Table Of Contents


Enter search terms or a module, class or function name.


DataFrame.all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)[source]

Return whether all elements are True, potentially over an axis.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.


axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

  • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
  • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
  • None : reduce all axes, return a scalar.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

all : Series or DataFrame (if level specified)

See also

Return True if all elements are True
Return True if one (or more) elements are True



>>> pd.Series([True, True]).all()
>>> pd.Series([True, False]).all()


Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
   col1   col2
0  True   True
1  True  False

Default behaviour checks if column-wise values all return True.

>>> df.all()
col1     True
col2    False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')
0     True
1    False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)
Scroll To Top