.. currentmodule:: pandas .. _missing_data: ************************* Working with missing data ************************* In this section, we will discuss missing (also referred to as NA) values in pandas. .. ipython:: python :suppress: import numpy as np; randn = np.random.randn; randint =np.random.randint from pandas import * import matplotlib.pyplot as plt .. note:: The choice of using ``NaN`` internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, :mod:`scikits.timeseries`. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas. Missing data basics ------------------- When / why does data become missing? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some might quibble over our usage of *missing*. By "missing" we simply mean **null** or "not present for whatever reason". Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing. In pandas, one of the most common ways that missing data is **introduced** into a data set is by reindexing. For example .. ipython:: python df = DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three']) df['four'] = 'bar' df['five'] = df['one'] > 0 df df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) df2 Values considered "missing" ~~~~~~~~~~~~~~~~~~~~~~~~~~~ As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While ``NaN`` is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python ``None`` will arise and we wish to also consider that "missing" or "null". Lastly, for legacy reasons ``inf`` and ``-inf`` are also considered to be "null" in computations. Since in NumPy divide-by-zero generates ``inf`` or ``-inf`` and not ``NaN``, I think you will find this is a worthwhile trade-off (Zen of Python: "practicality beats purity"). .. _missing.isnull: To make detecting missing values easier (and across different array dtypes), pandas provides the :func:`~pandas.core.common.isnull` and :func:`~pandas.core.common.notnull` functions, which are also methods on ``Series`` objects: .. ipython:: python df2['one'] isnull(df2['one']) df2['four'].notnull() **Summary:** ``NaN``, ``inf``, ``-inf``, and ``None`` (in object arrays) are all considered missing by the ``isnull`` and ``notnull`` functions. Calculations with missing data ------------------------------ Missing values propagate naturally through arithmetic operations between pandas objects. .. ipython:: python :suppress: df = df2.ix[:, ['one', 'two', 'three']] a = df2.ix[:5, ['one', 'two']].fillna(method='pad') b = df2.ix[:5, ['one', 'two', 'three']] .. ipython:: python a b a + b The descriptive statistics and computational methods discussed in the :ref:`data structure overview ` (and listed :ref:`here ` and :ref:`here `) are all written to account for missing data. For example: * When summing data, NA (missing) values will be treated as zero * If the data are all NA, the result will be NA * Methods like **cumsum** and **cumprod** ignore NA values, but preserve them in the resulting arrays .. ipython:: python df df['one'].sum() df.mean(1) df.cumsum() NA values in GroupBy ~~~~~~~~~~~~~~~~~~~~ NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example. Cleaning / filling missing data -------------------------------- pandas objects are equipped with various data manipulation methods for dealing with missing data. .. _missing_data.fillna: Filling missing values: fillna ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The **fillna** function can "fill in" NA values with non-null data in a couple of ways, which we illustrate: **Replace NA with a scalar value** .. ipython:: python df2 df2.fillna(0) df2['four'].fillna('missing') **Fill gaps forward or backward** Using the same filling arguments as :ref:`reindexing `, we can propagate non-null values forward or backward: .. ipython:: python df df.fillna(method='pad') .. _missing_data.fillna.limit: **Limit the amount of filling** If we only want consecutive gaps filled up to a certain number of data points, we can use the `limit` keyword: .. ipython:: python :suppress: df.ix[2:4, :] = np.nan .. ipython:: python df df.fillna(method='pad', limit=1) To remind you, these are the available filling methods: .. csv-table:: :header: "Method", "Action" :widths: 30, 50 pad / ffill, Fill values forward bfill / backfill, Fill values backward With time series data, using pad/ffill is extremely common so that the "last known value" is available at every time point. .. _missing_data.dropna: Dropping axis labels with missing data: dropna ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the **dropna** method: .. ipython:: python :suppress: df['two'] = df['two'].fillna(0) df['three'] = df['three'].fillna(0) .. ipython:: python df df.dropna(axis=0) df.dropna(axis=1) df['one'].dropna() **dropna** is presently only implemented for Series and DataFrame, but will be eventually added to Panel. Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options, which can be examined :ref:`in the API `. .. _missing_data.interpolate: Interpolation ~~~~~~~~~~~~~ A linear **interpolate** method has been implemented on Series. The default interpolation assumes equally spaced points. .. ipython:: python :suppress: np.random.seed(123456) idx = date_range('1/1/2000', periods=100, freq='BM') ts = Series(randn(100), index=idx) ts[1:20] = np.nan ts[60:80] = np.nan ts = ts.cumsum() .. ipython:: python ts.count() ts.head() ts.interpolate().count() ts.interpolate().head() @savefig series_interpolate.png width=6in ts.interpolate().plot() Index aware interpolation is available via the ``method`` keyword: .. ipython:: python :suppress: ts = ts[[0, 1, 30, 60, 99]] .. ipython:: python ts ts.interpolate() ts.interpolate(method='time') For a floating-point index, use ``method='values'``: .. ipython:: python :suppress: idx = [0., 1., 10.] ser = Series([0., np.nan, 10.], idx) .. ipython:: python ser ser.interpolate() ser.interpolate(method='values') .. _missing_data.replace: Replacing Generic Values ~~~~~~~~~~~~~~~~~~~~~~~~ Often times we want to replace arbitrary values with other values. New in v0.8 is the ``replace`` method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements. For a Series, you can replace a single value or a list of values by another value: .. ipython:: python ser = Series([0., 1., 2., 3., 4.]) ser.replace(0, 5) You can replace a list of values by a list of other values: .. ipython:: python ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) You can also specify a mapping dict: .. ipython:: python ser.replace({0: 10, 1: 100}) For a DataFrame, you can specify individual values by column: .. ipython:: python df = DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]}) df.replace({'a': 0, 'b': 5}, 100) Instead of replacing with specified values, you can treat all given values as missing and interpolate over them: .. ipython:: python ser.replace([1, 2, 3], method='pad') Missing data casting rules and indexing --------------------------------------- While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we've established some "casting rules" when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are: .. csv-table:: :header: "data type", "Cast to" :widths: 40, 40 integer, float boolean, object float, no cast object, no cast For example: .. ipython:: python s = Series(randn(5), index=[0, 2, 4, 6, 7]) s > 0 (s > 0).dtype crit = (s > 0).reindex(range(8)) crit crit.dtype Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated: .. ipython:: python :okexcept: reindexed = s.reindex(range(8)).fillna(0) reindexed[crit] However, these can be filled in using **fillna** and it will work fine: .. ipython:: python reindexed[crit.fillna(False)] reindexed[crit.fillna(True)]