MultiIndex / Advanced Indexing¶
This section covers indexing with a MultiIndex and more advanced indexing features.
See the Indexing and Selecting Data for general indexing documentation.
Warning
Whether a copy or a reference is returned for a setting operation, may
depend on the context.  This is sometimes called chained assignment and
should be avoided.  See Returning a View versus Copy
See the cookbook for some advanced strategies
Hierarchical indexing (MultiIndex)¶
Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).
In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.
See the cookbook for some advanced strategies
Creating a MultiIndex (hierarchical index) object¶
The MultiIndex object is the hierarchical analogue of the standard
Index object which typically stores the axis labels in pandas objects. You
can think of MultiIndex as an array of tuples where each tuple is unique. A
MultiIndex can be created from a list of arrays (using
MultiIndex.from_arrays), an array of tuples (using
MultiIndex.from_tuples), or a crossed set of iterables (using
MultiIndex.from_product).  The Index constructor will attempt to return
a MultiIndex when it is passed a list of tuples.  The following examples
demo different ways to initialize MultiIndexes.
In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
   ...:           ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
   ...: 
In [2]: tuples = list(zip(*arrays))
In [3]: tuples
Out[3]: 
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]
In [4]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [5]: index
Out[5]: 
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
In [6]: s = pd.Series(np.random.randn(8), index=index)
In [7]: s
Out[7]: 
first  second
bar    one       0.469112
       two      -0.282863
baz    one      -1.509059
       two      -1.135632
foo    one       1.212112
       two      -0.173215
qux    one       0.119209
       two      -1.044236
dtype: float64
When you want every pairing of the elements in two iterables, it can be easier
to use the MultiIndex.from_product function:
In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]
In [9]: pd.MultiIndex.from_product(iterables, names=['first', 'second'])
Out[9]: 
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:
In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
   ....:           np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]
   ....: 
In [11]: s = pd.Series(np.random.randn(8), index=arrays)
In [12]: s
Out[12]: 
bar  one   -0.861849
     two   -2.104569
baz  one   -0.494929
     two    1.071804
foo  one    0.721555
     two   -0.706771
qux  one   -1.039575
     two    0.271860
dtype: float64
In [13]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays)
In [14]: df
Out[14]: 
                0         1         2         3
bar one -0.424972  0.567020  0.276232 -1.087401
    two -0.673690  0.113648 -1.478427  0.524988
baz one  0.404705  0.577046 -1.715002 -1.039268
    two -0.370647 -1.157892 -1.344312  0.844885
foo one  1.075770 -0.109050  1.643563 -1.469388
    two  0.357021 -0.674600 -1.776904 -0.968914
qux one -1.294524  0.413738  0.276662 -0.472035
    two -0.013960 -0.362543 -0.006154 -0.923061
All of the MultiIndex constructors accept a names argument which stores
string names for the levels themselves. If no names are provided, None will
be assigned:
In [15]: df.index.names
Out[15]: FrozenList([None, None])
This index can back any axis of a pandas object, and the number of levels of the index is up to you:
In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
In [17]: df
Out[17]: 
first        bar                 baz                 foo                 qux  \
second       one       two       one       two       one       two       one   
A       0.895717  0.805244 -1.206412  2.565646  1.431256  1.340309 -1.170299   
B       0.410835  0.813850  0.132003 -0.827317 -0.076467 -1.187678  1.130127   
C      -1.413681  1.607920  1.024180  0.569605  0.875906 -2.211372  0.974466   
first             
second       two  
A      -0.226169  
B      -1.436737  
C      -2.006747  
In [18]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])