pandas.merge¶
- 
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)[source]¶
- Merge DataFrame objects by performing a database-style join operation by columns or indexes. - If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. - Parameters: - left : DataFrame - right : DataFrame - how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’ - left: use only keys from left frame, similar to a SQL left outer join; preserve key order
- right: use only keys from right frame, similar to a SQL right outer join; preserve key order
- outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically
- inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys
 - on : label or list - Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default. - left_on : label or list, or array-like - Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns - right_on : label or list, or array-like - Field names to join on in right DataFrame or vector/list of vectors per left_on docs - left_index : boolean, default False - Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels - right_index : boolean, default False - Use the index from the right DataFrame as the join key. Same caveats as left_index - sort : boolean, default False - Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword) - suffixes : 2-length sequence (tuple, list, ...) - Suffix to apply to overlapping column names in the left and right side, respectively - copy : boolean, default True - If False, do not copy data unnecessarily - indicator : boolean or string, default False - If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is found in both. - New in version 0.17.0. - validate : string, default None - If specified, checks if merge is of specified type. - “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.
- “one_to_many” or “1:m”: check if merge keys are unique in left dataset.
- “many_to_one” or “m:1”: check if merge keys are unique in right dataset.
- “many_to_many” or “m:m”: allowed, but does not result in checks.
 - New in version 0.21.0. - Returns: - merged : DataFrame - The output type will the be same as ‘left’, if it is a subclass of DataFrame. - See also - Examples - >>> A >>> B lkey value rkey value 0 foo 1 0 foo 5 1 bar 2 1 bar 6 2 baz 3 2 qux 7 3 foo 4 3 bar 8 - >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 4 baz 3 NaN NaN 5 NaN NaN qux 7