pandas.Series.var¶
-
Series.
var
(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)[source]¶ Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument
Parameters: - axis : {index (0)}
- skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
- level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_only : bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Returns: - scalar or Series (if level specified)