pandas.to_datetime¶
- 
pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix')[source]¶
- Convert argument to datetime. - Parameters: - arg : integer, float, string, datetime, list, tuple, 1-d array, Series - errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’ - If ‘raise’, then invalid parsing will raise an exception
- If ‘coerce’, then invalid parsing will be set as NaT
- If ‘ignore’, then invalid parsing will return the input
 - dayfirst : boolean, default False - Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior). - yearfirst : boolean, default False - Specify a date parse order if arg is str or its list-likes. - If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.
- If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).
 - Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil beahavior). - utc : boolean, default None - Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well). - box : boolean, default True - If True returns a DatetimeIndex
- If False returns ndarray of values.
 - format : string, default None - strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds. - exact : boolean, True by default - If True, require an exact format match.
- If False, allow the format to match anywhere in the target string.
 - unit : string, default ‘ns’ - unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit=’ms’ and origin=’unix’ (the default), this would calculate the number of milliseconds to the unix epoch start. - infer_datetime_format : boolean, default False - If True and no format is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. - origin : scalar, default is ‘unix’ - Define the reference date. The numeric values would be parsed as number of units (defined by unit) since this reference date. - If ‘unix’ (or POSIX) time; origin is set to 1970-01-01.
- If ‘julian’, unit must be ‘D’, and origin is set to beginning of Julian Calendar. Julian day number 0 is assigned to the day starting at noon on January 1, 4713 BC.
- If Timestamp convertible, origin is set to Timestamp identified by origin.
 - Returns: - ret : datetime if parsing succeeded. - Return type depends on input: - list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp
 - In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or correspoding array/Series). - Examples - Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same - >>> df = pd.DataFrame({'year': [2015, 2016], 'month': [2, 3], 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] - If a date does not meet the timestamp limitations, passing errors=’ignore’ will return the original input instead of raising any exception. - Passing errors=’coerce’ will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-parseable dates) to NaT. - >>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore') datetime.datetime(1300, 1, 1, 0, 0) >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT - Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format. - >>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000) - >>> s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object - >>> %timeit pd.to_datetime(s,infer_datetime_format=True) 100 loops, best of 3: 10.4 ms per loop - >>> %timeit pd.to_datetime(s,infer_datetime_format=False) 1 loop, best of 3: 471 ms per loop - Using a unix epoch time - >>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') - Warning - For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type. - Using a non-unix epoch origin - >>> pd.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01')) 0 1960-01-02 1 1960-01-03 2 1960-01-04