.. currentmodule:: pandas .. _visualization: .. ipython:: python :suppress: import numpy as np np.random.seed(123456) from pandas import * import pandas.util.testing as tm randn = np.random.randn np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') ************************ Plotting with matplotlib ************************ .. note:: We intend to build more plotting integration with `matplotlib `__ as time goes on. We use the standard convention for referencing the matplotlib API: .. ipython:: python import matplotlib.pyplot as plt .. _visualization.basic: Basic plotting: ``plot`` ------------------------ The ``plot`` method on Series and DataFrame is just a simple wrapper around ``plt.plot``: .. ipython:: python ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() @savefig series_plot_basic.png width=4.5in ts.plot() If the index consists of dates, it calls ``gcf().autofmt_xdate()`` to try to format the x-axis nicely as per above. The method takes a number of arguments for controlling the look of the plot: .. ipython:: python @savefig series_plot_basic2.png width=4.5in plt.figure(); ts.plot(style='k--', label='Series'); plt.legend() On DataFrame, ``plot`` is a convenience to plot all of the columns with labels: .. ipython:: python df = DataFrame(randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D']) df = df.cumsum() @savefig frame_plot_basic.png width=4.5in plt.figure(); df.plot(); plt.legend(loc='best') You may set the ``legend`` argument to ``False`` to hide the legend, which is shown by default. .. ipython:: python @savefig frame_plot_basic_noleg.png width=4.5in df.plot(legend=False) Some other options are available, like plotting each Series on a different axis: .. ipython:: python @savefig frame_plot_subplots.png width=4.5in df.plot(subplots=True, figsize=(8, 8)); plt.legend(loc='best') You may pass ``logy`` to get a log-scale Y axis. .. ipython:: python plt.figure(); ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = np.exp(ts.cumsum()) @savefig series_plot_logy.png width=4.5in ts.plot(logy=True) You can plot one column versus another using the `x` and `y` keywords in `DataFrame.plot`: .. ipython:: python plt.figure() df3 = DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum() df3['A'] = Series(range(len(df))) @savefig df_plot_xy.png width=4.5in df3.plot(x='A', y='B') Plotting on a Secondary Y-axis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To plot data on a secondary y-axis, use the ``secondary_y`` keyword: .. ipython:: python plt.figure() df.A.plot() @savefig series_plot_secondary_y.png width=4.5in df.B.plot(secondary_y=True, style='g') Selective Plotting on Secondary Y-axis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To plot some columns in a DataFrame, give the column names to the `secondary_y` keyword: .. ipython:: python plt.figure() @savefig frame_plot_secondary_y.png width=4.5in df.plot(secondary_y=['A', 'B']) Note that the columns plotted on the secondary y-axis is automatically marked with "(right)" in the legend. To turn off the automatic marking, use the `mark_right=False` keyword: .. ipython:: python plt.figure() @savefig frame_plot_secondary_y.png width=4.5in df.plot(secondary_y=['A', 'B'], mark_right=False) Targeting different subplots ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can pass an ``ax`` argument to ``Series.plot`` to plot on a particular axis: .. ipython:: python fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 5)) df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A') df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B') df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C') @savefig series_plot_multi.png width=4.5in df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D') .. _visualization.other: Other plotting features ----------------------- .. _visualization.barplot: Bar plots ~~~~~~~~~ For labeled, non-time series data, you may wish to produce a bar plot: .. ipython:: python plt.figure(); @savefig bar_plot_ex.png width=4.5in df.ix[5].plot(kind='bar'); plt.axhline(0, color='k') Calling a DataFrame's ``plot`` method with ``kind='bar'`` produces a multiple bar plot: .. ipython:: python :suppress: plt.figure(); .. ipython:: python df2 = DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd']) @savefig bar_plot_multi_ex.png width=5in df2.plot(kind='bar'); To produce a stacked bar plot, pass ``stacked=True``: .. ipython:: python :suppress: plt.figure(); .. ipython:: python @savefig bar_plot_stacked_ex.png width=5in df2.plot(kind='bar', stacked=True); To get horizontal bar plots, pass ``kind='barh'``: .. ipython:: python :suppress: plt.figure(); .. ipython:: python @savefig barh_plot_stacked_ex.png width=5in df2.plot(kind='barh', stacked=True); Histograms ~~~~~~~~~~ .. ipython:: python plt.figure(); @savefig hist_plot_ex.png width=4.5in df['A'].diff().hist() For a DataFrame, ``hist`` plots the histograms of the columns on multiple subplots: .. ipython:: python plt.figure() @savefig frame_hist_ex.png width=4.5in df.diff().hist(color='k', alpha=0.5, bins=50) .. _visualization.box: Box-Plotting ~~~~~~~~~~~~ DataFrame has a ``boxplot`` method which allows you to visualize the distribution of values within each column. For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1). .. ipython:: python df = DataFrame(np.random.rand(10,5)) plt.figure(); @savefig box_plot_ex.png width=4.5in bp = df.boxplot() You can create a stratified boxplot using the ``by`` keyword argument to create groupings. For instance, .. ipython:: python df = DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] ) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) plt.figure(); @savefig box_plot_ex2.png width=4.5in bp = df.boxplot(by='X') You can also pass a subset of columns to plot, as well as group by multiple columns: .. ipython:: python df = DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3']) df['X'] = Series(['A','A','A','A','A','B','B','B','B','B']) df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B']) plt.figure(); @savefig box_plot_ex3.png width=4.5in bp = df.boxplot(column=['Col1','Col2'], by=['X','Y']) .. _visualization.scatter_matrix: Scatter plot matrix ~~~~~~~~~~~~~~~~~~~ *New in 0.7.3.* You can create a scatter plot matrix using the ``scatter_matrix`` method in ``pandas.tools.plotting``: .. ipython:: python from pandas.tools.plotting import scatter_matrix df = DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd']) @savefig scatter_matrix_kde.png width=6in scatter_matrix(df, alpha=0.2, figsize=(8, 8), diagonal='kde') .. _visualization.kde: *New in 0.8.0* You can create density plots using the Series/DataFrame.plot and setting `kind='kde'`: .. ipython:: python :suppress: plt.figure(); .. ipython:: python ser = Series(np.random.randn(1000)) @savefig kde_plot.png width=6in ser.plot(kind='kde') .. _visualization.andrews_curves: Andrews Curves ~~~~~~~~~~~~~~ Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures. .. ipython:: python from pandas import read_csv from pandas.tools.plotting import andrews_curves data = read_csv('data/iris.data') plt.figure() @savefig andrews_curves.png width=6in andrews_curves(data, 'Name') .. _visualization.parallel_coordinates: Parallel Coordinates ~~~~~~~~~~~~~~~~~~~~ Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together. .. ipython:: python from pandas import read_csv from pandas.tools.plotting import parallel_coordinates data = read_csv('data/iris.data') plt.figure() @savefig parallel_coordinates.png width=6in parallel_coordinates(data, 'Name') Lag Plot ~~~~~~~~ Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random. .. ipython:: python from pandas.tools.plotting import lag_plot plt.figure() data = Series(0.1 * np.random.random(1000) + 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000))) @savefig lag_plot.png width=6in lag_plot(data) Autocorrelation Plot ~~~~~~~~~~~~~~~~~~~~ Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band. .. ipython:: python from pandas.tools.plotting import autocorrelation_plot plt.figure() data = Series(0.7 * np.random.random(1000) + 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000))) @savefig autocorrelation_plot.png width=6in autocorrelation_plot(data) .. _visualization.bootstrap: Bootstrap Plot ~~~~~~~~~~~~~~ Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot. .. ipython:: python from pandas.tools.plotting import bootstrap_plot data = Series(np.random.random(1000)) @savefig bootstrap_plot.png width=8in bootstrap_plot(data, size=50, samples=500, color='grey') .. _visualization.radviz: RadViz ~~~~~~ RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently. .. ipython:: python from pandas import read_csv from pandas.tools.plotting import radviz data = read_csv('data/iris.data') plt.figure() @savefig radviz.png width=6in radviz(data, 'Name')