Window¶
Rolling objects are returned by .rolling
calls: pandas.DataFrame.rolling()
, pandas.Series.rolling()
, etc.
Expanding objects are returned by .expanding
calls: pandas.DataFrame.expanding()
, pandas.Series.expanding()
, etc.
EWM objects are returned by .ewm
calls: pandas.DataFrame.ewm()
, pandas.Series.ewm()
, etc.
Standard moving window functions¶
Rolling.count (self) |
The rolling count of any non-NaN observations inside the window. |
Rolling.sum (self, \*args, \*\*kwargs) |
Calculate rolling sum of given DataFrame or Series. |
Rolling.mean (self, \*args, \*\*kwargs) |
Calculate the rolling mean of the values. |
Rolling.median (self, \*\*kwargs) |
Calculate the rolling median. |
Rolling.var (self[, ddof]) |
Calculate unbiased rolling variance. |
Rolling.std (self[, ddof]) |
Calculate rolling standard deviation. |
Rolling.min (self, \*args, \*\*kwargs) |
Calculate the rolling minimum. |
Rolling.max (self, \*args, \*\*kwargs) |
Calculate the rolling maximum. |
Rolling.corr (self[, other, pairwise]) |
Calculate rolling correlation. |
Rolling.cov (self[, other, pairwise, ddof]) |
Calculate the rolling sample covariance. |
Rolling.skew (self, \*\*kwargs) |
Unbiased rolling skewness. |
Rolling.kurt (self, \*\*kwargs) |
Calculate unbiased rolling kurtosis. |
Rolling.apply (self, func[, raw, args, kwargs]) |
The rolling function’s apply function. |
Rolling.aggregate (self, arg, \*args, \*\*kwargs) |
Aggregate using one or more operations over the specified axis. |
Rolling.quantile (self, quantile[, interpolation]) |
Calculate the rolling quantile. |
Window.mean (self, \*args, \*\*kwargs) |
Calculate the window mean of the values. |
Window.sum (self, \*args, \*\*kwargs) |
Calculate window sum of given DataFrame or Series. |
Standard expanding window functions¶
Expanding.count (self, \*\*kwargs) |
The expanding count of any non-NaN observations inside the window. |
Expanding.sum (self, \*args, \*\*kwargs) |
Calculate expanding sum of given DataFrame or Series. |
Expanding.mean (self, \*args, \*\*kwargs) |
Calculate the expanding mean of the values. |
Expanding.median (self, \*\*kwargs) |
Calculate the expanding median. |
Expanding.var (self[, ddof]) |
Calculate unbiased expanding variance. |
Expanding.std (self[, ddof]) |
Calculate expanding standard deviation. |
Expanding.min (self, \*args, \*\*kwargs) |
Calculate the expanding minimum. |
Expanding.max (self, \*args, \*\*kwargs) |
Calculate the expanding maximum. |
Expanding.corr (self[, other, pairwise]) |
Calculate expanding correlation. |
Expanding.cov (self[, other, pairwise, ddof]) |
Calculate the expanding sample covariance. |
Expanding.skew (self, \*\*kwargs) |
Unbiased expanding skewness. |
Expanding.kurt (self, \*\*kwargs) |
Calculate unbiased expanding kurtosis. |
Expanding.apply (self, func[, raw, args, kwargs]) |
The expanding function’s apply function. |
Expanding.aggregate (self, arg, \*args, …) |
Aggregate using one or more operations over the specified axis. |
Expanding.quantile (self, quantile[, …]) |
Calculate the expanding quantile. |
Exponentially-weighted moving window functions¶
EWM.mean (self, \*args, \*\*kwargs) |
Exponential weighted moving average. |
EWM.std (self[, bias]) |
Exponential weighted moving stddev. |
EWM.var (self[, bias]) |
Exponential weighted moving variance. |
EWM.corr (self[, other, pairwise]) |
Exponential weighted sample correlation. |
EWM.cov (self[, other, pairwise, bias]) |
Exponential weighted sample covariance. |