pandas.Series.var

Series.var(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)[source]

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
axis : {index (0)}
skipna : bool, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

numeric_only : bool, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
scalar or Series (if level specified)
Scroll To Top