v0.11.0 (April 22, 2013)¶
This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.
There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.
There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want contributions!).
There are several libraries that are now Recommended Dependencies
Selection choices¶
Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.
.loc
is strictly label based, will raiseKeyError
when the items are not found, allowed inputs are:- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
, (note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
See more at Selection by Label
- A single label, e.g.
.iloc
is strictly integer position based (from0
tolength-1
of the axis), will raiseIndexError
when the requested indices are out of bounds. Allowed inputs are:- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
See more at Selection by Position
- An integer e.g.
.ix
supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access..ix
is the most general and will support any of the inputs to.loc
and.iloc
, as well as support for floating point label schemes..ix
is especially useful when dealing with mixed positional and label based hierarchical indexes.As using integer slices with
.ix
have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use.iloc
or.loc
.See more at Advanced Indexing and Advanced Hierarchical.
Selection deprecations¶
Starting in version 0.11.0, these methods may be deprecated in future versions.
irow
icol
iget_value
See the section Selection by Position for substitutes.
Dtypes¶
Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype
keyword, a passed ndarray
, or a passed Series
, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.
In [1]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')
In [2]: df1
Out[2]:
A
0 0.469112
1 -0.282863
2 -1.509058
3 -1.135632
4 1.212112
5 -0.173215
6 0.119209
7 -1.044236
In [3]: df1.dtypes