.. currentmodule:: pandas .. _basics: .. ipython:: python :suppress: import numpy as np from pandas import * randn = np.random.randn np.set_printoptions(precision=4, suppress=True) ***************************** Essential basic functionality ***************************** Here we discuss a lot of the essential functionality common to the pandas data structures. Here's how to create some of the objects used in the examples from the previous section: .. ipython:: python index = date_range('1/1/2000', periods=8) s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C']) wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) .. _basics.head_tail: Head and Tail ------------- To view a small sample of a Series or DataFrame object, use the ``head`` and ``tail`` methods. The default number of elements to display is five, but you may pass a custom number. .. ipython:: python long_series = Series(randn(1000)) long_series.head() long_series.tail(3) .. _basics.attrs: Attributes and the raw ndarray(s) --------------------------------- pandas objects have a number of attributes enabling you to access the metadata * **shape**: gives the axis dimensions of the object, consistent with ndarray * Axis labels * **Series**: *index* (only axis) * **DataFrame**: *index* (rows) and *columns* * **Panel**: *items*, *major_axis*, and *minor_axis* Note, **these attributes can be safely assigned to**! .. ipython:: python df[:2] df.columns = [x.lower() for x in df.columns] df To get the actual data inside a data structure, one need only access the **values** property: .. ipython:: python s.values df.values wp.values If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame's columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to. .. note:: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype. .. _basics.binop: Flexible binary operations -------------------------- With binary operations between pandas data structures, there are two key points of interest: * Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects. * Missing data in computations We will demonstrate how to manage these issues independently, though they can be handled simultaneously. Matching / broadcasting behavior ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DataFrame has the methods **add, sub, mul, div** and related functions **radd, rsub, ...** for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the *index* or *columns* via the **axis** keyword: .. ipython:: python :suppress: d = {'one' : Series(randn(3), index=['a', 'b', 'c']), 'two' : Series(randn(4), index=['a', 'b', 'c', 'd']), 'three' : Series(randn(3), index=['b', 'c', 'd'])} df = DataFrame(d) .. ipython:: python df row = df.ix[1] column = df['two'] df.sub(row, axis='columns') df.sub(row, axis=1) df.sub(column, axis='index') df.sub(column, axis=0) With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the *broadcast axis*. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis: .. ipython:: python major_mean = wp.mean(axis='major') major_mean wp.sub(major_mean, axis='major') And similarly for ``axis="items"`` and ``axis="minor"``. .. note:: I could be convinced to make the **axis** argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code... Missing data / operations with fill values ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a *fill_value*, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using ``fillna`` if you wish). .. ipython:: python :suppress: df2 = df.copy() df2['three']['a'] = 1. .. ipython:: python df df2 df + df2 df.add(df2, fill_value=0) Flexible Comparisons ~~~~~~~~~~~~~~~~~~~~ Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above: .. ipython:: python df.gt(df2) df2.ne(df) Combining overlapping data sets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of "higher quality". However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is ``combine_first``, which we illustrate: .. ipython:: python df1 = DataFrame({'A' : [1., np.nan, 3., 5., np.nan], 'B' : [np.nan, 2., 3., np.nan, 6.]}) df2 = DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.], 'B' : [np.nan, np.nan, 3., 4., 6., 8.]}) df1 df2 df1.combine_first(df2) General DataFrame Combine ~~~~~~~~~~~~~~~~~~~~~~~~~ The ``combine_first`` method above calls the more general DataFrame method ``combine``. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (ie, columns whose names are the same). So, for instance, to reproduce ``combine_first`` as above: .. ipython:: python combiner = lambda x, y: np.where(isnull(x), y, x) df1.combine(df2, combiner) .. _basics.stats: Descriptive statistics ---------------------- A large number of methods for computing descriptive statistics and other related operations on :ref:`Series `, :ref:`DataFrame `, and :ref:`Panel `. Most of these are aggregations (hence producing a lower-dimensional result) like **sum**, **mean**, and **quantile**, but some of them, like **cumsum** and **cumprod**, produce an object of the same size. Generally speaking, these methods take an **axis** argument, just like *ndarray.{sum, std, ...}*, but the axis can be specified by name or integer: - **Series**: no axis argument needed - **DataFrame**: "index" (axis=0, default), "columns" (axis=1) - **Panel**: "items" (axis=0), "major" (axis=1, default), "minor" (axis=2) For example: .. ipython:: python df df.mean(0) df.mean(1) All such methods have a ``skipna`` option signaling whether to exclude missing data (``True`` by default): .. ipython:: python df.sum(0, skipna=False) df.sum(axis=1, skipna=True) Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely: .. ipython:: python ts_stand = (df - df.mean()) / df.std() ts_stand.std() xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0) xs_stand.std(1) Note that methods like **cumsum** and **cumprod** preserve the location of NA values: .. ipython:: python df.cumsum() Here is a quick reference summary table of common functions. Each also takes an optional ``level`` parameter which applies only if the object has a :ref:`hierarchical index`. .. csv-table:: :header: "Function", "Description" :widths: 20, 80 ``count``, Number of non-null observations ``sum``, Sum of values ``mean``, Mean of values ``mad``, Mean absolute deviation ``median``, Arithmetic median of values ``min``, Minimum ``max``, Maximum ``abs``, Absolute Value ``prod``, Product of values ``std``, Unbiased standard deviation ``var``, Unbiased variance ``skew``, Unbiased skewness (3rd moment) ``kurt``, Unbiased kurtosis (4th moment) ``quantile``, Sample quantile (value at %) ``cumsum``, Cumulative sum ``cumprod``, Cumulative product ``cummax``, Cumulative maximum ``cummin``, Cumulative minimum Note that by chance some NumPy methods, like ``mean``, ``std``, and ``sum``, will exclude NAs on Series input by default: .. ipython:: python np.mean(df['one']) np.mean(df['one'].values) ``Series`` also has a method ``nunique`` which will return the number of unique non-null values: .. ipython:: python series = Series(randn(500)) series[20:500] = np.nan series[10:20] = 5 series.nunique() Summarizing data: describe ~~~~~~~~~~~~~~~~~~~~~~~~~~ There is a convenient ``describe`` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course): .. ipython:: python series = Series(randn(1000)) series[::2] = np.nan series.describe() frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) frame.ix[::2] = np.nan frame.describe() .. _basics.describe: For a non-numerical Series object, `describe` will give a simple summary of the number of unique values and most frequently occurring values: .. ipython:: python s = Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a']) s.describe() There also is a utility function, ``value_range`` which takes a DataFrame and returns a series with the minimum/maximum values in the DataFrame. .. _basics.idxmin: Index of Min/Max Values ~~~~~~~~~~~~~~~~~~~~~~~ The ``idxmin`` and ``idxmax`` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values: .. ipython:: python s1 = Series(randn(5)) s1 s1.idxmin(), s1.idxmax() df1 = DataFrame(randn(5,3), columns=['A','B','C']) df1 df1.idxmin(axis=0) df1.idxmax(axis=1) When there are multiple rows (or columns) matching the minimum or maximum value, ``idxmin`` and ``idxmax`` return the first matching index: .. ipython:: python df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba')) df3 df3['A'].idxmin() Value counts (histogramming) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``value_counts`` Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays: .. ipython:: python data = np.random.randint(0, 7, size=50) data s = Series(data) s.value_counts() value_counts(data) Discretization and quantiling ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Continuous values can be discretized using the ``cut`` (bins based on values) and ``qcut`` (bins based on sample quantiles) functions: .. ipython:: python arr = np.random.randn(20) factor = cut(arr, 4) factor factor = cut(arr, [-5, -1, 0, 1, 5]) factor ``qcut`` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so: .. ipython:: python arr = np.random.randn(30) factor = qcut(arr, [0, .25, .5, .75, 1]) factor value_counts(factor) .. _basics.apply: Function application -------------------- Arbitrary functions can be applied along the axes of a DataFrame or Panel using the ``apply`` method, which, like the descriptive statistics methods, take an optional ``axis`` argument: .. ipython:: python df.apply(np.mean) df.apply(np.mean, axis=1) df.apply(lambda x: x.max() - x.min()) df.apply(np.cumsum) df.apply(np.exp) Depending on the return type of the function passed to ``apply``, the result will either be of lower dimension or the same dimension. ``apply`` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred: .. ipython:: python tsdf = DataFrame(randn(1000, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=1000)) tsdf.apply(lambda x: x.index[x.dropna().argmax()]) You may also pass additional arguments and keyword arguments to the ``apply`` method. For instance, consider the following function you would like to apply: .. code-block:: python def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide You may then apply this function as follows: .. code-block:: python df.apply(subtract_and_divide, args=(5,), divide=3) Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row: .. ipython:: python :suppress: tsdf = DataFrame(randn(10, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=10)) tsdf.values[3:7] = np.nan .. ipython:: python tsdf tsdf.apply(Series.interpolate) Finally, ``apply`` takes an argument ``raw`` which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality. .. seealso:: The section on :ref:`GroupBy ` demonstrates related, flexible functionality for grouping by some criterion, applying, and combining the results into a Series, DataFrame, etc. Applying elementwise Python functions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods ``applymap`` on DataFrame and analogously ``map`` on Series accept any Python function taking a single value and returning a single value. For example: .. ipython:: python f = lambda x: len(str(x)) df['one'].map(f) df.applymap(f) ``Series.map`` has an additional feature which is that it can be used to easily "link" or "map" values defined by a secondary series. This is closely related to :ref:`merging/joining functionality `: .. ipython:: python s = Series(['six', 'seven', 'six', 'seven', 'six'], index=['a', 'b', 'c', 'd', 'e']) t = Series({'six' : 6., 'seven' : 7.}) s s.map(t) .. _basics.reindexing: Reindexing and altering labels ------------------------------ ``reindex`` is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To *reindex* means to conform the data to match a given set of labels along a particular axis. This accomplishes several things: * Reorders the existing data to match a new set of labels * Inserts missing value (NA) markers in label locations where no data for that label existed * If specified, **fill** data for missing labels using logic (highly relevant to working with time series data) Here is a simple example: .. ipython:: python s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) s s.reindex(['e', 'b', 'f', 'd']) Here, the ``f`` label was not contained in the Series and hence appears as ``NaN`` in the result. With a DataFrame, you can simultaneously reindex the index and columns: .. ipython:: python df df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one']) For convenience, you may utilize the ``reindex_axis`` method, which takes the labels and a keyword ``axis`` parameter. Note that the ``Index`` objects containing the actual axis labels can be **shared** between objects. So if we have a Series and a DataFrame, the following can be done: .. ipython:: python rs = s.reindex(df.index) rs rs.index is df.index This means that the reindexed Series's index is the same Python object as the DataFrame's index. .. seealso:: :ref:`Advanced indexing ` is an even more concise way of doing reindexing. .. note:: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: **many operations are faster on pre-aligned data**. Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because ``reindex`` has been heavily optimized), but when CPU cycles matter sprinking a few explicit ``reindex`` calls here and there can have an impact. .. _basics.reindex_like: Reindexing to align with another object ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the ``reindex_like`` method is available to make this simpler: .. ipython:: python :suppress: df2 = df.reindex(['a', 'b', 'c'], columns=['one', 'two']) df2 = df2 - df2.mean() .. ipython:: python df df2 df.reindex_like(df2) Reindexing with ``reindex_axis`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. _basics.align: Aligning objects with each other with ``align`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``align`` method is the fastest way to simultaneously align two objects. It supports a ``join`` argument (related to :ref:`joining and merging `): - ``join='outer'``: take the union of the indexes - ``join='left'``: use the calling object's index - ``join='right'``: use the passed object's index - ``join='inner'``: intersect the indexes It returns a tuple with both of the reindexed Series: .. ipython:: python s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) s1 = s[:4] s2 = s[1:] s1.align(s2) s1.align(s2, join='inner') s1.align(s2, join='left') .. _basics.df_join: For DataFrames, the join method will be applied to both the index and the columns by default: .. ipython:: python df.align(df2, join='inner') You can also pass an ``axis`` option to only align on the specified axis: .. ipython:: python df.align(df2, join='inner', axis=0) .. _basics.align.frame.series: If you pass a Series to ``DataFrame.align``, you can choose to align both objects either on the DataFrame's index or columns using the ``axis`` argument: .. ipython:: python df.align(df2.ix[0], axis=1) .. _basics.reindex_fill: Filling while reindexing ~~~~~~~~~~~~~~~~~~~~~~~~ ``reindex`` takes an optional parameter ``method`` which is a filling method chosen from the following table: .. csv-table:: :header: "Method", "Action" :widths: 30, 50 pad / ffill, Fill values forward bfill / backfill, Fill values backward Other fill methods could be added, of course, but these are the two most commonly used for time series data. In a way they only make sense for time series or otherwise ordered data, but you may have an application on non-time series data where this sort of "interpolation" logic is the correct thing to do. More sophisticated interpolation of missing values would be an obvious extension. We illustrate these fill methods on a simple TimeSeries: .. ipython:: python rng = date_range('1/3/2000', periods=8) ts = Series(randn(8), index=rng) ts2 = ts[[0, 3, 6]] ts ts2 ts2.reindex(ts.index) ts2.reindex(ts.index, method='ffill') ts2.reindex(ts.index, method='bfill') Note the same result could have been achieved using :ref:`fillna `: .. ipython:: python ts2.reindex(ts.index).fillna(method='ffill') Note these methods generally assume that the indexes are **sorted**. They may be modified in the future to be a bit more flexible but as time series data is ordered most of the time anyway, this has not been a major priority. .. _basics.drop: Dropping labels from an axis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A method closely related to ``reindex`` is the ``drop`` function. It removes a set of labels from an axis: .. ipython:: python df df.drop(['a', 'd'], axis=0) df.drop(['one'], axis=1) Note that the following also works, but is a bit less obvious / clean: .. ipython:: python df.reindex(df.index - ['a', 'd']) .. _basics.rename: Renaming / mapping labels ~~~~~~~~~~~~~~~~~~~~~~~~~ The ``rename`` method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function. .. ipython:: python s s.rename(str.upper) If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). But if you pass a dict or Series, it need only contain a subset of the labels as keys: .. ipython:: python df.rename(columns={'one' : 'foo', 'two' : 'bar'}, index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'}) The ``rename`` method also provides an ``inplace`` named parameter that is by default ``False`` and copies the underlying data. Pass ``inplace=True`` to rename the data in place. .. _basics.rename_axis: The Panel class has a related ``rename_axis`` class which can rename any of its three axes. Iteration --------- Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention of iterating over the "keys" of the objects. In short: * **Series**: values * **DataFrame**: column labels * **Panel**: item labels Thus, for example: .. ipython:: In [0]: for col in df: ...: print col ...: iteritems ~~~~~~~~~ Consistent with the dict-like interface, **iteritems** iterates through key-value pairs: * **Series**: (index, scalar value) pairs * **DataFrame**: (column, Series) pairs * **Panel**: (item, DataFrame) pairs For example: .. ipython:: In [0]: for item, frame in wp.iteritems(): ...: print item ...: print frame ...: .. _basics.iterrows: iterrows ~~~~~~~~ New in v0.7 is the ability to iterate efficiently through rows of a DataFrame. It returns an iterator yielding each index value along with a Series containing the data in each row: .. ipython:: In [0]: for row_index, row in df2.iterrows(): ...: print '%s\n%s' % (row_index, row) ...: For instance, a contrived way to transpose the dataframe would be: .. ipython:: python df2 = DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]}) print df2 print df2.T df2_t = DataFrame(dict((idx,values) for idx, values in df2.iterrows())) print df2_t itertuples ~~~~~~~~~~ This method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will be the row's corresponding index value, while the remaining values are the row values proper. For instance, .. ipython:: python for r in df2.itertuples(): print r .. _basics.string_methods: Vectorized string methods ------------------------- Series is equipped (as of pandas 0.8.1) with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series's ``str`` attribute and generally have names matching the equivalent (scalar) build-in string methods: .. ipython:: python s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() s.str.upper() s.str.len() Methods like ``split`` return a Series of lists: .. ipython:: python s2 = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) s2.str.split('_') Elements in the split lists can be accessed using ``get`` or ``[]`` notation: .. ipython:: python s2.str.split('_').str.get(1) s2.str.split('_').str[1] Methods like ``replace`` and ``findall`` take regular expressions, too: .. ipython:: python s3 = Series(['A', 'B', 'C', 'Aaba', 'Baca', '', np.nan, 'CABA', 'dog', 'cat']) s3 s3.str.replace('^.a|dog', 'XX-XX ', case=False) Methods like ``contains``, ``startswith``, and ``endswith`` takes an extra ``na`` arguement so missing values can be considered True or False: .. ipython:: python s4 = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s4.str.contains('A', na=False) .. csv-table:: :header: "Method", "Description" :widths: 20, 80 ``cat``,Concatenate strings ``split``,Split strings on delimiter ``get``,Index into each element (retrieve i-th element) ``join``,Join strings in each element of the Series with passed separator ``contains``,Return boolean array if each string contains pattern/regex ``replace``,Replace occurrences of pattern/regex with some other string ``repeat``,Duplicate values (``s.str.repeat(3)`` equivalent to ``x * 3``) ``pad``,"Add whitespace to left, right, or both sides of strings" ``center``,Equivalent to ``pad(side='both')`` ``slice``,Slice each string in the Series ``slice_replace``,Replace slice in each string with passed value ``count``,Count occurrences of pattern ``startswith``,Equivalent to ``str.startswith(pat)`` for each element ``endswidth``,Equivalent to ``str.endswith(pat)`` for each element ``findall``,Compute list of all occurrences of pattern/regex for each string ``match``,"Call ``re.match`` on each element, returning matched groups as list" ``len``,Compute string lengths ``strip``,Equivalent to ``str.strip`` ``rstrip``,Equivalent to ``str.rstrip`` ``lstrip``,Equivalent to ``str.lstrip`` ``lower``,Equivalent to ``str.lower`` ``upper``,Equivalent to ``str.upper`` .. _basics.sorting: Sorting by index and value -------------------------- There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values. The primary method for sorting axis labels (indexes) across data structures is the ``sort_index`` method. .. ipython:: python unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'], columns=['three', 'two', 'one']) unsorted_df.sort_index() unsorted_df.sort_index(ascending=False) unsorted_df.sort_index(axis=1) ``DataFrame.sort_index`` can accept an optional ``by`` argument for ``axis=0`` which will use an arbitrary vector or a column name of the DataFrame to determine the sort order: .. ipython:: python df.sort_index(by='two') The ``by`` argument can take a list of column names, e.g.: .. ipython:: python df = DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]}) df[['one', 'two', 'three']].sort_index(by=['one','two']) Series has the method ``order`` (analogous to `R's order function `__) which sorts by value, with special treatment of NA values via the ``na_last`` argument: .. ipython:: python s[2] = np.nan s.order() s.order(na_last=False) Some other sorting notes / nuances: * ``Series.sort`` sorts a Series by value in-place. This is to provide compatibility with NumPy methods which expect the ``ndarray.sort`` behavior. * ``DataFrame.sort`` takes a ``column`` argument instead of ``by``. This method will likely be deprecated in a future release in favor of just using ``sort_index``. .. _basics.cast: Copying, type casting --------------------- The ``copy`` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that **it is seldom necessary to copy objects**. For example, there are only a handful of ways to alter a DataFrame *in-place*: * Inserting, deleting, or modifying a column * Assigning to the ``index`` or ``columns`` attributes * For homogeneous data, directly modifying the values via the ``values`` attribute or advanced indexing To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly. Data can be explicitly cast to a NumPy dtype by using the ``astype`` method or alternately passing the ``dtype`` keyword argument to the object constructor. .. ipython:: python df = DataFrame(np.arange(12).reshape((4, 3))) df[0].dtype df.astype(float)[0].dtype df = DataFrame(np.arange(12).reshape((4, 3)), dtype=float) df[0].dtype .. _basics.cast.infer: Inferring better types for object columns ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``convert_objects`` DataFrame method will attempt to convert ``dtype=object`` columns to a better NumPy dtype. Occasionally (after transposing multiple times, for example), a mixed-type DataFrame will end up with everything as ``dtype=object``. This method attempts to fix that: .. ipython:: python df = DataFrame(randn(6, 3), columns=['a', 'b', 'c']) df['d'] = 'foo' df df = df.T.T df.dtypes converted = df.convert_objects() converted.dtypes .. _basics.serialize: Pickling and serialization -------------------------- All pandas objects are equipped with ``save`` methods which use Python's ``cPickle`` module to save data structures to disk using the pickle format. .. ipython:: python df df.save('foo.pickle') The ``load`` function in the ``pandas`` namespace can be used to load any pickled pandas object (or any other pickled object) from file: .. ipython:: python load('foo.pickle') There is also a ``save`` function which takes any object as its first argument: .. ipython:: python save(df, 'foo.pickle') load('foo.pickle') .. ipython:: python :suppress: import os os.remove('foo.pickle') Console Output Formatting ------------------------- .. _basics.console_output: Use the ``set_eng_float_format`` function in the ``pandas.core.common`` module to alter the floating-point formatting of pandas objects to produce a particular format. For instance: .. ipython:: python set_eng_float_format(accuracy=3, use_eng_prefix=True) df['a']/1.e3 df['a']/1.e6 .. ipython:: python :suppress: reset_printoptions() The ``set_printoptions`` function has a number of options for controlling how floating point numbers are formatted (using hte ``precision`` argument) in the console and . The ``max_rows`` and ``max_columns`` control how many rows and columns of DataFrame objects are shown by default. If ``max_columns`` is set to 0 (the default, in fact), the library will attempt to fit the DataFrame's string representation into the current terminal width, and defaulting to the summary view otherwise.