Frequently Asked Questions (FAQ)¶
DataFrame memory usage¶
As of pandas version 0.15.0, the memory usage of a dataframe (including
the index) is shown when accessing the info
method of a dataframe. A
configuration option, display.memory_usage
(see Options and Settings),
specifies if the dataframe’s memory usage will be displayed when
invoking the df.info()
method.
For example, the memory usage of the dataframe below is shown
when calling df.info()
:
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
...: 'complex128', 'object', 'bool']
...:
In [2]: n = 5000
In [3]: data = dict([ (t, np.random.randint(100, size=n).astype(t))
...: for t in dtypes])
...:
In [4]: df = pd.DataFrame(data)
In [5]: df['categorical'] = df['object'].astype('category')
In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 289.1+ KB
The +
symbol indicates that the true memory usage could be higher, because
pandas does not count the memory used by values in columns with
dtype=object
.
New in version 0.17.1.
Passing memory_usage='deep'
will enable a more accurate memory usage report,
that accounts for the full usage of the contained objects. This is optional
as it can be expensive to do this deeper introspection.
In [7]: df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 425.6 KB
By default the display option is set to True
but can be explicitly
overridden by passing the memory_usage
argument when invoking df.info()
.
The memory usage of each column can be found by calling the memory_usage
method. This returns a Series with an index represented by column names
and memory usage of each column shown in bytes. For the dataframe above,
the memory usage of each column and the total memory usage of the
dataframe can be found with the memory_usage method:
In [8]: df.memory_usage()
Out[8]:
Index 80
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 10920
dtype: int64
# total memory usage of dataframe
In [9]: df.memory_usage().sum()