, default 0

See also:

* pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
34.13.3.44 pandas.core.groupby.DataFrameGroupBy.size

DataFrameGroupBy.size()

Compute group sizes

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.13.3.45 pandas.core.groupby.DataFrameGroupBy.skew

DataFrameGroupBy.skew

Return unbiased skew over requested axis Normalized by N-1

Parameters

axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

skew : Series or DataFrame (if level specified)

34.13.3.46 pandas.core.groupby.DataFrameGroupBy.take

DataFrameGroupBy.take

Analogous to ndarray.take

Parameters

indices : list / array of ints

axis : int, default 0

convert : translate neg to pos indices (default)

is_copy : mark the returned frame as a copy

Returns

taken : type of caller

34.13.3.47 pandas.core.groupby.DataFrameGroupBy.tshift

DataFrameGroupBy.tshift

Shift the time index, using the index’s frequency if available.

Parameters

periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring
Corresponds to the axis that contains the Index

**Returns** shifted : NDFrame

**Notes**

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown.

The following methods are available only for SeriesGroupBy objects.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeriesGroupBy.nlargest</td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td>SeriesGroupBy.nsmallest</td>
<td>Return the smallest n elements.</td>
</tr>
<tr>
<td>SeriesGroupBy.nunique([dropna])</td>
<td>Returns number of unique elements in the group</td>
</tr>
<tr>
<td>SeriesGroupBy.unique</td>
<td>Return unique values in the object.</td>
</tr>
<tr>
<td>SeriesGroupBy.value_counts([normalize,...])</td>
<td></td>
</tr>
</tbody>
</table>

34.13.3.48 pandas.core.groupby.SeriesGroupBy.nlargest

**SeriesGroupBy.nlargest**

Return the largest n elements.

**Parameters**

- n : int

  Return this many descending sorted values

  **keep** [{‘first’, ‘last’, False}, default ‘first’] Where there are duplicate values: -
  first : take the first occurrence. - last : take the last occurrence.

**Returns**

- top_n : Series

  The n largest values in the Series, in sorted order

**Notes**

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the Series object.

**Examples**

```python
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(10**6))
>>> s.nlargest(10) # only sorts up to the N requested
219921 4.644710
82124 4.608745
421689 4.564644
425277 4.447014
718691 4.414137
43154 4.403520
283187 4.313922
595519 4.273635
503969 4.250236
```
121637 4.240952
dtype: float64

34.13.3.49 pandas.core.groupby.SeriesGroupBy.nsmallest

SeriesGroupBy.nsmallest
Return the smallest n elements.

Parameters n : int
Return this many ascending sorted values

keep [{‘first’, ‘last’, False}, default ‘first’] Where there are duplicate values: -
first : take the first occurrence. - last: take the last occurrence.

Returns bottom_n : Series
The n smallest values in the Series, in sorted order

Notes
Faster than .sort_values().head(n) for small n relative to the size of the Series object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np

>>> s = pd.Series(np.random.randn(10**6))
>>> s.nsmallest(10) # only sorts up to the N requested
288532 -4.954580
732345 -4.835960
64803 -4.812550
446457 -4.609998
501225 -4.483945
669476 -4.472935
973615 -4.401699
621279 -4.355126
773916 -4.347355
359919 -4.331927
dtype: float64
```

34.13.3.50 pandas.core.groupby.SeriesGroupBy.nunique

SeriesGroupBy.nunique(dropna=True)
Returns number of unique elements in the group

34.13.3.51 pandas.core.groupby.SeriesGroupBy.unique

SeriesGroupBy.unique
Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique.
Parameters values : 1d array-like

Returns unique values.

- If the input is an Index, the return is an Index
- If the input is a Categorical dtype, the return is a Categorical
- If the input is a Series/ndarray, the return will be an ndarray

See also:

unique, Index.unique, Series.unique

34.13.3.52 pandas.core.groupby.SeriesGroupBy.value_counts

SeriesGroupBy.value_counts (normalize=False, sort=True, ascending=False, bins=None, dropna=True)

The following methods are available only for DataFrameGroupBy objects.

<table>
<thead>
<tr>
<th>DataFrameGroupBy.corrwith</th>
<th>Compute pairwise correlation between rows or columns of two DataFrame objects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrameGroupBy.boxplot</td>
<td>Make box plots from DataFrameGroupBy data.</td>
</tr>
</tbody>
</table>

34.13.3.53 pandas.core.groupby.DataFrameGroupBy.corrwith

DataFrameGroupBy.corrwith

Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters other : DataFrame

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise

drop : boolean, default False

Drop missing indices from result, default returns union of all

Returns correls : Series

34.13.3.54 pandas.core.groupby.DataFrameGroupBy.boxplot

DataFrameGroupBy.boxplot (grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, **kwds)

Make box plots from DataFrameGroupBy data.

Parameters grouped : Grouped DataFrame

subplots :

- False - no subplots will be used
- True - create a subplot for each group

column : column name or list of names, or vector

Can be any valid input to groupby
fontsize : int or string
rot : label rotation angle
grid : Setting this to True will show the grid
ax : Matplotlib axis object, default None
figsize : A tuple (width, height) in inches
layout : tuple (optional)
          (rows, columns) for the layout of the plot
kwds : other plotting keyword arguments to be passed to matplotlib boxplot
          function

Returns dict of key/value = group key/DataFrame.boxplot return value
or DataFrame.boxplot return value in case subplots=figures=False

Examples

```python
going out
>>> import pandas
>>> import numpy as np
>>> import itertools

>>> tuples = [t for t in itertools.product(range(1000), range(4))]
>>> index = pandas.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
>>> data = np.random.randn(len(index),4)
>>> df = pandas.DataFrame(data, columns=list('ABCD'), index=index)

>>> grouped = df.groupby(level='lvl1')
>>> boxplot_frame_groupby(grouped)

>>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1)
>>> boxplot_frame_groupby(grouped, subplots=False)
```

34.14 Resampling

Resampler objects are returned by resample calls: `pandas.DataFrame.resample()`, `pandas.Series.resample()`.

34.14.1 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resampler.<strong>iter</strong>()</td>
<td>Groupby iterator</td>
</tr>
<tr>
<td>Resampler.groups</td>
<td>dict {group name -&gt; group labels}</td>
</tr>
<tr>
<td>Resampler.indices</td>
<td>dict {group name -&gt; group indices}</td>
</tr>
<tr>
<td>Resampler.get_group(name[, obj])</td>
<td>Constructs NDFrame from group with provided name</td>
</tr>
</tbody>
</table>
34.14.1.1 pandas.core.resample.Resampler.__iter__

Resampler.__iter__()  
Groupby iterator

**Returns** Generator yielding sequence of (name, subsetted object) for each group

34.14.1.2 pandas.core.resample.Resampler.groups

Resampler.groups  
dict {group name -> group labels}

34.14.1.3 pandas.core.resample.Resampler.indices

Resampler.indices  
dict {group name -> group indices}

34.14.1.4 pandas.core.resample.Resampler.get_group

Resampler.get_group(name, obj=None)  
Constructs NDFrame from group with provided name

**Parameters** name : object  
the name of the group to get as a DataFrame

obj : NDFrame, default None
the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used

**Returns** group : type of obj

34.14.2 Function application

<table>
<thead>
<tr>
<th><strong>Resampler.apply</strong>(arg, *args, **kwargs)</th>
<th>Aggregate using callable, string, dict, or list of string/callables</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resampler.aggregate</strong>(arg, *args, **kwargs)</td>
<td>Aggregate using callable, string, dict, or list of string/callables</td>
</tr>
<tr>
<td><strong>Resampler.transform</strong>(arg, *args, **kwargs)</td>
<td>Call function producing a like-indexed Series on each group and return</td>
</tr>
</tbody>
</table>

34.14.2.1 pandas.core.resample.Resampler.apply

Resampler.apply(arg, *args, **kwargs)  
Aggregate using callable, string, dict, or list of string/callables

**Parameters** func : callable, string, dictionary, or list of string/callables

Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names.
Accepted Combinations are:

- string function name
- function
- list of functions
- dict of column names -> functions (or list of functions)

**Returns** aggregated : DataFrame

**See also:**

pandas.DataFrame.groupby.aggregate, pandas.DataFrame.resample.transform, pandas.DataFrame.aggregate

**Notes**

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.

**Examples**

```python
>>> s = Series([1,2,3,4,5],
 index=pd.date_range('20130101',
 periods=5, freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64

>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]

>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64

>>> r.agg(['sum','mean','max'])

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>mean</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>3</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2013-01-01 00:00:02</td>
<td>7</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>2013-01-01 00:00:04</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
</tr>
</tbody>
</table>

>>> r.agg({'result' : lambda x: x.mean() / x.std(),
 'total' : np.sum})

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>34.14</td>
<td>1799</td>
</tr>
</tbody>
</table>
```

34.14. Resampling
34.14.2.2 pandas.core.resample.Resampler.aggregate

Resampler.aggregate(arg, *args, **kwargs)

Aggregate using callable, string, dict, or list of string/callables

**Parameters**

- **func**: callable, string, dictionary, or list of string/callables

  Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names.

  Accepted Combinations are:

  - string function name
  - function
  - list of functions
  - dict of column names -> functions (or list of functions)

**Returns**

- **aggregated**: DataFrame

**See also:**

pandas.DataFrame.groupby.aggregate, pandas.DataFrame.resample.transform, pandas.DataFrame.aggregate

**Notes**

Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)).

agg is an alias for aggregate. Use it.

**Examples**

```python
>>> s = Series([1,2,3,4,5],
 index=pd.date_range('20130101',
 periods=5, freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64

>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left,
 label=left, convention=start, base=0]
```
>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64

>>> r.agg(['sum','mean','max'])

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>mean</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>3</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2013-01-01 00:00:02</td>
<td>7</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>2013-01-01 00:00:04</td>
<td>5</td>
<td>5.0</td>
<td>5</td>
</tr>
</tbody>
</table>

>>> r.agg({'result' : lambda x: x.mean() / x.std(),
'total' : np.sum})

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>3</td>
<td>2.121320</td>
</tr>
<tr>
<td>2013-01-01 00:00:02</td>
<td>7</td>
<td>4.949747</td>
</tr>
<tr>
<td>2013-01-01 00:00:04</td>
<td>5</td>
<td>NaN</td>
</tr>
</tbody>
</table>

34.14.2.3 pandas.core.resample.Resampler.transform

Resampler.transform(arg, *args, **kwargs)
Call function producing a like-indexed Series on each group and return a Series with the transformed values

Parameters func : function
To apply to each group. Should return a Series with the same index

Returns transformed : Series

Examples

>>> resampled.transform(lambda x: (x - x.mean()) / x.std())

34.14.3 Upsampling

<table>
<thead>
<tr>
<th>Resampler.fffill([limit])</th>
<th>Forward fill the values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resampler.backfill([limit])</td>
<td>Backward fill the values</td>
</tr>
<tr>
<td>Resampler.bfill([limit])</td>
<td>Backward fill the values</td>
</tr>
<tr>
<td>Resampler.pad([limit])</td>
<td>Forward fill the values</td>
</tr>
<tr>
<td>Resampler.fillna(method[, limit])</td>
<td>Fill missing values</td>
</tr>
<tr>
<td>Resampler.asfreq([fill_value])</td>
<td>return the values at the new freq,</td>
</tr>
<tr>
<td>Resampler.interpolate([method, axis, limit, ...])</td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>

34.14.3.1 pandas.core.resample.Resampler.fffill

Resampler.fffill(limit=None)
Forward fill the values

Parameters limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna

34.14.3.2 pandas.core.resample.Resampler.backfill

Resampler.backfill(limit=None)
Backward fill the values

Parameters limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna

34.14.3.3 pandas.core.resample.Resampler.bfill

Resampler.bfill(limit=None)
Backward fill the values

Parameters limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna

34.14.3.4 pandas.core.resample.Resampler.pad

Resampler.pad(limit=None)
Forward fill the values

Parameters limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna

34.14.3.5 pandas.core.resample.Resampler.fillna

Resampler.fillna(method, limit=None)
Fill missing values

Parameters method : str, method of resampling (‘ffill’, ‘bfill’)
limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna
34.14.3.6 pandas.core.resample.Resampler.asfreq

Resampler.asfreq(fill_value=None)
return the values at the new freq, essentially a reindex

Parameters fill_value: scalar, optional

Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present).

New in version 0.20.0.

See also:
Series.asfreq, DataFrame.asfreq

34.14.3.7 pandas.core.resample.Resampler.interpolate

Resampler.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)
Interpolate values according to different methods.

New in version 0.18.1.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}

- 'linear': ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
- 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
- 'index', 'values': use the actual numerical values of the index
- 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to scipy.interpolate.interp1d. Both 'polynomial' and 'spline' require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.
- 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. For more information on their behavior, see the scipy documentation and tutorial documentation
- 'from_derivatives' refers to BPoly.from_derivatives which replaces 'piecewise_polynomial' interpolation method in scipy 0.18

New in version 0.18.1: Added support for the 'akima' method Added interpolate method 'from_derivatives' which replaces 'piecewise_polynomial' in scipy 0.18; backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0

- 0: fill column-by-column
- 1: fill row-by-row
**limit**: int, default None.

Maximum number of consecutive NaNs to fill. Must be greater than 0.

**limit_direction**: {‘forward’, ‘backward’, ‘both’}, default ‘forward’

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

**inplace**: bool, default False

Update the DataFrame in place if possible.

**downcast**: optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

**kwargs**: keyword arguments to pass on to the interpolating function.

**Returns** Series or DataFrame of same shape interpolated at the NaNs

**See also**: reindex, replace, fillna

**Examples**

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64
```

34.14.4 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resampler.count</strong></td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td><strong>Resampler.nunique</strong></td>
<td>Returns number of unique elements in the group</td>
</tr>
<tr>
<td><strong>Resampler.first</strong></td>
<td>Compute first of group values</td>
</tr>
<tr>
<td><strong>Resampler.last</strong></td>
<td>Compute last of group values</td>
</tr>
<tr>
<td><strong>Resampler.max</strong></td>
<td>Compute max of group values</td>
</tr>
<tr>
<td><strong>Resampler.mean</strong></td>
<td>Compute mean of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>Resampler.median</strong></td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>Resampler.min</strong></td>
<td>Compute min of group values</td>
</tr>
<tr>
<td><strong>Resampler.sum</strong></td>
<td>Compute sum of values, excluding missing values</td>
</tr>
<tr>
<td><strong>Resampler.prod</strong></td>
<td>Compute prod of group values</td>
</tr>
<tr>
<td><strong>Resampler.size</strong></td>
<td>Compute group sizes</td>
</tr>
<tr>
<td><strong>Resampler.std</strong></td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td><strong>Resampler.sum</strong></td>
<td>Compute standard deviation of groups, excluding missing values</td>
</tr>
<tr>
<td></td>
<td>Compute sum of group values</td>
</tr>
</tbody>
</table>

Continued on next page
34.14.4.1 pandas.core.resample.Resampler.count

Resampler.count(_method='count')
Compute count of group, excluding missing values

See also:
  pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.2 pandas.core.resample.Resampler.nunique

Resampler.nunique(_method='nunique')
Returns number of unique elements in the group

34.14.4.3 pandas.core.resample.Resampler.first

Resampler.first(_method='first', *args, **kwargs)
Compute first of group values

See also:
  pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.4 pandas.core.resample.Resampler.last

Resampler.last(_method='last', *args, **kwargs)
Compute last of group values

See also:
  pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.5 pandas.core.resample.Resampler.max

Resampler.max(_method='max', *args, **kwargs)
Compute max of group values

See also:
  pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.6 pandas.core.resample.Resampler.mean

Resampler.mean(_method='mean', *args, **kwargs)
Compute mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:
  pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
34.14.4.7 pandas.core.resample.Resampler.median

Resampler.median(_method='median', *args, **kwargs)

Compute median of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.8 pandas.core.resample.Resampler.min

Resampler.min(_method='min', *args, **kwargs)

Compute min of group values

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.9 pandas.core.resample.Resampler.ohlc

Resampler.ohlc(_method='ohlc', *args, **kwargs)

Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.10 pandas.core.resample.Resampler.prod

Resampler.prod(_method='prod', *args, **kwargs)

Compute prod of group values

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas PANEL.groupby

34.14.4.11 pandas.core.resample.Resampler.size

Resampler.size(_method='size')

Compute group sizes

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

34.14.4.12 pandas.core.resample.Resampler.sem

Resampler.sem(_method='sem', *args, **kwargs)

Compute standard error of the mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters ddof : integer, default 1

degrees of freedom
See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

### 34.14.4.13 pandas.core.resample.Resampler.std

Resampler.std(ddof=1, *args, **kwargs)

Compute standard deviation of groups, excluding missing values

**Parameters**

- **ddof**: integer, default 1
deepth of freedom

### 34.14.4.14 pandas.core.resample.Resampler.sum

Resampler.sum(_method='sum', *args, **kwargs)

Compute sum of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

### 34.14.4.15 pandas.core.resample.Resampler.var

Resampler.var(ddof=1, *args, **kwargs)

Compute variance of groups, excluding missing values

**Parameters**

- **ddof**: integer, default 1
deepth of freedom

### 34.15 Style

Styler objects are returned by pandas.DataFrame.style.

#### 34.15.1 Constructor

```python
Styler(data[, precision, table_styles, ...])
```

Helps style a DataFrame or Series according to the data with HTML and CSS.

#### 34.15.1.1 pandas.io.formats.style.Styler

```python
class pandas.io.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, caption=None, table_attributes=None)
```

Helps style a DataFrame or Series according to the data with HTML and CSS.

New in version 0.17.1.

**Warning:** This is a new feature and is under active development. We’ll be adding features and possibly making breaking changes in future releases.
Parameters  
data: Series or DataFrame

precision: int

precision to round floats to, defaults to `pd.options.display.precision`

`table_styles`: list-like, default None

list of {selector: (attr, value)} dicts; see Notes

`uuid`: str, default None

a unique identifier to avoid CSS collisions; generated automatically

`caption`: str, default None

caption to attach to the table

See also:

`pandas.DataFrame.style`

Notes

Most styling will be done by passing style functions into `Styler.apply` or `Styler.applymap`. Style functions should return values with strings containing CSS 'attr: value' that will be applied to the indicated cells.

If using in the Jupyter notebook, Styler has defined a `_repr_html_` to automatically render itself. Otherwise call `Styler.render` to get the generated HTML.

CSS classes are attached to the generated HTML

• Index and Column names include `index_name` and `level<k>` where `k` is its level in a MultiIndex

• Index label cells include

  – `row_heading`

  – `row<n>` where `n` is the numeric position of the row

  – `level<k>` where `k` is the level in a MultiIndex

• Column label cells include *

  – `col_heading`

  – `col<n>` where `n` is the numeric position of the column

  – `level<k>` where `k` is the level in a MultiIndex

• Blank cells include `blank`

• Data cells include `data`

Attributes

`env`

`template`

`loader`

`pandas.io.formats.style.Styler.env`

`Styler.env = <jinja2.environment.Environment object>`
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.io.formats.style.Styler.template

Styler.template = <Template 'html.tpl'>

pandas.io.formats.style.Styler.loader

Styler.loader = <jinja2.loaders.PackageLoader object>

Methods

apply(func[, axis, subset])  Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.
applymap(func[, subset])     Apply a function elementwise, updating the HTML representation with the result.
background_gradient([cmap, low, high, axis, ...]) Color the background in a gradient according to the data in each column (optionally row).
bar([subset, axis, color, width, align]) Color the background color proportional to the values in each column.
clear()                      “Reset” the styler, removing any previously applied styles.
export()                     Export the styles to applied to the current Styler.
format(formatter[, subset]) Format the text display value of cells.
from_custom_template(searchpath, name) Factory function for creating a subclass of Styler with a custom template and Jinja environment.
highlight_max([subset, color, axis]) Highlight the maximum by shading the background
highlight_min([subset, color, axis]) Highlight the minimum by shading the background
highlight_null([null_color]) Shade the background null_color for missing values.
render(**kwargs)             Render the built up styles to HTML
set_caption(caption)         Set the caption on a Styler
set_precision(precision)     Set the precision used to render.
set_properties([subset])     Convenience method for setting one or more non-data dependent properties or each cell.
set_table_attributes(attributes) Set the table attributes.
set_table_styles(table_styles) Set the table styles on a Styler.
set_uuid(uuid)               Set the uuid for a Styler.
to_excel(excel_writer[, sheet_name, na_rep, ...]) Write Styler to an excel sheet
use(styles)                   Set the styles on the current Styler, possibly using styles from Styler.export.

pandas.io.formats.style.Styler.apply

Styler.apply (func, axis=0, subset=None, **kwargs)
Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.

New in version 0.17.1.

Parameters  func : function
            func should take a Series or DataFrame (depending on axis), and return an
object with the same shape. Must return a DataFrame with identical index and
column labels when axis=None

**axis**: int, str or None

apply to each column (axis=0 or 'index') or to each row (axis=1 or
'columns') or to the entire DataFrame at once with axis=None

**subset**: IndexSlice

a valid indexer to limit data to before applying the function. Consider using a
pandas.IndexSlice

**kwargs**: dict

pass along to func

**Returns** self: Styler

**Notes**

The output shape of func should match the input, i.e. if x is the input row, column, or table (depending
on axis), then func(x.shape) == x.shape should be true.

This is similar to DataFrame.apply, except that axis=None applies the function to the entire
DataFrame at once, rather than column-wise or row-wise.

**Examples**

```python
>>> def highlight_max(x):
... return ['background-color: yellow' if v == x.max() else ''
... for v in x]
... >>> df = pd.DataFrame(np.random.randn(5, 2))
>>> df.style.apply(highlight_max)
```

**pandas.io.formats.style.Styler.applymap**

Styler.applymap(func, subset=None, **kwargs)

Apply a function elementwise, updating the HTML representation with the result.

New in version 0.17.1.

**Parameters**

**func**: function

func should take a scalar and return a scalar

**subset**: IndexSlice

a valid indexer to limit data to before applying the function. Consider using a
pandas.IndexSlice

**kwargs**: dict

pass along to func

**Returns** self: Styler
pandas: powerful Python data analysis toolkit, Release 0.20.1

pandas.io.formats.style.Styler.background_gradient

Styler.background_gradient(cmap='PuBu', low=0, high=0, axis=0, subset=None)

Color the background in a gradient according to the data in each column (optionally row). Requires matplotlib.

New in version 0.17.1.

Parameters

- cmap: str or colormap
  - matplotlib colormap
- low, high: float
  - compress the range by these values.
- axis: int or str
  - 1 or 'columns' for columnwise, 0 or 'index' for rowwise
- subset: IndexSlice
  - a valid slice for data to limit the style application to

Returns

self : Styler

Notes

Tune low and high to keep the text legible by not using the entire range of the color map. These extend the range of the data by \( \text{low} \times (x.\text{max}() - x.\text{min}()) \) and \( \text{high} \times (x.\text{max}() - x.\text{min}()) \) before normalizing.

pandas.io.formats.style.Styler.bar

Styler.bar(subset=None, axis=0, color='#d65f5f', width=100, align='left')

Color the background color proportional to the values in each column. Excludes non-numeric data by default.

New in version 0.17.1.

Parameters

- subset: IndexSlice, default None
  - a valid slice for data to limit the style application to
- axis: int
- color: str or 2-tuple/list
  - If a str is passed, the color is the same for both negative and positive numbers. If 2-tuple/list is used, the first element is the color_negative and the second is the color_positive (eg: ['#d65f5f', '#5fba7d'])
- width: float
  - A number between 0 or 100. The largest value will cover width percent of the cell’s width
- align : {'left', 'zero', 'mid'}, default ‘left’
  - ‘left’ : the min value starts at the left of the cell
  - ‘zero’ : a value of zero is located at the center of the cell
• ‘mid’ : the center of the cell is at (max-min)/2, or if values are all negative (positive) the zero is aligned at the right (left) of the cell

New in version 0.20.0.

Returns self : Styler

pandas.io.formats.style.Styler.clear

Styler.clear()

“Reset” the styler, removing any previously applied styles. Returns None.

pandas.io.formats.style.Styler.export

Styler.export()

Export the styles to applied to the current Styler. Can be applied to a second style with Styler.use.

New in version 0.17.1.

Returns styles : list

See also:

Styler.use

pandas.io.formats.style.Styler.format

Styler.format(formatter, subset=None)

Format the text display value of cells.

New in version 0.18.0.

Parameters formatter : str, callable, or dict

subset : IndexSlice

An argument to DataFrame.loc that restricts which elements formatter is applied to.

Returns self : Styler

Notes

formatter is either an a or a dict {column name : a} where a is one of

• str: this will be wrapped in: a.format(x)

• callable: called with the value of an individual cell

The default display value for numeric values is the “general” (g) format with pd.options.display.precision.

Examples
```python
>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
>>> df.style.format("{:.2%}\")
>>> df['c'] = ['a', 'b', 'c', 'd']
>>> df.style.format({'C': str.upper})
```

### pandas.io.formats.style.Styler.from_custom_template

**classmethod** `Styler.from_custom_template(searchpath, name)`

Factory function for creating a subclass of `Styler` with a custom template and Jinja environment.

**Parameters**

- **searchpath**: str or list
  Path or paths of directories containing the templates
- **name**: str
  Name of your custom template to use for rendering

**Returns**

`MyStyler`: subclass of `Styler` that has the correct `env` and `template` class attributes set.

### pandas.io.formats.style.Styler.highlight_max

`Styler.highlight_max(subset=None, color='yellow', axis=0)`

Highlight the maximum by shading the background.

New in version 0.17.1.

**Parameters**

- **subset**: IndexSlice, default None
  A valid slice for `data` to limit the style application to
- **color**: str, default ‘yellow’
- **axis**: int, str, or None; default None
  0 or ‘index’ for columnwise, 1 or ‘columns’ for rowwise or None for tablewise (the default)

**Returns**

`self`: Styler

### pandas.io.formats.style.Styler.highlight_min

`Styler.highlight_min(subset=None, color='yellow', axis=0)`

Highlight the minimum by shading the background.

New in version 0.17.1.

**Parameters**

- **subset**: IndexSlice, default None
  A valid slice for `data` to limit the style application to
- **color**: str, default ‘yellow’
- **axis**: int, str, or None; default None
  0 or ‘index’ for columnwise, 1 or ‘columns’ for rowwise or None for tablewise (the default)
Returns self : Styler

pandas.io.formats.style.Styler.highlight_null

Styler.highlight_null(null_color='red')  
Shade the background null_color for missing values.  
New in version 0.17.1.

Parameters null_color: str  
Returns self : Styler

pandas.io.formats.style.Styler.render

Styler.render(**kwargs)  
Render the built up styles to HTML.  
New in version 0.17.1.

Parameters **kwargs:  
Any additional keyword arguments are passed through to self.template.render. This is useful when you need to provide additional variables for a custom template.  
New in version 0.20.

Returns rendered: str  
the rendered HTML

Notes

Styler objects have defined the _repr_html_ method which automatically calls self.render() when it’s the last item in a Notebook cell. When calling Styler.render() directly, wrap the result in IPython.display.HTML to view the rendered HTML in the notebook.

Pandas uses the following keys in render. Arguments passed in **kwargs take precedence, so think carefully if you want to override them:

•head  
•cellstyle  
•body  
•uuid  
•precision  
•table_styles  
•caption  
•table_attributes
pandas.io.formats.style.Styler.set_caption

Styler.set_caption(caption)
Set the caption on a Styler
New in version 0.17.1.

Parameters caption: str
Returns self: Styler

pandas.io.formats.style.Styler.set_precision

Styler.set_precision(precision)
Set the precision used to render.
New in version 0.17.1.

Parameters precision: int
Returns self: Styler

pandas.io.formats.style.Styler.set_properties

Styler.set_properties(subset=None, **kwargs)
Convience method for setting one or more non-data dependent properties or each cell.
New in version 0.17.1.

Parameters subset: IndexSlice
  a valid slice for data to limit the style application to
  kwargs: dict
    property: value pairs to be set for each cell

Returns self: Styler

Examples

```python
def = pd.DataFrame(np.random.randn(10, 4))
def.style.set_properties(color="white", align="right")
def.style.set_properties(**{"background-color": "yellow"})
```

pandas.io.formats.style.Styler.set_table_attributes

Styler.set_table_attributes(attributes)
Set the table attributes. These are the items that show up in the opening <table> tag in addition to to automatic (by default) id.
New in version 0.17.1.

Parameters attributes: string
Returns self: Styler
Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 4))
```

```python
dl.style.set_table_attributes('class="pure-table"')
```

```python
... <table class="pure-table"> ...
```

**pandas.io.formats.style.Styler.set_table_styles**

**Styler.set_table_styles** *(table_styles)*

Set the table styles on a Styler. These are placed in a `<style>` tag before the generated HTML table.

New in version 0.17.1.

**Parameters**

- **table_styles**: list

  Each individual table_style should be a dictionary with selector and props keys. selector should be a CSS selector that the style will be applied to (automatically prefixed by the table’s UUID) and props should be a list of tuples with (attribute, value).

**Returns**

- **self**: Styler

**Examples**

```python
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': [('background-color', 'yellow')]}
...)
```

**pandas.io.formats.style.Styler.set_uuid**

**Styler.set_uuid** *(uuid)*

Set the uuid for a Styler.

New in version 0.17.1.

**Parameters**

- **uuid**: str

**Returns**

- **self**: Styler

**pandas.io.formats.style.Styler.to_excel**

**Styler.to_excel** *(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)*

Write Styler to an excel sheet

New in version 0.20.

**Parameters**

- **excel_writer**: string or ExcelWriter object

  File path or existing ExcelWriter
**sheet_name** : string, default ‘Sheet1’
   Name of sheet which will contain DataFrame

**na_rep** : string, default ‘’
   Missing data representation

**float_format** : string, default None
   Format string for floating point numbers

**columns** : sequence, optional
   Columns to write

**header** : boolean or list of string, default True
   Write out column names. If a list of string is given it is assumed to be aliases for the column names

**index** : boolean, default True
   Write row names (index)

**index_label** : string or sequence, default None
   Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

**startrow** :
   upper left cell row to dump data frame

**startcol** :
   upper left cell column to dump data frame

**engine** : string, default None
   write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

**merge_cells** : boolean, default True
   Write MultiIndex and Hierarchical Rows as merged cells.

**encoding** : string, default None
   encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.

**inf_rep** : string, default ‘inf’
   Representation for infinity (there is no native representation for infinity in Excel)

**freeze_panes** : tuple of integer (length 2), default None
   Specifies the one-based bottommost row and rightmost column that is to be frozen
   New in version 0.20.0.

**Notes**

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook:
Pandas: powerful Python data analysis toolkit, Release 0.20.1

```python
>>> writer = pd.ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

For compatibility with `to_csv`, `to_excel` serializes lists and dicts to strings before writing.

**pandas.io.formats.style.Styler.use**

`Styler.use(styles)`

Set the styles on the current Styler, possibly using styles from `Styler.export`.

New in version 0.17.1.

**Parameters**

- **styles**: list
  
  list of style functions

**Returns**

- **self**: Styler

**See also**

- `Styler.export`

34.15.2 Style Application

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Styler.apply(func[, axis, subset])</code></td>
<td>Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.</td>
</tr>
<tr>
<td><code>Styler.applymap(func[, subset])</code></td>
<td>Apply a function elementwise, updating the HTML representation with the result.</td>
</tr>
<tr>
<td><code>Styler.format(formatter[, subset])</code></td>
<td>Format the text display value of cells.</td>
</tr>
<tr>
<td><code>Styler.set_precision(precision)</code></td>
<td>Set the precision used to render.</td>
</tr>
<tr>
<td><code>Styler.set_table_styles(table_styles)</code></td>
<td>Set the table styles on a Styler.</td>
</tr>
<tr>
<td><code>Styler.set_caption(caption)</code></td>
<td>Set the caption on a Styler.</td>
</tr>
<tr>
<td><code>Styler.set_properties([subset])</code></td>
<td>Convenience method for setting one or more non-data dependent properties or each cell.</td>
</tr>
<tr>
<td><code>Styler.set_uuid(uuid)</code></td>
<td>Set the uuid for a Styler.</td>
</tr>
<tr>
<td><code>Styler.clear()</code></td>
<td>“Reset” the styler, removing any previously applied styles.</td>
</tr>
</tbody>
</table>

34.15.3 Builtin Styles

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Styler.highlight_max([subset, color, axis])</code></td>
<td>Highlight the maximum by shading the background.</td>
</tr>
<tr>
<td><code>Styler.highlight_min([subset, color, axis])</code></td>
<td>Highlight the minimum by shading the background.</td>
</tr>
<tr>
<td><code>Styler.highlight_null([null_color])</code></td>
<td>Shade the background <code>null_color</code> for missing values.</td>
</tr>
<tr>
<td><code>Styler.background_gradient([cmap, low, ...])</code></td>
<td>Color the background in a gradient according to the data in each column (optionally row).</td>
</tr>
<tr>
<td><code>Styler.bar([subset, axis, color, width, align])</code></td>
<td>Color the background <code>color</code> proportional to the values in each column.</td>
</tr>
</tbody>
</table>

34.15.4 Style Export and Import
34.16 General utility functions

34.16.1 Working with options

**describe_option**(pat[, _print_desc])  
Prints the description for one or more registered options.

**reset_option**(pat)  
Reset one or more options to their default value.

**get_option**(pat)  
Retrieves the value of the specified option.

**set_option**(pat, value)  
Sets the value of the specified option.

**option_context**(args)  
Context manager to temporarily set options in the with statement context.

34.16.1.1 pandas.describe_option

pandas.**describe_option**(pat, _print_desc=False) = <pandas.core.config.CallableDynamicDoc object>  
Prints the description for one or more registered options.

Call with not arguments to get a listing for all registered options.

Available options:
- compute.[use_bottleneck, use_numexpr]
- display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height]
- display.html.[table_schema]
- display.[large_repr]
- display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]
- display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_STYLE, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]
- display.unicode.[ambiguous_as_wide, east_asian_width]
- display.[width]
- html.[border]
- io.excel.xls.[writer]
- io.excel.xlsm.[writer]
- io.excel.xlsx.[writer]
- io.hdf.[default_format, dropna_table]
- mode.[chained_assignment, sim_interactive, use_inf_as_null]

**Parameters**  
pat : str
Regexp pattern. All matching keys will have their description displayed.

__print_desc__ : bool, default True

If True (default) the description(s) will be printed to stdout. Otherwise, the descrip-
tion(s) will be returned as a unicode string (for testing).

Returns None by default, the description(s) as a unicode string if __print_desc__
is False

Notes

The available options with its descriptions:

**compute.use_bottleneck** [bool] Use the bottleneck library to accelerate if it is installed, the default is True
Valid values: False,True [default: True] [currently: True]

**compute.use_numexpr** [bool] Use the numexpr library to accelerate computation if it is installed, the default
is True Valid values: False,True [default: True] [currently: True]

**display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold
will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

**display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

**display.column_space** No description available. [default: 12] [currently: 12]

**display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default:
False] [currently: False]

**display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default:
False] [currently: False]

**display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be
used for strings returned by to_string, these are generally strings meant to be displayed on the console.
[default: UTF-8] [currently: UTF-8]

**display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames
across multiple lines, max_columns is still respected, but the output will wrap-around across multiple
“pages” if its width exceeds display.width. [default: True] [currently: True]

**display.float_format** [callable] The callable should accept a floating point number and return a string with
the desired format of the number. This is used in some places like SeriesFormatter. See for-
mats.format.EngFormatter for an example. [default: None] [currently: None]

**display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

**display.html.table_schema** [boolean] Whether to publish a Table Schema representation for frontends that
support it. (default: False) [default: False] [currently: False]

**display.large_repr** ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML
repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour
in earlier versions of pandas). [default: truncate] [currently: truncate]

**display.latex.escape** [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters.
Valid values: False,True [default: True] [currently: True]

**display.latex.longtable** [bool] This specifies if the to_latex method of a Dataframe uses the longtable format.
Valid values: False,True [default: False] [currently: False]
display.latex.multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex.multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-columns to pretty-print MultiIndex columns. Valid values: False,True [default: I] [currently: I]

display.latex.multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

    In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

    In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string.

    If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

34.16. General utility functions

pandas: powerful Python data analysis toolkit, Release 0.20.1
display.

- **display.

- **html.

- **io.

- **io.

- **io.

- **io.

- **mode.

- **mode.

- **mode.

- **34.16.1.2 pandas.reset_option**

  `pandas.reset_option(pat) = <pandas.core.config.CallableDynamicDoc object>`
  
  Reset one or more options to their default value.
  
  Pass “all” as argument to reset all options.
  
  Available options:
  
  - compute.[use_bottleneck, use_numexpr]
Parameters **pat**: str/regex

If specified only options matching `prefix*` will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. `x.y.z.option_name`), your code may break in future versions if new options with similar names are introduced.

Returns None

Notes

The available options with their descriptions:

- **compute.use_bottleneck** [bool] Use the bottleneck library to accelerate if it is installed, the default is True
  Valid values: False,True [default: True] [currently: True]

- **compute.use_numexpr** [bool] Use the numexpr library to accelerate computation if it is installed, the default is True
  Valid values: False,True [default: True] [currently: True]

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- **display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- **display.column_space** No description available. [default: 12] [currently: 12]

- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]

display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

display.html.table_schema [boolean] Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False]

display.large_repr ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True [default: False] [currently: False]

display.latex multicolumn [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

display.latex multicolumn_format [bool] This specifies if the to_latex method of a Dataframe uses multi-columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

display.latex multirow [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

display.latex repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited. In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]
pandas: powerful Python data analysis toolkit, Release 0.20.1

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “...” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’) Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1]


io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]
pandas: powerful Python data analysis toolkit, Release 0.20.1

io.hdf.dropna_table  [boolean] drop ALL nan rows when appending to a table [default: False] [currently: False]

mode.chained_assignment  [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive  [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null  [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

34.16.1.3 pandas.get_option

pandas.get_option(pat) = <pandas.core.config.CallableDynamicDoc object>

Retrieves the value of the specified option.

Available options:

• compute.[use_bottleneck, use_numexpr]
• display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height]
• display.html.[table_schema]
• display.[large_repr]
• display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]
• display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]
• display.unicode.[ambiguous_as_wide, east_asian_width]
• display.[width]
• html.[border]
• io.excel.xls.[writer]
• io.excel.xlsm.[writer]
• io.excel.xlsx.[writer]
• io.hdf.[default_format, dropna_table]
• mode.[chained_assignment, sim_interactive, use_inf_as_null]

Parameters  pat : str

Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

Returns  result : the value of the option

Raises  OptionError : if no such option exists
Notes

The available options with its descriptions:

- **compute.use_bottleneck** [bool] Use the bottleneck library to accelerate if it is installed, the default is True. Valid values: False, True [default: True] [currently: True]
- **compute.use_numexpr** [bool] Use the numexpr library to accelerate computation if it is installed, the default is True. Valid values: False, True [default: True] [currently: True]
- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]
- **display.colheader_justify** ["left"/"right"] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]
- **display.column_space** No description available. [default: 12] [currently: 12]
- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]
- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]
- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]
- **display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]
- **display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)
- **display.html.table_schema** [boolean] Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False]
- **display.large_repr** ["truncate"/"info"] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]
- **display.latex.escape** [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False, True [default: True] [currently: True]
- **display.latex.longtable** :bool This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False, True [default: False] [currently: False]
- **display.latex.multicolumn** [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False, True [default: True] [currently: True]
- **display.latex.multicolumn_format** [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False, True [default: 1] [currently: 1]
- **display.latex.multirow** [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False, True [default: False] [currently: False]
- **display.latex.repr** [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]
- **display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)
display.max_categories  [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns  [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth  [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns  [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows  [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows  [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items  [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage  [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.mpl_style  [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse  [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html  [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth  [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision  [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

display.show_dimensions  [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide  [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance [default: False] [default: False] [currently: False]
**display.unicode.east_asian_width**  [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

**display.width**  [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

**html.border**  [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1]


**io.hdf.default_format**  [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

**io.hdf.dropna_table**  [boolean] drop ALL nan rows when appending to a table [default: False] [currently: False]

**mode.chained_assignment**  [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

**mode.sim_interactive**  [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

**mode.use_inf_as_null**  [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

### 34.16.1.4 pandas.set_option

```python
pandas.set_option(pat, value) = <pandas.core.config.CallableDynamicDoc object>
```

Sets the value of the specified option.

Available options:

- compute.[use_bottleneck, use_numexpr]
- display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height]
- display.html.[table_schema]
- display.[large_repr]
- display.latex.[escape, longtable, multicolumn, multicolumn_format, multirow, repr]
- display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]
- display.unicode.[ambiguous_as_wide, east_asian_width]
- display.[width]
- html.[width]
Parameters  

**pat** : str  

Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

**value** :

new value of option.

Returns  None

Rases  OptionError if no such option exists

Notes

The available options with its descriptions:

**compute.use_bottleneck**  [bool] Use the bottleneck library to accelerate if it is installed, the default is True  
Valid values: False,True [default: True] [currently: True]

**compute.use_numexpr**  [bool] Use the numexpr library to accelerate computation if it is installed, the default is True  
Valid values: False,True [default: True] [currently: True]

**display.chop_threshold**  [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

**display.colheader_justify**  ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

**display.column_space**  No description available.  [default: 12] [currently: 12]

**display.date_dayfirst**  [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

**display.date_yearfirst**  [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

**display.encoding**  [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

**display.expand_frame_repr**  [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]

**display.float_format**  [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]

**display.height**  [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)
**display.html.table_schema** [boolean] Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False]

**display.large_repr** ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

**display.latex.escape** [bool] This specifies if the to_latex method of a Dataframe uses escape special characters. Valid values: False,True [default: True] [currently: True]

**display.latex.longtable** [bool] This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True [default: True] [currently: True]

**display.latex.multicolumn** [bool] This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True [default: True] [currently: True]

**display.latex.multicolumn_format** [bool] This specifies if the to_latex method of a Dataframe uses multi-columns to pretty-print MultiIndex columns. Valid values: False,True [default: l] [currently: l]

**display.latex.multirow** [bool] This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True [default: False] [currently: False]

**display.latex.repr** [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

**display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

**display.max_categories** [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

**display.max_columns** [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

**display.max_colwidth** [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50]

**display.max_info_columns** [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

**display.max_info_rows** [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

**display.max_rows** [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

**display.max_seq_items** [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]
display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be
displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a
more pleasing visual style by default. Setting this to None/False restores the values to their initial value.
[default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels
within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas
objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default:
3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion
[default: 6] [currently: 6]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame
repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all
rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.unicode.east_asian_width [boolean] Whether to use the Unicode East Asian Width to calculate the
display text width. Enabling this may affect to the performance (default: False) [default: False] [currently:
False]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can
be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
[default: 80] [currently: 80]

html.border [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
[default: 1] [currently: 1]

[default: xlwt] [currently: xlwt]

(the default). [default: openpyxl] [currently: openpyxl]

(the default). [default: openpyxl] [currently: openpyxl]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and
append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: False] [currently:
False]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment,
The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False]
[currently: False]

mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None
and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]
34.16.1.5 pandas.option_context

class pandas.option_context(*args)

Context manager to temporarily set options in the with statement context.

You need to invoke as `option_context(pat, val, [(pat, val), ...])`.

Examples

```python
>>> with option_context('display.max_rows', 10, 'display.max_columns', 5):
...
```

34.16.2 Testing functions

testing.assert_frame_equal(left, right[, ...])  
Check that left and right DataFrame are equal.

testing.assert_series_equal(left, right[, ...])  
Check that left and right Series are equal.

testing.assert_index_equal(left, right[, ...])  
Check that left and right Index are equal.

34.16.2.1 pandas.testing.assert_frame_equal

pandas.testing.assert_frame_equal(left, right[, ...])  
Check that left and right DataFrame are equal.

Parameters

left : DataFrame
right : DataFrame
check_dtype : bool, default True

Whether to check the DataFrame dtype is identical.

check_index_type : bool / string {'equiv'}, default False

Whether to check the Index class, dtype and inferred_type are identical.

check_column_type : bool / string {'equiv'}, default False

Whether to check the columns class, dtype and inferred_type are identical.

check_frame_type : bool, default False

Whether to check the DataFrame class is identical.

check_less_precise : bool or int, default False

Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare.

check_names : bool, default True

Whether to check the Index names attribute.
by_blocks : bool, default False
    Specify how to compare internal data. If False, compare by columns. If True, com-
    pare by blocks.

check_exact : bool, default False
    Whether to compare number exactly.

check_datetimelike_compat : bool, default False
    Compare datetimelike which is comparable ignoring dtype.

check_categorical : bool, default True
    Whether to compare internal Categorical exactly.

check_like : bool, default False
    If true, ignore the order of rows & columns

obj : str, default ‘DataFrame’
    Specify object name being compared, internally used to show appropriate assertion
    message

34.16.2.2 pandas.testing.assert_series_equal

pandas.testing.assert_series_equal(left, right, check_dtype=True, check_index_type='equiv',
check_series_type=True, check_less_precise=False, check_names=True, check_exact=False,
check_datetimelike_compat=False, check_categorical=True, obj='Series')

Check that left and right Series are equal.

Parameters left : Series

right : Series

check_dtype : bool, default True
    Whether to check the Series dtype is identical.

check_index_type : bool / string { 'equiv' }, default ‘equiv’
    Whether to check the Index class, dtype and inferred_type are identical.

check_series_type : bool, default True
    Whether to check the Series class is identical.

check_less_precise : bool or int, default False
    Specify comparison precision. Only used when check_exact is False. 5 digits (False)
    or 3 digits (True) after decimal points are compared. If int, then specify the digits to
    compare

check_exact : bool, default False
    Whether to compare number exactly.

check_names : bool, default True
    Whether to check the Series and Index names attribute.

check_datetimelike_compat : bool, default False
Compare datetime-like which is comparable ignoring dtype.

**check_categorical**: bool, default True
Whether to compare internal Categorical exactly.

**obj**: str, default ‘Series’
Specify object name being compared, internally used to show appropriate assertion message

### 34.16.2.3 pandas.testing.assert_index_equal

**pandas.testing.assert_index_equal**(left, right, exact=’equiv’, check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj=’Index’)

Check that left and right Index are equal.

**Parameters**

- **left**: Index
- **right**: Index
- **exact**: bool / string {‘equiv’}, default False
  Whether to check the Index class, dtype and inferred_type are identical. If ‘equiv’, then RangeIndex can be substituted for Int64Index as well.
- **check_names**: bool, default True
  Whether to check the names attribute.
- **check_less_precise**: bool or int, default False
  Specify comparison precision. Only used when check exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare
- **check_exact**: bool, default True
  Whether to compare number exactly.
- **check_categorical**: bool, default True
  Whether to compare internal Categorical exactly.
- **obj**: str, default ‘Index’
  Specify object name being compared, internally used to show appropriate assertion message

### 34.16.3 Exceptions and warnings

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors.DtypeWarning</td>
<td>Warning that is raised for a dtype incompatibility.</td>
</tr>
<tr>
<td>errors.EmptyDataError</td>
<td>Exception that is thrown in <code>pd.read_csv</code> (by both the C and</td>
</tr>
<tr>
<td>errors.OutOfBoundsDatetime</td>
<td>Exception that is thrown by an error is encountered in <code>pd.read_csv</code></td>
</tr>
<tr>
<td>errors.ParserError</td>
<td>Warning that is raised in <code>pd.read_csv</code> whenever it is necessary</td>
</tr>
<tr>
<td>errors.ParserWarning</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 34.139 – continued from previous page

<table>
<thead>
<tr>
<th>Exception</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>errors.PerformanceWarning</code></td>
<td>Warnings shown when there is a possible performance impact.</td>
</tr>
<tr>
<td><code>errors.UnsortedIndexError</code></td>
<td>Error raised when attempting to get a slice of a MultiIndex and the index has not been lexsorted.</td>
</tr>
<tr>
<td><code>errors.UnsupportedFunctionCall</code></td>
<td>If attempting to call a numpy function on a pandas object.</td>
</tr>
</tbody>
</table>

34.16.3.1 pandas.errors.DtypeWarning

*exception pandas.errors.DtypeWarning*

Warning that is raised for a dtype incompatibility. This is can happen whenever `pd.read_csv` encounters non-uniform dtypes in a column(s) of a given CSV file.

34.16.3.2 pandas.errors.EmptyDataError

*exception pandas.errors.EmptyDataError*

Exception that is thrown in `pd.read_csv` (by both the C and Python engines) when empty data or header is encountered.

34.16.3.3 pandas.errors.OutOfBoundsDatetime

*exception pandas.errors.OutOfBoundsDatetime*

34.16.3.4 pandas.errors.ParserError

*exception pandas.errors.ParserError*

Exception that is thrown by an error is encountered in `pd.read_csv`.

34.16.3.5 pandas.errors.ParserWarning

*exception pandas.errors.ParserWarning*

Warning that is raised in `pd.read_csv` whenever it is necessary to change parsers (generally from ‘c’ to ‘python’) contrary to the one specified by the user due to lack of support or functionality for parsing particular attributes of a CSV file with the requested engine.

34.16.3.6 pandas.errors.PerformanceWarning

*exception pandas.errors.PerformanceWarning*

Warnings shown when there is a possible performance impact.

34.16.3.7 pandas.errors.UnsortedIndexError

*exception pandas.errors.UnsortedIndexError*

Error raised when attempting to get a slice of a MultiIndex and the index has not been lexsorted. Subclass of `KeyError`.

New in version 0.20.0.
34.16.3.8 pandas.errors.UnsupportedFunctionCall

`exception pandas.errors.UnsupportedFunctionCall`

If attempting to call a numpy function on a pandas object. For example using `np.cumsum(groupby_object)`.

34.16.4 Data types related functionality

<table>
<thead>
<tr>
<th>api.types.union_categoricals(to_union[, ...])</th>
<th>Combine list-like of Categorical-like, unioning categories.</th>
</tr>
</thead>
<tbody>
<tr>
<td>api.types.infer_dtype</td>
<td>Efficiently infer the type of a passed val, or list-like array of values.</td>
</tr>
<tr>
<td>api.types.pandas_dtype(dtype)</td>
<td>Converts input into a pandas only dtype object or a numpy dtype object.</td>
</tr>
</tbody>
</table>

34.16.4.1 pandas.api.types.union_categoricals

`pandas.api.types.union_categoricals(to_union, sort_categories=False, ignore_order=False)`

Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype.

New in version 0.19.0.

**Parameters**
- `to_union`: list-like of Categorical, CategoricalIndex, or Series with dtype='category'
- `sort_categories`: boolean, default False
  - If true, resulting categories will be lexsorted, otherwise they will be ordered as they appear in the data.
- `ignore_order`: boolean, default False
  - If true, the ordered attribute of the Categoricals will be ignored. Results in an unordered categorical.

New in version 0.20.0.

**Returns**
- `result`: Categorical

**Raises**
- `TypeError`
  - all inputs do not have the same dtype
  - all inputs do not have the same ordered property
  - all inputs are ordered and their categories are not identical
  - sort_categories=True and Categoricals are ordered
- `ValueError`
  - Empty list of categoricals passed

34.16.4.2 pandas.api.types.infer_dtype

`pandas.api.types.infer_dtype()`

Efficiently infer the type of a passed val, or list-like array of values. Return a string describing the type.

**Parameters**
- `value`: scalar, list, ndarray, or pandas type

34.16. General utility functions
**Returns**  string describing the common type of the input data.

Results can include:

- string
- unicode
- bytes
- floating
- integer
- mixed-integer
- mixed-integer-float
- complex
- categorical
- boolean
- datetime64
- datetime
- date
- timedelta64
- timedelta
- time
- period
- mixed

**Raises**  TypeError if ndarray-like but cannot infer the dtype

**Notes**

- ‘mixed’ is the catchall for anything that is not otherwise specialized
- ‘mixed-integer-float’ are floats and integers
- ‘mixed-integer’ are integers mixed with non-integers

**Examples**

```python
>>> infer_dtype(['foo', 'bar'])
'string'

>>> infer_dtype([b'foo', b'bar'])
'bytes'

>>> infer_dtype([1, 2, 3])
'integer'
```
```
>>> infer_dtypes([1, 2, 3.5])
'mixed-integer-float'

>>> infer_dtypes([1.0, 2.0, 3.5])
'floating'

>>> infer_dtypes(['a', 1])
'mixed-integer'

>>> infer_dtypes([True, False])
'boolean'

>>> infer_dtypes([True, False, np.nan])
'mixed'

>>> infer_dtypes([pd.Timestamp('20130101')])
'datetime'

>>> infer_dtypes([datetime.date(2013, 1, 1)])
'date'

>>> infer_dtypes([np.datetime64('2013-01-01')])
'datetime64'

>>> infer_dtypes([datetime.timedelta(0, 1, 1)])
'timedelta'

>>> infer_dtypes(pd.Series(list('aabc')).astype('category'))
'categorical'
```

34.16.4.3 pandas.api.types.pandas_dtypes

**pandas.api.types.pandas_dtypes** *(dtype)*

Converts input into a pandas only dtype object or a numpy dtype object.

**Parameters**

dtype : object to be converted

**Returns**

np.dtype or a pandas dtype

Dtype introspection

```
api.types.is_bool_dtype(arr_or_dtype) Check whether the provided array or dtype is of a boolean
dtype.

api.types.is_categorical_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Categorical
dtype.

api.types.is_complex_dtype(arr_or_dtype) Check whether the provided array or dtype is of a complex
dtype.

api.types.is_datetime64_any_dtype(arr_or_dtype) Check whether the provided array or dtype is of the date-
time64 dtype.

api.types.is_datetime64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the datetime64
dtype.
```

Continued on next page
### Table 34.141 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>api.types.is_datetime64_ns_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of the datetime64[ns] dtype.</td>
</tr>
<tr>
<td><code>api.types.is_datetime64tz_dtype(arr_or_dtype)</code></td>
<td>Check whether an array-like or dtype is of a DatetimeTZD-type dtype.</td>
</tr>
<tr>
<td><code>api.types.is_extension_type(arr)</code></td>
<td>Check whether an array-like is of a pandas extension class instance.</td>
</tr>
<tr>
<td><code>api.types.is_float_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of a float dtype.</td>
</tr>
<tr>
<td><code>api.types.is_int64_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of the int64 dtype.</td>
</tr>
<tr>
<td><code>api.types.is_integer_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of an integer dtype.</td>
</tr>
<tr>
<td><code>api.types.is_interval_dtype(arr_or_dtype)</code></td>
<td>Check whether an array-like or dtype is of the Interval dtype.</td>
</tr>
<tr>
<td><code>api.types.is_numeric_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of a numeric dtype.</td>
</tr>
<tr>
<td><code>api.types.is_object_dtype(arr_or_dtype)</code></td>
<td>Check whether an array-like or dtype is of the object dtype.</td>
</tr>
<tr>
<td><code>api.types.is_period_dtype(arr_or_dtype)</code></td>
<td>Check whether an array-like or dtype is of the Period dtype.</td>
</tr>
<tr>
<td><code>api.types.is_signed_integer_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of a signed integer dtype.</td>
</tr>
<tr>
<td><code>api.types.is_string_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of the string dtype.</td>
</tr>
<tr>
<td><code>api.types.is_timedelta64_dtype(arr_or_dtype)</code></td>
<td>Check whether an array-like or dtype is of the timedelta64 dtype.</td>
</tr>
<tr>
<td><code>api.types.is_timedelta64_ns_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of the timedelta64[ns] dtype.</td>
</tr>
<tr>
<td><code>api.types.is_unsigned_integer_dtype(arr_or_dtype)</code></td>
<td>Check whether the provided array or dtype is of an unsigned integer dtype.</td>
</tr>
<tr>
<td><code>api.types.is_sparse(arr)</code></td>
<td>Check whether an array-like is a pandas sparse array.</td>
</tr>
</tbody>
</table>

### 34.16.4.4 pandas.api.types.is_bool_dtype

`pandas.api.types.is_bool_dtype(arr_or_dtype)`

Check whether the provided array or dtype is of a boolean dtype.

**Parameters**

- `arr_or_dtype`: array-like
  
The array or dtype to check.

**Returns**

- `boolean`: Whether or not the array or dtype is of a boolean dtype.

**Examples**

```python
gt is_bool_dtype(str)
False
gt is_bool_dtype(int)
False
gt is_bool_dtype(bool)
True
gt is_bool_dtype(np.bool)
True
gt is_bool_dtype(np.array(['a', 'b']))
```
False

```python
>>> is_bool_dtype(pd.Series([1, 2]))
False
>>> is_bool_dtype(np.array([True, False]))
True
```

### 34.16.4.5 pandas.api.types.is_categorical_dtype

**pandas.api.types.is_categorical_dtype(arr_or_dtype)**

Check whether an array-like or dttype is of the Categorical dtype.

**Parameters**

- `arr_or_dtype`: array-like
  The array-like or dttype to check.

**Returns**

- `boolean`: Whether or not the array-like or dttype is of the Categorical dtype.

**Examples**

```python
>>> is_categorical_dtype(object)
False
>>> is_categorical_dtype(CategoricalDtype())
True
>>> is_categorical_dtype([1, 2, 3])
False
>>> is_categorical_dtype(pd.Categorical([1, 2, 3]))
True
>>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3]))
True
```

### 34.16.4.6 pandas.api.types.is_complex_dtype

**pandas.api.types.is_complex_dtype(arr_or_dtype)**

Check whether the provided array or dttype is of a complex dttype.

**Parameters**

- `arr_or_dtype`: array-like
  The array or dttype to check.

**Returns**

- `boolean`: Whether or not the array or dttype is of a complex dttype.

**Examples**

```python
>>> is_complex_dtype(str)
False
>>> is_complex_dtype(int)
False
>>> is_complex_dtype(np.complex)
True
>>> is_complex_dtype(np.array(['a', 'b']))
False
>>> is_complex_dtype(pd.Series([1, 2]))
```
False
>>> is_complex_dtype(np.array([1 + 1j, 5]))
True

34.16.4.7 pandas.api.types.is_datetime64_any_dtype

pandas.api.types.is_datetime64_any_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the datetime64 dtype.

**Parameters** arr_or_dtype: array-like
The array or dtype to check.

**Returns** boolean: Whether or not the array or dtype is of the datetime64 dtype.

**Examples**

```python
>>> is_datetime64_any_dtype(str)
False
>>> is_datetime64_any_dtype(int)
False
>>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive
True
>>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern"))
True
>>> is_datetime64_any_dtype(np.array(['a', 'b']))
False
>>> is_datetime64_any_dtype(np.array([1, 2]))
False
>>> is_datetime64_any_dtype(np.array([], dtype=np.datetime64))
True
>>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3],
dtype=np.datetime64))
True
```

34.16.4.8 pandas.api.types.is_datetime64_dtype

pandas.api.types.is_datetime64_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the datetime64 dtype.

**Parameters** arr_or_dtype: array-like
The array-like or dtype to check.

**Returns** boolean: Whether or not the array-like or dtype is of
the datetime64 dtype.

**Examples**

```python
>>> is_datetime64_dtype(object)
False
>>> is_datetime64_dtype(np.datetime64)
True
```
```python
>>> is_datetime64_dtype(np.array([], dtype=int))
False
>>> is_datetime64_dtype(np.array([], dtype=np.datetime64))
True
>>> is_datetime64_dtype([1, 2, 3])
False
```

### 34.16.4.9 pandas.api.types.is_datetime64_ns_dtype

**pandas.api.types.is_datetime64_ns_dtype(arr_or_dtype)**

Check whether the provided array or dtype is of the datetime64[ns] dtype.

**Parameters**

- `arr_or_dtype`: array-like
  
The array or dtype to check.

**Returns**

- **boolean**: Whether or not the array or dtype is of the datetime64[ns] dtype.

**Examples**

```python
>>> is_datetime64_ns_dtype(str)
False
>>> is_datetime64_ns_dtype(int)
False
>>> is_datetime64_ns_dtype(np.datetime64) # no unit
False
>>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern"))
True
>>> is_datetime64_ns_dtype(np.array(["a", "b"]))
False
>>> is_datetime64_ns_dtype(np.array([1, 2]))
False
>>> is_datetime64_ns_dtype(np.array([], dtype=np.datetime64)) # no unit
False
>>> is_datetime64_ns_dtype(np.array([],
 dtype="datetime64[ps]")) # wrong unit
False
>>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3],
 dtype=np.datetime64)) # has 'ns' unit
True
```

### 34.16.4.10 pandas.api.types.is_datetime64tz_dtype

**pandas.api.types.is_datetime64tz_dtype(arr_or_dtype)**

Check whether an array-like or dtype is of a DatetimeTZDtype dtype.

**Parameters**

- `arr_or_dtype`: array-like
  
The array-like or dtype to check.

**Returns**

- **boolean**: Whether or not the array-like or dtype is of a DatetimeTZDtype dtype.

---

**34.16. General utility functions** 1843
Examples

```python
>>> is_datetime64tz_dtype(object)
False
>>> is_datetime64tz_dtype([1, 2, 3])
False
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3])) # tz-naive
False
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True
```

```python
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_datetime64tz_dtype(dtype)
True
>>> is_datetime64tz_dtype(s)
True
```

34.16.4.11 pandas.api.types.is_extension_type

pandas.api.types.is_extension_type(arr)

Check whether an array-like is of a pandas extension class instance.

Extension classes include categoricals, pandas sparse objects (i.e. classes represented within the pandas library and not ones external to it like scipy sparse matrices), and datetime-like arrays.

Parameters arr : array-like
    The array-like to check.

Returns boolean : Whether or not the array-like is of a pandas extension class instance.

Examples

```python
>>> is_extension_type([1, 2, 3])
False
>>> is_extension_type(np.array([1, 2, 3]))
False
>>> cat = pd.Categorical([1, 2, 3])
>>> is_extension_type(cat)
True
>>> is_extension_type(pd.Series(cat))
True
>>> is_extension_type(pd.SparseArray([1, 2, 3]))
True
>>> is_extension_type(pd.SparseSeries([1, 2, 3]))
True
>>> from scipy.sparse import bsr_matrix
>>> is_extension_type(bsr_matrix([1, 2, 3]))
False
>>> is_extension_type(pd.DatetimeIndex([1, 2, 3]))
```
False
>>> is_extension_type(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True
>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_extension_type(s)
True

34.16.4.12 pandas.api.types.is_float_dtype

pandas.api.types.is_float_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a float dtype.

Parameters arr_or_dtype : array-like
    The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of a float dtype.

Examples

>>> is_float_dtype(str)
False
>>> is_float_dtype(int)
False
>>> is_float_dtype(float)
True
>>> is_float_dtype(np.array(['a', 'b']))
False
>>> is_float_dtype(pd.Series([1, 2]))
False
>>> is_float_dtype(pd.Index([1, 2.]))
True

34.16.4.13 pandas.api.types.is_int64_dtype

pandas.api.types.is_int64_dtype(arr_or_dtype)
Check whether the provided array or dtype is of the int64 dtype.

Parameters arr_or_dtype : array-like
    The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of the int64 dtype.

Notes

Depending on system architecture, the return value of is_int64_dtype( int) will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers.
Examples

```python
>>> is_int64_dtype(str)
False
>>> is_int64_dtype(np.int32)
False
>>> is_int64_dtype(np.int64)
True
>>> is_int64_dtype(float)
False
>>> is_int64_dtype(np.uint64) # unsigned
False
>>> is_int64_dtype(np.array(['a', 'b']))
False
>>> is_int64_dtype(np.array([1, 2], dtype=np.int64))
True
>>> is_int64_dtype(pd.Index([1, 2.])) # float
False
>>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned
False
```

34.16.4.14 pandas.api.types.is_integer_dtype

pandas.api.types.**is_integer_dtype** *(arr_or_dtype)*

Check whether the provided array or dtype is of an integer dtype.

Unlike in *in_any_int_dtype*, timedelta64 instances will return False.

**Parameters**

- **arr_or_dtype**: array-like
  The array or dtype to check.

**Returns**

- **boolean**: Whether or not the array or dtype is of an integer dtype
  and not an instance of timedelta64.

Examples

```python
>>> is_integer_dtype(str)
False
>>> is_integer_dtype(int)
True
>>> is_integer_dtype(float)
False
>>> is_integer_dtype(np.uint64)
True
>>> is_integer_dtype(np.datetime64)
False
>>> is_integer_dtype(np.timedelta64)
False
>>> is_integer_dtype(np.array(['a', 'b']))
False
>>> is_integer_dtype(pd.Series([1, 2]))
True
>>> is_integer_dtype(np.array([], dtype=np.timedelta64))
False
```
is_integer_dtype(pd.Index([1, 2.]))  # float
False

34.16.4.15 pandas.api.types.is_interval_dtype

pandas.api.types.is_interval_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the Interval dtype.

Parameters
arr_or_dtype : array-like
The array-like or dtype to check.

Returns
boolean : Whether or not the array-like or dtype is of the Interval dtype.

Examples

>>> is_interval_dtype(object)
False
>>> is_interval_dtype(IntervalDtype())
True
>>> is_interval_dtype([1, 2, 3])
False
>>> interval = pd.Interval(1, 2, closed="right")
>>> is_interval_dtype(interval)
False
>>> is_interval_dtype(pd.IntervalIndex([interval]))
True

34.16.4.16 pandas.api.types.is_numeric_dtype

pandas.api.types.is_numeric_dtype(arr_or_dtype)
Check whether the provided array or dtype is of a numeric dtype.

Parameters
arr_or_dtype : array-like
The array or dtype to check.

Returns
boolean : Whether or not the array or dtype is of a numeric dtype.

Examples

>>> is_numeric_dtype(str)
False
>>> is_numeric_dtype(int)
True
>>> is_numeric_dtype(float)
True
>>> is_numeric_dtype(np.uint64)
True
>>> is_numeric_dtype(np.datetime64)
False

34.16. General utility functions
>>> is_numeric_dtype(np.timedelta64)
False
>>> is_numeric_dtype(np.array(['a', 'b']))
False
>>> is_numeric_dtype(pd.Series([1, 2]))
True
>>> is_numeric_dtype(pd.Index([1, 2.]))
True
>>> is_numeric_dtype(np.array([], dtype=np.timedelta64))
False

34.16.4.17 pandas.api.types.is_object_dtype

pandas.api.types.is_object_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the object dtype.

Parameters

arr_or_dtype : array-like
The array-like or dtype to check.

Returns

boolean : Whether or not the array-like or dtype is of the object dtype.

Examples

>>> is_object_dtype(object)
True
>>> is_object_dtype(int)
False
>>> is_object_dtype(np.array([], dtype=object))
True
>>> is_object_dtype(np.array([], dtype=int))
False
>>> is_object_dtype([1, 2, 3])
False

34.16.4.18 pandas.api.types.is_period_dtype

pandas.api.types.is_period_dtype(arr_or_dtype)
Check whether an array-like or dtype is of the Period dtype.

Parameters

arr_or_dtype : array-like
The array-like or dtype to check.

Returns

boolean : Whether or not the array-like or dtype is of the Period dtype.

Examples

>>> is_period_dtype(object)
False
>>> is_period_dtype(PeriodDtype(freq="D"))
True
>>> is_period_dtype([1, 2, 3])
False
34.16.4.19 pandas.api.types.is_signed_integer_dtypes

pandas.api.types.is_signed_integer_dtypes(arr_or_dtype)
Check whether the provided array or dtype is of a signed integer dtype.

Unlike in in_any_int_dtypes, timedelta64 instances will return False.

Parameters arr_or_dtype: array-like
    The array or dtype to check.

Returns boolean: Whether or not the array or dtype is of a signed integer dtype
    and not an instance of timedelta64.

Examples

```python
>>> is_signed_integer_dtypes(str)
False
>>> is_signed_integer_dtypes(int)
True
>>> is_signed_integer_dtypes(float)
False
>>> is_signed_integer_dtypes(np.uint64) # unsigned
False
>>> is_signed_integer_dtypes(np.datetime64)
False
>>> is_signed_integer_dtypes(np.timedelta64)
False
>>> is_signed_integer_dtypes(np.array(['a', 'b']))
False
>>> is_signed_integer_dtypes(pd.Series(['a', 'b']))
True
>>> is_signed_integer_dtypes(np.array([], dtype=np.timedelta64))
False
>>> is_signed_integer_dtypes(pd.Index([1, 2.])) # float
False
>>> is_signed_integer_dtypes(np.array([1, 2], dtype=np.uint32)) # unsigned
False
```

34.16.4.20 pandas.api.types.is_string_dtypes

pandas.api.types.is_string_dtypes(arr_or_dtype)
Check whether the provided array or dtype is of the string dtype.

Parameters arr_or_dtype: array-like
    The array or dtype to check.

Returns boolean: Whether or not the array or dtype is of the string dtype.
Examples

```python
>>> is_string_dtype(str)
True
>>> is_string_dtype(object)
True
>>> is_string_dtype(int)
False
>>> is_string_dtype(np.array(['a', 'b']))
True
>>> is_string_dtype(pd.Series([1, 2]))
False
```
Examples

```python
>>> is_timedelta64_ns_dtype(np.dtype('m8[ns]'))
True
>>> is_timedelta64_ns_dtype(np.dtype('m8[ps]')) # Wrong frequency
False
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype='m8[ns]'))
True
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))
False
```

34.16.4.23 pandas.api.types.is_unsigned_integer_dtype

pandas.api.types.is_unsigned_integer_dtype(arr_or_dtype)
Check whether the provided array or dtype is of an unsigned integer dtype.

Parameters arr_or_dtype : array-like
    The array or dtype to check.

Returns boolean : Whether or not the array or dtype is of an unsigned integer dtype.

Examples

```python
>>> is_unsigned_integer_dtype(str)
False
>>> is_unsigned_integer_dtype(int) # signed
False
>>> is_unsigned_integer_dtype(float)
False
>>> is_unsigned_integer_dtype(np.uint64)
True
>>> is_unsigned_integer_dtype(np.array([['a', 'b']]))
False
>>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed
False
>>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float
False
>>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32))
True
```

34.16.4.24 pandas.api.types.is_sparse

pandas.api.types.is_sparse(arr)
Check whether an array-like is a pandas sparse array.

Parameters arr : array-like
    The array-like to check.

Returns boolean : Whether or not the array-like is a pandas sparse array.
Examples

```python
>>> is_sparse(np.array([1, 2, 3]))
False
>>> is_sparse(pd.SparseArray([1, 2, 3]))
True
>>> is_sparse(pd.SparseSeries([1, 2, 3]))
True
```

This function checks only for pandas sparse array instances, so sparse arrays from other libraries will return False.

```python
>>> from scipy.sparse import bsr_matrix
>>> is_sparse(bsr_matrix([1, 2, 3]))
False
```

Iterable introspection

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>api.types.is_dict_like(obj)</td>
<td>Check if the object is dict-like.</td>
</tr>
<tr>
<td>api.types.is_file_like(obj)</td>
<td>Check if the object is a file-like object.</td>
</tr>
<tr>
<td>api.types.is_list_like(obj)</td>
<td>Check if the object is list-like.</td>
</tr>
<tr>
<td>api.types.is_named_tuple(obj)</td>
<td>Check if the object is a named tuple.</td>
</tr>
<tr>
<td>api.types.is_iterator(obj)</td>
<td>Check if the object is an iterator.</td>
</tr>
</tbody>
</table>

34.16.4.25 pandas.api.types.is_dict_like

pandas.api.types.is_dict_like(obj)

Check if the object is dict-like.

Parameters

- `obj` : The object to check.

Returns

- `is_dict_like` : bool
  
  Whether `obj` has dict-like properties.

Examples

```python
>>> is_dict_like({1: 2})
True
>>> is_dict_like([1, 2, 3])
False
```

34.16.4.26 pandas.api.types.is_file_like

pandas.api.types.is_file_like(obj)

Check if the object is a file-like object.

For objects to be considered file-like, they must be an iterator AND have either a `read` and/or `write` method as an attribute.

Note: file-like objects must be iterable, but iterable objects need not be file-like.

New in version 0.20.0.
**Parameters**  
obj : The object to check.

**Returns**  
is_file_like : bool  
Whether *obj* has file-like properties.

### Examples

```python  
>>> buffer(StringIO("data"))
>>> is_file_like(buffer)
True
>>> is_file_like([1, 2, 3])
False
```

#### 34.16.4.27 pandas.api.types.is_list_like

**pandas.api.types.is_list_like**(obj)

Check if the object is list-like.

Objects that are considered list-like are for example Python lists, tuples, sets, NumPy arrays, and Pandas Series. Strings and datetime objects, however, are not considered list-like.

**Parameters**  
obj : The object to check.

**Returns**  
is_list_like : bool  
Whether *obj* has list-like properties.

### Examples

```python  
>>> is_list_like([1, 2, 3])
True
>>> is_list_like({1, 2, 3})
True
>>> is_list_like(datetime(2017, 1, 1))
False
>>> is_list_like("foo")
False
>>> is_list_like(1)
False
```

#### 34.16.4.28 pandas.api.types.is_named_tuple

**pandas.api.types.is_named_tuple**(obj)

Check if the object is a named tuple.

**Parameters**  
obj : The object to check.

**Returns**  
is_named_tuple : bool  
Whether *obj* is a named tuple.
Examples

```python
>>> Point = namedtuple("Point", ["x", "y"])
>>> p = Point(1, 2)
>>> is_named_tuple(p)
True
>>> is_named_tuple((1, 2))
False
```

34.16.4.29 pandas.api.types.is_iterator

```python
pandas.api.types.is_iterator(obj)
```

Check if the object is an iterator.

For example, lists are considered iterators but not strings or datetime objects.

**Parameters**

**obj**: The object to check.

**Returns**

**is_iter**: bool

Whether `obj` is an iterator.

Examples

```python
>>> is_iterator([1, 2, 3])
True
>>> is_iterator(datetime(2017, 1, 1))
False
>>> is_iterator("foo")
False
>>> is_iterator(1)
False
```
34.16.4.30 pandas.api.types.is_bool

pandas.api.types.is_bool()

34.16.4.31 pandas.api.types.is_categorical

pandas.api.types.is_categorical(arr)

  Check whether an array-like is a Categorical instance.

    Parameters arr : array-like
        The array-like to check.

    Returns boolean : Whether or not the array-like is of a Categorical instance.

Examples

```python
goldenrod-
>>> is_categorical([1, 2, 3])
False
```

Categoricals, Series Categoricals, and CategoricalIndex will return True.

```python
goldenrod-
>>> cat = pd.Categorical([1, 2, 3])
>>> is_categorical(cat)
True
>>> is_categorical(pd.Series(cat))
True
>>> is_categorical(pd.CategoricalIndex([1, 2, 3]))
True
```

34.16.4.32 pandas.api.types.is_complex

pandas.api.types.is_complex()

34.16.4.33 pandas.api.types.is_datetimetz

pandas.api.types.is_datetimetz(arr)

  Check whether an array-like is a datetime array-like with a timezone component in its dtype.

    Parameters arr : array-like
        The array-like to check.

    Returns boolean : Whether or not the array-like is a datetime array-like with
        a timezone component in its dtype.

Examples

```python
goldenrod-
>>> is_datetimetz([1, 2, 3])
False
```
Although the following examples are both DatetimeIndex objects, the first one returns False because it has no timezone component unlike the second one, which returns True.

```python
>>> is_datetimetz(pd.DatetimeIndex([1, 2, 3]))
False
>>> is_datetimetz(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True
```

The object need not be a DatetimeIndex object. It just needs to have a dtype which has a timezone component.

```python
>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_datetimetz(s)
True
```

---

### 34.16.4.34 pandas.api.types.is_float

pandas.api.types.is_float()

### 34.16.4.35 pandas.api.types.is_hashable

pandas.api.types.is_hashable(obj)

Return True if hash(obj) will succeed, False otherwise.

Some types will pass a test against collections.Hashable but fail when they are actually hashed with hash(). Distinguish between these and other types by trying the call to hash() and seeing if they raise TypeError.

**Examples**

```python
>>> a = ([],)
>>> isinstance(a, collections.Hashable)
True
>>> is_hashable(a)
False
```

### 34.16.4.36 pandas.api.types.is_integer

pandas.api.types.is_integer()

### 34.16.4.37 pandas.api.types.is_interval

pandas.api.types.is_interval()

### 34.16.4.38 pandas.api.types.is_number

pandas.api.types.is_number(obj)

Check if the object is a number.

**Parameters**

- **obj**: The object to check.

**Returns**

- **is_number**: bool
Whether *obj* is a number or not.

**Examples**

```python
>>> is_number(1)
True
>>> is_number("foo")
False
```

### 34.16.4.39 pandas.api.types.is_period

**pandas.api.types.is_period** *(arr)*

Check whether an array-like is a periodical index.

**Parameters**

- **arr**: array-like
  
The array-like to check.

**Returns**

- **boolean**: Whether or not the array-like is a periodical index.

**Examples**

```python
>>> is_period([1, 2, 3])
False
>>> is_period(pd.Index([1, 2, 3]))
False
>>> is_period(pd.PeriodIndex("2017-01-01", freq="D"))
True
```

### 34.16.4.40 pandas.api.types.is_re

**pandas.api.types.is_re** *(obj)*

Check if the object is a regex pattern instance.

**Parameters**

- **obj**: The object to check.

**Returns**

- **regex**: bool
  
  Whether *obj* is a regex pattern.

**Examples**

```python
>>> is_re(re.compile(".*"))
True
>>> is_re("foo")
False
```
34.16.4.41 pandas.api.types.is_re_compilable

pandas.api.types.is_re_compilable(obj)
Check if the object can be compiled into a regex pattern instance.

Parameters
obj : The object to check.

Returns
is_regex_compilable : bool
Whether obj can be compiled as a regex pattern.

Examples

```python
>>> is_re_compilable(".*")
True
>>> is_re_compilable(1)
False
```

34.16.4.42 pandas.api.types.is_scalar

pandas.api.types.is_scalar()
Return True if given value is scalar.

This includes: - numpy array scalar (e.g. np.int64) - Python builtin numerics - Python builtin byte arrays and strings - None - instances of datetime.datetime - instances of datetime.timedelta - Period - instances of decimal.Decimal - Interval
This section will provide a look into some of pandas internals.

### 35.1 Indexing

In pandas there are a few objects implemented which can serve as valid containers for the axis labels:

- **Index**: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do $O(1)$ lookups.
- **Int64Index**: a version of Index highly optimized for 64-bit integer data, such as time stamps
- **Float64Index**: a version of Index highly optimized for 64-bit float data
- **MultiIndex**: the standard hierarchical index object
- **DatetimeIndex**: An Index object with Timestamp boxed elements (impl are the int64 values)
- **TimedeltaIndex**: An Index object with Timedelta boxed elements (impl are the int64 values)
- **PeriodIndex**: An Index object with Period elements

There are functions that make the creation of a regular index easy:

- **date_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects
- **period_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period objects, representing Timespans

The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas.

From an internal implementation point of view, the relevant methods that an Index must define are one or more of the following (depending on how incompatible the new object internals are with the Index functions):

- **get_loc**: returns an “indexer” (an integer, or in some cases a slice object) for a label
- **slice_locs**: returns the “range” to slice between two labels
- **get_indexer**: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this
- **get_indexer_non_unique**: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this
- **reindex**: Does any pre-conversion of the input index then calls get_indexer
- `union, intersection`: computes the union or intersection of two Index objects
- `insert`: Inserts a new label into an Index, yielding a new object
- `delete`: Delete a label, yielding a new object
- `drop`: Deletes a set of labels
- `take`: Analogous to `ndarray.take`

### 35.1.1 MultiIndex

Internally, the `MultiIndex` consists of a few things: the `levels`, the integer `labels`, and the level `names`:

```python
In [1]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
```

```python
In [2]: index
```

```
Out[2]:
MultiIndex(levels=[[0, 1, 2], ['one', 'two']],
 labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
 names=['first', 'second'])
```

```python
In [3]: index.levels
```

```
Out[3]:
FrozenList([[0, 1, 2], ['one', 'two']])
```

```python
In [4]: index.labels
```

```
Out[4]:
FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])
```

```python
In [5]: index.names
```

```
Out[5]:
FrozenList(['first', 'second'])
```

You can probably guess that the labels determine which unique element is identified with that location at each layer of the index. It’s important to note that sortedness is determined **solely** from the integer labels and does not check (or care) whether the levels themselves are sorted. Fortunately, the constructors `from_tuples` and `from_arrays` ensure that this is true, but if you compute the levels and labels yourself, please be careful.

### 35.2 Subclassing pandas Data Structures

**Warning:** There are some easier alternatives before considering subclassing pandas data structures.

1. Extensible method chains with pipe
2. Use composition. See here.

This section describes how to subclass pandas data structures to meet more specific needs. There are 2 points which need attention:

1. Override constructor properties.
2. Define original properties
35.2.1 Override Constructor Properties

Each data structure has constructor properties to specifying data constructors. By overriding these properties, you can retain defined-classes through pandas data manipulations.

There are 3 constructors to be defined:

- _constructor: Used when a manipulation result has the same dimensions as the original.
- _constructor_sliced: Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing.
- _constructor_expanddim: Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() and DataFrame.to_panel().

Following table shows how pandas data structures define constructor properties by default.

<table>
<thead>
<tr>
<th>Property Attributes</th>
<th>Series</th>
<th>DataFrame</th>
<th>Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>_constructor</td>
<td>Series</td>
<td>DataFrame</td>
<td>Panel</td>
</tr>
<tr>
<td>_constructor_sliced</td>
<td>NotImplementedError</td>
<td>Series</td>
<td>DataFrame</td>
</tr>
<tr>
<td>_constructor_expanddim</td>
<td>DataFrame</td>
<td>Panel</td>
<td>NotImplementedError</td>
</tr>
</tbody>
</table>

Below example shows how to define SubclassedSeries and SubclassedDataFrame overriding constructor properties.

```python
class SubclassedSeries(Series):
 @property
def _constructor(self):
 return SubclassedSeries

 @property
def _constructor_expanddim(self):
 return SubclassedDataFrame
class SubclassedDataFrame(DataFrame):
 @property
def _constructor(self):
 return SubclassedDataFrame

 @property
def _constructor_sliced(self):
 return SubclassedSeries

>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>

>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>

>>> df = SubclassedDataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
```
35.2.2 Define Original Properties

To let original data structures have additional properties, you should let pandas know what properties are added. pandas maps unknown properties to data names overriding __getattr__. Defining original properties can be done in one of 2 ways:

1. Define _internal_names and _internal_names_set for temporary properties which WILL NOT be passed to manipulation results.
2. Define _metadata for normal properties which will be passed to manipulation results.

Below is an example to define 2 original properties, “internal_cache” as a temporary property and “added_property” as a normal property.

```python
class SubclassedDataFrame2(DataFrame):
 # temporary properties
 _internal_names = pd.DataFrame._internal_names + ['internal_cache']
 _internal_names_set = set(_internal_names)
 # normal properties
 _metadata = ['added_property']

 @property
def _constructor(self):
 return SubclassedDataFrame2
```

```python
>>> df = SubclassedDataFrame2({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
```
```python
>>> df.internal_cache = 'cached'
>>> df.added_property = 'property'

>>> df.internal_cache
cached
>>> df.added_property
property

properties defined in _internal_names is reset after manipulation
>>> df[['A', 'B']].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'

properties defined in _metadata are retained
>>> df[['A', 'B']].added_property
property
```
This is the list of changes to pandas between each release. For full details, see the commit logs at http://github.com/pandas-dev/pandas

What is it

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language.

Where to get it

- Source code: http://github.com/pandas-dev/pandas
- Binary installers on PyPI: http://pypi.python.org/pypi/pandas
- Documentation: http://pandas.pydata.org

36.1 pandas 0.20.0 / 0.20.1

Release date: May 5, 2017

This is a major release from 0.19.2 and includes a number of API changes, deprecations, new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- New .agg() API for Series/DataFrame similar to the groupby-rolling-resample API’s, see here
- Integration with the feather-format, including a new top-level pd.read_feather() and DataFrame.to_feather() method, see here.
- The .ix indexer has been deprecated, see here
- Panel has been deprecated, see here
- Addition of an IntervalIndex and Interval scalar type, see here
- Improved user API when grouping by index levels in .groupby(), see here
- Improved support for UInt64 dtypes, see here
- A new orient for JSON serialization, orient='table', that uses the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook, see here
- Experimental support for exporting styled DataFrames (DataFrame.style) to Excel, see here
- Window binary corr/cov operations now return a MultiIndexed DataFrame rather than a Panel, as Panel is now deprecated, see [here](#).
- Support for S3 handling now uses s3fs, see [here](#).
- Google BigQuery support now uses the pandas_gbq library, see [here](#).

See the v0.20.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.20.1.

---

**Note:** This is a combined release for 0.20.0 and 0.20.1. Version 0.20.1 contains one additional change for backwards-compatibility with downstream projects using pandas’ `utils` routines. (GH16250)

---

### 36.1.1 Thanks

- abaldenko
- Adam J. Stewart
- Adrian
- adrian-stepien
- Ajay Saxena
- Akash Tandon
- Albert Villanova del Moral
- Aleksey Bilogur
- alexandercbooth
- Alexis Mignon
- Amol Kahat
- Andreas Winkler
- Andrew Kittredge
- Anthonios Partheniou
- Arco Bast
- Ashish Singal
- atbd
- bastewart
- Baurzhan Muftakhidinov
- Ben Kandel
- Ben Thayer
- Ben Welsh
- Bill Chambers
- bmagnusson
- Brandon M. Burroughs
- Brian
- Brian McFee
- carlosdanielesantos
- Carlos Souza
- chaimdemulder
- Chris
- chris-b1
- Chris Ham
- Christopher C. Aycock
- Christoph Gohlke
- Christoph Paulik
- Chris Warth
- Clemens Brunner
- DaanVanHauwermeiren
- Daniel Himmelstein
- Dave Willmer
- David Cook
- David Gwynne
- David Hoffman
- David Krych
- dickreuter
- Diego Fernandez
- Dimitris Spathis
- discort
- Dmitry L
- Dody Suria Wijaya
- Dominik Stanczak
- Dr-Irv
- Dr. Irv
- dr-leo
- D.S. McNeil
- dubourg
- dwkenefick
- Elliott Sales de Andrade
- Ennemoser Christoph
- Francesc Alted
- Fumito Hamamura
• funnycrab
• gflyoung
• Giacomo Ferroni
• goldenbull
• Graham R. Jeffries
• Greg Williams
• Guilherme Beltramini
• Guilherme Samora
• Hao Wu
• Harshit Patni
  • hesham.shabana@hotmail.com
• Ilya V. Schurov
• Iván Vallés Pérez
• Jackie Leng
• Jaehoon Hwang
• James Draper
• James Goppert
• James McBride
• James Santucci
• Jan Schulz
• Jeff Carey
• Jeff Reback
• JennaVergeynst
• Jim
• Jim Crist
• Joe Jevnik
• Joel Nothman
• John
• John Tucker
• John W. O’Brien
• John Zwinck
• jojomdt
• Jonathan de Bruin
• Jonathan Whitmore
• Jon Mease
• Jon M. Mease
• Joost Kranendonk
• Joris Van den Bossche
• Joshua Bradt
• Julian Santander
• Julien Marrec
• Jun Kim
• Justin Solinsky
• Kacawi
• Kamal Kamalaldin
• Kerby Shedden
• Kernc
• Keshav Ramaswamy
• Kevin Sheppard
• Kyle Kelley
• Larry Ren
• Leon Yin
• linebp
• Line Pedersen
• Lorenzo Cestaro
• Luca Scarabello
• Lukasz
• Mahmoud Lababidi
• manu
• manuels
• Mark Mandel
• Matthew Brett
• Matthew Roeschke
• mttip
• Matt Picus
• Matt Roeschke
• maxalbert
• Maximilian Roos
• mcocdawc
• Michael Charlton
• Michael Felt
• Michael Lamparski
• Michiel Stock
• Mikolaj Chwalisz
• Min RK
• Miroslav Šedivý
• Mykola Golubyev
• Nate Yoder
• Nathalie Rud
• Nicholas Ver Halen
• Nick Chmura
• Nolan Nichols
• nuffe
• Pankaj Pandey
• paul-mannino
• Pawel Kordek
• pbreach
• Pete Huang
• Peter
• Peter Csizsek
• Petio Petrov
• Phil Ruffwind
• Pietro Battiston
• Piotr Chromiec
• Prasanjit Prakash
• Robert Bradshaw
• Rob Forgione
• Robin
• Rodolfo Fernandez
• Roger Thomas
• Rouz Azari
• Sahil Dua
• sakkemo
• Sam Foo
• Sami Salonen
• Sarah Bird
• Sarma Tangirala
• scls19fr
• Scott Sanderson
• Sebastian Bank
• Sebastian Gsänger
• Sébastien de Menten
• Shawn Heide
• Shyam Saladi
• sinhrks
• Sinhrks
• Stephen Rauch
• stijnvanhoey
• Tara Adiseshan
• themrmax
• the-nose-knows
• Thiago Serafim
• Thoralf Gutierrez
• Thrasibule
• Tobias Gustafsson
• Tom Augspurger
• tomrod
• Tong Shen
• Tong SHEN
• TrigonaMinima
• tzinkgraf
• Uwe
• wandersoncferreira
• watercrossing
• wcwagner
• Wes Turner
• Wiktor Tomczak
• WillAyd
• xgdgsc
• Yaroslav Halchenko
• Yimeng Zhang
• yui-knk
36.2 pandas 0.19.2

Release date: December 24, 2016

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance improvements.

Highlights include:

- Compatibility with Python 3.6
- Added a Pandas Cheat Sheet. (GH13202).

See the v0.19.2 Whatsnew page for an overview of all bugs that have been fixed in 0.19.2.

36.2.1 Thanks

- Ajay Saxena
- Ben Kandel
- Chris
- Chris Ham
- Christopher C. Aycock
- Daniel Himmelstein
- Dave Willmer
- Dr-Irv
- gfyoun
- hesham shabana
- Jeff Carey
- Jeff Reback
- Joe Jevnik
- Joris Van den Bossche
- Julian Santander
- Kerby Shedden
- Keshav Ramaswamy
- Kevin Sheppard
- Luca Scarabello
- Matti Picus
- Matt Roeschke
- Maximilian Roos
- Mykola Golubyev
- Nate Yoder
- Nicholas Ver Halen
36.3  pandas 0.19.1

Release date: November 3, 2016

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance improvements.

See the v0.19.1 Whatsnew page for an overview of all bugs that have been fixed in 0.19.1.

36.3.1  Thanks

• Adam Chainz
• Anthonios Partheniou
• Arash Rouhani
• Ben Kandel
• Brandon M. Burroughs
• Chris
• chris-b1
• Chris Warth
• David Krych
• dubourg
• gfyoung
• Iván Vallés Pérez
• Jeff Reback
• Joe Jevnik
• Jon M. Mease
• Joris Van den Bossche
• Josh Owen
• Keshav Ramaswamy
• Larry Ren
36.4 pandas 0.19.0

Release date: October 2, 2016

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- `merge_asof()` for asof-style time-series joining, see [here](#)
- `.rolling()` is now time-series aware, see [here](#)
- `read_csv()` now supports parsing Categorical data, see [here](#)
- A function `union_categorical()` has been added for combining categoricals, see [here](#)
- `PeriodIndex` now has its own `period` dtype, and changed to be more consistent with other `Index` classes. See [here](#)
- Sparse data structures gained enhanced support of `int` and `bool` dtypes, see [here](#)
- Comparison operations with `Series` no longer ignores the index, see [here](#) for an overview of the API changes.
- Introduction of a pandas development API for utility functions, see [here](#).
- Deprecation of `Panel4D` and `PanelND`. We recommend to represent these types of n-dimensional data with the `xarray` package.
- Removal of the previously deprecated modules `pandas.io.data`, `pandas.io.wb`, `pandas.tools.rplot`.

See the [v0.19.0 Whatsnew](#) overview for an extensive list of all enhancements and bugs that have been fixed in 0.19.0.

36.4.1 Thanks

- adneu
- Adrien Emery
- agraboso
- Alex Alekseyev
- Alex Vig
- Allen Riddell
• Amol
• Amol Agrawal
• Andy R. Terrel
• Anthonios Partheniou
• babakkeyvani
• Ben Kandel
• Bob Baxley
• Brett Rosen
• c123w
• Camilo Cota
• Chris
• chris-b1
• Chris Grinolds
• Christian Hudon
• Christopher C. Aycock
• Chris Warth
• cmazzullo
• conquistador1492
• cr3
• Daniel Siladji
• Douglas McNeil
• Drewrey Lupton
• dsm054
• Eduardo Blancas Reyes
• Elliot Marsden
• Evan Wright
• Felix Marczinowski
• Francis T. O’Donovan
• Gábor Lipták
• Geraint Duck
• gfyounf
• Giacomo Ferroni
• Grant Roch
• Haleemur Ali
• harshul1610
• Hassan Shamim
• Paul
• Pauli Virtanen
• Paul Mestemaker
• Pawel Kordek
• Pietro Battiston
• pijucha
• Piotr Jucha
• priyankjain
• Ravi Kumar Nimmi
• Robert Gieseke
• Robert Kern
• Roger Thomas
• Roy Keyes
• Russell Smith
• Sahil Dua
• Sanjiv Lobo
• Sašo Stanovnik
• Shawn Heide
• sinhrks
• Sinhrks
• Stephen Kappel
• Steve Choi
• Stewart Henderson
• Sudarshan Konge
• Thomas A Caswell
• Tom Augspurger
• Tom Bird
• Uwe Hoffmann
• wcwagner
• WillAyd
• Xiang Zhang
• Yadunandan
• Yaroslav Halchenko
• YG-Riku
• Yuichiro Kaneko
• yui-knk
36.5 pandas 0.18.1

Release date: (May 3, 2016)
This is a minor release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

- `.groupby(...)` has been enhanced to provide convenient syntax when working with `.rolling(...)`, `.expanding(...)` and `.resample(...)` per group, see [here](#)
- `pd.to_datetime()` has gained the ability to assemble dates from a DataFrame, see [here](#)
- Method chaining improvements, see [here](#).
- Custom business hour offset, see [here](#).
- Many bug fixes in the handling of sparse, see [here](#)
- Expanded the Tutorials section with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).

See the v0.18.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.1.

36.5.1 Thanks

- Andrew Fiore-Gartland
- Bastiaan
- Benoît Vinot
- Brandon Rhodes
- DaCoEx
- Drew Fustin
- Ernesto Freitas
- Filip Ter
- Gregory Livschitz
- Gábor Lipták
- Hassan Kibirige
- Iblis Lin
- Israel Saeta Pérez
- Jason Wolosonovich
- Jeff Reback
- Joe Jevnik
- Joris Van den Bossche
• Joshua Storck
• Ka Wo Chen
• Kerby Shedden
• Kieran O’Mahony
• Leif Walsh
• Mahmoud Lababidi
• Maoyuan Liu
• Mark Roth
• Matt Wittmann
• MaxU
• Maximilian Roos
• Michael Droettboom
• Nick Eubank
• Nicolas Bonnotte
• OXPHOS
• Pauli Virtanen
• Peter Waller
• Pietro Battiston
• Prabhjot Singh
• Robin Wilson
• Roger Thomas
• Sebastian Bank
• Stephen Hoover
• Tim Hopper
• Tom Augspurger
• WANG Aiyong
• Wes Turner
• Winand
• Xbar
• Yan Facai
• adneu
• ajenkins-cargometrics
• behzad nouri
• chinskiy
• gfyoun
• jeps-journal
36.6 pandas 0.18.0

Release date: (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby, see here.
- Adding support for a RangeIndex as a specialized form of the Int64Index for memory savings, see here.
- API breaking change to the .resample method to make it more .groupby like, see here.
- Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a TypeError, see here.
- The .to_xarray() function has been added for compatibility with the xarray package, see here.
- The read_sas function has been enhanced to read sas7bdat files, see here.
- Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method.
- pd.test() top-level nose test runner is available (GH4327).

See the v0.18.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.0.

36.6.1 Thanks

- ARF
- Alex Alekseyev
- Andrew McPherson
- Andrew Rosenfeld
- Anthonios Partheniou
- Anton I. Sipos
- Ben
- Ben North
- Bran Yang
• Chris
• Chris Carroux
• Christopher C. Aycock
• Christopher Scanlin
• Cody
• Da Wang
• Daniel Grady
• Dorozhko Anton
• Dr-Irv
• Erik M. Bray
• Evan Wright
• Francis T. O’Donovan
• Frank Cleary
• Gianluca Rossi
• Graham Jeffries
• Guillaume Horel
• Henry Hammond
• Isaac Schwabacher
• Jean-Mathieu Deschenes
• Jeff Reback
• Joe Jevnik
• John Freeman
• John Fremlin
• Jonas Hoersch
• Joris Van den Bossche
• Joris Vankerschaver
• Justin Lecher
• Justin Lin
• Ka Wo Chen
• Keming Zhang
• Kerby Shedden
• Kyle
• Marco Farrugia
• MasonGallo
• MattRijk
• Matthew Lurie
• Maximilian Roos
• Mayank Asthana
• Mortada Mehyar
• Moussa Taifi
• Navreet Gill
• Nicolas Bonnotte
• Paul Reiners
• Philip Gura
• Pietro Battiston
• RahulHP
• Randy Carnevale
• Rinoc Johnson
• Rishipuri
• Sangmin Park
• Scott E Lasley
• Sereger13
• Shannon Wang
• Skipper Seabold
• Thierry Moisan
• Thomas A Caswell
• Toby Dylan Hocking
• Tom Augspurger
• Travis
• Trent Hauck
• Tux1
• Varun
• Wes McKinney
• Will Thompson
• Yoav Ram
• Yoong Kang Lim
• Yoshiki Vázquez Baeza
• Young Joong Kim
• Younggun Kim
• Yuval Langer
• alex argunov
• behzad nouri
36.7 pandas 0.17.1

Release date: (November 21, 2015)

This is a minor release from 0.17.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

- Support for Conditional HTML Formatting, see here
- Releasing the GIL on the csv reader & other ops, see here
- Regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376)

See the v0.17.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.1.

36.7.1 Thanks

- Aleksandr Drozd
- Alex Chase
- Anthonios Partheniou
- BrenBarn
• Brian J. McGuirk
• Chris
• Christian Berendt
• Christian Perez
• Cody Piersall
• Data & Code Expert Experimenting with Code on Data
• DrIr
• Evan Wright
• Guillaume Gay
• Hamed Saljooghejad
• Iblis Lin
• Jake VanderPlas
• Jan Schulz
• Jean-Mathieu Deschenes
• Jeff Reback
• Jimmy Callin
• Joris Van den Bossche
• K.-Michael Aye
• Ka Wo Chen
• Loïc Séguin-C
• Luo Yicheng
• Magnus Jöud
• Manuel Leonhardt
• Matthew Gilbert
• Maximilian Roos
• Michael
• Nicholas Stahl
• Nicolas Bonnotte
• Pastafarianist
• Petra Chong
• Phil Schaf
• Philipp A
• Rob deCarvalho
• Roman Khomenko
• Rémy Léone
• Sebastian Bank
36.8 pandas 0.17.0

**Release date:** (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- Release the Global Interpreter Lock (GIL) on some cython operations, see [here](#)
- Plotting methods are now available as attributes of the `.plot` accessor, see [here](#)
- The sorting API has been revamped to remove some long-time inconsistencies, see [here](#)
- Support for a `datetime64[ns]` with timezones as a first-class dtype, see [here](#)
- The default for `to_datetime` will now be `raise` when presented with unparsable formats, previously this would return the original input. Also, date parse functions now return consistent results. See [here](#)
- The default for `dropna` in `HDFStore` has changed to `False`, to store by default all rows even if they are all NaN, see [here](#)
• Datetime accessor (dt) now supports Series.dt.strftime to generate formatted strings for datetimelikes, and Series.dt.total_seconds to generate each duration of the timedelta in seconds. See here
• Period and PeriodIndex can handle multiplied freq like 3D, which corresponding to 3 days span. See here
• Development installed versions of pandas will now have PEP440 compliant version strings (GH9518)
• Development support for benchmarking with the Air Speed Velocity library (GH8316)
• Support for reading SAS xport files, see here
• Documentation comparing SAS to pandas, see here
• Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here
• Display format with plain text can optionally align with Unicode East Asian Width, see here
• Compatibility with Python 3.5 (GH11097)
• Compatibility with matplotlib 1.5.0 (GH11111)

See the v0.17.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.0.

36.8.1 Thanks

• Alex Rothberg
• Andrea Bedini
• Andrew Rosenfeld
• Andy Li
• Anthonios Partheniou
• Artemy Kolchinsky
• Bernard Willers
• Charlie Clark
• Chris
• Chris Whelan
• Christoph Gohlke
• Christopher Whelan
• Clark Fitzgerald
• Clearfield Christopher
• Dan Ringwalt
• Daniel Ni
• Data & Code Expert Experimenting with Code on Data
• David Cottrell
• David John Gagne
• David Kelly
• ETF
• Eduardo Schettino
• Egor
• Egor Panfilov
• Evan Wright
• Frank Pinter
• Gabriel Araujo
• Garrett-R
• Gianluca Rossi
• Guillaume Gay
• Guillaume Poulain
• Harsh Nisar
• Ian Henriksen
• Ian Hoegen
• Jaidev Deshpande
• Jan Rudolph
• Jan Schulz
• Jason Swails
• Jeff Reback
• Jonas Buyl
• Joris Van den Bossche
• Joris Vankerschaver
• Josh Levy-Kramer
• Julien Danjou
• Ka Wo Chen
• Karrie Kehoe
• Kelsey Jordahl
• Kerby Shedden
• Kevin Sheppard
• Lars Buitinck
• Leif Johnson
• Luis Ortiz
• Mac
• Matt Gambogi
• Matt Savoie
• Matthew Gilbert
• Maximilian Roos
• Michelangelo D’Agostino
• Mortada Mehyar
• Nick Eubank
• Nipun Batra
• Ondřej Čertík
• Phillip Cloud
• Pratap Vardhan
• Rafal Skolasinski
• Richard Lewis
• Rinoc Johnson
• Rob Levy
• Robert Gieseke
• Safia Abdalla
• Samuel Denny
• Saumitra Shahapure
• Sebastian Fölsterl
• Sebastian Rubbert
• Sheppard, Kevin
• Sinhrks
• Siu Kwan Lam
• Skipper Seabold
• Spencer Carrucciu
• Stephan Hoyer
• Stephen Hoover
• Stephen Pascoe
• Terry Santegoeds
• Thomas Grainger
• Tjerk Santegoeds
• Tom Augspurger
• Vincent Davis
• Winterflower
• Yaroslav Halchenko
• Yuan Tang (Terry)
• agijsberts
• ajcr
• behzad nouri
• cel4
36.9 pandas 0.16.2

**Release date:** (June 12, 2015)

This is a minor release from 0.16.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

- A new **pipe** method, see [here](#)
- Documentation on how to use **numba** with **pandas**, see [here](#)

See the [v0.16.2 Whatsnew](#) overview for an extensive list of all enhancements and bugs that have been fixed in 0.16.2.

36.9.1 Thanks

- Andrew Rosenfeld
- Artemy Kolchinsky
- Bernard Willers
- Christer van der Meeren
- Christian Hudon
- Constantine Glen Evans
- Daniel Julius Lasiman
- Evan Wright
36.10 pandas 0.16.1

**Release date:** (May 11, 2015)

This is a minor release from 0.16.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the [v0.16.1 Whatsnew](#) overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.1.

### 36.10.1 Thanks

- Alfonso MHC
- Andy Hayden
- Artemy Kolchinsky
• Chris Gilmer
• Chris Grinolds
• Dan Birken
• David BROCHART
• David Hirschfeld
• David Stephens
• Dr. Leo
• Evan Wright
• Frans van Dunné
• Hatem Nassrat
• Henning Sperr
• Hugo Herter
• Jan Schulz
• Jeff Blackburne
• Jeff Reback
• Jim Crist
• Jonas Abernot
• Joris Van den Bossche
• Kerby Shedden
• Leo Razoumov
• Manuel Riel
• Mortada Mehyar
• Nick Burns
• Nick Eubank
• Olivier Grisel
• Phillip Cloud
• Pietro Battiston
• Roy Hyunjin Han
• Sam Zhang
• Scott Sanderson
• Stephan Hoyer
• Tiago Antao
• Tom Ajamian
• Tom Augspurger
• Tomaz Berisa
• Vikram Shirgur
36.11 pandas 0.16.0

Release date: (March 22, 2015)

This is a major release from 0.15.2 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- DataFrame.assign method, see here
- Series.to_coo/from_coo methods to interact with scipy.sparse, see here
- Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta, see here
- Changes to the .loc slicing API to conform with the behavior of .ix see here
- Changes to the default for ordering in the Categorical constructor, see here
- The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here

See the v0.16.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.0.
36.11.1 Thanks

- Aaron Toth
- Alan Du
- Alessandro Amici
- Artemy Kolchinsky
- Ashwini Chaudhary
- Ben Schiller
- Bill Letson
- Brandon Bradley
- Chau Hoang
- Chris Reynolds
- Chris Whelan
- Christer van der Meeren
- David Cottrell
- David Stephens
- Ehsan Azarnasab
- Garrett-R
- Guillaume Gay
- Jake Torcasso
- Jason Sexauer
- Jeff Reback
- John McNamara
- Joris Van den Bossche
- Joschka zur Jacobsmühlen
- Juarez Bochi
- Junya Hayashi
- K.-Michael Aye
- Kerby Shedden
- Kevin Sheppard
- Kieran O’Mahony
- Kodi Arfer
- Matti Airas
- Min RK
- Mortada Mehyar
- Robert
- Scott E Lasley
36.12 pandas 0.15.2

Release date: (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the v0.15.2 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.2.
36.12.1 Thanks

- Aaron Staple
- Angelos Evripiotis
- Artemy Kolchinsky
- Benoit Pointet
- Brian Jacobowski
- Charalampos Papaloizou
- Chris Warth
- David Stephens
- Fabio Zanini
- Francesc Via
- Henry Kleynhans
- Jake VanderPlas
- Jan Schulz
- Jeff Reback
- Jeff Tratner
- Joris Van den Bossche
- Kevin Sheppard
- Matt Suggit
- Matthew Brett
- Phillip Cloud
- Rupert Thompson
- Scott E Lasley
- Stephan Hoyer
- Stephen Simmons
- Sylvain Corlay
- Thomas Grainger
- Tiago Antao
- Trent Hauck
- Victor Chaves
- Victor Salgado
- Vikram Bhandoh
- WANG Aiyong
- Will Holmgren
- behzad nouri
- broessli
• charalampos papaloizou
• immerr
• jnmclarty
• jreback
• mgilbert
• onesandzeroes
• peadarcoyle
• rockg
• seth-p
• sinhhrs
• unutbu
• wavedatalab
• Åsmund Hjulstad

36.13 pandas 0.15.1

Release date: (November 9, 2014)
This is a minor release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

See the v0.15.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.1.

36.13.1 Thanks

• Aaron Staple
• Andrew Rosenfeld
• Anton I. Sipos
• Artemy Kolchinsky
• Bill Letson
• Dave Hughes
• David Stephens
• Guillaume Horel
• Jeff Reback
• Joris Van den Bossche
• Kevin Sheppard
• Nick Stahl
• Sanghee Kim
• Stephan Hoyer
36.14 pandas 0.15.0

Release date: (October 18, 2014)

This is a major release from 0.14.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- Drop support for numpy < 1.7.0 (GH7711)
- The Categorical type was integrated as a first-class pandas type, see here
- New scalar type Timedelta, and a new index type TimedeltaIndex, see here
- New DataFrame default display for df.info() to include memory usage, see Memory Usage
- New datetimelike properties accessor .dt for Series, see Datetimelike Properties
- Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
- Split out string methods documentation into Working with Text Data
- read_csv will now by default ignore blank lines when parsing, see here
- API change in using Indexes in set operations, see here
- Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring
- dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)

See the v0.15.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.0.

36.14.1 Thanks

- Aaron Schumacher
- Adam Greenhall
- Andy Hayden
- Anthony O’Brien
- Artemy Kolchinsky
- behzad nouri
- Benedikt Sauer
- benjamin
- Benjamin Thyreau
- Ben Schiller
- bjonen
- BorisVerk
- Chris Reynolds
- Chris Stoafer
- Dav Clark
- dlovell
- DSM
- dsm054
- FragLegs
- German Gomez-Herrero
- Hsiaoming Yang
- Huan Li
- hunterowens
- Hyungtae Kim
- immerrr
- Isaac Slavitt
- ischwabacher
- Jacob Schaer
- Jacob Wasserman
- Jan Schulz
- Jeff Tratner
- Jesse Farnham
- jmorris0x0
- jnmclarty
- Joe Bradish
- Joerg Rittinger
- John W. O’Brien
- Joris Van den Bossche
- jreback
- Kevin Sheppard
- klonuo
- Kyle Meyer
- lexual
- Max Chang
- mejcode
- Michael Mueller
- Michael W Schatzow
- Mike Kelly
- Mortada Mehyar
- mtrbean
- Nathan Sanders
- Nathan Typanski
- onesandzeroes
- Paul Masurel
- Phillip Cloud
- Pietro Battiston
- RenzoBertocchi
- rockg
- Ross Petchler
- seth-p
- Shahul Hameed
- Shashank Agarwal
- sinhrks
- someben
- stahlous
- stas-sl
- Stephan Hoyer
- thatneat
- tom-alcorn
- TomAugspurger
- Tom Augspurger
- Tony Lorenzo
- unknown
- unutbu
- Wes Turner
- Wilfred Hughes
- Yevgeniy Grechka
- Yoshiki Vázquez Baeza
- zachcp
36.15 pandas 0.14.1

Release date: (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

• New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
• Support for dateutil timezones (see docs).
• Support for ignoring full line comments in the `read_csv()` text parser.
• New documentation section on `Options and Settings`.
• Lots of bug fixes.

See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.1.

36.15.1 Thanks

• Andrew Rosenfeld
• Andy Hayden
• Benjamin Adams
• Benjamin M. Gross
• Brian Quistorff
• Brian Wignall
• bwignall
• clham
• Daniel Waeber
• David Bew
• David Stephens
• DSM
• dsm054
• helger
• immerrr
• Jacob Schaer
• jaimefrio
• Jan Schulz
• John David Reaver
• John W. O'Brien
• Joris Van den Bossche
• jreback
• Julien Danjou
• Kevin Sheppard
• K.-Michael Aye
• Kyle Meyer
• lexical
• Matthew Brett
• Matt Wittmann
• Michael Mueller
• Mortada Mehyar
• onesan zeroes
• Phillip Cloud
• Rob Levy
• rockg
• sanguineturtle
• Schaer, Jacob C
• seth-p
• sinhkrk
• Stephan Hoyer
• Thomas Kluyver
• Todd Jennings
• TomAugspurger
• unknown
• yelite

36.16 pandas 0.14.0

Release date: (May 31, 2014)

This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

• Officially support Python 3.4
• SQL interfaces updated to use sqlalchemy, see here.
• Display interface changes, see here
• Multindexing using Slicers, see here.
• Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see here
• More consistency in groupby results and more flexible groupby specifications, see here
• Holiday calendars are now supported in CustomBusinessDay, see here
• Several improvements in plotting functions, including: hexbin, area and pie plots, see here.
• Performance doc section on I/O operations, see here

See the v0.14.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.0.

### 36.16.1 Thanks

• Acanthostega
• Adam Marcus
• agijsberts
• akittridge
• Alex Gaudio
• Alex Rothberg
• AllenDowney
• Andrew Rosenfeld
• Andy Hayden
• ankostis
• anomrake
• Antoine Mazières
• anton-d
• bashtage
• Benedikt Sauer
• benjamin
• Brad Buran
• bwignall
• cgohlke
• chebee7i
• Christopher Whelan
• Clark Fitzgerald
• clham
• Dale Jung
• Dan Allan
• Dan Birken
• danielballan
• Daniel Waeger
• David Jung
- David Stephens
- Douglas McNeil
- DSM
- Garrett Drapala
- Gouthaman Balaraman
- Guillaume Poulin
- hshimizu77
- hugo
- immerrr
- ischwabacher
- Jacob Howard
- Jacob Schaer
- jaimefrio
- Jason Sexauer
- Jeff Reback
- Jeffrey Starr
- Jeff Tratner
- John David Reaver
- John McNamara
- John W. O'Brien
- Jonathan Chambers
- Joris Van den Bossche
- jreback
- jsexauer
- Julia Evans
- Júlio
- Katie Atkinson
- kdiether
- Kelsey Jordahl
- Kevin Sheppard
- K.-Michael Aye
- Matthias Kuhn
- Matt Wittmann
- Max Grender-Jones
- Michael E. Gruen
- michaelws
36.17  pandas 0.13.1

Release date:  (February 3, 2014)

36.17.1  New Features

- Added date_format and datetime_format attribute to ExcelWriter. (GH4133)
36.17.2 API Changes

- **Series.sort** will raise a `ValueError` (rather than a `TypeError`) on sorting an object that is a view of another (GH5856, GH5853)
- Raise/Warn SettingWithCopyError (according to the option `chained_assignment` in more cases, when detecting chained assignment, related (GH5938, GH6025)
- **DataFrame.head(0)** returns self instead of empty frame (GH5846)
- **autocorrelation_plot** now accepts `**kwargs` (GH5623)
- **convert_objects** now accepts a `convert_timedeltas='coerce'` argument to allow forced dtype conversion of timedeltas (GH5458;issue:5689)
- Add `~NaN` and `~nan` to the default set of NA values (GH5952). See **NA Values**.
- **NDFrame** now has an `equals` method. (GH5283)
- **DataFrame.apply** will use the `reduce` argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007).

36.17.3 Experimental Features

36.17.4 Improvements to existing features

- perf improvements in Series datetime/timedelta binary operations (GH5801)
- **option_context** context manager now available as top-level API (GH5752)
- df.info() view now display dtype info per column (GH5682)
- df.info() now honors option `max_info_rows`, disable null counts for large frames (GH5974)
- perf improvements in **DataFrame count/dropna** for `axis=1`
- **Series.str.contains** now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- support dtypes property on **Series/Panel/Panel4D**
- extend **Panel.apply** to allow arbitrary functions (rather than only ufuncs) (GH1148) allow multiple axes to be used to operate on slabs of a Panel
- The **ArrayFormatter** for datetime and timedelta64 now intelligently limit precision based on the values in the array (GH3401)
- **pd.show_versions()** is now available for convenience when reporting issues.
- perf improvements to **Series.str.extract** (GH5944)
- perf improvements in dtypes/ftypes methods (GH5968)
- perf improvements in indexing with object dtypes (GH5968)
- improved dtype inference for timedelta like passed to constructors (GH5458, GH5689)
- escape special characters when writing to latex (issue: 5374)
- perf improvements in **DataFrame.apply** (GH6013)

- **pd.read_csv** and **pd.to_datetime** learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490;issue:6021)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361)
- Fix performance regression in JSON IO (GH5765)
- performance regression in Index construction from Series (GH6150)

**36.17.5 Bug Fixes**

- Bug in `io.wb.get_countries` not including all countries (GH6008)
- Bug in Series replace with timestamp dict (GH5797)
- `read_csv/read_table` now respects the `prefix` kwarg (GH5732).
- Bug in selection with missing values via `.ix` from a duplicate indexed DataFrame failing (GH5835)
- Fix issue of boolean comparison on empty DataFrames (GH5808)
- Bug in isnull handling `NaT` in an object array (GH5443)
- Bug in `to_datetime` when passed a `np.nan` or integer datelike and a format string (GH5863)
- Bug in groupby dtype conversion with datetimelike (GH5869)
- Regression in handling of empty Series as indexers to Series (GH5877)
- Bug in internal caching, related to (GH5727)
- Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874)
- Bug when assigning to `.ix[tuple(...)]` (GH5896)
- Bug in fully reindexing a Panel (GH5905)
- Bug in `idxmin/max` with object dtypes (GH5914)
- Bug in `BusinessDay` when adding n days to a date not on offset when n>5 and n%5==0 (GH5890)
- Bug in assigning to chained series with a series via ix (GH5928)
- Bug in creating an empty DataFrame, copying, then assigning (GH5932)
- Bug in `DataFrame.tail` with empty frame (GH5846)
- Bug in propagating metadata on `resample` (GH5862)
- Fixed string-representation of `NaT` to be “NaT” (GH5708)
- Fixed string-representation for `Timestamp` to show nanoseconds if present (GH5912)
- `pd.match` not returning passed sentinel
- `Panel.to_frame()` no longer fails when `major_axis` is a `MultiIndex` (GH5402).
- Bug in `pd.read_msgpack` with inferring a `DateTimeIndex` frequency incorrectly (GH5947)
- Fixed `to_datetime` for array with both Tz-aware datetimes and `NaT`'s (GH5961)
- Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)
- Bug in `scipy.interpolate` methods with a datetime index (GH5975)
- Bug in `NaT` comparison if a mixed datetime/np.datetime64 with `NaT` were passed (GH5968)
- Fixed bug with `pd.concat` losing dtype information if all inputs are empty (GH5742)
- Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).
• Bug in merging timedelta dtypes (GH5695)
• Bug in plotting.scatter_matrix function. Wrong alignment among diagonal and off-diagonal plots, see (GH5497).
• Regression in Series with a multi-index via ix (GH6018)
• Bug in Series.xs with a multi-index (GH6018)
• Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6028)
• Possible segfault when chained indexing with an object array under numpy 1.7.1 (GH6026, GH6056)
• Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)
• to_sql did not respect if_exists (GH4110 GH4304)
• Regression in .get(Nothing) indexing from 0.12 (GH5652)
• Subtle iloc indexing bug, surfaced in (GH6059)
• Bug with insert of strings into DatetimeIndex (GH5818)
• Fixed unicode bug in to_html/HTML repr (GH6098)
• Fixed missing arg validation in get_options_data (GH6105)
• Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120)
• Bug in propagating _ref_locs during construction of a DataFrame with dups index/columns (GH6121)
• Bug in DataFrame.apply when using mixed datelike reductions (GH6125)
• Bug in DataFrame.append when appending a row with different columns (GH6129)
• Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)
• Bug in .loc setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)
• Fixed a bug in query/eval during lexicographic string comparisons (GH6155).
• Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148).
• Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167)
• Consistency with dtypes in setting an empty DataFrame (GH6171)
• Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169)
• Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some platforms (GH6136)
• Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209)
• Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212)

36.18 pandas 0.13.0

Release date: January 3, 2014
36.18.1 New Features

- `plot(kind='kde')` now accepts the optional parameters `bw_method` and `ind`, passed to `scipy.stats.gaussian_kde()` (for scipy >= 0.11.0) to set the bandwidth, and to `gkde.evaluate()` to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
- Added `isin` method to DataFrame (GH4211)
- `df.to_clipboard()` learned a new `excel` keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).
- Clipboard functionality now works with PySide (GH4282)
- New `extract` string method returns regex matches more conveniently (GH4685)
- Auto-detect field widths in `read_fwf` when unspecified (GH4488)
- `to_csv()` now outputs datetime objects according to a specified format string via the `date_format` keyword (GH4313)
- Added `LastWeekOfMonth` DateOffset (GH4637)
- Added `cummcount` groupby method (GH4646)
- Added `FY5253`, and `FY5253Quarter` DateOffsets (GH4511)
- Added `mode()` method to `Series` and `DataFrame` to get the statistical mode(s) of a column/series. (GH5367)

36.18.2 Experimental Features

- The new `eval()` function implements expression evaluation using `numexpr` behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series.
- `DataFrame` has a new `eval()` that evaluates an expression in the context of the `DataFrame`; allows inline expression assignment
- A `query()` method has been added that allows you to select elements of a `DataFrame` using a natural query syntax nearly identical to Python syntax.
- `pd.eval` and friends now evaluate operations involving `datetime64` objects in Python space because `numexpr` cannot handle `NaT` values (GH4897).
- Add msgpack support via `pd.read_msgpack()` and `pd.to_msgpack()` / `df.to_msgpack()` for serialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506)
- Added PySide support for the `qtpandas DataFrameModel` and `DataFrameWidget`
- Added `pandas.io.gbq` for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140)

36.18.3 Improvements to existing features

- `read_html` now raises a `URLError` instead of catching and raising a `ValueError` (GH4303, GH4305)
- `read_excel` now supports an integer in its `sheetname` argument giving the index of the sheet to read in (GH4301).
- `get_dummies` works with NaN (GH4446)
- Added a test for `read_clipboard()` and `to_clipboard()` (GH4282)
• Added bins argument to `value_counts` (GH3945), also sort and ascending, now available in Series method as well as top-level function.

• Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220, GH4219), affecting `read_table`, `read_csv`, etc.

• Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)

• Significant table writing performance improvements in HDFStore

• JSON date serialization now performed in low-level C code.

• JSON support for encoding datetime.time

• Expanded JSON docs, more info about orient options and the use of the numpy param when decoding.

• Add `drop_level` argument to `xs` (GH4180)

• Can now resample a DataFrame with ohlc (GH2320)

• `Index.copy()` and `MultiIndex.copy()` now accept keyword arguments to change attributes (i.e., names, levels, labels) (GH4039)

• Add `rename` and `set_names` methods to `Index` as well as `set_names`, `set_levels`, `set_labels` to `MultiIndex`. (GH4039) with improved validation for all (GH4039, GH4794)

• A Series of dtype `timedelta64[ns]` can now be divided/multiplied by an integer series (GH4521)

• A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object to yield a `float64` dyped Series. This is frequency conversion; astyping is also supported.

• Timedelta64 support `fillna/ffill/bfill` with an integer interpreted as seconds, or a `timedelta` (GH3371)

• Box numeric ops on `timedelta` Series (GH4984)

• Datetime64 support `ffill/bfill` performance improvements with `__getitem__` on DataFrames with when the key is a column

• Support for using a `DatetimeIndex/PeriodsIndex` directly in a datelike calculation e.g. `s-s.index` (GH4629)

• Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned up test cases in tests/test_frame, tests/test_multilevel (GH4732).

• Performance improvement of timeseries plotting with `PeriodIndex` and added test to vbench (GH4705 and GH4722)

• Add `axis` and `level` keywords to `where`, so that the `other` argument can now be an alignable pandas object.

• `to_datetime` with a format of ‘%Y%m%d’ now parses much faster

• It’s now easier to hook new Excel writers into pandas (just subclass `ExcelWriter` and register your engine). You can specify an engine in `to_excel` or in `ExcelWriter`. You can also specify which writers you want to use by default with config options `io.excel.xlsx.writer` and `io.excel.xls.writer`. (GH4745, GH4750)

• `Panel.to_excel()` now accepts keyword arguments that will be passed to its `DataFrame`'s `to_excel()` methods. (GH4750)

• Added XlsxWriter as an optional `ExcelWriter` engine. This is about 5x faster than the default openpyxl xlsx writer and is equivalent in speed to the xlwt xls writer module. (GH4542)
• allow DataFrame constructor to accept more list-like objects, e.g. list of `collections.Sequence` and `array.Array` objects (GH3783, GH4297, GH4851), thanks @lgautier
• DataFrame constructor now accepts a numpy masked record array (GH3478), thanks @jnothman
• `__getitem__` with tuple key (e.g., `[:, 2]`) on Series without MultiIndex raises ValueError (GH4759, GH4837)
• `read_json` now raises a (more informative) ValueError when the dict contains a bad key and `orient='split'` (GH4730, GH4838)
• `read_stata` now accepts Stata 13 format (GH4291)
• ExcelWriter and ExcelFile can be used as contextmanagers. (GH3441, GH4933)
• pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981).
• Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935)
• Both ExcelFile and read_excel to accept an xlrd.Book for the io (formerly path_or_buf) argument; this requires engine to be set. (GH4961).
• `concat` now gives a more informative error message when passed objects that cannot be concatenated (GH4608).
• Add `halflife` option to exponentially weighted moving functions (PR GH4998)
• `to_dict` now takes `records` as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
• `tz_localize` can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230)
• DatetimeIndex is now in the API documentation
• Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric, support for factors, dist, and high-dimensional arrays).
• `read_html()` now supports the `parse_dates`, `tupleize_cols` and `thousands` parameters (GH4770).
• `json_normalize()` is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)
• DataFrame.from_records() will now accept generators (GH4910)
• DataFrame.interpolate() and Series.interpolate() have been expanded to include interpolation methods from scipy. (GH4434, GH1892)
• Series now supports a `to_frame` method to convert it to a single-column DataFrame (GH5164)
• DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the `closed` parameter (GH4579)
• Python csv parser now supports usecols (GH4335)
• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)
• NDFrame.drop() now accepts names as well as integers for the axis argument. (GH5354)
• Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods. (GH5336)
• NDFrame.drop(), NDFrame.dropna(), and .drop_duplicates() all accept `inplace` as a keyword argument; however, this only means that the wrapper is updated inplace, a copy is still made internally. (GH1960, GH5247, GH5628, and related GH2325 [still not closed])
• Fixed bug in `tools.plotting.andrews_curves` so that lines are drawn grouped by color as expected.
• `read_excel()` now tries to convert integral floats (like `1.0`) to int by default. (GH5394)

• Excel writers now have a default option `merge_cells` in `to_excel()` to merge cells in MultiIndex and Hierarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex and Hierarchical Rows. Set the `merge_cells` to `False` to restore the previous behaviour. (GH5254)

• The FRED DataReader now accepts multiple series (issue ‘3413’)

• StataWriter adjusts variable names to Stata’s limitations (GH5709)

### 36.18.4 API Changes

• `DataFrame.reindex()` and forward/backward filling now raises `ValueError` if either index is not monotonic (GH4483, GH4484).

• `pandas` now is Python 2/3 compatible without the need for `2to3` thanks to @jratner. As a result, `pandas` now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)

• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat. pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. `lmap`, `lzip`, `lrange` and `lfilter` all produce lists instead of iterators, for compatibility with `numpy`, subscripting and `pandas` constructors. (GH4384, GH4375, GH4372)

• deprecated `iterkv`, which will be removed in a future release (was just an alias of `iteritems` used to get around `2to3`'s changes). (GH4384, GH4375, GH4372)

• `Series.get` with negative indexers now returns the same as `[]` (GH4390)

• allow `ix/loc` for `Series/DataFrame/Panel` to set on any axis even when the single-key is not currently contained in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756)

• Default export for `to_clipboard` is now csv with a sep of `t` for compat (GH3368)

• `at` now will enlarge the object inplace (and return the same) (GH2578)

• `DataFrame.plot` will scatter plot `x` versus `y` by passing `kind='scatter'` (GH2215)

• `HDFStore`

  • `append_to_multiple` automatically synchronizes writing rows to multiple tables and adds a `dropna` kwarg (GH4698)

  • handle a passed `Series` in table format (GH4330)

  • added an `is_open` property to indicate if the underlying file handle is open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)

  • a close of a `HDFStore` now will close that instance of the `HDFStore` but will only close the actual file if the ref count (by `PyTables`) w.r.t. all of the open handles are 0. Essentially you have a local instance of `HDFStore` referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise `ClosedFileError`

  • removed the `_quiet` attribute, replace by a `DuplicateWarning` if retrieving duplicate rows from a table (GH4367)

  • removed the `warn` argument from `open`. Instead a `PossibleDataLossError` exception will be raised if you try to use `mode='w'` with an OPEN file handle (GH4367)

  • allow a passed locations array or mask as a `where` condition (GH4467)
- add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
- the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t) the Storer format has been renamed to Fixed
- a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with data_columns on the same axis
- select_as_coordinates will now return an Int64Index of the resultant selection set
- support timedelta64[ns] as a serialization type (GH3577)
- store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks @tavistmorph and @numpand
- numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908)
- flush now accepts an fsync parameter, which defaults to False (GH5364)
- unicode indices not supported on table formats (GH5386)
- pass thru store creation arguments; can be used to support in-memory stores

  • JSON
  - added date_unit parameter to specify resolution of timestamps. Options are seconds, milliseconds, microseconds and nanoseconds. (GH4362, GH4498).
  - added default_handler parameter to allow a callable to be passed which will be responsible for handling otherwise unserializable objects. (GH5138)

  • Index and MultiIndex changes (GH4039):
    - Setting levels and labels directly on MultiIndex is now deprecated. Instead, you can use the set_levels() and set_labels() methods.
    - levels, labels and names properties no longer return lists, but instead return containers that do not allow setting of items (‘mostly immutable’)
    - levels, labels and names are validated upon setting and are either copied or shallow-copied.
    - inplace setting of levels or labels now correctly invalidates the cached properties. (GH5238).
    - __deepcopy___ now returns a shallow copy (currently: a view) of the data - allowing metadata changes.
    - MultiIndex.astype() now only allows np.object_ like dtypes and now returns a MultiIndex rather than an Index. (GH4039)
    - Added is_ method to Index that allows fast equality comparison of views (similar to np. may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)
    - Aliased __iadd__ to __add__. (GH4996)
    - Added is_ method to Index that allows fast equality comparison of views (similar to np. may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)

  • Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)
  • __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. Add .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series
- **DataFrame.update()** no longer raises a `DataConflictError`, it now will raise a `ValueError` instead (if necessary) (GH4732)

- **Series.isin()** and **DataFrame.isin()** now raise a `TypeError` when passed a string (GH4763). Pass a list of one element (containing the string) instead.

- Remove undocumented/unused kind keyword argument from `read_excel` and `ExcelFile`. (GH4713, GH4712)

- The method argument of `NDFrame.replace()` is valid again, so that a a list can be passed to `to_replace` (GH4743).

- Provide automatic dtype conversions on `_reduce` operations (GH3371)

- Exclude non-numerics if mixed types with datelike in `_reduce` operations (GH3371)

- Default for `tupleize_cols` is now `False` for both `to_csv` and `read_csv`. Fair warning in 0.12 (GH3604)

- Moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level `to_timedelta` function

- **NDFrame** now is compatible with Python’s toplevel `abs()` function (GH4821).

- Raise a `TypeError` on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968)

- Added a new index type, `Float64Index`. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes `[]`, `ix`, `loc` for scalar indexing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback for `[]`, `ix`), with the exception, that floating point slicing on indexes on non `Float64Index` will raise a `TypeError`, e.g. `Series(range(5))[3.5:4.5]` (GH263, issue:5375)

- Make Categorical repr nicer (GH4368)

- Remove deprecated `Factor` (GH3650)

- Remove deprecated `set_printoptions/reset_printoptions` (issue:3046)

- Remove deprecated `_verbose_info` (GH3215)

- Begin removing methods that don’t make sense on `GroupBy` objects (GH4887).

- Remove deprecated `read_clipboard/to_clipboard/ExcelFile/ExcelWriter` from pandas. `io.parsers` (GH3717)

- All non-Index `NDFrames` (`Series`, `DataFrame`, `Panel`, `Panel4D`, `SparsePanel`, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). `SparsePanel` does not support `pow` or `mod` with non-scalars. (GH3765)

- Arithmetic func factories are now passed real names (suitable for using with `super`) (GH5240)

- Provide numpy compatibility with 1.7 for a calling convention like `np.prod(pandas_object)` as numpy call with additional keyword args (GH4435)

- Provide `__dir__` method (and local context) for tab completion / remove ipython completers code (GH4501)

- Support non-unique axes in a Panel via indexing operations (GH4960)

- `.truncate` will raise a `ValueError` if invalid before and after dates are given (GH5242)

- `Timestamp` now supports `now/today/utcnow` class methods (GH5339)

- Default for `display.max_seq_len` is now 100 rather than `None`. This activates truncated display ("...") of long sequences in various places. (GH3391)
All division with NDFrame - likes is now truedivision, regardless of the future import. You can use // and floordiv to do integer division.

```python
In [3]: arr = np.array([1, 2, 3, 4])
In [4]: arr2 = np.array([5, 3, 2, 1])
In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])
In [6]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[6]:
0 0.200000
1 0.666667
2 1.500000
3 4.000000
dtype: float64
```

- raise/warn SettingWithCopyError/Warning exception/warning when setting of a copy thru chained assignment is detected, settable via option mode.chained_assignment
- test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521)
- The refactoring involving ``Series`` deriving from NDFrame breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.
- Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element (GH6214)

### 36.18.5 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816) See Internal Refactoring

- Refactor of series.py/frame.py/panel.py to move common code to generic.py
- added _setup_axes to created generic NDFrame structures
- moved methods
  - from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose, pop
  - __iter__, keys, __contains__, __len__, __neg__, __invert__
  - convert_objects, as_blocks, as_matrix, values
  - __getstate__, __setstate__ (compat remains in frame/panel)
  - __getattr__, __setattr__
  - _indexed_same, reindex_like, align, where, mask
  - fillna, replace (Series replace is now consistent with DataFrame)
  - filter (also added axis argument to selectively filter on a different axis)
  - reindex, reindex_axis, take
  - truncate (moved to become part of NDFrame)
- `isnull/notnull` now available on `NDFrame` objects

- These are API changes which make `Panel` more consistent with `DataFrame`

- `swapaxes` on a `Panel` with the same axes specified now return a copy

- support attribute access for setting

- `filter` supports same API as original `DataFrame` filter

- `fillna` refactored to `core/generic.py`, while `> 3dim` is `NotImplemented`

- `Series` now inherits from `NDFrame` rather than directly from `ndarray`. There are several minor changes that affect the API.

- numpy functions that do not support the array interface will now return `ndarrays` rather than series, e.g. `np.diff`, `np.ones_like`, `np.where`

- `Series(0.5)` would previously return the scalar `0.5`, this is no longer supported

- `TimeSeries` is now an alias for `Series`. The property `is_time_series` can be used to distinguish (if desired)

- Refactor of `Sparse` objects to use `BlockManager`

- Created a new block type in internals, `SparseBlock`, which can hold multi-dtypes and is non-consolidatable. `SparseSeries` and `SparseDataFrame` now inherit more methods from there hierarchy (`Series/DataFrame`), and no longer inherit from `SparseArray` (which instead is the object of the `SparseBlock`)

- Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)

- Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient

- enable setitem on `SparseSeries` for boolean/integer/slices

- `SparsePanels` implementation is unchanged (e.g. not using `BlockManager`, needs work)

- added `ftypes` method to `Series/DataFrame`, similar to `dtypes`, but indicates if the underlying is sparse/dense (as well as the dtype)

- All `NDFrame` objects now have a `_prop_attributes`, which can be used to indicate various values to propagate to a new object from an existing (e.g. name in `Series` will follow more automatically now)

- Internal type checking is now done via a suite of generated classes, allowing `isinstance(value, klass)` without having to directly import the klass, courtesy of `@jtratner`

- Bug in `Series` update where the parent frame is not updating its cache based on changes (`GH4080`, `GH5216`) or types (`GH3217`), `fillna` (`GH3386`)

- Indexing with dtype conversions fixed (`GH4463`, `GH4204`)

- Refactor `Series.reindex` to `core/generic.py` (`GH4604`, `GH4618`), allow `method=` in reindexing on a `Series` to work

- `Series.copy` no longer accepts the `order` parameter and is now consistent with `NDFrame` copy

- Refactor `rename` methods to `core/generic.py`; fixes `Series.rename` for (`GH4605`), and adds `rename` with the same signature for `Panel`

- `Series` (for index) / `Panel` (for items) now as attribute access to its elements (`GH1903`)

- Refactor `clip` methods to `core/generic.py` (`GH4798`)
• Refactor of \_get\_numeric\_data/\_get\_bool\_data to core/generic.py, allowing Series/Panel functionality
• Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up wrapper class. (GH4613)
• Complex compat for Series with ndarray. (GH4819)
• Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843)
• Refactor object level numeric methods (mean/sum/min/max...) from object level modules to core/generic.py (GH4435).
• Refactor cum objects to core/generic.py (GH4435), note that these have a more numpy-like function signature.
• read\_html() now uses TextParser to parse HTML data from bs4/lxml (GH4770).
• Removed the keep\_internal keyword parameter in pandas/core/groupby.py because it wasn’t being used (GH5102).
• Base DateOffsets are no longer all instantiated on importing pandas, instead they are generated and cached on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related GH5004)
• MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214)
• Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg
• Rewrite assert\_almost\_equal() in cython for performance (GH4398)
• Added an internal \_update\_inplace method to facilitate updating NDFrame wrappers on inplace ops (only is for convenience of caller, doesn’t actually prevent copies). (GH5247)

### 36.18.6 Bug Fixes

• HDFStore
  – raising an invalid TypeError rather than ValueError when appending with a different block ordering (GH4096)
  – read\_hdf was not respecting as passed mode (GH4504)
  – appending a 0-len table will work correctly (GH4273)
  – to\_hdf was raising when passing both arguments append and table (GH4584)
  – reading from a store with duplicate columns across dtypes would raise (GH4767)
  – Fixed a bug where ValueError wasn’t correctly raised when column names weren’t strings (GH4956)
  – A zero length series written in Fixed format not deserializing properly. (GH4708)
  – Fixed decoding perf issue on py3 (GH5441)
  – Validate levels in a multi-index before storing (GH5527)
  – Correctly handle data\_columns with a Panel (GH5717)
• Fixed bug in tslib.tz\_convert(vals, tz1, tz2): it could raise IndexError exception while trying to access trans[pos + 1] (GH4496)
• The by argument now works correctly with the layout argument (GH4102, GH4014) in *.hist plotting methods
• Fixed bug in PeriodIndex.map where using str would return the str representation of the index (GH4136)
• Fixed test failure `test_time_series_plot_color_with_empty_kwargs` when using custom matplotlib default colors (GH4345)
• Fix running of stata IO tests. Now uses temporary files to write (GH4353)
• Fixed an issue where `DataFrame.sum` was slower than `DataFrame.mean` for integer valued frames (GH4365)
• `read_html` tests now work with Python 2.6 (GH4351)
• Fixed bug where `network` testing was throwing `NameError` because a local variable was undefined (GH4381)
• In `to_json`, raise if a passed `orient` would cause loss of data because of a duplicate index (GH4359)
• In `to_json`, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362).
• `as_index` is no longer ignored when doing groupby apply (GH4648, GH3417)
• JSON NaT handling fixed, NaTs are now serialized to `null` (GH4498)
• Fixed JSON handling of escapable characters in JSON object keys (GH4593)
• Fixed passing `keep_default_na=False` when `na_values=None` (GH4318)
• Fixed bug with `values` raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in (GH4377)
• Fixed bug with duplicate columns and type conversion in `read_json` when `orient='split'` (GH4377)
• Fixed JSON bug where locales with decimal separators other than '.' threw exceptions when encoding / decoding certain values. (GH4918)
• Fix `.iat` indexing with a `PeriodIndex` (GH4390)
• Fixed an issue where `PeriodIndex` joining with self was returning a new instance rather than the same instance (GH4379); also adds a test for this for the other index types
• Fixed a bug with all the dtypes being converted to object when using the CSV cparsor with the usecols parameter (GH3192)
• Fix an issue in merging blocks where the resulting DataFrame had partially set `_ref_locs` (GH4403)
• Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib API (GH4408)
• Fixed a bug where calling `Series.astype(str)` would truncate the string (GH4405, GH4437)
• Fixed a py3 compat issue where bytes were being repr’d as tuples (GH4455)
• Fixed Panel attribute naming conflict if item is named ‘a’ (GH3440)
• Fixed an issue where duplicate indexes were raising when plotting (GH4486)
• Fixed an issue where cumsum and cumprod didn’t work with bool dtypes (GH4170, GH4440)
• Fixed Panel slicing issued in `xs` that was returning an incorrect dimmed object (GH4016)
• Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494)
• Fixed Panel assignment with a transposed frame (GH3830)
• Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777)
• `frozenset` objects now raise in the `Series` constructor (GH4482, GH4480)
• Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516)
• Fixed bug in `DataFrame.set_values` which was causing name attributes to be lost when expanding the index. (GH3742, GH4039)

• Fixed issue where individual names, levels and labels could be set on MultiIndex without validation (GH3714, GH4039)

• Fixed (GH3334) in pivot_table. Margins did not compute if values is the index.

• Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with date-times (GH4532)

• Fix arithmetic with series/datetimeindex and np.timedelta64 not working the same (GH4134) and buggy timedelta in numpy 1.6 (GH4135)

• Fix bug in `pd.read_clipboard` on windows with PY3 (GH4561); not decoding properly

• `tslib.get_period_field()` and `tslib.get_period_field_arr()` now raise if code argument out of range (GH4519, GH4520)

• Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays.

• Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible lazy frequency inference issue (GH3317)

• Fixed issue where `DataFrame.apply` was reraising exceptions incorrectly (causing the original stack trace to be truncated).

• Fix selection with `ix/loc` and non_unique selectors (GH4619)

• Fix assignment with `iloc/loc` involving a dtype change in an existing column (GH4312, GH5702) have internal `setitem_with_indexer` in core/indexing to use Block.setitem

• Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import (GH4322)

• Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset from being cached (GH4609)

• Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576)

• Fix error/dtype conversion with `setitem` of None on Series/DataFrame (GH4667)

• Fix decoding based on a passed in non-default encoding in `pd.read_stata` (GH4626)

• Fix `DataFrame.from_records` with a plain-vanilla ndarray. (GH4727)

• Fix some inconsistencies with `Index.rename` and `MultiIndex.rename`, etc. (GH4718, GH4628)

• Bug in using `iloc/loc` with a cross-sectional and duplicate indicies (GH4726)

• Bug with using `QUOTE_NONE` with `to_csv` causing Exception. (GH4328)

• Bug with Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702)

• Bug in multi-indexing with a partial string selection as one part of a MultiIndex (GH4758)

• Bug with reindexing on the index with a non-unique index will now raise `ValueError` (GH4746)

• Bug in setting with `loc/ix` a single indexer with a multi-index axis and a numpy array, related to (GH3777)

• Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975)

• Bug in `iloc` with a slice index failing (GH4771)

• Incorrect error message with no colspecs or width in `read_fwf`. (GH4774)

• Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550)
• Fixed bug with reading compressed files with `read_fwf` in Python 3. (GH3963)
• Fixed an issue with a duplicate index and assignment with a dtype change (GH4686)
• Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib (GH4789)
• Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391)
• Fixed an issue with a duplicate index and duplicate selector with `.loc` (GH4825)
• Fixed an issue with `DataFrame.sort_index` where, when sorting by a single column and passing a list for ascending, the argument for ascending was being interpreted as True (GH4839, GH4846)
• Fixed `Panel.tshift` not working. Added `freq` support to `Panel.shift` (GH4853)
• Fix an issue in `TextFileReader` w/ Python engine (i.e. PythonParser) with thousands != ”,“ (GH4596)
• Bug in `getitem` with a duplicate index when using where (GH4879)
• Fix Type inference code coerces float column into datetime (GH4601)
• Fixed `_ensure_numeric` does not check for complex numbers (GH4902)
• Fixed a bug in `Series.hist` where two figures were being created when the by argument was passed (GH4112, GH4113).
• Fixed a bug in `convert_objects` for > 2 ndims (GH4937)
• Fixed a bug in `DataFrame/Panel` cache insertion and subsequent indexing (GH4939, GH5424)
• Fixed string methods for `FrozenNDArray` and `FrozenList` (GH4929)
• Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940)
• Tests for fillna on empty Series (GH4346), thanks @immerrr
• Fixed `copy()` to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830)
• Fixed skiprows option in Python parser for `read_csv` (GH4382)
• Fixed bug preventing `cut` from working with `np.inf` levels without explicitly passing labels (GH3415)
• Fixed wrong check for overlapping in `DatetimeIndex.union` (GH4564)
• Fixed conflict between thousands separator and date parser in `csv_parser` (GH4678)
• Fix appending when dtyps are not the same (error showing mixing float/np.datetime64) (GH4993)
• Fix repr for `DateOffset`. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638)
• Fixed wrong index name during `read_csv` if using usecols. Applies to c parser only. (GH4201)
• `Timestamp` objects can now appear in the left hand side of a comparison operation with a Series or DataFrame object (GH4982).
• Fix a bug when indexing with `np.nan` via `iloc/loc` (GH5016)
• Fixed a bug where low memory c parser could create different types in different chunks of the same file. Now coerces to numerical type or raises warning. (GH3866)
• Fix a bug where reshaping a `Series` to its own shape raised `TypeError` (GH4554) and other reshaping issues.
• Bug in setting with `ix/loc` and a mixed int/string index (GH4544)
- Make sure series-series boolean comparisons are label based (GH4947)
- Bug in multi-level indexing with a Timestamp partial indexer (GH4294)
- Tests/fix for multi-index construction of an all-nan frame (GH4078)
- Fixed a bug where `read_html()` wasn’t correctly inferring values of tables with commas (GH5029)
- Fixed a bug where `read_html()` wasn’t providing a stable ordering of returned tables (GH4770, GH5029).
- Fixed a bug where `read_html()` was incorrectly parsing when passed `index_col=0` (GH5066).
- Fixed a bug where `read_html()` was incorrectly inferring the type of headers (GH5048).
- Fixed a bug where `DatetimeIndex` joins with `PeriodIndex` caused a stack overflow (GH3899).
- Fixed a bug where `groupby` objects didn’t allow plots (GH5102).
- Fixed a bug where `groupby` objects weren’t tab-completing column names (GH5102).
- Fixed a bug where `groupby.plot()` and friends were duplicating figures multiple times (GH5102).
- Provide automatic conversion of `object` dtypes on `fillna`, related (GH5103)
- Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121).
- Treat a list/ndarray identically for `iloc` indexing with list-like (GH5006)
- Fix `MultiIndex.get_level_values()` with missing values (GH5074)
- Fix bound checking for `Timestamp()` with `datetime64` input (GH4065)
- Fix a bug where `TestReadHtml` wasn’t calling the correct `read_html()` function (GH5150).
- Fix a bug with `NDFrame.replace()` which made replacement appear as though it was (incorrectly) using regular expressions (GH5143).
- Fix better error message for `to_datetime` (GH4928)
- Made sure different locales are tested on travis-ci (GH4918). Also adds a couple of utilities for getting locales and setting locales with a context manager.
- Fixed segfault on `isnull(MultiIndex)` (now raises an error instead) (GH5123, GH5125)
- Allow duplicate indices when performing operations that align (GH5185, GH5639)
- Compound dtypes in a constructor raise `NotImplementedError` (GH5191)
- Bug in comparing duplicate frames (GH4421) related
- Bug in `describe` on duplicate frames
- Bug in `to_datetime` with a format and `coerce=True` not raising (GH5195)
- Bug in `loc` setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206)
- Fixed bug where inplace setting of levels or labels on `MultiIndex` would not clear cached `values` property and therefore return wrong values. (GH5215)
- Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621).
- Fixed `Period` with a business date freq to always roll-forward if on a non-business date. (GH5203)
- Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235)
- Fixed issue with `drop` and a non-unique index on Series (GH5248)
- Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156)
- Fix `Series.isin` with date/time-like dtypes (GH5021)
C and Python Parser can now handle the more common multi-index column format which doesn’t have a row for index names (GH4702)

Bug when trying to use an out-of-bounds date as an object dtype (GH5312)

Bug when trying to display an embedded PandasObject (GH5324)

Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312)

Fix return value/type signature of initObjToJSON() to be compatible with numpy’s import_array() (GH5334, GH5326)

Bug when renaming then set_index on a DataFrame (GH5344)

Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this @yarikoptic!)

Fixed html tests on win32. (GH4580)

Make sure that head/tail are iloc based, (GH5370)

Fixed bug for PeriodIndex string representation if there are 1 or 2 elements. (GH5372)

The GroupBy methods transform and filter can be used on Series and DataFrames that have repeated (non-unique) indices. (GH4620)

Fix empty series not printing name in repr (GH4651)

Make tests create temp files in temp directory by default. (GH5419)

pd.to_timedelta of a scalar returns a scalar (GH5410)

pd.to_timedelta accepts NaN and NaT, returning NaT instead of raising (GH5437)

performance improvements in isnull on larger size pandas objects

Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508)

Bug in getitem with a multi-index and iloc (GH5528)

Bug in delitem on a Series (GH5542)

Bug fix in apply when using custom function and objects are not mutated (GH5545)

Bug in selecting from a non-unique index with loc (GH5553)

Bug in groupby returning non-consistent types when user function returns a None, (GH5592)

Work around regression in numpy 1.7.0 which erroneously raises IndexError from ndarray.item (GH5666)

Bug in repeated indexing of object with resultant non-unique index (GH5678)

Bug in fillna with Series and a passed series/dict (GH5703)

Bug in groupby transform with a datetime-like grouper (GH5712)

Bug in multi-index selection in PY3 when using certain keys (GH5725)

Row-wise concat of differing dtypes failing in certain cases (GH5754)

36.19 pandas 0.12.0

Release date: 2013-07-24
### 36.19.1 New Features

- `pd.read_html()` can now parse HTML strings, files or urls and returns a list of DataFrame's courtesy of @cpcloud. (GH3477, GH3605, GH3606)
- Support for reading Amazon S3 files. (GH3504)
- Added module for reading and writing JSON strings/files: pandas.io.json includes `to_json` DataFrame/Series method, and a `read_json` top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
- Added module for reading and writing Stata files: pandas.io.stata (GH1512) includes `to_stata` DataFrame method, and a `read_stata` top-level reader
- Added support for writing in `to_csv` and reading in `read_csv`, multi-index columns. The `header` option in `read_csv` now accepts a list of the rows from which to read the index. Added the option, `tupleize_cols` to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a multi-index column. Note: The default value will change in 0.12 to make the default to write and read multi-index columns in the new format. (GH3571, GH1651, GH3141)
- Add iterator to `Series.str` (GH3638)
- `pd.set_option()` now allows N option, value pairs (GH3667).
- Added keyword parameters for different types of scatter_matrix subplots
- A `filter` method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919)
- Access to historical Google Finance data in pandas.io.data (GH3814)
- DataFrame plotting methods can sample column colors from a Matplotlib colormap via the `colormap` keyword. (GH3860)

### 36.19.2 Improvements to existing features

- Fixed various issues with internal pprinting code, the repr() for various objects including TimeStamp and Index now produces valid python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251, GH3460)
- `convert_objects` now accepts a `copy` parameter (defaults to True)
- `HDFStore` now accepts a `copy` parameter (GH3499, issue: 4098)
  - will retain index attributes (freq, tz, name) on recreation (GH3499, issue: 4098)
  - will warn with a `AttributeConflictsWarning` if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing
  - support datelike columns with a timezone as data_columns (GH2852)
  - table writing performance improvements.
  - support python3 (via PyTables 3.0.0) (GH3750)
- Add modulo operator to Series, DataFrame
- Add `date` method to DatetimeIndex
- Add `dropna` argument to `pivot_table` (issue: 3820)
- Simplified the API and added a `describe` method to Categorical
melt now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame (GH3649), thanks @hoechenberger. If var_name is not specified and dataframe.columns.name is not None, then this will be used as the var_name (GH4144). Also support for MultiIndex columns.

clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux) (GH3837).

Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

Added Faq section on repr display options, to help users customize their setup.

where operations that result in block splitting are much faster (GH3733)

Series and DataFrame hist methods now take a figsize argument (GH3834)

DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)

Add unit keyword to Timestamp and to_datetime to enable passing of integers or floats that are in an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with fractional seconds allowed) (GH3540)

DataFrame corr method (spearman) is now cythonized.

Improved network test decorator to catch IOError (and therefore URLError as well). Added with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)

read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline characters

Added layout keyword to DataFrame.hist() for more customizable layout (GH4050)

Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-time.min and datetime.max (respectively), thanks @SleepingPills

read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

### 36.19.3 API Changes

- **HDFStore**
  - When removing an object, remove(key) raises KeyError if the key is not a valid store object.
  - raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters at this time (GH4189)
  - can now specify an encoding option to append/put to enable alternate encodings (GH3750)
  - enable support for iterator/chunksize with read_hdf

- The repr() for (Multi)Index now obeys display.max_seq_items rather then numpy threshold print options. (GH3426, GH3466)

- Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A, A.1, A.2 vs A, A ) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour, If your code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls.

- Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)
The behavior of `datetime64` dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a `TypeError` when performed on a `Series` and return an empty `Series` when performed on a `DataFrame` similar to performing these operations on, for example, a `DataFrame` of slice objects: - sum, prod, mean, std, var, skew, kurt, corr, and cov.

Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass `datetime64[ms]`) (GH3423).

Add `squeeze` keyword to `groupby` to allow reduction from `DataFrame` -> `Series` if groups are unique. Regression from 0.10.1, partial revert on (GH2893) with (GH3596).

Raise on `iloc` when boolean indexing with a label based indexer mask e.g. a boolean `Series`, even with integer labels, will raise. Since `iloc` is purely positional based, the labels on the `Series` are not alignable (GH3631).

The `raise_on_error` option to plotting methods is obviated by GH3572, so it is removed. Plots now always raise when data cannot be plotted or the object being plotted has a dtype of `object`.

`DataFrame.interpolate()` is now deprecated. Please use `DataFrame.fillna()` and `DataFrame.replace()` instead (GH3582, GH3675, GH3676).

The `method` and `axis` arguments of `DataFrame.replace()` are deprecated.

`DataFrame.replace` 's `infer_types` parameter is removed and now performs conversion by default. (GH3907)

Deprecated `display.height`, `display.width` is now only a formatting option does not control triggering of summary, similar to < 0.11.0.

Add the keyword `allow_duplicates` to `DataFrame.insert` to allow a duplicate column to be inserted if `True`, default is `False` (same as prior to 0.12) (GH3679).

**io API changes**

- added `pandas.io.api` for `io` imports
- removed `Excel` support to `pandas.io.excel`
- added top-level `pd.read_sql` and `to_sql` `DataFrame` methods
- removed `clipboard` support to `pandas.io.clipboard`
- replace top-level and instance methods `save` and `load` with top-level `read_pickle` and `to_pickle` instance method, `save` and `load` will give deprecation warning.

The `method` and `axis` arguments of `DataFrame.replace()` are deprecated.

Set `FutureWarning` to require `data_source`, and to replace year/month with expiry date in `pandas.io` options. This is in preparation to add options data from Google (GH3822).

The `method` and `axis` arguments of `DataFrame.replace()` are deprecated.

Implement `__nonzero__` for `NDFrame` objects (GH3691, GH3696).

`as_matrix` with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing with `int64`, to avoid precision issues (GH3733).

`na_values` in a list provided to `read_csv/read_excel` will match string and numeric versions e.g. `na_values=['99']` will match 99 whether the column ends up being int, float, or string (GH3611).

`read_html` now defaults to `None` when reading, and falls back on `bs4 + html5lib` when `lxml` fails to parse. a list of parsers to try until success is also valid.

More consistency in the to_datetime return types (give string/array of string inputs) (GH3888)
• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

36.19.4 Experimental Features

• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmask. (GH2301)

36.19.5 Bug Fixes

• Fixed an esoteric excel reading bug, xlrd>= 0.9.0 now required for excel support. Should provide python3 support (for reading) which has been lacking. (GH3164)

• Disallow Series constructor called with MultiIndex which caused segfault (GH4187)

• Allow unioning of date ranges sharing a timezone (GH3491)

• Fix to_csv issue when having a large number of rows and NaT in some columns (GH3437)

• .loc was not raising when passed an integer list (GH3449)

• Unordered time series selection was misbehaving when using label slicing (GH3448)

• Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461)

• DataFrames fetched via FRED now handle ‘.’ as a NaN. (GH3469)

• Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly (GH3480)

• Fix issue when storing uint dtypes in an HDFStore. (GH3493)

• Non-unique index support clarified (GH3468)
  – Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457)
  – Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
  – Fix construction of a DataFrame with a duplicate index
  – ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
  – applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
  – Fix to_csv to handle non-unique columns (GH3495)
  – Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
  – Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
  – Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
  – Non-unique indexing with a slice via loc and friends fixed (GH3659)
– Allow insert/delete to non-unique columns (GH3679)
– Extend reindex to correctly deal with non-unique indices (GH3679)
– DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
– Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-based taking
– Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)
– Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

• Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510)
• Allow index name to be used in groupby for non MultiIndex (GH4014)
• Fixed bug in mixed-frame assignment with aligned series (GH3492)
• Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day (GH3546)
• Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553)
• Properly convert np.datetime64 objects in a Series (GH3416)
• Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime
• Fix .diff on datelike and timedelta operations (GH3100)
• combine_first not returning the same dtype in cases where it can (GH3552)
• Fixed bug with Panel.transpose argument aliases (GH3556)
• Fixed platform bug in PeriodIndex.take (GH3579)
• Fixed bug in incorrect conversion of datetime64[ns] in combine_first (GH3593)
• Fixed bug in reset_index with NaN in a multi-index (GH3586)
• fillna methods now raise a TypeError when the value parameter is a list or tuple.
• Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594)
• Make secondary_y work properly for bar plots (GH3598)
• Fix modulo and integer division on Series,DataFrames to act similary to float dtypes to return np.nan or np.inf as appropriate (GH3590)
• Fix incorrect dtype on groupby with as_index=False (GH3610)
• Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0,-999] was failing (GH3611)
• Disable HTML output in qtconsole again. (GH3657)
• Reworked the new repr display logic, which users found confusing. (GH3663)
• Fix indexing issue in ndim >= 3 with iloc (GH3617)
• Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when parse_dates is specified (GH3062)
• Fix not consolidating before to_csv (GH3624)
• Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame and a Series (GH3668)
• Fix plotting of unordered DatetimeIndex (GH3601)
• sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig
• Fix pivoting with nan in the index (GH3558)
• Fix running of bs4 tests when it is not installed (GH3605)
• Fix parsing of html table (GH3606)
• read_html() now only allows a single backend: html5lib (GH3616)
• convert_objects with convert_dates='coerce' was parsing some single-letter strings into today's date
• DataFrame.from_records did not accept empty recarrays (GH3682)
• DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith
• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Fix file tokenization error with r delimiter and quoted fields (GH3453)
• Groupby transform with r delimiter and quoted fields (GH3453)
• Incorrectly read a HDFStore multi-index Frame with a column specification (GH3748)
• read_html now correctly skips tests (GH3741)
• PandasObjects raise TypeError when trying to hash (GH3882)
• Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481)
• Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795)
• Fix index name not propagating when using loc/ix (GH3880)
• Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes (GH3911)
• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)
• Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two integer arrays with at least 10000 cells total (GH3764)
• Indexing with a string with seconds resolution not selecting from a time index (GH3925)
• csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), python parser failing with chunksize=1
• Fix index name not propagating when using shift
• Fixed dropna=False being ignored with multi-index stack (GH3997)
• Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004)
• Fix Series.clip for datetime series. NA/NaN threshold values will now throw ValueError (GH3996)
• Fixed insertion issue into DataFrame, after rename (GH4032)
• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
• Series.hist will now take the figure from the current environment if one is not passed
• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)
• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
• Fix bug where HDFStore will fail to append because of a different block ordering on-disk (GH4096)
• Better error messages on inserting incompatible columns to a frame (GH4107)
• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
• Fixed bug in convert_objects(convert_numeric=True) where a mixed numeric and object Series/Frame was not converting properly (GH4119)
• Fixed bugs in multi-index selection with column multi-index and duplicates (GH4145, GH4146)
• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MillisecondLocator (GH3990)
• Fixed bug in Series.where where broadcasting a single element input vector to the length of the series resulted in multiplying the value inside the input (GH4192)
• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
• Fixed bug where html5lib wasn’t being properly skipped (GH4265)
• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

36.20 pandas 0.11.0

Release date: 2013-04-22

36.20.1 New Features

• New documentation section, 10 Minutes to Pandas
• New documentation section, Cookbook
• Allow mixed dtypes (e.g float32/float64/int32/int16/int8) to coexist in DataFrames and propagate in operations
• Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795)
• Support slicing with time objects (GH2681)
• Added .iloc attribute, to support strict integer based indexing, analogous to .ix (GH2922)
• Added .loc attribute, to support strict label based indexing, analogous to .ix (GH3053)
• Added .iat attribute, to support fast scalar access via integers (replaces iget_value/iset_value)
• Added .at attribute, to support fast scalar access via labels (replaces get_value/set_value)
• Moved functionality from `irow`, `icol`, `iget_value/iset_value` to `.iloc` indexer (via `.ixs` methods in each object)
• Added support for expression evaluation using the `numexpr` library
• Added `convert=boolean` to take routines to translate negative indices to positive, defaults to `True`
• Added `to_series()` method to indices, to facilitate the creation of indexers (GH3275)

### 36.20.2 Improvements to existing features

• Improved performance of `df.to_csv()` by up to 10x in some cases. (GH3059)
• added `blocks` attribute to DataFrames, to return a dict of dtypes to homogeneously dtyped DataFrames
• added keyword `convert_numeric` to `convert_objects()` to try to convert object dtypes to numeric types (default is False)
• `convert_dates` in `convert_objects` can now be coerced which will return a `datetime64[ns]` dtype with non-convertibles set as NaT; will preserve an all-nan object (e.g. strings), default is True (to perform soft-conversion
• Series print output now includes the dtype by default
• Optimize internal reindexing routines (GH2819, GH2867)
• `describe_option()` now reports the default and current value of options.
• Add `format` option to `pandas.to_datetime` with faster conversion of strings that can be parsed with `datetime.strptime`
• Add `axes` property to `Series` for compatibility
• Add `xs` function to `Series` for compatibility
• Allow `setitem` in a frame where only mixed numerics are present (e.g. int and float), (GH3037)
• HDFStore
  – Provide dotted attribute access to `get` from stores (e.g. `store.df == store['df']`)
  – New keywords `iterator=boolean` and `chunksize=number_in_a_chunk` are provided to support iteration on `select` and `select_as_multiple` (GH3076)
  – support `read_hdf/to_hdf` API similar to `read_csv/to_csv` (GH3222)
• Add `squeeze` method to possibly remove length 1 dimensions from an object.

```python
In [1]: p = pd.Panel(np.random.randn(3,4,4),items=['ItemA','ItemB','ItemC'],
 ...: major_axis=pd.date_range('20010102',periods=4),
 ...: minor_axis=['A','B','C','D'])
 ...

In [2]: p
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [3]: p.reindex(items=['ItemA']).squeeze()
```
• Improvement to Yahoo API access in `pd.io.data.Options` (GH2758)

• added option `display.max_seq_items` to control the number of elements printed per sequence printing it. (GH2979)

• added option `display.chop_threshold` to control display of small numerical values. (GH2739)

• added option `display.max_info_rows` to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)

• `value_counts()` now accepts a “normalize” argument, for normalized histograms. (GH2710).

• `DataFrame.from_records` now accepts not only dicts but any instance of the collections.Mapping ABC.

• Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070)

• added option `display.mpl_style` providing a sleeker visual style for plots. Based on [https://gist.github.com/huyng/816622](https://gist.github.com/huyng/816622) (GH3075).

• Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy of @stephenwlin (GH3130)

• Improved performance of groupby transform method (GH2121)

• Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit list of column names (so the parser knows how many columns to expect in the result) (GH2981)
On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216)

- Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
- Add time method to DatetimeIndex (GH3180)
- Return NA when using Series.str[...] for values that are not long enough (GH3223)
- Display cursor coordinate information in time-series plots (GH1670)
- to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes $, in addition to < and >. (GH2919)

36.20.3 API Changes

- Do not automatically upcast numeric specified dtypes to int64 or float64 (GH622 and GH797)
- DataFrame construction of lists and scalars, with no dtype present, will result in casting to int64 or float64, regardless of platform. This is not an apparent change in the API, but noting it.
- Guarantee that convert_objects() for Series/DataFrame always returns a copy
- Groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans, then an int will be returned)
- backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations
- Block types will upcast as needed in where/masking operations (GH2793)
- Series now automatically will try to set the correct dtype based on passed datetimelike objects (datetime/Timestamp)
  - timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64)
  - mixed datetimes and objects (GH2751) in a constructor will be cast correctly
  - astype on datetimes to object are now handled (as well as NaT conversions to np.nan)
  - all timedelta like objects will be correctly assigned to timedelta64 with mixed NaN and/or NaT allowed
- arguments to DataFrame.clip were inconsistent to numpy and Series clipping (GH2747)
- util.testing.assert_frame_equal now checks the column and index names (GH2964)
- Constructors will now return a more informative ValueError on failures when invalid shapes are passed
- Don’t suppress TypeError in GroupBy.agg (GH3238)
- Methods return None when inplace=True (GH1893)
- HDFStore
  - added the method select_column to select a single column from a table as a Series.
  - deprecated the unique method, can be replicated by select_column( key, column ).unique()
  - min_itemsize parameter will now automatically create data_columns for passed keys
- Downcast on pivot if possible (GH3283), adds argument downcast to fillna
- Introduced options display.height/width for explicitly specifying terminal height/width in characters. Deprecated display.line_width, now replaced by display.width. These defaults are in effect for scripts as well, so unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output.
• Various defaults for options (including display.max_rows) have been revised, after a brief survey concluded they were wrong for everyone. Now at w=80,h=60.
• HTML repr output in IPython qtconsole is once again controlled by the option display.notebook_repr_html, and on by default.

36.20.4 Bug Fixes

• Fix seg fault on empty data frame when fillna with pad or backfill (GH2778)
• Single element ndarrays of datetimelike objects are handled (e.g. np.array(datetime(2001,1,1,0,0))), w/o dtype being passed
• 0-dim ndarrays with a passed dtype are handled correctly (e.g. np.array(0.,dtype='float32'))
• Fix some boolean indexing inconsistencies in Series.__getitem__/__setitem__ (GH2776)
• Fix issues with DataFrame and Series constructor with integers that overflow int64 and some mixed typed type lists (GH2845)
• HDFStore
  – Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of values in a Term expression (so not using numexpr filtering, but isn filtering)
  – Internally, change all variables to be private-like (now have leading underscore)
  – Fixes for query parsing to correctly interpret boolean and != (GH2849, GH2973)
  – Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931)
  – Fixes bug with writing rows if part of a block was all-nan (GH3012)
  – Exceptions are now ValueError or TypeError as needed
  – A table will now raise if min_itemsize contains fields which are not queryables

• Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default in convert_objects
• TimeDeltas
  – Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops with datetimes,timedeltas, Timestamps, and datelike Series on both lhs and rhs
  – Fixed subtle timedelta64 inference issue on py3 & numpy 1.7.0 (GH3094)
  – Fixed some formatting issues on timedelta when negative
  – Support null checking on timedelta64, representing (and formatting) with NaT
  – Support setitem with np.nan value, converts to NaT
  – Support min/max ops in a Dataframe (abs not working, nor do we error on non-supported ops)
  – Support idxmin/idxmax/abs/max/min in a Series (GH2989, GH2982)

• Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746)
• Bug in argsort of datetime64[ns] Series with NaT (GH2967)
• Bug in value_counts of datetime64[ns] Series (GH3002)
• Fixed printing of NaT in an index
• Bug in idxmin/idxmax of datetime64[ns] Series with NaT (GH2982)
• Bug in `icol, take` with negative indicies was producing incorrect return values (see GH2922, GH2892), also check for out-of-bounds indices (GH3029)
• Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable state (GH3010)
• Bug in DataFrame update, combine_first where non-specified values could cause dtype changes (GH3016, GH3041)
• Bug in groupby with first/last where dtypes could change (GH3041, GH2763)
• Formatting of an index that has `nan` was inconsistent or wrong (would fill from other values), (GH2850)
• Unstack of a frame with no nans would always cause dtype upcasting (GH2929)
• Fix scalar datetime parsing bug in read_csv (GH3071)
• Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807)
• Fixed a segfault when using a function as grouper in groupby (GH3035)
• Fix pretty-printing of infinite data structures (closes GH2978)
• Fixed exception when plotting timeseries bearing a timezone (closes GH2877)
• `str.contains` ignored na argument (GH2806)
• Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011)
• Fix exception in SparseSeries.density (GH2083)
• Fix upsampling bug with closed='left’ and daily to daily data (GH3020)
• Fixed missing tick bars on scatter_matrix plot (GH3063)
• Fixed bug in Timestamp(d,tz=foo) when d is date() rather then datetime() (GH2993)
• `series.plot(kind='bar')` now respects pylab color schem (GH3115)
• Fixed bug in reshape if not passed correct input, now raises TypeError (GH3020)
• Fixed a bug where Series ctor did not respect ordering if OrderedDict passed in (GH3282)
• Fix NameError issue on RESO_US (GH2787)
• Allow selection in an unordered timeseries to work similary to an ordered timeseries (GH2437).
• Fix implemented `.xs` when called with `axes=1` and a level parameter (GH2903)
• Timestamp now supports the class method fromordinal similar to datetimes (GH3042)
• Fix issue with indexing a series with a boolean key and specifying a 1-len list on the rhs (GH2745) or a list on the rhs (GH3235)
• Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738)
• fixed handling of rolling_corr with center=True which could produce corr>1 (GH3155)
• Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter
• PeriodIndex.tolist now boxes to Period (GH3178)
• PeriodIndex.get_loc KeyError now reports Period instead of ordinal (GH3179)
• `df.to_records` bug when handling MultiIndex (GH3189)
• Fix `Series._getitem__segfault` when index less than -length (GH3168)
• Fix bug when using Timestamp as a date parser (GH2932)
• Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926)
• Add comparison operators to Period object (GH2781)
• Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797)
• Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816)
• fixed bug in the pickling of PeriodIndex (GH2891)
• Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216)
• Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786)
• Apply with invalid returned indices raise correct Exception (GH2808)
• Fixed a bug in plotting log-scale bar plots (GH3247)
• df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233)
• Fixed a bug in the legend of plotting.andrews_curves() (GH3278)
• Produce a series on apply if we only generate a singular series and have a simple index (GH2893)
• Fix Python ASCII file parsing when integer falls outside of floating point spacing (GH3258)
• fixed pretty printing of sets (GH3294)
• Panel() and Panel.from_dict() now respects ordering when give OrderedDict (GH3303)
• DataFrame where with a datetimelike incorrectly selecting (GH3311)
• Ensure index casts work even in Int64Index
• Fix set_index segfault when passing MultiIndex (GH3308)
• Ensure pickles created in py2 can be read in py3
• Insert ellipsis in MultiIndex summary repr (GH3348)
• Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380)
• Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360)
• Period.strftime should return unicode strings always (GH3363)
• Respect passed read_* chunksize in get_chunk function (GH3406)

36.21 pandas 0.10.1

Release date: 2013-01-22

36.21.1 New Features

• Add data interface to World Bank WDI pandas.io.wb (GH2592)

36.21.2 API Changes

• Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893)
• HDFStore
  – refactored HDFStore to deal with non-table stores as objects, will allow future enhancements
– removed keyword `compression` from `put` (replaced by keyword `complib` to be consistent across library)
– warn `PerformanceWarning` if you are attempting to store types that will be pickled by PyTables

### 36.21.3 Improvements to existing features

- **HDFStore**
  – enables storing of multi-index dataframes (closes GH1277)
  – support data column indexing and selection, via `data_columns` keyword in append
  – support write chunking to reduce memory footprint, via `chunksize` keyword to append
  – support automatic indexing via `index` keyword to append
  – support `expectedrows` keyword in append to inform PyTables about the expected table size
  – support `start` and `stop` keywords in `select` to limit the row selection space
  – added `get_store` context manager to automatically import with pandas
  – added column filtering via `columns` keyword in `select`
  – added methods `append_to_multiple/select_as_multiple/select_as_coordinates` to do multiple-table append/selection
  – added support for `datetime64` in columns
  – added method `unique` to select the unique values in an indexable or data column
  – added method `copy` to copy an existing store (and possibly upgrade)
  – show the shape of the data on disk for non-table stores when printing the store
  – added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems)

- **Add `logx` option to DataFrame/Series.plot (GH2327, GH2565)**
- Support reading gzipped data from file-like object
- **pivot_table** `aggfunc` can be anything used in GroupBy.aggregate (GH2643)
- Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690)
- Raise exception in C file parser if integer dtype specified and have NA values. (GH2631)
- Attempt to parse ISO8601 format dates when `parse_dates=True` in `read_csv` for major performance boost in such cases (GH2698)
- Add methods `neg` and `inv` to Series
- Implement `kind` option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613)
- Documented a fast-path in `pd.read_csv` when parsing iso8601 datetime strings yielding as much as a 20x speedup. (GH5993)

### 36.21.4 Bug Fixes

- Fix `read_csv/read_table` multithreading issues (GH2608)
- **HDFStore**
  – correctly handle `nan` elements in string columns; serialize via the `nan_rep` keyword to append
– raise correctly on non-implemented column types (unicode/date)
– handle correctly Term passed types (e.g. index<1000, when index is Int64), (closes GH512)
– handle Timestamp correctly in data_columns (closes GH2637)
– contains correctly matches on non-natural names
– correctly store float32 dtypes in tables (if not other float types in the same table)

• Fix DataFrame.info bug with UTF8-encoded columns. (GH2576)
• Fix DatetimeIndex handling of FixedOffset tz (GH2604)
• More robust detection of being in IPython session for wide DataFrame console formatting (GH2585)
• Fix platform issues with file:/// in unit test (GH2564)
• Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616)
• Ensure that MultiIndex tuples can be constructed with NAs (GH2616)
• Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616)
• Exclude non-numeric data from DataFrame.quantile by default (GH2625)
• Fix a Cython int64 boxing issue causing read_csv to return incorrect results (GH2599)
• Fix groupby summing performance issue on boolean data (GH2692)
• Don’t bork Series containing datetime64 values with to_datetime (GH2699)
• Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633)
• Fix C parser-tokenizer bug with trailing fields. (GH2668)
• Don’t exclude non-numeric data from GroupBy.max/min (GH2700)
• Don’t lose time zone when calling DatetimeIndex.drop (GH2621)
• Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686)
• Box datetime64 values in Series.apply/map (GH2627, GH2689)
• Upconvert datetime + datetime64 values when concatenating frames (GH2624)
• Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649)
• Fix partial date parsing issue occurring only when code is run at EOM (GH2618)
• Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684)
• Fix Period resampling bug when all values fall into a single bin (GH2070)
• Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654)
• Fix bug in Index.summary() where string format methods were being called incorrectly. (GH3869)

36.22 pandas 0.10.0

Release date: 2012-12-17
36.22.1 New Features

- Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance in many standard use cases with a fraction as much memory usage. (GH407, GH821)

- Many new file parser (read_csv, read_table) features:
  - Support for on-the-fly gzip or bz2 decompression (compression option)
  - Ability to get back numpy.recarray instead of DataFrame (as_recarray=True)
  - dtype option: explicit column dtypes
  - usecols option: specify list of columns to be read from a file. Good for reading very wide files with many irrelevant columns (GH1216 GH926, GH2465)
  - Enhanced unicode decoding support via encoding option
  - skipinitialspace dialect option
  - Can specify strings to be recognized as True (true_values) or False (false_values)
  - High-performance delim_whitespace option for whitespace-delimited files; a preferred alternative to the ‘s+’ regular expression delimiter
  - Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past (error_bad_lines and warn_bad_lines options)
  - Substantially improved performance in the parsing of integers with thousands markers and lines with comments
  - Easy of European (and other) decimal formats (decimal option) (GH584, GH2466)
  - Custom line terminators (e.g. lineterminator=’~’) (GH2457)
  - Handling of no trailing commas in CSV files (GH2333)
  - Ability to handle fractional seconds in date_converters (GH2209)
  - read_csv allow scalar arg to na_values (GH1944)
  - Explicit column dtype specification in read_* functions (GH1858)
  - Easier CSV dialect specification (GH1743)
  - Improve parser performance when handling special characters (GH1204)

- Google Analytics API integration with easy oauth2 workflow (GH2283)

- Add error handling to Series.str.encode/decode (GH2276)

- Add where and mask to Series (GH2337)

- Grouped histogram via by keyword in Series/DataFrame.hist (GH2186)

- Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002)

- Add duplicated and drop_duplicates functions to Series (GH1923)

- Add docs for HDFStore table format

- ‘density’ property in SparseSeries (GH2384)

- Add ffill and bfill convenience functions for forward- and backfilling time series data (GH2284)

- New option configuration system and functions set_option, get_option, describe_option, and reset_option. Deprecate set_printoptions and reset_printoptions (GH2393). You can also access options as attributes via pandas.options.X
- Wide DataFrames can be viewed more easily in the console with new expand_frame_repr and line_width configuration options. This is on by default now (GH2436)
- Scikits.timeseries-like moving window functions via rolling_window (GH1270)

### 36.22.2 Experimental Features

- Add support for Panel4D, a named 4 Dimensional structure
- Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers

### 36.22.3 API Changes

- The default binning/labeling behavior for resample has been changed to closed='left', label='left' for daily and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on this. (GH2410)
- Methods with inplace option now return None instead of the calling (modified) object (GH1893)
- The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users should explicitly do e.g. df.sub(ts, axis=0) instead. This is a legacy hack and can lead to subtle bugs.
  - inf/-inf are no longer considered as NA by isnull/notnull. To be clear, this is legacy cruft from early pandas. This behavior can be globally re-enabled using the new option mode.use_inf_as_null (GH2050, GH1919)
  - pandas.merge will now default to sort=False. For many use cases sorting the join keys is not necessary, and doing it by default is wasteful
  - Specify header=0 explicitly to replace existing column names in file in read_* functions.
  - Default column names for header-less parsed files (yielded by read_csv, etc.) are now the integers 0, 1, .... A new argument prefix has been added; to get the v0.9.x behavior specify prefix='X' (GH2034). This API change was made to make the default column names more consistent with the DataFrame constructor’s default column names when none are specified.
- DataFrame selection using a boolean frame now preserves input shape
- If function passed to Series.apply yields a Series, result will be a DataFrame (GH2316)
- Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can be customized using the new true_values and false_values options (GH2360)
- obj.fillna() is no longer valid; make method='pad' no longer the default option, to be more explicit about what kind of filling to perform. Add ffill/bfill convenience functions per above (GH2284)
- HDFStore.keys() now returns an absolute path-name for each key
- to_string() now always returns a unicode string. (GH2224)
- File parsers will not handle NA sentinel values arising from passed converter functions

### 36.22.4 Improvements to existing features

- Add nrows option to DataFrame.from_records for iterators (GH1794)
- Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples is much smaller than the total possible number that could occur (GH2278). Also improves performance in most cases.
- Support duplicate columns in DataFrame.from_records (GH2179)
- Add `normalize` option to Series/DataFrame.asfreq (GH2137)
- SparseSeries and SparseDataFrame construction from empty and scalar values now no longer create dense ndarrays unnecessarily (GH2322)
- HDFStore now supports hierarchical keys (GH2397)
- Support multiple query selection formats for HDFStore tables (GH1996)
- Support `del store['df']` syntax to delete HDFStores
- Add multi-dtype support for HDFStore tables
- `min_itemsize` parameter can be specified in HDFStore table creation
- Indexing support in HDFStore tables (GH698)
- Add `line_terminator` option to DataFrame.to_csv (GH2383)
- added implementation of `str(x)/unicode(x)/bytes(x)` to major pandas data structures, which should do the right thing on both py2.x and py3.x. (GH2224)
- Reduce groupby.apply overhead substantially by low-level manipulation of internal NumPy arrays in DataFrames (GH535)
- Implement `value_vars` in `melt` and add `melt` to pandas namespace (GH2412)
- Added boolean comparison operators to Panel
- Enable Series.str.strip/lstrip/rstrip methods to take an argument (GH2411)
- The DataFrame ctor now respects column ordering when given an OrderedDict (GH2455)
- Assigning DatetimeIndex to Series changes the class to TimeSeries (GH2139)
- Improve performance of .value_counts method on non-integer data (GH2480)
- `get_level_values` method for MultiIndex return Index instead of ndarray (GH2449)
- `convert_to_r_dataframe` conversion for datetime values (GH2351)
- Allow `DataFrame.to_csv` to represent inf and nan differently (GH2026)
- Add `min_i` argument to nancorr to specify minimum required observations (GH2002)
- Add `inplace` option to `sortlevel`/`sort` functions on DataFrame (GH1873)
- Enable DataFrame to accept scalar constructor values like Series (GH1856)
- DataFrame.from_records now takes optional `size` parameter (GH1794)
- include iris dataset (GH1709)
- No datetime64 DataFrame column conversion of datetime.datetime with tzinfo (GH1581)
- Micro-optimizations in DataFrame for tracking state of internal consolidation (GH217)
- Format parameter in DataFrame.to_csv (GH1525)
- Partial string slicing for DatetimeIndex for daily and higher frequencies (GH2306)
- Implement `col_space` parameter in `to_html` and `to_string` in DataFrame (GH1000)
- Override Series.tolist and box datetime64 types (GH2447)
- Optimize unstack memory usage by compressing indices (GH2278)
- Fix HTML repr in IPython qtconsole if opening window is small (GH2275)
- Escape more special characters in console output (GH2492)
• df.select now invokes bool on the result of crit(x) (GH2487)

36.22.5 Bug Fixes

• Fix major performance regression in DataFrame.iteritems (GH2273)
• Fixes bug when negative period passed to Series/DataFrame.diff (GH2266)
• Escape tabs in console output to avoid alignment issues (GH2038)
• Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272)
• Fix concatenation bug leading to GH2057, GH2257
• Fix regression in Index console formatting (GH2319)
• Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281)
• Raise exception on calling reset_index on Series with inplace=True (GH2277)
• Enable setting multiple columns in DataFrame with hierarchical columns (GH2295)
• Respect dtype=object in DataFrame constructor (GH2291)
• Fix DatetimeIndex.join bug with tz-aware indexes and how=‘outer’ (GH2317)
• pop(...) and del works with DataFrame with duplicate columns (GH2349)
• Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263)
• Prevent uint64 -> int64 overflows (GH2355)
• Enable joins between MultiIndex and regular Index (GH2024)
• Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367)
• Raise/handle int64 overflows in parsers (GH2247)
• Deleting of consecutive rows in HDFStore tables is much faster than before
• Appending on a HDFStore would fail if the table was not first created via put
• Use col_space argument as minimum column width in DataFrame.to_html (GH2328)
• Fix tz-aware DatetimeIndex.to_period (GH2232)
• Fix DataFrame row indexing case with MultiIndex (GH2314)
• Fix to_excel exporting issues with Timestamp objects in index (GH2294)
• Fixes assigning scalars and array to hierarchical column chunk (GH1803)
• Fixed a UnicodeDecodeError with series tidy_repr (GH2225)
• Fixed issues with duplicate keys in an index (GH2347, GH2380)
• Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331)
• Fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443)
• Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2300)
• Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling DataFrame.apply. (GH2374)
• Raise exception when calling to_panel on non uniquely-indexed frame (GH2441)
• Improved detection of console encoding on IPython zmq frontends (GH2458)
• Preserve time zone when .append-ing two time series (GH2260)
• Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64 column (GH2262)
• Enable searching non-string columns in DataFrame.filter(like=...) (GH2467)
• Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252)
• Handle time zones in Datetime.normalize (GH2338)
• Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318)
• Fix plotting bug where upsampling causes data to appear shifted in time (GH2448)
• Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298)
• read_csv with names arg not implicitly setting header=None(GH2459)
• Unrecognized compression mode causes segfault in read_csv(GH2474)
• In read_csv, header=0 and passed names should discard first row(GH2269)
• Correctly route to stdout/stderr in read_table (GH2071)
• Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471)
• Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133)
• Union of empty DataFrames now return empty with concatenated index (GH2307)
• DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488)
• DataFrame.to_string formatters can be list, too (GH2520)
• DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is length-zero (GH2525)
• Fix several DataFrame.icol/irow with duplicate indices issues (GH2228, GH2259)
• Use Series names for column names when using concat with axis=1 (GH2489)
• Raise Exception if start, end, periods all passed to date_range (GH2538)
• Fix Panel resampling issue (GH2537)

36.23 pandas 0.9.1

Release date: 2012-11-14

36.23.1 New Features

• Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928)
• New top and bottom options for handling NAs in rank (GH1508, GH2159)
• Add where and mask functions to DataFrame (GH2109, GH2151)
• Add at_time and between_time functions to DataFrame (GH2149)
• Add flexible pow and rpow methods to DataFrame (GH2190)
36.23.2 API Changes

- Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all months in each year
- Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764)
- File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

36.23.3 Improvements to existing features

- Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140)
- Improve performance of datetime + business day offset with large number of offset periods
- Improve HTML display of DataFrame objects with hierarchical columns
- Enable referencing of Excel columns by their column names (GH1936)
- DataFrame.dot can accept ndarrays (GH2042)
- Support negative periods in Panel.shift (GH2164)
- Make .drop(...) work with non-unique indexes (GH2101)
- Improve performance of Series/DataFrame.diff (re: GH2087)
- Support unary ~ (__invert__) in DataFrame (GH2110)
- Turn off pandas-style tick locators and formatters (GH2205)
- DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230)

36.23.4 Bug Fixes

- Fix some duplicate-column DataFrame constructor issues (GH2079)
- Fix bar plot color cycle issues (GH2082)
- Fix off-center grid for stacked bar plots (GH2157)
- Fix plotting bug if inferred frequency is offset with N > 1 (GH2126)
- Implement comparisons on date offsets with fixed delta (GH2078)
- Handle inf/-inf correctly in read_* parser functions (GH2041)
- Fix matplotlib unicode interaction bug
- Make WLS r-squared match statsmodels 0.5.0 fixed value
- Fix zero-trimming DataFrame formatting bug
- Correctly compute/box datetime64 min/max values from Series.min/max (GH2083)
- Fix unstacking edge case with unrepresented groups (GH2100)
- Fix Series.str failures when using pipe pattern "|" (GH2119)
- Fix pretty-printing of dict entries in Series, DataFrame (GH2144)
- Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095)
- Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060)
- Fix timedelta64 formatting from Series (GH2165, GH2146)
• Handle None values gracefully in dict passed to Panel constructor (GH2075)
• Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148)
• Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155)
• Use index name(s) (if any) in DataFrame.to_records (GH2161)
• Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163)
• Work around length-0 boolean indexing NumPy bug (GH2096)
• Fix partial integer indexing bug in DataFrame.xs (GH2107)
• Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979)
• Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117)
• Fix groupby(...).first() issue with datetime64 (GH2133)
• Better floating point error robustness in some rolling_* functions (GH2114, GH2527)
• Fix ewma NA handling in the middle of Series (GH2128)
• Fix numerical precision issues in diff with integer data (GH2087)
• Fix bug in MultiIndex.__getitem__ with NA values (GH2008)
• Fix DataFrame.from_records dict-arg bug when passing columns (GH2179)
• Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174)
• Fix bug when taking intersection of DatetimeIndex with empty index (GH2129)
• Pass through timezone information when calling DataFrame.align (GH2127)
• Properly sort when joining on datetime64 values (GH2196)
• Fix indexing bug in which False/True were being coerced to 0/1 (GH2199)
• Many unicode formatting fixes (GH2201)
• Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200)
• Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236)
• Fix duplicate columns issue (GH2218, GH2219)
• Fix SparseSeries.__pow__ issue with NA input (GH2220)
• Fix icol with integer sequence failure (GH2228)
• Fixed resampling tz-aware time series issue (GH2245)
• SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229)
• Enable ExcelWriter to handle PeriodIndex (GH2240)
• Fix issue constructing DataFrame from empty Series with name (GH2234)
• Use console-width detection in interactive sessions only (GH1610)
• Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237)
• Make tz_localize work in corner case of empty Series (GH2248)
### 36.24 pandas 0.9.0

**Release date:** 10/7/2012

#### 36.24.1 New Features

- Add `str.encode` and `str.decode` to Series (GH1706)
- Add `to_latex` method to DataFrame (GH1735)
- Add convenient expanding window equivalents of all rolling_* ops (GH1785)
- Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
- Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691, GH1295)

#### 36.24.2 Improvements to existing features

- Proper handling of NA values in merge operations (GH1990)
- Add `flags` option for `re.compile` in some Series.str methods (GH1659)
- Parsing of UTC date strings in read_* functions (GH1693)
- Handle generator input to Series (GH1679)
- Add `na_action='ignore'` to Series.map to quietly propagate NAs (GH1661)
- Add `args/kwds` options to Series.apply (GH1829)
- Add `inplace` option to Series/DataFrame.reset_index (GH1797)
- Add `level` parameter to Series.reset_index
- Add quoting option for DataFrame.to_csv (GH1902)
- Indicate long column value truncation in DataFrame output with ... (GH1854)
- DataFrame.dot will not do data alignment, and also work with Series (GH1915)
- Add `na` option for missing data handling in some vectorized string methods (GH1689)
- If `index_label=False` in DataFrame.to_csv, do not print fields/commas in the text output. Results in easier importing into R (GH1583)
- Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows) (GH924)
- Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929)
- TimeSeries.between_time can now select times across midnight (GH1871)
- Enable `skip_footer` parameter in ExcelFile.parse (GH1843)
36.24.3 API Changes

- Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000)
- Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
- Don’t modify NumPy suppress printoption at import time
- The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
- Legacy cruft removed: pandas.stats.misc.quantileTS
- Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
- Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
- Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
- first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
- Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer over-ride default NAs unless keep_default_na is set to false explicitly (GH1657)
- Enable skipfooter parameter in text parsers as an alias for skip_footer

36.24.4 Bug Fixes

- Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused downstream DataFrame.diff bug (GH1896)
- Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword argument (GH1711)
- Fix resampling logical error with closed=’left’ (GH1726)
- Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753)
- Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708)
- Fix MM-YYYY time series indexing case (GH1672)
- Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701)
- Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721)
- Fix some bugs with handling datetime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717)
- Fix performance issue in MultiIndex.format (GH1746)
- Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677)
- Handle factors with NAs in pandas.rpy (GH1615)
- Fix statsmodels import in pandas.stats.var (GH1734)
- Fix DataFrame repr/info summary with non-unique columns (GH1700)
- Fix Series.iget_value for non-unique indexes (GH1694)
- Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682)
- Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- Fix field access with UTC->local conversion on unsorted arrays (GH1756)
- Fix isnull handling of array-like (list) inputs (GH1755)
- Fix regression in handling of Series in Series constructor (GH1671)
- Fix comparison of Int64Index with DatetimeIndex (GH1681)
- Fix min_periods handling in new rolling_max/min at array start (GH1695)
- Fix errors with how='median' and generic NumPy resampling in some cases caused by SeriesBinGrouper (GH1648, GH1688)
- When grouping by level, exclude unobserved levels (GH1697)
- Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683)
- Hack to support storing data with a zero-length axis in HDFStore (GH1707)
- Fix DatetimeIndex tz-aware range generation issue (GH1674)
- Fix method='time' interpolation with intraday data (GH1698)
- Don’t plot all-NA DataFrame columns as zeros (GH1696)
- Fix bug in scatter_plot with by option (GH1716)
- Fix performance problem in infer_freq with lots of non-unique stamps (GH1686)
- Fix handling of PeriodIndex as argument to create MultiIndex (GH1705)
- Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736)
- Handle PeriodIndex in to_datetime instance method (GH1703)
- Support StaticTzInfo in DatetimeIndex infrastructure (GH1692)
- Allow MultiIndex setops with length-0 other type indexes (GH1727)
- Fix handling of DatetimeIndex in DataFrame.to_records (GH1720)
- Fix handling of general objects in isnull on which bool(...) fails (GH1749)
- Fix .ix indexing with MultiIndex ambiguity (GH1678)
- Fix .ix setting logic error with non-unique MultiIndex (GH1750)
- Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas (GH1757)
- Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761)
- Fix DatetimeIndex.isin to function properly (GH1763)
- Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777)
- Fix DST issues with generating anchored date ranges (GH1778)
- Fix issue calling sort on result of Series.unique (GH1807)
- Fix numerical issue leading to square root of negative number in rolling_std (GH1840)
- Let Series.str.split accept no arguments (like str.split) (GH1859)
- Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851)
- Catch ImportError less aggressively in pandas/__init__.py (GH1845)
- Fix pip source installation bug when installing from GitHub (GH1805)
- Fix error when window size > array size in rolling_apply (GH1850)
• Fix pip source installation issues via SSH from GitHub
• Fix OLS.summary when column is a tuple (GH1837)
• Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774)
• Fix unicode console encoding issue in IPython notebook (GH1782, GH1768)
• Fix unicode formatting issue with Series.name (GH1782)
• Fix bug in DataFrame.duplicated with datetime64 columns (GH1833)
• Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826)
• Fix to_csv issues with list of string entries. Isnull works on list of strings now too (GH1791)
• Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262)
• Revert to prior behavior of normalize_date with datetime.date objects (return datetime)
• Fix broken interaction between np.nansum and Series.any/all
• Fix bug with multiple column date parsers (GH1866)
• DatetimeIndex.union(Int64Index) was broken
• Make plot x vs y interface consistent with integer indexing (GH1842)
• set_index inplace modified data even if unique check fails (GH1831)
• Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789)
• Upcast to dtype=object when unstacking boolean DataFrame (GH1820)
• Fix float64/float32 merging bug (GH1849)
• Fixes to Period.start_time for non-daily frequencies (GH1857)
• Fix failure when converter used on index_col in read_csv (GH1835)
• Implement PeriodIndex.append so that pandas.concat works correctly (GH1815)
• Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d
• Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772)
• Fix .ix indexing bugs with mixed-integer indexes (GH1799)
• Respect passed color keyword argument in Series.plot (GH1890)
• Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs (GH1899, GH1897)
• Rolling variance / standard deviation with only a single observation in window (GH1884)
• Fix unicode sheet name failure in to_excel (GH1828)
• Override DatetimeIndex.min/max to return Timestamp objects (GH1895)
• Fix column name formatting issue in length-truncated column (GH1906)
• Fix broken handling of copying Index metadata to new instances created by view(...) calls inside the NumPy infrastructure
• Support datetime.date again in DateOffset.rollback/rollforward
• Raise Exception if set passed to Series constructor (GH1913)
• Add TypeError when appending HDFStore table w/ wrong index type (GH1881)
• Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900)
• Make asof work correctly with PeriodIndex (GH1883)
• Fix extlinks in doc build
• Fill boolean DataFrame with NaN when calling shift (GH1814)
• Fix setuptools bug causing pip not to Cythonize .pyx files sometimes
• Fix negative integer indexing regression in .ix from 0.7.x (GH1888)
• Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoffset attributes (GH1922)
• Fix DataFrame formatting of small, non-zero FP numbers (GH1911)
• Various fixes by upcasting of date -> datetime (GH1395)
• Raise better exception when passing multiple functions with the same name, such as lambdas, to GroupBy.aggregate
• Fix DataFrame.apply with axis=1 on a non-unique index (GH1878)
• Proper handling of Index subclasses in pandas.unique (GH1759)
• Set index names in DataFrame.from_records (GH1744)
• Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821)
• Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame (GH1796)
• Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943)
• Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC transition in a long time (GH1946)
• Fix errors when parsing and working with with fixed offset timezones (GH1922, GH1928)
• Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693)
• Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669)
• Fix plot styling bugs (GH1666, GH1665, GH1658)
• Fix plotting bug with index/columns with unicode (GH1685)
• Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680)
• Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676)
• Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675)
• Fixed bug when plotting time series with multiple intraday frequencies (GH1732)
• Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773)
• Fix resample bug when passed list of lambdas as how argument (GH1808)
• Repr fix for MultiIndex level with all NAs (GH1971)
• Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977)
• Fix read_table bug when parsing unicode (GH1975)
• Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970)
• Fix reset_index bug if both drop and level are specified (GH1957)
• Work around unsafe NumPy object->int casting with Cython function (GH1987)
• Fix datetime64 formatting bug in DataFrame.to_csv (GH1993)
• Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011)

36.25 pandas 0.8.1

Release date: July 22, 2012

36.25.1 New Features

• Add vectorized, NA-friendly string methods to Series (GH1621, GH620)
• Can pass dict of per-column line styles to DataFrame.plot (GH1559)
• Selective plotting to secondary y-axis on same subplot (GH1640)
• Add new bootstrap_plot plot function
• Add new parallel_coordinates plot function (GH1488)
• Add radviz plot function (GH1566)
• Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538)
• Add dropna method to Panel (GH171)

36.25.2 Improvements to existing features

• Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504, GH50)
• Add Cython group median method for >15x speedup (GH1358)
• Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571)
• Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical variable
• Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index (GH1569, GH1577)
• Always apply passed functions in resample, even if upsampling (GH1596)
• Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572)
• Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611)
• Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index (GH1215)
• More informative string representation for weekly Period objects (GH1503)
• Accelerate 3-axis multi data selection from homogeneous Panel (GH979)
• Add adjust option to ewma to disable adjustment factor (GH1584)
• Add new matplotlib converters for high frequency time series plotting (GH1599)
• Handling of tz-aware datetime.datetime objects in to_datetime; raise Exception unless utc=True given (GH1581)

### 36.25.3 Bug Fixes

• Fix NA handling in DataFrame.to_panel (GH1582)
• Handle TypeError issues inside PyObject_RichCompareBool calls in khash (GH1318)
• Fix resampling bug to lower case daily frequency (GH1588)
• Fix kendall/spearman DataFrame.corr bug with no overlap (GH1595)
• Fix bug in DataFrame.set_index (GH1592)
• Don’t ignore axes in boxplot if by specified (GH1565)
• Fix Panel .ix indexing with integers bug (GH1603)
• Fix Partial indexing bugs (years, months, ...) with PeriodIndex (GH1601)
• Fix MultiIndex console formatting issue (GH1606)
• Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586)
• Fix resampling of tz-aware time series with “anchored” freq (GH1591)
• Fix DataFrame.rank error on integer data (GH1589)
• Selection of multiple SparseDataFrame columns by list in __getitem__ (GH1585)
• Override Index.tolist for compatibility with MultiIndex (GH1576)
• Fix hierarchical summing bug with MultiIndex of length 1 (GH1568)
• Work around numpy.concatenate use/bug in Series.set_value (GH1561)
• Ensure Series/DataFrame are sorted before resampling (GH1580)
• Fix unhandled IndexError when indexing very large time series (GH1562)
• Fix DatetimeIndex intersection logic error with irregular indexes (GH1551)
• Fix unit test errors on Python 3 (GH1550)
• Fix .ix indexing bugs in duplicate DataFrame index (GH1201)
• Better handle errors with non-existing objects in HDFStore (GH1254)
• Don’t copy int64 array data in DatetimeIndex when copy=False (GH1624)
• Fix resampling of conforming periods quarterly to annual (GH1622)
• Don’t lose index name on resampling (GH1631)
• Support python-dateutil version 2.1 (GH1637)
• Fix broken scatter_matrix axis labeling, esp. with time series (GH1625)
• Fix cases where extra keywords weren’t being passed on to matplotlib from Series.plot (GH1636)
• Fix BusinessMonthBegin logic for dates before 1st bday of month (GH1645)
• Ensure string alias converted (valid in DatetimeIndex.get_loc) in DataFrame.xls / __getitem__ (GH1644)
• Fix use of string alias timestamps with tz-aware time series (GH1647)
• Fix Series.max/min and Series.describe on len-0 series (GH1650)
• Handle None values in dict passed to concat (GH1649)
• Fix Series.interpolate with method='values' and DatetimeIndex (GH1646)
• Fix IndexError in left merges on a DataFrame with 0-length (GH1628)
• Fix DataFrame column width display with UTF-8 encoded characters (GH1620)
• Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business day
• Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619)
• Fix read_csv bug when reading a single line (GH1553)
• Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570)

36.26 pandas 0.8.0

Release date: 6/29/2012

36.26.1 New Features

• New unified DatetimeIndex class for nanosecond-level timestamp data
• New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds
• New PeriodIndex class for timespans, calendar logic, and Period scalar object
• High performance resampling of timestamp and period data. New resample method of all pandas data structures
• New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’
• Time series string indexing shorthand (GH222)
• Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex
• Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018)
• Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391)
• New tz_convert and tz_localize methods in Series / DataFrame
• Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864)
• Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others)
• Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality
• Series/DataFrame.update methods, in-place variant of combine_first (GH961)
• Add match function to API (GH502)
• Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043)
• Dates can be split across multiple columns (GH1227, GH1186)
• Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212)
• Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610)
• Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function aggregation (GH642, GH610)
• New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging for panel data (GH813)
• Add keys() method to DataFrame
• Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241)
• Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059)
• More flexible multiple function aggregation with GroupBy
• Add pct_change function to Series/DataFrame
• Add option to interpolate by Index values in Series.interpolate (GH1206)
• Add max_colwidth option for DataFrame, defaulting to 50
• Conversion of DataFrame through rpy2 to R data.frame (GH1282, )
• Add keys() method on DataFrame (GH1240)
• Add new match function to API (similar to R) (GH502)
• Add dayfirst option to parsers (GH854)
• Add method argument to align method for forward/backward fillin (GH216)
• Add Panel.transpose method for rearranging axes (GH695)
• Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks of your choosing (GH415)
• Add new qcut for cutting with quantiles (GH1378)
• Add value_counts top level array method (GH1392)
• Added Andrews curves plot tupe (GH1325)
• Add lag plot (GH1440)
• Add autocorrelation_plot (GH1425)
• Add support for tox and Travis CI (GH1382)
• Add support for Categorical use in GroupBy (GH292)
• Add any and all methods to DataFrame (GH1416)
• Add secondary_y option to Series.plot
• Add experimental lreshape function for reshaping wide to long

36.26.2 Improvements to existing features

• Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory footprint
• Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe (GH1092)
• Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831)
• Can pass arrays in addition to column names to DataFrame.set_index (GH402)
• Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836)
• Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406)
• Improved performance of join operations on integer keys (GH682)
• Can pass multiple columns to GroupBy object, e.g. grouped[[col1, col2]] to only aggregate a subset of the value columns (GH383)
• Add histogram / kde plot options for scatter_matrix diagonals (GH1237)
• Add inplace option to Series/DataFrame.rename and sort_index, DataFrame.drop_duplicates (GH805, GH207)
• More helpful error message when nothing passed to Series.reindex (GH1267)
• Can mix array and scalars as dict-value inputs to DataFrame ctor (GH1329)
• Use DataFrame columns’ name for legend title in plots
• Preserve frequency in DatetimeIndex when possible in boolean indexing operations
• Promote datetime.date values in data alignment operations (GH867)
• Add order method to Index classes (GH1028)
• Avoid hash table creation in large monotonic hash table indexes (GH1160)
• Store time zones in HDFStore (GH1232)
• Enable storage of sparse data structures in HDFStore (GH85)
• Enable Series.asof to work with arrays of timestamp inputs
• Cython implementation of DataFrame.corr speeds up by > 100x (GH1349, GH1354)
• Exclude “nuisance” columns automatically in GroupBy.transform (GH1364)
• Support functions-as-strings in GroupBy.transform (GH1362)
• Use index name as xlabel/ylabel in plots (GH1415)
• Add convert_dtype option to Series.apply to be able to leave data as dtype=object (GH1414)
• Can specify all index level names in concat (GH1419)
• Add dialect keyword to parsers for quoting conventions (GH1363)
• Enable DataFrame[bool_DataFrame] += value (GH1366)
• Add retries argument to get_data_yahoo to try to prevent Yahoo! API 404s (GH826)
• Improve performance of reshaping by using O(N) categorical sorting
• Series names will be used for index of DataFrame if no index passed (GH1494)
• Header argument in DataFrame.to_csv can accept a list of column names to use instead of the object’s columns (GH921)
• Add raise_conflict argument to DataFrame.update (GH1526)
• Support file-like objects in ExcelFile (GH1529)

36.26.3 API Changes

• Rename pandas._tseries to pandas.lib
• Rename Factor to Categorical and add improvements. Numerous Categorical bug fixes
• Frequency name overhaul, WEEKDAY/EOM and rules with @ deprecated. get_legacy_offset_name backwards compatibility function added
• Raise ValueError in DataFrame.__nonzero__, so “if df” no longer works (GH1073)
• Change BDay (business day) to not normalize dates by default (GH506)
• Remove deprecated DataMatrix name
• Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc. (GH1239)
• Deprecation of offset, time_rule timeRule parameters throughout codebase
• Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity parameter (GH1394)
• Refactor Factor class, old constructor moved to Factor.from_array
• Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed up construction time and many methods which construct intermediate hierarchical indexes (GH1467)

36.26.4 Bug Fixes

• Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179)
• Fix logical error with February leap year end in YearEnd offset
• Series([False, nan]) was getting casted to float64 (GH1074)
• Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079)
• Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142)
• Fix label slicing issues with float index values (GH1167)
• Fix segfault caused by empty groups passed to groupby (GH1048)
• Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522)
• Fix imprecise logic causing weird Series results from .apply (GH1183)
• Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181)
• Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217)
• Handle Excel 2003 #N/A as NaN from xlrd (GH1213, GH1225)
• Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation (GH1081, GH809)
• Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557)
• Actually raise exceptions in fast reducer (GH1243)
• Fix various timezone-handling bugs from 0.7.3 (GH969)
• GroupBy on level=0 discarded index name (GH1313)
• Better error message with unmergeable DataFrames (GH1307)
• Series.__repr__ alignment fix with unicode index values (GH1279)
• Better error message if nothing passed to reindex (GH1267)
• More robust NA handling in DataFrame.drop_duplicates (GH557)
• Resolve locale-based and pre-epoch HDF5 timestamp deserialization issues (GH973, GH1081, GH179)
• Implement Series.repeat (GH1229)
• Fix indexing with namedtuple and other tuple subclasses (GH1026)
• Fix float64 slicing bug (GH1167)
• Parsing integers with commas (GH796)
• Fix groupby improper data type when group consists of one value (GH1065)
• Fix negative variance possibility in nanvar resulting from floating point error (GH1090)
• Consistently set name on groupby pieces (GH184)
• Treat dict return values as Series in GroupBy.apply (GH823)
• Respect column selection for DataFrame in in GroupBy.transform (GH1365)
• Fix MultiIndex partial indexing bug (GH1352)
• Enable assignment of rows in mixed-type DataFrame via .ix (GH1432)
• Reset index mapping when grouping Series in Cython (GH1423)
• Fix outer/inner DataFrame.join with non-unique indexes (GH1421)
• Fix MultiIndex groupby bugs with empty lower levels (GH1401)
• Calling fillna with a Series will have same behavior as with dict (GH1486)
• SparseSeries reduction bug (GH1375)
• Fix unicode serialization issue in HDFStore (GH1361)
• Pass keywords to pyplot.boxplot in DataFrame.boxplot (GH1493)
• Bug fixes in MonthBegin (GH1483)
• Preserve MultiIndex names in drop (GH1513)
• Fix Panel DataFrame slice-assignment bug (GH1533)
• Don’t use locals() in read_* functions (GH1547)

36.27 pandas 0.7.3

Release date: April 12, 2012

36.27.1 New Features

• Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306)
• Added fixed-width file reader, read_fwf (GH952)
• Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938)
• DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so.
• DataFrame.apply now retains name attributes on Series objects (GH983)
• Numeric DataFrame comparisons with non-numeric values now raises proper TypeError (GH943). Previously raise “PandasError: DataFrame constructor not properly called!”
• Add kurt methods to Series and DataFrame (GH964)
• Can pass dict of column -> list/set NA values for text parsers (GH754)
• Allows users specified NA values in text parsers (GH754)
• Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007)
• New factory function to create HDFStore objects that can be used in a with statement so users do not have to explicitly call HDFStore.close (GH1005)
• pivot_table is now more flexible with same parameters as groupby (GH941)
• Added stacked bar plots (GH987)
• scatter_matrix method in pandas/tools/plotting.py (GH935)
• DataFrame.boxplot returns plot results for ex-post styling (GH985)
• Short version number accessible as pandas.version.short_version (GH930)
• Additional documentation in panel.to_frame (GH942)
• More informative Series.apply docstring regarding element-wise apply (GH977)
• Notes on rpy2 installation (GH1006)
• Add rotation and font size options to hist method (GH1012)
• Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008)

36.27.2 API Changes

• Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call unstack() to get prior behavior
• NA handling in non-numeric comparisons has been tightened up (GH933, GH953)
• No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291)

36.27.3 Bug Fixes

• Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013)
• Series comparison with Series of differing length causes crash (GH1016).
• Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013)
• DataFrame.plot(logy=True) has no effect (GH1011).
• Broken arithmetic operations between SparsePanel-Panel (GH1015)
• Unicode repr issues in MultiIndex with non-ASCII characters (GH1010)
• DataFrame.lookup() returns inconsistent results if exact match not present (GH1001)
• DataFrame arithmetic operations not treating None as NA (GH992)
• DataFrameGroupBy.apply returns incorrect result (GH991)
• Series.reshape returns incorrect result for multiple dimensions (GH989)
• Series.std and Series.var ignores ddof parameter (GH934)
• DataFrame.append loses index names (GH980)
• DataFrame.plot(kind='bar') ignores color argument (GH958)
• Inconsistent Index comparison results (GH948)
• Improper int dtype DataFrame construction from data with NaN (GH846)
• Removes default ‘result’ name in groupby results (GH995)
• DataFrame.from_records no longer mutate input columns (GH975)
• Use Index name when grouping by it (GH1313)

36.28 pandas 0.7.2

Release date: March 16, 2012

36.28.1 New Features

• Add additional tie-breaking methods in DataFrame.rank (GH874)
• Add ascending parameter to rank in Series, DataFrame (GH875)
• Add sort_columns parameter to allow unsorted plots (GH918)
• IPython tab completion on GroupBy objects

36.28.2 API Changes

• Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows or columns are length 0 (GH844)

36.28.3 Improvements to existing features

• Don’t use groups dict in Grouper.size (GH860)
• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
• Enable column access via attributes on GroupBy (GH882)
• Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883)
• Intercept __builtin__.sum in groupby (GH885)
• Can pass dict to DataFrame.fillna to use different values per column (GH661)
• Can select multiple hierarchical groups by passing list of values in .ix (GH134)
• Add level keyword to drop for dropping values from a level (GH159)
• Add coerce_float option on DataFrame.from_records (GH893)
• Raise exception if passed date_parser fails in read_csv
• Add axis option to DataFrame.fillna (GH174)
• Fixes to Panel to make it easier to subclass (GH888)

36.28.4 Bug Fixes

• Fix overflow-related bugs in groupby (GH850, GH851)
• Fix unhelpful error message in parsers (GH856)
• Better err msg for failed boolean slicing of dataframe (GH859)
• Series.count cannot accept a string (level name) in the level argument (GH869)
• Group index platform int check (GH870)
• concat on axis=1 and ignore_index=True raises TypeError (GH871)
• Further unicode handling issues resolved (GH795)
• Fix failure in multiindex-based access in Panel (GH880)
• Fix DataFrame boolean slice assignment failure (GH881)
• Fix combineAdd NotImplementedError for SparseDataFrame (GH887)
• Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909)
• Fix na-filling handling in mixed-type DataFrame (GH910)
• Fix to DataFrame.set_value with non-existant row/col (GH911)
• Fix malformed block in groupby when excluding nuisance columns (GH916)
• Fix inconsistent NA handling in dtype=object arrays (GH925)
• Fix missing center-of-mass computation in ewmcov (GH862)
• Don’t raise exception when opening read-only HDF5 file (GH847)
• Fix possible out-of-bounds memory access in 0-length Series (GH917)

36.29  pandas 0.7.1

Release date: February 29, 2012

36.29.1 New Features

• Add `to_clipboard` function to pandas namespace for writing objects to the system clipboard (GH774)
• Add `itertuples` method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
• Add fill_value option to reindex, align methods (GH784)
• Enable concat to produce DataFrame from Series (GH787)
• Add `between` method to Series (GH802)
• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
• Support for reading Excel 2007 XML documents using openpyxl

36.29.2 Improvements to existing features

• Improve performance and memory usage of fillna on DataFrame
• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)
36.29.3 Bug Fixes

- Fix memory leak when inserting large number of columns into a single DataFrame (GH790)
- Appending length-0 DataFrame with new columns would not result in those new columns being part of the resulting concatenated DataFrame (GH782)
- Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819)
- Fixed bug whereby bool array sometimes had object dtype (GH820)
- Fix exception thrown on np.diff (GH816)
- Fix to_records where columns are non-strings (GH822)
- Fix Index.intersection where indices have incomparable types (GH811)
- Fix ExcelFile throwing an exception for two-line file (GH837)
- Add clearer error message in csv parser (GH835)
- Fix loss of fractional seconds in HDFStore (GH513)
- Fix DataFrame join where columns have datetimes (GH787)
- Work around numpy performance issue in take (GH817)
- Improve comparison operations for NA-friendliness (GH801)
- Fix indexing operation for floating point values (GH780, GH798)
- Fix groupby case resulting in malformed dataframe (GH814)
- Fix behavior of reindex of Series dropping name (GH812)
- Improve on redundant groupby computation (GH775)
- Catch possible NA assignment to int/bool series with exception (GH839)

36.30 pandas 0.7.0

Release date: 2/9/2012

36.30.1 New Features

- New `merge` function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New `concat` function for concatenating DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273)
- Handle differently-indexed output values in DataFrame.apply (GH498)
- Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526)
- Add `reorder_levels` method to Series and DataFrame (GH534)
- Add dict-like `get` function to DataFrame and Panel (GH521)
- DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
- Added DataFrame.to_panel with code adapted from LongPanel.to_long
- `reindex_axis` method added to DataFrame
- Add `level` option to binary arithmetic functions on DataFrame and Series
- Add `level` option to the `reindex` and `align` methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
- Add attribute-based item access to Panel and add IPython completion (PR GH554)
- Add `logy` option to Series.plot for log-scaling on the Y axis
- Add `index`, `header`, and `justify` options to DataFrame.to_string. Add option to (GH570, GH571)
- Can pass multiple DataFrames to DataFrame.join to join on index (GH115)
- Can pass multiple Panels to Panel.join (GH115)
- Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too
- Added `justify` argument to DataFrame.to_string to allow different alignment of column headers
- Add `sort` option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
- Can pass MaskedArray to Series constructor (GH563)
- Add Panel item access via attributes and IPython completion (GH554)
- Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
- Add `verbose` option to read_csv and read_table to show number of NA values inserted in non-numeric columns (GH614)
- Can pass a list of dicts or Series to DataFrame.append to concatenate multiple rows (GH464)
- Add `level` argument to DataFrame.xs for selecting data from other MultiIndex levels. Can take one or more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629)
- New crosstab function for easily computing frequency tables (GH170)
- Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
- Add integer-indexing functions `irow` in Series and `irow/iget` in DataFrame (GH628)
- Add new `Series.unique` function, significantly faster than `numpy.unique` (GH658)
- Add new `cummin` and `cummax` instance methods to Series and DataFrame (GH647)
- Add new `value_range` function to return min/max of a dataframe (GH288)
- Add `drop` parameter to reset_index method of DataFrame and added method to Series as well (GH699)
- Add `isin` method to Index objects, works just like Series.isin (GH GH557)
- Implement array interface on Panel so that ufuncs work (re: GH740)
- Add `sort` option to DataFrame.join (GH731)
- Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737)
- Add `abs` method to Pandas objects
- Added `algorithms` module to start collecting central algos
36.30.2 API Changes

- Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on location-based indexing (GH700)
- Label-based slicing via `ix` or `[]` on Series will now only work if exact matches for the labels are found or if the index is monotonic (for range selections)
- Label-based slicing and sequences of labels can be passed to `[]` on a Series for both getting and setting (GH86)
- `/` operator (`__getitem__` and `__setitem__`) will raise KeyError with integer indexes when an index is not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found in the index which would lead to subtle bugs. This is now consistent with the behavior of `.ix` on DataFrame and friends (GH328)
- Rename `DataFrame.delevel` to `DataFrame.reset_index` and add deprecation warning
- `Series.sort` (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316)
- Refactor to remove deprecated `LongPanel` class (GH552)
- Deprecated `Panel.to_long`, renamed to `to_frame`
- Deprecated `colSpace` argument in `DataFrame.to_string`, renamed to `col_space`
- Rename `precision` to `accuracy` in engineering float formatter (GH 395)
- The default delimiter for `read_csv` is comma rather than letting `csv.Sniffer` infer it
- Rename `col_or_columns` argument in `DataFrame.drop_duplicates` (GH GH734)

36.30.3 Improvements to existing features

- Better error message in `DataFrame` constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in `Series.to_string`, add `length` option (GH GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve `MultiIndex` reindexing speed by storing tuples in the `MultiIndex`, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of `Series.__getitem__` for standard use cases
- Avoid `Index` dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in `setup.py` if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in `Panel` class also (GH536)
- Default name assignment when calling `reset_index` on `DataFrame` with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with `level` parameter passed (GH545)
- Ported skiplist data structure to C to speed up `rolling_median` by about 5-10x in most typical use cases (GH374)
- Some performance enhancements in constructing a Panel from a dict of DataFrame objects
- Made Index._get_duplicates a public method by removing the underscore
- Prettier printing of floats, and column spacing fix (GH395, GH571)
- Add bold_rows option to DataFrame.to_html (GH586)
- Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple columns
- Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict, respectively (GH540, GH621)
- Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests)
- Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477)
- Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits (GH395)
- Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91)
- Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function application failed on (GH614)
- Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of index names, etc.)
- Can pass list of group labels (without having to convert to an ndarray yourself) to groupby in some cases (GH659)
- Use kind argument to Series.order for selecting different sort kinds (GH668)
- Add option to Series.to_csv to omit the index (GH684)
- Add delimiter as an alternative to sep in read_csv and other parsing functions
- Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of columns all at once (GH745)
- Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765)
- Can pass sequence of integers to DataFrame.irow(icol) and Series.iget, (GH GH654)
- Prototypes for some vectorized string functions
- Add float64 hash table to solve the Series.unique problem with NAs (GH714)
- Memoize objects when reading from file to reduce memory footprint
- Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’) lower levels without passing the empty levels (PR GH768)

### 36.30.4 Bug Fixes

- Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases (GH495)
- Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64) (GH486)
- Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487)
- Preserve index names in Index.union (GH501)
• Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500)
• Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491)
• Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490)
• Return empty string from Series.to_string when called on empty Series (GH GH488)
• Fix exception passing empty list to DataFrame.from_records
• Fix Index.format bug (excluding name field) with datetimes with time info
• Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510)
• Handle rows skipped at beginning of file in read_* functions (GH505)
• Handle improper dtype casting in set_value methods
• Unary ‘-’ / __neg__ operator on DataFrame was returning integer values
• Unbox 0-dim ndarrays from certain operators like all, any in Series
• Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529)
• Fix type inference logic with boolean lists and arrays in DataFrame indexing
• Use centered sum of squares in R-square computation if entity_effects=True in panel regression
• Handle all NA case in Series.{corr, cov}, was raising exception (GH548)
• Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545)
• Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when passed to Cython type inference function) (GH GH546)
• Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551)
• Fix outer join between two DateRanges with different offsets that returned an invalid DateRange
• Cleanup DataFrame.from_records failure where index argument is an integer
• Fix Data.from_records failure when passed a dictionary
• Fix NA handling in {Series, DataFrame}.rank with non-floating point dtypes
• Fix bug related to integer type-checking in .ix-based indexing
• Handle non-string index name passed to DataFrame.from_records
• DataFrame.insert caused the columns name(s) field to be discarded (GH527)
• Fix erroneous in monotonic many-to-one left joins
• Fix DataFrame.to_string to remove extra column white space (GH571)
• Format floats to default to same number of digits (GH395)
• Added decorator to copy docstring from one function to another (GH449)
• Fix error in monotonic many-to-one left joins
• Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed
• Fix exception caused by parser converter returning strings (GH583)
• Fix MultiIndex formatting bug with integer names (GH601)
• Fix bug in handling of non-numeric aggregates in Series.groupby (GH612)
• Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611)
pandas: powerful Python data analysis toolkit, Release 0.20.1

- Catch misreported console size when running IPython within Emacs
- Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels
- Add support for legacy WidePanel objects to be read from HDFStore
- Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are empty
- Could not create a new column in a DataFrame from a list of tuples
- Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666)
- Use sort kind in Series.sort / argsort (GH668)
- Fix DataFrame operations on non-scalar, non-pandas objects (GH672)
- Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669)
- Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678)
- Fix SparseSeries.combine_first when passed a dense Series (GH687)
- Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes
- Raise Exception in DateRange when offset with n=0 is passed (GH683)
- Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707)
- Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730)
- Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758)
- Fix errors caused by object dtype arrays passed to ols (GH759)
- Fix error where column names lost when passing list of labels to DataFrame.__getitem__. (GH662)
- Fix error whereby top-level week iterator overwrote week instance
- Fix circular reference causing memory leak in sparse array / series / frame, (GH663)
- Fix integer-slicing from integers-as-floats (GH670)
- Fix zero division errors in nanops from object dtype arrays in all NA case (GH676)
- Fix csv encoding when using unicode (GH705, GH717, GH738)
- Fix assumption that each object contains every unique block type in concat, (GH708)
- Fix sortedness check of multiindex in to_panel (GH719, 720)
- Fix that None was not treated as NA in PyObjectHashtable
- Fix hashing dtype because of endianness confusion (GH747, GH748)
- Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH730)
- Use map_infer instead of np.vectorize. handle NA sentinels if converter yields numeric array, (GH753)
- Fixes and improvements to DataFrame.rank (GH742)
- Fix catching AttributeError instead of NameError for bottleneck
- Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440)
- Fix #1.QNAN0' float bug on 2.6/win64
- Allow subclasses of dicts in DataFrame constructor, with tests
- Fix problem whereby set_index destroys column multiindex (GH764)
• Hack around bug in generating DateRange from naive DateOffset (GH770)
• Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771)

36.30.5 Thanks

• Craig Austin
• Chris Billington
• Marius Cobzarenco
• Mario Gamboa-Cavazos
• Hans-Martin Gaudecker
• Arthur Gerigk
• Yaroslav Halchenko
• Jeff Hammerbacher
• Matt Harrison
• Andreas Hilboll
• Luc Kesters
• Adam Klein
• Gregg Lind
• Solomon Negusse
• Wouter Overmeire
• Christian Prinoth
• Jeff Reback
• Sam Reckoner
• Craig Reeson
• Jan Schulz
• Skipper Seabold
• Ted Square
• Graham Taylor
• Aman Thakral
• Chris Uga
• Dieter Vandenbussche
• Texas P.
• Pinxing Ye
• ... and everyone I forgot
36.31 pandas 0.6.1

Release date: 12/13/2011

36.31.1 API Changes

- Rename `names` argument in DataFrame.from_records to `columns`. Add deprecation warning
- Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be exactly equal (GH429)

36.31.2 New Features

- Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430)
- Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428)
- Add new `get_value` and `set_value` methods to Series, DataFrame, and Panel to very low-overhead access to scalar elements. `df.get_value(row, column)` is about 3x faster than `df[column][row]` by handling fewer cases (GH437, GH438). Add similar methods to sparse data structures for compatibility
- Add Qt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments, add axis keyword (GH461)
- Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray (GH463)
- `max_columns / max_rows` options in set_printoptions (GH453)
- Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add `margins` option to pivot_table for computing subgroup aggregates (GH114)
- Add Series.from_csv function (GH482)

36.31.3 Improvements to existing features

- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425)
- Use same formatting function for outputting floating point Series to console as in DataFrame (GH420)
- DataFrame.delevel will try to infer better dtype for new columns (GH440)
- Exclude non-numeric types in DataFrame.{corr, cov}
- Override Index.astype to enable dtype casting (GH412)
- Use same float formatting function for Series.__repr__ (GH420)
- Use available console width to output DataFrame columns (GH453)
- Accept ndarrays when setting items in Panel (GH452)
- Infer console width when printing __repr__ of DataFrame to console (PR GH453)
• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462)
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH GH158)
• MultiIndex.get_level_values can take the level name
• More helpful error message when DataFrame.plot fails on one of the columns (GH478)
• Improve performance of DataFrame.{index, columns} attribute lookup

36.31.4 Bug Fixes

• Fix O(K^2) memory leak caused by inserting many columns without consolidating, had been present since 0.4.0 (GH467)
• DataFrame.count should return Series with zero instead of NA with length-0 axis (GH423)
• Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427)
• Fix upstream bug causing failure in Series.align with empty Series (GH434)
• Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4 (GH432)
• Don’t “accidentally” upcast scalar values when indexing using .ix (GH431)
• Fix groupby exception raised with as_index=False and single column selected (GH421)
• Implement DateOffset.__ne__ causing downstream bug (GH456)
• Fix __doc__-related issue when converting py -> pyo with py2exe
• Bug fix in left join Cython code with duplicate monotonic labels
• Fix bug when unstacking multiple levels described in GH451
• Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469)
• Use Cython map_infer function in DataFrame.applymap to properly infer output type, handle tuple return values and other things that were breaking (GH465)
• Handle floating point index values in HDFStore (GH454)
• Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame (GH473)
• Index.get_loc should always raise Exception when there are duplicates
• Handle differently-indexed Series input to DataFrame constructor (GH475)
• Omit nuisance columns in multi-groupby with Python function
• Buglet in handling of single grouping in general apply
• Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484)
• Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH481)
36.31.5 Thanks

- Ralph Bean
- Luca Beltrame
- Marius Cobzarenco
- Andreas Hilboll
- Jev Kuznetsov
- Adam Lichtenstein
- Wouter Overmeire
- Fernando Perez
- Nathan Pinger
- Christian Prinoth
- Alex Reyfman
- Joon Ro
- Chang She
- Ted Square
- Chris Uga
- Dieter Vandenbussche

36.32 pandas 0.6.0

Release date: 11/25/2011

36.32.1 API Changes

- Arithmetic methods like `sum` will attempt to sum `dtype=object` values by default instead of excluding them (GH382)

36.32.2 New Features

- Add `melt` function to `pandas.core.reshape`
- Add `level` parameter to group by level in Series and DataFrame descriptive statistics (GH313)
- Add `head` and `tail` methods to Series, analogous to to DataFrame (PR GH296)
- Add `Series.isin` function which checks if each value is contained in a passed sequence (GH289)
- Add `float_format` option to `Series.to_string`
- Add `skip_footer` (GH291) and `converters` (GH343) options to `read_csv` and `read_table`
- Add proper, tested weighted least squares to standard and panel OLS (GH GH303)
- Add `drop_duplicates` and `duplicated` functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implement logical (boolean) operators & , | , ^ on DataFrame (GH347)
• Add Series.mad, mean absolute deviation, matching DataFrame
• Add QuarterEnd DateOffset (GH321)
• Add matrix multiplication function dot to DataFrame (GH65)
• Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301)
• Add DataFrame.from_dict with similar orient option
• Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357)
• Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH GH103)
• Can sort by multiple columns in DataFrame.sort_index (GH92, GH362)
• Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360)
• Add cov instance methods to Series and DataFrame (GH194, GH362)
• Add bar plot option to DataFrame.plot (GH348)
• Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and minimum values (GH286)
• Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300)
• Add nunique function to Series for counting unique elements (GH297)
• DataFrame constructor will use Series name if no columns passed (GH373)
• Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet (GH364)
• Add DataFrame.to_html for formatting DataFrame to HTML (GH387)
• MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396)
• Add DataFrame.boxplot function (GH368, others)
• Can pass extra args, kwds to DataFrame.apply (GH376)

36.32.3 Improvements to existing features

• Raise more helpful exception if date parsing fails in DateRange (GH298)
• Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)
• Print level names in hierarchical index in Series repr (GH305)
• Return DataFrame when performing GroupBy on selected column and as_index=False (GH308)
• Can pass vector to on argument in DataFrame.join (GH312)
• Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317)
• Show legend by default in DataFrame.plot, add legend boolean flag (GH GH324)
• Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• Faster cythonized count by level in Series and DataFrame (GH341)
• Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346)
• Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• New Cython vectorized function `map_infer` speeds up `Series.apply` and `Series.map` significantly when passed
elementwise Python function, motivated by GH355

• Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase
(GH361)

• Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than
`np.apply_along_axis` (GH309)

• Add raw option to `DataFrame.apply` for getting better performance when the passed function only requires an
ndarray (GH309)

• Improve performance of `MultiIndex.from_tuples`

• Can pass multiple levels to `stack` and `unstack` (GH370)

• Can pass multiple values columns to `pivot_table` (GH381)

• Can call `DataFrame.delevel` with standard Index with name set (GH393)

• Use Series name in GroupBy for result index (GH363)

• Refactor Series/DataFrame stat methods to use common set of NaN-friendly function

• Handle NumPy scalar integers at C level in Cython conversion routines

### 36.32.4 Bug Fixes

• Fix bug in `DataFrame.to_csv` when writing a DataFrame with an index name (GH290)

• DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some
corner cases (GH304)

• DataFrame constructor failed if a column had a list of tuples (GH293)

• Ensure that `Series.apply` always returns a Series and implement `Series.round` (GH314)

• Support boolean columns in Cythonized groupby functions (GH315)

• `DataFrame.describe` should not fail if there are no numeric columns, instead return categorical describe (GH323)

• Fixed bug which could cause columns to be printed in wrong order in `DataFrame.to_string` if specific list of
columns passed (GH325)

• Fix legend plotting failure if DataFrame columns are integers (GH326)

• Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329)

• Fix `DataFrame.join` failure on unconsolidated inputs (GH331)

• DataFrame.min/max will no longer fail on mixed-type DataFrame (GH337)

• Fix `read_csv / read_table` failure when passing list to `index_col` that is not in ascending order (GH349)

• Fix failure passing Int64Index to Index.union when both are monotonic

• Fix error when passing SparseSeries to (dense) DataFrame constructor

• Added missing bang at top of setup.py (GH352)

• Change `is_monotonic` on MultiIndex so it properly compares the tuples

• Fix MultiIndex outer join logic (GH351)

• Set index name attribute with single-key groupby (GH358)
• Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string concatenation) (GH353)
• setupegg.py will invoke Cython (GH192)
• Fix block consolidation bug after inserting column into MultiIndex (GH366)
• Fix bug in join operations between Index and Int64Index (GH367)
• Handle min_periods=0 case in moving window functions (GH365)
• Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378)
• Fixed repr exception when Series name is a tuple
• Always return DateRange from asfreq (GH390)
• Pass level names to swaplavel (GH379)
• Don’t lose index names in MultiIndex.droplevel (GH394)
• Infer more proper return type in DataFrame.apply when no columns or rows depending on whether the passed function is a reduction (GH389)
• Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA (GH384)
• Enable partial setting with .ix / advanced indexing (GH397)
• Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403)
• Fix integer name formatting bug in Index.format and in Series.__repr__
• Handle label types other than string passed to groupby (GH405)
• Fix bug in .ix-based indexing with partial retrieval when a label is not contained in a level
• Index name was not being pickled (GH408)
• Level name should be passed to result index in GroupBy.apply (GH416)

36.32.5 Thanks

• Craig Austin
• Marius Cobzarenco
• Joel Cross
• Jeff Hammerbacher
• Adam Klein
• Thomas Kluyver
• Jev Kuznetsov
• Kieran O’Mahony
• Wouter Overmeire
• Nathan Pinger
• Christian Prinoth
• Skipper Seabold
• Chang She
36.33 pandas 0.5.0

Release date: 10/24/2011

This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0 releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature).

In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some significant new functionality and performance improvements that are worth taking a look at.

Thanks to all for bug reports, contributed patches and generally providing feedback on the library.

36.33.1 API Changes

- `read_table`, `read_csv`, and `ExcelFile.parse` default arguments for `index_col` is now None. To use one or more of the columns as the resulting DataFrame's index, these must be explicitly specified now.
- Parsing functions like `read_csv` no longer parse dates by default (GH GH225).
- Removed `weights` option in panel regression which was not doing anything principled (GH155).
- Changed `buffer` argument name in `Series.to_string` to `buf`.
- `Series.to_string` and `DataFrame.to_string` now return strings by default instead of printing to `sys.stdout`.
- Deprecated `nanRep` argument in various `to_string` and `to_csv` functions in favor of `na_rep`. Will be removed in 0.6 (GH275).
- Renamed `delimiter` to `sep` in `DataFrame.from_csv` for consistency.
- Changed order of `Series.clip` arguments to match those of `numpy.clip` and added (unimplemented) `out` argument so `numpy.clip` can be called on a Series (GH272).
- Series functions renamed (and thus deprecated) in 0.4 series have been removed:
  - `asOf`, use `asof`.
  - `toDict`, use `to_dict`.
  - `toString`, use `to_string`.
  - `toCSV`, use `to_csv`.
  - `merge`, use `map`.
  - `applymap`, use `apply`.
  - `combineFirst`, use `combine_first`.
  - `_firstTimeWithVal` use `first_valid_index`.
- _lastTimeWithValue use last_valid_index

- DataFrame functions renamed / deprecated in 0.4 series have been removed:
  - asMatrix method, use as_matrix or values attribute
  - combineFirst, use combine_first
  - getXS, use xs
  - merge, use join
  - fromRecords, use from_records
  - fromcsv, use from_csv
  - toRecords, use to_records
  - toDict, use to_dict
  - toString, use to_string
  - toCSV, use to_csv
  - _firstTimeWithValue use first_valid_index
  - _lastTimeWithValue use last_valid_index
  - toDataMatrix is no longer needed
  - rows() method, use index attribute
  - cols() method, use columns attribute
  - dropEmptyRows(), use dropna(how='all')
  - dropIncompleteRows(), use dropna()
  - tapply(f), use apply(f, axis=1)
  - tgroupby(keyfunc, aggfunc), use groupby with axis=1

36.33.2 Deprecations Removed

- indexField argument in DataFrame.from_records
- missingAtEnd argument in Series.order. Use na_last instead
- Series.fromValue classmethod, use regular Series constructor instead
- Functions parseCSV, parseText, and parseExcel methods in pandas.io.parsers have been removed
- Index.asOfDate function
- Panel.getMinorXS (use minor_xs) and Panel.getMajorXS (use major_xs)
- Panel.toWide, use Panel.to_wide instead

36.33.3 New Features

- Added DataFrame.align method with standard join options
- Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index columns
• Add `nrows`, `chunksize`, and `iterator` arguments to `read_csv` and `read_table`. The last two return a new `TextParser` class capable of lazily iterating through chunks of a flat file (GH242)

• Added ability to join on multiple columns in `DataFrame.join` (GH214)

• Added private `_get_duplicates` function to `Index` for identifying duplicate values more easily

• Added column attribute access to DataFrame, e.g. `df.A` equivalent to `df['A']` if `A` is a column in the DataFrame (GH213)

• Added IPython tab completion hook for DataFrame columns. (GH233, GH230)

• Implement `Series.describe` for Series containing objects (GH241)

• Add inner join option to `DataFrame.join` when joining on key(s) (GH248)

• Can select set of DataFrame columns by passing a list to `__getitem__` (GH GH253)

• Can use `&` and `|` to intersection / union Index objects, respectively (GH GH261)

• Added `pivot_table` convenience function to pandas namespace (GH234)

• Implemented `Panel.rename_axis` function (GH243)

• DataFrame will show index level names in console output

• Implemented `Panel.take`

• Add `set_eng_float_format` function for setting alternate DataFrame floating point string formatting

• Add convenience `set_index` function for creating a DataFrame index from its existing columns

### 36.33.4 Improvements to existing features

• Major performance improvements in file parsing functions `read_csv` and `read_table`

• Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations

• File parsing functions like `read_csv` and `read_table` will explicitly check if a parsed index has duplicates and raise a more helpful exception rather than deferring the check until later

• Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)

• Improved speed of `DataFrame.xs` on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)

• With new `DataFrame.align` method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.

• Significantly sped up conversion of nested dict into DataFrame (GH212)

• Can pass hierarchical index level name to `groupby` instead of the level number if desired (GH223)

• Add support for different delimiters in `DataFrame.to_csv` (GH244)

• Add more helpful error message when importing pandas post-installation from the source directory (GH250)

• Significantly speed up DataFrame `__repr__` and `count` on large mixed-type DataFrame objects

• Better handling of ppx file dependencies in Cython module build (GH271)
36.33.5 Bug Fixes

- **read_csv / read_table fixes**
  - Be less aggressive about converting float->int in cases of floating point representations of integers like 1.0, 2.0, etc.
  - “True”/”False” will not get correctly converted to boolean
  - Index name attribute will get set when specifying an index column
  - Passing column names should force header=None (GH257)
  - Don’t modify passed column names when index_col is not None (GH258)
  - Can sniff CSV separator in zip file (since seek is not supported, was failing before)
- Whorked around matplotlib “bug” in which series[:, np.newaxis] fails. Should be reported upstream to matplotlib (GH224)
- DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series
- Can store datetime.date objects in HDFStore (GH231)
- Index and Series names are now stored in HDFStore
- Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237)
- Fixed outer join bug with empty DataFrame (GH238)
- Can create empty Panel (GH239)
- Fix join on single key when passing list with 1 entry (GH246)
- Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254)
- Bug min/max errors when called on integer DataFrames (GH241)
- DataFrame.iteritems and DataFrame._series not assigning name attribute
- Panel.__repr__ raised exception on length-0 major/minor axes
- DataFrame.join on key with empty DataFrame produced incorrect columns
- Implemented MultiIndex.diff (GH260)
- Int64Index.take and MultiIndex.take lost name field, fix downstream issue GH262
- Can pass list of tuples to Series (GH270)
- Can pass level name to DataFrame.stack
- Support set operations between MultiIndex and Index
- Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when returned groups are not indexed the same
- Fix corner case bugs in DataFrame.apply
- Setting DataFrame index did not cause Series cache to get cleared
- Various int32 -> int64 platform-specific issues
- Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285)
- Fix bug when slicing Series with negative indices before beginning
36.33.6 Thanks

- Thomas Kluyver
- Daniel Fortunov
- Aman Thakral
- Luca Beltrame
- Wouter Overmeire

36.34 pandas 0.4.3

Release date: 10/9/2011

is is largely a bugfix release from 0.4.2 but also includes a handful of new d enhanced features. Also, pandas can now be installed and used on Python 3 hanks Thomas Kluyver!)

36.34.1 New Features

- Python 3 support using 2to3 (GH200, Thomas Kluyver)
- Add name attribute to Series and added relevant logic and tests. Name now prints as part of Series.__repr__
- Add name attribute to standard Index so that stacking / unstacking does not discard names and so that indexed DataFrame objects can be reliably round-tripped to flat files, pickle, HDF5, etc.
- Add isnull and notnull as instance methods on Series (GH209, GH203)

36.34.2 Improvements to existing features

- Skip xlrd-related unit tests if not installed
- Index.append and MultiIndex.append can accept a list of Index objects to concatenate together
- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Refactored Series.__repr__ to be a bit more clean and consistent

36.34.3 API Changes

- Series.describe and DataFrame.describe now bring the 25% and 75% quartiles instead of the 10% and 90% deciles. The other outputs have not changed
- Series.toString will print deprecation warning, has been de-camelCased to to_string

36.34.4 Bug Fixes

- Fix broken interaction between Index and Int64Index when calling intersection. Implement Int64Index.intersection
- MultiIndex.sortlevel discarded the level names (GH202)
- Fix bugs in groupby, join, and append due to improper concatenation of MultiIndex objects (GH201)
• Fix regression from 0.4.1, isnull and notnull ceased to work on other kinds of Python scalar objects like datetime.datetime
• Raise more helpful exception when attempting to write empty DataFrame or LongPanel to HDFStore (GH204)
• Use stdlib csv module to properly escape strings with commas in DataFrame.to_csv (GH206, Thomas Kluyver)
• Fix Python ndarray access in Cython code for sparse blocked index integrity check
• Fix bug writing Series to CSV in Python 3 (GH209)
• Miscellaneous Python 3 bugfixes

36.34.5 Thanks
• Thomas Kluyver
• rsamson

36.35 pandas 0.4.2

Release date: 10/3/2011

is is a performance optimization release with several bug fixes. The new t64Index and new merging / joining Cython code and related Python infrastructure are the main new additions

36.35.1 New Features
• Added fast Int64Index type with specialized join, union, intersection. Will result in significant performance enhancements for int64-based time series (e.g. using NumPy’s datetime64 one day) and also faster operations on DataFrame objects storing record array-like data.
• Refactored Index classes to have a join method and associated data alignment routines throughout the codebase to be able to leverage optimized joining / merging routines.
• Added Series.align method for aligning two series with choice of join method
• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
• Added is_monotonic property to Index classes with associated Cython code to evaluate the monotonicity of the Index values
• Add method get_level_values to MultiIndex
• Implemented shallow copy of BlockManager object in DataFrame internals

36.35.2 Improvements to existing features
• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)
• Wrote templating / code generation script to auto-generate Cython code for various functions which need to be available for the 4 major data types used in pandas (float64, bool, object, int64)
• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame argument do not need to be created. Substantial performance increases result (GH176)
• Substantially improved performance of generic Index.intersection and Index.union
• Improved performance of `DateRange.union` with overlapping ranges and non-cacheable offsets (like Minute). Implemented analogous fast `DateRange.intersection` for overlapping ranges.

• Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)

• Improved performance of `Series.sort_index`

• Significant groupby performance enhancement: removed unnecessary integrity checks in `DataFrame` internals that were slowing down slicing operations to retrieve groups

• Added informative Exception when passing dict to `DataFrame` groupby aggregation with axis != 0

### 36.35.3 API Changes

#### 36.35.4 Bug Fixes

• Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations

• Fixed bug in unstacking code manifesting with more than 3 hierarchical levels

• Throw exception when step specified in label-based slice (GH185)

• Fix isnull to correctly work with np.float32. Fix upstream bug described in GH182

• Finish implementation of `as_index=False` in groupby for `DataFrame` aggregation (GH181)

• Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype

#### 36.35.5 Thanks

• Uri Laserson

• Scott Sinclair

### 36.36 pandas 0.4.1

**Release date:** 9/25/2011

is is primarily a bug fix release but includes some new features and improvements

#### 36.36.1 New Features

• Added new `DataFrame` methods `get_dtype_counts` and property `dtypes`

• Setting of values using `.ix` indexing attribute in mixed-type `DataFrame` objects has been implemented (fixes GH135)

• `read_csv` can read multiple columns into a `MultiIndex`. `DataFrame`’s `to_csv` method will properly write out a `MultiIndex` which can be read back (GH151, thanks to Skipper Seabold)

• Wrote fast time series merging / joining methods in Cython. Will be integrated later into `DataFrame.join` and related functions

• Added `ignore_index` option to `DataFrame.append` for combining unindexed records stored in a `DataFrame`
36.36.2 Improvements to existing features

- Some speed enhancements with internal Index type-checking function
- `DataFrame.rename` has a new `copy` parameter which can rename a DataFrame in place
- Enable unstacking by level name (GH142)
- Enable sortlevel to work by level name (GH141)
- `read_csv` can automatically “sniff” other kinds of delimiters using `csv.Sniffer` (GH146)
- Improved speed of unit test suite by about 40%
- Exception will not be raised calling `HDFStore.remove` on non-existent node with where clause
- Optimized `_ensure_index` function resulting in performance savings in type-checking Index objects

36.36.3 API Changes

36.36.4 Bug Fixes

- Fixed DataFrame constructor bug causing downstream problems (e.g. `.copy()` failing) when passing a Series as the values along with a column name and index
- Fixed single-key groupby on DataFrame with `as_index=False` (GH160)
- `Series.shift` was failing on integer Series (GH154)
- `unstack` methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will now be raised (GH147)
- Calling `count` with level argument caused reduceat failure or segfault in earlier NumPy (GH169)
- Fixed `DataFrame.corrwith` to automatically exclude non-numeric data (GH GH144)
- Unicode handling bug fixes in `DataFrame.to_string` (GH138)
- Excluding OLS degenerate unit test case that was causing platform specific failure (GH149)
- Skip blosc-dependent unit tests for PyTables < 2.2 (GH137)
- Calling `copy` on `DateRange` did not copy over attributes to the new object (GH168)
- Fix bug in `HDFStore` in which Panel data could be appended to a Table with different item order, thus resulting in an incorrect result read back

36.36.5 Thanks

- Yaroslav Halchenko
- Jeff Reback
- Skipper Seabold
- Dan Lovell
- Nick Pentreath
36.37 pandas 0.4.0

Release date: 9/12/2011

36.37.1 New Features

- **pandas.core.sparse** module: “Sparse” (mostly-NA, or some other fill value) versions of Series, DataFrame, and Panel. For low-density data, this will result in significant performance boosts, and smaller memory footprint. Added `to_sparse` methods to Series, DataFrame, and Panel. See online documentation for more on these.

- Fancy indexing operator on Series / DataFrame, e.g. via `.ix` operator. Both getting and setting of values is supported; however, setting values will only currently work on homogeneously-typed DataFrame objects. Things like:
  - `series.ix[[d1, d2, d3]]`
  - `frame.ix[5:10, ['C', 'B', 'A']], frame.ix[5:10, 'A':'C']`
  - `frame.ix[date1:date2]`

- Significantly enhanced `groupby` functionality
  - Can groupby multiple keys, e.g. `df.groupby(['key1', 'key2'])`. Iteration with multiple groupings products a flattened tuple
  - “Nuisance” columns (non-aggregatable) will automatically be excluded from DataFrame aggregation operations
  - Added automatic “dispatching to Series / DataFrame methods to more easily invoke methods on groups. e.g. `s.groupby(crit).std()` will work even though `std` is not implemented on the GroupBy class

- Hierarchical / multi-level indexing
  - New the `MultiIndex` class. Integrated `MultiIndex` into Series and DataFrame fancy indexing, slicing, `__getitem__` and `__setitem`, reindexing, etc. Added `level` keyword argument to `groupby` to enable grouping by a level of a `MultiIndex`

- New data reshaping functions: `stack` and `unstack` on DataFrame and Series
  - Integrate with MultiIndex to enable sophisticated reshaping of data

- **Index** objects (labels for axes) are now capable of holding tuples

- **Series.describe, DataFrame.describe**: produces an R-like table of summary statistics about each data column

- **DataFrame.quantile, Series.quantile** for computing sample quantiles of data across requested axis

- Added general `DataFrame.dropna` method to replace `dropIncompleteRows` and `dropEmptyRows`, deprecated those.

- **Series** arithmetic methods with optional `fill_value` for missing data, e.g. `a.add(b, fill_value=0)`. If a location is missing for both it will still be missing in the result though.

- `fill_value` option has been added to `DataFrame.{add, mul, sub, div}` methods similar to `Series`

- Boolean indexing with `DataFrame` objects: `data[data > 0.1] = 0.1` or `data[data> other] = 1`.

- **pytz** / `tzinfo` support in `DateRange`
  - `tz_localize`, `tz_normalize`, and `tz_validate` methods added

- Added `ExcelFile` class to `pandas.io.parsers` for parsing multiple sheets out of a single Excel 2003 document
• GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated value propagated
• Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1)
• DataFrame.consolidate method, API function relating to redesigned internals
• DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behavior (which puts it at the end)
• HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code
• Added set_printoptions method to modify appearance of DataFrame tabular output
• rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile
• Generic rolling_apply moving window function
• New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a new object
• reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is indexed the same
• Added sort_index methods to Series and Panel. Renamed DataFrame.sort to sort_index. Leaving DataFrame.sort for now.
• Added skipna option to statistical instance methods on all the data structures
• pandas.io.data module providing a consistent interface for reading time series data from several different sources

36.37.2 Improvements to existing features

• The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single class DataFrame, preserving where possible their optimal performance characteristics. This should reduce confusion from users about which class to use.
  – Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before.
• DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to an internal Series caching mechanism (which are all views on the underlying data)
• Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was inconsistent column ordering in DataMatrix
• Improved console / string formatting of DataMatrix with negative numbers
• Improved tabular data parsing functions, read_table and read_csv:
  – Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO
  – parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values, and also a list of rows to skip
• Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False) or frame.ix[idx]
• Many speed optimizations throughout Series and DataFrame
• Eager evaluation of groups when calling `groupby` functions, so if there is an exception with the grouping function it will raised immediately versus sometime later on when the groups are needed

• `datetools.WeekOfMonth` offset can be parameterized with $n$ different than 1 or -1.

• Statistical methods on DataFrame like `mean`, `std`, `var`, `skew` will now ignore non-numerical data. Before a not very useful error message was generated. A flag `numeric_only` has been added to `DataFrame.sum` and `DataFrame.count` to enable this behavior in those methods if so desired (disabled by default)

• `DataFrame.pivot` generalized to enable pivoting multiple columns into a `DataFrame` with hierarchical columns

• `DataFrame` constructor can accept structured / record arrays

• `Panel` constructor can accept a dict of DataFrame-like objects. Do not need to use `from_dict` anymore (`from_dict` is there to stay, though).

### 36.37.3 API Changes

• The `DataMatrix` variable now refers to `DataFrame`, will be removed within two releases

• `WidePanel` is now known as `Panel`. The `WidePanel` variable in the pandas namespace now refers to the renamed `Panel` class

• `LongPanel` and `Panel / WidePanel` now no longer have a common subclass. `LongPanel` is now a subclass of `DataFrame` having a number of additional methods and a hierarchical index instead of the old `LongPanelIndex` object, which has been removed. Legacy `LongPanel` pickles may not load properly

• Cython is now required to build `pandas` from a development branch. This was done to avoid continuing to check in cythonized C files into source control. Builds from released source distributions will not require Cython

• Cython code has been moved up to a top level `pandas/src` directory. Cython extension modules have been renamed and promoted from the `lib` subpackage to the top level, i.e.

  – `pandas.lib.tseries -> pandas._tseries`
  – `pandas.lib.sparse -> pandas._sparse`

• `DataFrame` pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s recommended to consider PyTables-based `HDFStore` for storing data with a longer expected shelf life

• A `copy` argument has been added to the `DataFrame` constructor to avoid unnecessary copying of data. Data is no longer copied by default when passed into the constructor

• Handling of boolean dtype in `DataFrame` has been improved to support storage of boolean data with NA / NaN values. Before it was being converted to float64 so this should not (in theory) cause API breakage

• To optimize performance, Index objects now only check that their labels are unique when uniqueness matters (i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much better performance in many places (like groupby).

• Boolean indexing using Series must now have the same indices (labels)

• Backwards compatibility support for `begin/end/nPeriods` keyword arguments in DateRange class has been removed

• More intuitive / shorter filling aliases `ffill` (for `pad`) and `bfill` (for `backfill`) have been added to the functions that use them: `reindex`, `asfreq`, `fillna`.

• `pandas.core.mixins` code moved to `pandas.core.generic`

• `buffer` keyword arguments (e.g. `DataFrame.to_string`) renamed to `buf` to avoid using Python built-in name

• `DataFrame.rows()` removed (use `DataFrame.index`)
• Added deprecation warning to `DataFrame.cols()`, to be removed in next release

• `DataFrame` deprecations and de-camelCasing: `merge`, `asMatrix`, `toDataMatrix`, `_firstTimeWithValue`, `_lastTimeWithValue`, `toRecords`, `fromRecords`, `tgroupby`, `toString`

• `pandas.io.parsers` method deprecations
  – `parseCSV` is now `read_csv` and keyword arguments have been de-camelCased
  – `parseText` is now `read_table`
  – `parseExcel` is replaced by the `ExcelFile` class and its `parse` method

• `fillMethod` arguments (deprecated in prior release) removed, should be replaced with `method`

• `Series.fill`, `DataFrame.fill`, and `Panel.fill` removed, use `fillna` instead

• `groupby` functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in factors e.g. with the `tapply` function

• Removed `parseText`, `parseCSV` and `parseExcel` from pandas namespace

• `Series.combineFunc` renamed to `Series.combine` and made a bit more general with a `fill_value` keyword argument defaulting to NaN

• Removed `pandas.core.pytools` module. Code has been moved to `pandas.core.common`

• Tacked on `groupName` attribute for groups in `GroupBy` renamed to `name`

• Panel/LongPanel `dims` attribute renamed to `shape` to be more conformant

• Slicing a `Series` returns a view now

• More Series deprecations / renaming: `toCSV` to `to_csv`, `asOf` to `asof`, `merge` to `map`, `applymap` to `apply`, `toDict` to `to_dict`, `combineFirst` to `combine_first`. Will print `FutureWarning`.

• `DataFrame.to_csv` does not write an “index” column label by default anymore since the output file can be read back without it. However, there is a new `index_label` argument. So you can do `index_label='index'` to emulate the old behavior

• `datetimetools.Week` argument renamed from `dayOfWeek` to `weekday`

• `timeRule` argument in `shift` has been deprecated in favor of using the `offset` argument for everything. So you can still pass a time rule string to `offset`

• Added optional `encoding` argument to `read_csv`, `read_table`, `to_csv`, `from_csv` to handle unicode in python 2.x

### 36.37.4 Bug Fixes

• Column ordering in `pandas.io.parsers.parseCSV` will match CSV in the presence of mixed-type data

• Fixed handling of Excel 2003 dates in `pandas.io.parsers`

• `DateRange` caching was happening with high resolution `DateOffset` objects, e.g. `DateOffset(seconds=1)`. This has been fixed

• Fixed `__truediv__` issue in `DataFrame`

• Fixed `DataFrame.toCSV` bug preventing IO round trips in some cases

• Fixed bug in `Series.plot` causing `matplotlib` to barf in exceptional cases

• Disabled `Index` objects from being hashable, like ndarrays

• Added `__ne__` implementation to `Index` so that operations like `ts[ts != idx]` will work

• Added `__ne__` implementation to `DataFrame`
• Bug / unintuitive result when calling *fillna* on unordered labels
• Bug calling *sum* on boolean DataFrame
• Bug fix when creating a DataFrame from a dict with scalar values
• Series.{sum, mean, std, ...} now return NA/NaN when the whole Series is NA
• NumPy 1.4 through 1.6 compatibility fixes
• Fixed bug in bias correction in *rolling_cov*, was affecting *rolling_corr* too
• R-square value was incorrect in the presence of fixed and time effects in the *PanelOLS* classes
• *HDFStore* can handle duplicates in table format, will take

### 36.37.5 Thanks

• Joon Ro
• Michael Pennington
• Chris Uga
• Chris Withers
• Jeff Reback
• Ted Square
• Craig Austin
• William Ferreira
• Daniel Fortunov
• Tony Roberts
• Martin Felder
• John Marino
• Tim McNamara
• Justin Berka
• Dieter Vandenbussche
• Shane Conway
• Skipper Seabold
• Chris Jordan-Squire

### 36.38 pandas 0.3.0

**Release date:** February 20, 2011
36.38.1 New features

- `corrwith` function to compute column- or row-wise correlations between two DataFrame objects
- Can boolean-index DataFrame objects, e.g. df[df > 2] = 2, px[px > last_px] = 0
- Added comparison magic methods (__lt__, __gt__, etc.)
- Flexible explicit arithmetic methods (add, mul, sub, div, etc.)
- Added `reindex_like` method
- Added `reindex_like` method to WidePanel
- Convenience functions for accessing SQL-like databases in pandas.io.sql module
- Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in pandas.io.pytables module
- Added WeekOfMonth date offset
- `pandas.rpy` (experimental) module created, provide some interfacing / conversion between rpy2 and pandas

36.38.2 Improvements to existing features

- Unit test coverage: 100% line coverage of core data structures
- Speed enhancement to rolling_{median, max, min}
- Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect column order
- Improved {Series, DataFrame}.plot methods to be more flexible (can pass matplotlib Axis arguments, plot DataFrame columns in multiple subplots, etc.)

36.38.3 API Changes

- Exponentially-weighted moment functions in pandas.stats.moments have a more consistent API and accept a min_periods argument like their regular moving counterparts.
- `fillMethod` argument in Series, DataFrame changed to `method`, `FutureWarning` added.
- `fill` method in Series, DataFrame/DataMatrix, WidePanel renamed to `fillna`, `FutureWarning` added to `fill`
- Renamed `DataFrame.getXS` to `xs`, `FutureWarning` added
- Removed `cap` and `floor` functions from DataFrame, renamed to `clip_upper` and `clip_lower` for consistency with NumPy

36.38.4 Bug Fixes

- Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function
- Numerous numpy.int64-related indexing fixes
- Several NumPy 1.4.0 NaN-handling fixes
- Bug fixes to pandas.io.parsers.parseCSV
- Fixed `DateRange` caching issue with unusual date offsets
- Fixed bug in `DateRange.union`
• Fixed corner case in IndexableSkipList implementation
pandas, 1