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PDF Version Date: January 05, 2013 Version: 0.9.0

Binary Installers: http://pypi.python.org/pypi/pandas

Source Repository: http://github.com/pydata/pandas

Issues & Ideas: https://github.com/pydata/pandas/issues

Q&A Support: http://stackoverflow.com/questions/tagged/pandas
Developer Mailing List: http://groups.google.com/group/pystatsmodels

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with
“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing
practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful
and flexible open source data analysis / manipulation tool available in any language. It is already well on its way
toward this goal.

pandas is well suited for many different kinds of data:
* Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
* Ordered and unordered (not necessarily fixed-frequency) time series data.
 Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

* Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed
into a pandas data structure

The two primary data structures of pandas, Series (I-dimensional) and DataFrame (2-dimensional), handle the
vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users,
DataFrame provides everything that R’s data . frame provides and much more. pandas is built on top of NumPy
and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:
 Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
¢ Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

* Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

» Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag-
gregating and transforming data

* Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into
DataFrame objects

« Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
¢ Intuitive merging and joining data sets

* Flexible reshaping and pivoting of data sets

» Hierarchical labeling of axes (possible to have multiple labels per tick)

* Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading
data from the ultrafast HDFS format

» Time series-specific functionality: date range generation and frequency conversion, moving window statistics,
moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific
research environments. For data scientists, working with data is typically divided into multiple stages: munging and
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cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or
tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

* pandas is fast. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However,
as with anything else generalization usually sacrifices performance. So if you focus on one feature for your
application you may be able to create a faster specialized tool.

* pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in
Python.

* pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do
invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.
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CHAPTER
ONE

WHAT’'S NEW

These are new features and improvements of note in each release.

1.1 v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of
bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame,
more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

1.1.1 New features

¢ Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)
¢ Add DataFrame.to_latex method (GH1735)

* Add convenient expanding window equivalents of all rolling_* ops (GH1785)

* Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)

* More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)

* Add level parameter to Series.reset_index

e TimeSeries.between_time can now select times across midnight (GH1871)

* Series constructor can now handle generator as input (GH1679)

* DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924)

* Enable skip_footer parameter in ExcelFile.parse (GH1843)

1.1.2 API changes

* The default column names when header=None and no columns names passed to functions like read_csv
has changed to be more Pythonic and amenable to attribute access:

In [1295]: from StringIO import StringIO
In [1296]: data = ’0,0,1\nl1,1,0\n0,1,0"
In [1297]: df = read_csv(StringIO(data), header=None)

In [1298]: df



https://github.com/pydata/pandas/issues/1706
https://github.com/pydata/pandas/issues/1735
https://github.com/pydata/pandas/issues/1785
https://github.com/pydata/pandas/issues/1748
https://github.com/pydata/pandas/issues/1739
https://github.com/pydata/pandas/issues/1691
https://github.com/pydata/pandas/issues/1295
https://github.com/pydata/pandas/issues/1871
https://github.com/pydata/pandas/issues/1679
https://github.com/pydata/pandas/issues/924
https://github.com/pydata/pandas/issues/1843

pandas: powerful Python data analysis toolkit, Release 0.9.0

Out[1298]:

X0 X1 X2
0 0 0 1
1 1 1 0
2 0 1 0

¢ Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than

treating the Series like an ndarray. Technically improper usages like ‘‘Series(df[coll], index=df[col2])11 that
worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly
clear:

In [1299]: sl = Series([1, 2, 31)

In [1300]: sl

Out [13007:

0 1

1 2

2 3

In [1301]: s2 = Series(sl, index=[’foo’, ’'bar’, ’'baz’]l)

In [1302]: s2

Oout [1302]:
foo NaN
bar NaN
baz NaN

Deprecated day_of_year APIremoved from PeriodIndex, use dayofyear (GH1723)
Don’t modify NumPy suppress printoption to True at import time

The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by
HDFStore (GH1834, GH1824)

Legacy cruft removed: pandas.stats.misc.quantileTS
Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)

Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was
occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query
having results) (GH1783)

Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
first and last methods in GroupBy no longer drop non-numeric columns (GH1809)

Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer
override default NAs unless keep_default_na is set to false explicitly (GH1657)

DataFrame.dot will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.

1.2

v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features
include notably NA friendly string processing functionality and a series of new plot types and options.
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1.2.1 New features

* Add vectorized string processing methods accessible via Series.str (GH620)
* Add option to disable adjustment in EWMA (GH1584)

* Radviz plot (GH1566)

* Parallel coordinates plot

* Bootstrap plot

* Per column styles and secondary y-axis plotting (GH1559)

* New datetime converters millisecond plotting (GH1599)

* Add option to disable “sparse” display of hierarchical indexes (GH1538)

¢ Series/DataFrame’s set_index method can append levels to an existing Index/Multilndex (GH1569,
GH1577)

1.2.2 Performance improvements

* Improved implementation of rolling min and max (thanks to Bottleneck !)
* Add accelerated ' median’ GroupBy option (GH1358)

* Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or
to_datetime (GH1571)

* Improve the performance of GroupBy on single-key aggregations and use with Categorical types

« Significant datetime parsing performance improvments

1.3 v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure
as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20
distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the
migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering
incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on
GitHub for a complete list.

1.3.1 Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join
semantics (including, if application, index duplication in many-to-many joins)

1.3.2 NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy
1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some
significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution
data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and
only interact with this data using the interface that pandas provides.

1.3. v0.8.0 (June 29, 2012) 5
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See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from
pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further
development in 0.7.x beyond bug fixes.

1.3.3 Time series changes and improvements

Note:

With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note:

See documentation for overview of pandas timeseries APIL.

New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and
improve serialization / deserialization performance significantly over datetime.datetime

High performance and flexible resample method for converting from high-to-low and low-to-high frequency.
Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling
are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-
Close) have also been implemented.

Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’

New Datetimelndex class supports both fixed frequency and irregular time series. Replaces now deprecated
DateRange class

New PeriodIndex and Period classes for representing fime spans and performing calendar logic, in-
cluding the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial
enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and
DatetimeIndex

New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working
with nanosecond-resolution data. Also provides easy time zone conversions.

Enhanced support for fime zones. Add tz_convert and t z_1coalize methods to TimeSeries and DataFrame.
All timestamps are stored as UTC; Timestamps from Datetimelndex objects with time zone set will be localized
to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz
library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only
if their UTC timestamps match. Operations between time zone-aware time series with different time zones will
result in a UTC-indexed time series.

Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings
Enhanced time series plotting; adaptation of scikits.timeseries matplotlib-based plotting code
New date_range, bdate_range, and period_range factory functions

Robust frequency inference function infer_freq and inferred_ f req property of DatetimeIndex, with option
to infer frequency on construction of DatetimeIndex

to_datetime function efficiently parses array of strings to DatetimeIndex. Datetimelndex will parse array or
list of strings to datetime64

Optimized support for datetime64-dtype data in Series and DataFrame columns
New NaT (Not-a-Time) type to represent NA in timestamp arrays
Optimize Series.asof for looking up “as of” values for arrays of timestamps

Milli, Micro, Nano date offset objects

Chapter 1. What’s New
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e Can index time series with datetime.time objects to select all data at particular time of day
(TimeSeries.at_time) or between two times (TimeSeries.between_time)

* Add rshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag
using shift

1.3.4 Other new features

New cut and gcut functions (like R’s cut function) for computing a categorical variable from a continuous
variable by binning values either into value-based (cut) or quantile-based (gcut) bins

Rename Factor to Categorical and add a number of usability features

Add limit argument to fillna/reindex

More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in
particular order with given names

Add flexible replace method for efficiently substituting values

Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates

Add comments option to parser functions: read_csv, etc.

Add :ref‘dayfirst <io.dayfirst>* option to parser functions for parsing international DD/MM/YYY'Y dates

Allow the user to specify the CSV reader dialect to control quoting etc.

Handling thousands separators in read_csv to improve integer parsing.

Enable unstacking of multiple levels in one shot. Alleviate pivot_table bugs (empty columns being intro-
duced)

Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict

Add first, last, min, max, and prod optimized GroupBy functions

New ordered_merge function

Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series

Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal

Add ‘kde’ plot option for density plots

Support for converting DataFrame to R data.frame through rpy2

Improved support for complex numbers in Series and DataFrame

Add pct_change method to all data structures

Add max_colwidth configuration option for DataFrame console output

Interpolate Series values using index values

Can select multiple columns from GroupBy

Add update methods to Series/DataFrame for updating values in place

Add any and all method to DataFrame

1.3.

v0.8.0 (June 29, 2012) 7
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1.3.5 New

plotting methods

Series.plot now supports a secondary_y option:

In [1303]:
Out [13037]:

In [1304]:
Oout [13047]:

In [1305]:
Out [13057:

11

10 [ -

1984

plt.figure()
<matplotlib.figure.Figure at 0x12bb82050>

fx["FR’" ] .plot (style="g")
<matplotlib.axes.AxesSubplot at 0x12bb82610>

fx["IT"].plot (style="k--’, secondary_y=True)
<matplotlib.axes.AxesSubplot at 0x12bb82610>

1989 1994 1999 2004 2009
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-1 2400
i_zza@
j 2000
} 1800
3 1600
i 1400
?'1203
1 1000

800

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, ' kde’ is a new

option:
In [1306]: s = Series (np.concatenate ((np.random.randn (1000),
et np.random.randn (1000) = 0.5 + 3)))
In [1307]: plt.figure()
Out [1307]: <matplotlib.figure.Figure at 0x12bb82550>
In [1308]: s.hist (normed=True, alpha=0.2)
Out [1308]: <matplotlib.axes.AxesSubplot at 0x12bd35dd0>
In [1309]: s.plot (kind="kde’)
Out [1309]: <matplotlib.axes.AxesSubplot at 0x12bd35dd0>
8 Chapter 1. What’s New
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See the plotting page for much more.

1.3.6 Other API changes

* Deprecation of offset, time_rule, and t imeRule arguments names in time series functions. Warnings
will be printed until pandas 0.9 or 1.0.

1.3.7 Potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy’s datetime64 data
type instead of dt ype=ob ject arrays of Python’s built-in datet ime . datet ime objects. DateRange has been
replaced by Datet imeIndex but otherwise behaved identically. But, if you have code that converts DateRange
or Index objects that used to contain datetime.datet ime values to plain NumPy arrays, you may have bugs
lurking with code using scalar values because you are handing control over to NumPy:

In [1310]: import datetime
In [1311]: rng = date_range(’1/1/2000’, periods=10)

In [1312]: rngl[5]
Out[1312]: <Timestamp: 2000-01-06 00:00:00>

In [1313]: isinstance(rng[5], datetime.datetime)
Out[1313]: True

In [1314]: rng_asarray = np.asarray(rng)
In [1315]: scalar_val = rng_asarrayl[5]

In [1316]: type(scalar_val)
Out [1316]: numpy.datetime64d

pandas’s Timestamp object is a subclass of datetime.datetime that has nanosecond support (the
nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that

1.3. v0.8.0 (June 29, 2012) 9
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used datetime.datet ime values before. Thus, I recommend not casting Datet imeIndex to regular NumPy
arrays.

If you have code that requires an array of datetime.datet ime objects, you have a couple of options. First, the
asobject property of DatetimeIndex produces an array of Timestamp objects:

In [1317]: stamp_array = rng.asobject

In [1318]: stamp_array

Out [1318]:

Index ([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00,
2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00,
2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00,
2000-01-10 00:00:00], dtype=obiject)

In [1319]: stamp_array[5]
Out[1319]: <Timestamp: 2000-01-06 00:00:00>

To get an array of proper datetime.datet ime objects, use the to_pydatet ime method:

In [1320]: dt_array = rng.to_pydatetime ()

In [1321]: dt_array

Oout [1321]:

array ([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00,
2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00,
2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00,
2000-01-10 00:00:00], dtype=obiject)

In [1322]: dt_arrayl[5]
Out [1322]: datetime.datetime (2000, 1, 6, 0, 0)

matplotlib knows how to handle datetime.datetime but not Timestamp objects. While I recommend that you
plot time series using TimeSeries.plot, you can either use to_pydatetime or register a converter for the
Timestamp type. See matplotlib documentation for more on this.
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Warning: There are bugs in the user-facing API with the nanosecond datetime64 unit in NumPy 1.6. In particular,
the string version of the array shows garbage values, and conversion to dt ype=ob ject is similarly broken.

In [1323]: rng = date_range(’1/1/2000’, periods=10)

In [1324]: rng

Out[1324]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2000-01-01 00:00:00, ..., 2000-01-10 00:00:00]

Length: 10, Freqg: D, Timezone: None

In [1325]: np.asarray (rng)

Out [1325]:

array ([1970-01-11 184:00:00, 1970-01-11 208:00:00, 1970-01-11 232:00:00,
1970-01-11 00:00:00, 1970-01-11 24:00:00, 1970-01-11 48:00:00,
1970-01-11 72:00:00, 1970-01-11 96:00:00, 1970-01-11 120:00:00,
1970-01-11 144:00:00], dtype=datetime64[ns])

In [1326]: converted = np.asarray(rng, dtype=object)

In [1327]: converted[5]
Out [1327]: datetime.datetime (1970, 1, 11, 48, 0)

Trust me: don’t panic. If you are using NumPy 1.6 and restrict your interaction with datetime64 values to
pandas’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the
important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work
directly with datetime64 arrays in NumPy 1.6 and only use the pandas APIL.

Support for non-unique indexes: In the latter case, you may have code inside a try: ... catch: block that
failed due to the index not being unique. In many cases it will no longer fail (some method like append still check for
uniqueness unless disabled). However, all is not lost: you can inspect index .is_unique and raise an exception
explicitly if it is False or go to a different code branch.

1.4 v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are
also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug
fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a
complete list.

1.4.1 New features

» New fixed width file reader, read_fwf
* New scatter_matrix function for making a scatter plot matrix

from pandas.tools.plotting import scatter_matrix
scatter_matrix (df, alpha=0.2)

1.4. v.0.7.3 (April 12, 2012) 11
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* Add stacked argument to Series and DataFrame’s p1l ot method for stacked bar plots.
df .plot (kind="bar’, stacked=True)
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df.plot (kind="barh’, stacked=True)

)

o n T W

0.0 0.5 1.0 1.5 2.0 2.5

* Addlog x and y scaling options to DataFrame.plot and Series.plot

* Add kurt methods to Series and DataFrame for computing kurtosis

1.4.2 NA Boolean Comparison APl Change

Reverted some changes to how NA values (represented typically as NaN or None) are handled in non-numeric Series:

In [1328]: series = Series([’Steve’, np.nan, ’"Joe’])
In [1329]: series == ’Steve’
Out [1329]:

0 True

1 False

2 False

In [1330]: series != ’Steve’
Out [1330]:

0 False

1 True

2 True

In comparisons, NA / NaN will always come through as False except with ! = which is True. Be very careful with
boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into
boolean array operations if you are worried about this:

In [1331]: mask = series == ’Steve’

In [1332]: series[mask & series.notnull ()]
Out[1332]: O Steve

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely
technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including
in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach
was taken. This issue may be revisited at some point in the future.

1.4. v.0.7.3 (April 12, 2012) 13
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1.4.3 Other API Changes

When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the
groupby behavior with DataFrame:

In [1333]: df = DataFrame({’A’ : [’ foo’, ’'bar’, ’'foo’, ’'bar’,
e "foo’, ’'bar’, ’'foo’, "foo’],
...... : "B’ : ['one’, 'one’, "two’, ’'three’,
e "two’, ’'two’, 'one’, ’"three’],
e et "C’” : np.random.randn(8), ‘D’ : np.random.randn(8)})

In [1334]: df

Out[1334]:

A B C D
0 foo one 1.998562 -1.082504
1 Dbar one 1.056844 0.863416
2 foo two -0.077851 0.910273
3 bar three -0.057005 -0.153253
4 foo two 0.626302 1.452359
5 bar two 0.386388 -0.045096
6 foo one -0.386153 -0.012466
7 foo three -0.003430 -2.609698

In [1335]: grouped = df.groupby ('A’)['C’]

In [1336]: grouped.describe ()

Out [1336]:

A

bar count 3.000000
mean 0.462076
std 0.560769
min -0.057005
25% 0.164692
50% 0.386388
75% 0.721616
max 1.056844

foo count 5.000000
mean 0.431486
std 0.950104
min -0.386153
25% -0.077851
50% -0.003430
75% 0.626302
max 1.998562

In [1337]: grouped.apply(lambda x: x.order () [-2:]) # top 2 values

Out [1337]:

A

bar 5 0.386388
1 1.056844

foo 4 0.626302
0 1.998562
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1.5 v.0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

1.5.1 New features

* Add additional tie-breaking methods in DataFrame.rank (GH874)

* Add ascending parameter to rank in Series, DataFrame (GH875)

* Add coerce_float option to DataFrame.from_records (GH893)

* Add sort_columns parameter to allow unsorted plots (GH918)

* Enable column access via attributes on GroupBy (GH882)

 Can pass dict of values to DataFrame.fillna (GH661)

 Can select multiple hierarchical groups by passing list of values in .ix (GH134)
* Add axis option to DataFrame.fillna (GH174)

* Add level keyword to drop for dropping values from a level (GH159)

1.5.2 Performance improvements

 Use khash for Series.value_counts, add raw function to algorithms.py (GH861)

* Intercept __builtin__.sum in groupby (GH885)

1.6 v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.6.1 New features

e Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
* Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
* Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)

* Add fill_value option to reindex, align methods (GH784)

 Enable concat to produce DataFrame from Series (GH787)

* Add between method to Series (GH802)

* Add HTML representation hook to DataFrame for the [Python HTML notebook (GH773)

* Support for reading Excel 2007 XML documents using openpyxl

1.6.2 Performance improvements

* Improve performance and memory usage of fillna on DataFrame

» Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)
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1.7 v.0.7.0 (February 9, 2012)

1.7.1 New features

New unified merge function for efficiently performing full gamut of database / relational-algebra operations.
Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains
(GH220, GH249, GH267)

New unified concatenation function for concatenating Series, DataFrame or Panel objects along an axis.
Can form union or intersection of the other axes. Improves performance of Series.append and
DataFrame.append (GH468, GH479, GH273)

Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to
Series.append too

Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)

You can now set multiple columns in a DataFrame via ___getitem__, useful for transformation (GH342)

Handle differently-indexed output values in DataFrame . apply (GH498)

In [1338]: df = DataFrame (randn (10, 4))

In [1339]: df.apply(lambda x: x.describe())
Out[1339]:

0 1 2 3

count 10.000000 10.000000 10.000000 10.000000

mean

std
min
25%
50%
75%
max

-0.388551 -0.442620 -0.458716 0.269475

0.710211 0.872585 1.240485 1.478325
-1.243944 -1.761237 -2.677551 -1.403487
-0.915552 -0.815165 -0.836546 -0.936132
-0.492234 -0.464892 -0.457939 0.135397
-0.154450 -0.403393 0.406242 1.088245

1.018969 1.002897 1.166858 2.672482

Add reorder_levels method to Series and DataFrame (PR534)

Add dict-like get function to DataFrame and Panel (PR521)

Add DataFrame . iterrows method for efficiently iterating through the rows of a DataFrame
Add DataFrame.to_panel with code adapted from LongPanel.to_long

Add reindex_axis method added to DataFrame

Add level option to binary arithmetic functions on DataFrame and Series

Add level option to the reindex and align methods on Series and DataFrame for broadcasting values
across a level (GH542, PR552, others)

Add attribute-based item access to Panel and add IPython completion (PR563)

Add logy option to Series.plot for log-scaling on the Y axis

Add index and header options to DataFrame.to_string

Can pass multiple DataFrames to DataFrame. join to join on index (GH115)

Can pass multiple Panels to Panel. join (GHI15)

Added justify argument to DataFrame.to_string to allow different alignment of column headers

Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
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Can pass MaskedArray to Series constructor (PR563)

* Add Panel item access via attributes and [Python completion (GH554)

Implement DataFrame . lookup, fancy-indexing analogue for retrieving values given a sequence of row and
column labels (GH338)

* Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with
hierarchical columns (GH166)

* Can call cummin and cummax on Series and DataFrame to get cumulative minimum and maximum, respec-
tively (GH647)

* value_range added as utility function to get min and max of a dataframe (GH288)

* Added encoding argument to read_csv, read_table, to_csv and from_csv for non-ascii text
(GH717)

* Added abs method to pandas objects
* Added crosstab function for easily computing frequency tables
* Added i sin method to index objects

* Added 1level argument to xs method of DataFrame.

1.7.2 API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how
integer indexes are handled with regard to label-based indexing. Here is an example:

In [1340]: s = Series(randn(10), index=range (0, 20, 2))

In [1341]: s

Out [1341]:

0 -0.403876
2 -1.076283
4 -0.155956
6 0.388741
8 -1.284588
10 -0.508030
12 0.841173
14 -0.555843
16 -0.030913
18 -0.289758

In [1342]: s[0]
Out[1342]: -0.40387620421311854

In [1343]: s[2]
Out[1343]: -1.0762834143768933

In [1344]: s[4]
Out[1344]: -0.15595570166155431

This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in
versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a KeyError:

In [2]: s[1]
KeyError: 1
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This change also has the same impact on DataFrame:

In [3]: df =
In [4]: df
0
0 0.88427
2 0.14451 -
4 -1.44779 -
6 -0.26598 -
8 -0.58776
10 0.10940 -
12 -1.16919 -
14 -0.07337
In [5]: df.ix

KeyError: 3

DataFrame (randn (8,

1 2 3
0.3363 -0.1787 O
0.1415 0.2504 O
0.9186 -1.4996 O
2.4184 -0.2658 0
0.3144 -0.8566 O
0.7175 -1.0108 O
0.3087 -0.6049 -0.
0.3410 0.0424 -0.
[3]

4), index=range (0,

.03162
.58374
.27163
.11503
. 61941
.47990

43544
16037

le,

2))

In order to support purely integer-based indexing, the following methods have been added:

Method

Description

Series.iget_value (i)

Retrieve value stored at location i

Series.iget (i)

Alias for iget_value

DataFrame.irow (1)

Retrieve the i-th row

DataFrame.icol (J)

Retrieve the j-th column

DataFrame.iget_value (i,

J)

Retrieve the value at row i and column j

1.7.3 API tweaks regarding label-based slicing

Label-based slicing using ix now requires that the index be sorted (monotonic) unless both the start and endpoint are
contained in the index:

In [1345]: s =

In [1346]: s

Out[1346]:

g 1.318467

m 1.025903

k 0.195796

a 0.030198

e -0.349406

c -0.417301

Then this is OK:

In [1347]: s.ix['k’:7e’]
Out [1347]:

k 0.195796

a 0.030198

e -0.349406

But this is not:

In [12]: s.ix['b’:"h’]

KeyError ’'b’

Series (randn (6),

index=1ist (/ gmkaec’

))

If the index had been sorted, the “range selection” would have been possible:

18
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In [1348]: s2

In [1349]: s2

Out [1349]:
a 0.030198
c  -0.417301
e -0.349406
g 1.318467
k 0.195796
m 1.025903
In [1350]: s2.i
Out [1350] :

c  -0.417301
e  -0.349406

g 1.318467

= s.sort_index ()

1.7.4 Changes to Series [] operator

As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting
values via [] (i.e. the __getitem__ and _ setitem__ methods). The behavior will be the same as passing
similar input to ix except in the case of integer indexing:

In [1351]: s =

In [1352]: s
Out [1352]:
0.651628
-0.530157
-1.545154
-1.952985
-0.768355
-0.692498

5 ~Q 0 Q 9

In [1353]: s[|

Out [1353]:

m -0.692498
a 0.651628
c -0.530157
e -1.545154

In [1354]: s['b’:"1"]

Out [13547]:

c -0.530157
e -1.545154
g -1.952985
k -0.768355
In [1355]: s[’
Out [13557]:

c -0.530157
e -1.545154
g -1.952985
k -0.768355

Series (randn (6),

I ror
m-, ay

C’:'k’]

index=1ist (" acegkm’))

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):

1.7. v.0.7.0 (February 9, 2012)
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In [1356]: s = Series(randn(6), index=range (0, 12, 2))

In [1357]: s[[4, 0, 2]]

Out [1357]:

4 -0.464905
0 -0.378437
2 1.076202

In [1358]: s[1:5]

Out [1358]:

2 1.076202
4 -0.464905
6 0.432658
8 -0.623043

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use ix.

1.7.5 Other API Changes

* The deprecated LongPanel class has been completely removed

e If Series.sort is called on a column of a DataFrame, an exception will now be raised. Before it was
possible to accidentally mutate a DataFrame’s column by doing df [col] .sort () instead of the side-effect
free method df [col] .order () (GH316)

* Miscellaneous renames and deprecations which will (harmlessly) raise FutureWarning

* drop added as an optional parameter to DataFrame.reset_index (GH699)

1.7.6 Performance improvements

e Cythonized GroupBy aggregations no longer presort the data, thus achieving a significant speedup (GH93).
GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data
type in Cython (GH496).

 Better error message in DataFrame constructor when passed column labels don’t match data (GH497)

* Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse
ndarray object in Cython (GH496)

 Can store objects indexed by tuples and floats in HDFStore (GH492)
* Don’t print length by default in Series.to_string, add length option (GH489)
¢ Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)

* Improve Multilndex reindexing speed by storing tuples in the Multilndex, test for backwards unpickling com-
patibility

* Improve column reindexing performance by using specialized Cython take function

* Further performance tweaking of Series.__getitem___ for standard use cases

* Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
¢ Friendlier error message in setup.py if NumPy not installed

* Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)

* Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index
(GH476)
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* Use Cythonized groupers when possible in Series/DataFrame stat ops with 1evel parameter passed (GH545)

* Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases
(GH374)

1.8 v.0.6.1 (December 13, 2011)

1.8.1 New features

» Can append single rows (as Series) to a DataFrame
¢ Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)

* Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access
(>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an
enlarged object.

¢ Add PyQt table widget to sandbox (PR435)
* DataFrame.align can accept Series arguments and an axis option (GH461)

* Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray
(GH463)

* Better console printing options (PR453)

* Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
* Implement DataFrame.from_items alternate constructor (GH444)

» DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)

e Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)

* Add margins option to pivot_table for computing subgroup aggregates (GH114)

* Add Series. from_csv function (PR482)

e Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)

* Multilndex.get_level_values can accept the level name

1.8.2 Performance improvements

* Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
¢ Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
* Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed

* Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.9 v.0.6.0 (November 25, 2011)

1.9.1 New Features

e Added melt function to pandas.core.reshape

* Added 1evel parameter to group by level in Series and DataFrame descriptive statistics (PR313)
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* Added head and tail methods to Series, analogous to to DataFrame (PR296)

e Added Series.isin function which checks if each value is contained in a passed sequence (GH289)

* Added float_format optionto Series.to_string

* Added skip_footer (GH291) and converters (GH343) options to read_csv and read_table

e Added drop_duplicates and duplicated functions for removing duplicate DataFrame rows and check-
ing for duplicate rows, respectively (GH319)

» Implemented operators ‘&’, ‘I, “*’, ‘- on DataFrame (GH347)

e Added Series .mad, mean absolute deviation

e Added QuarterEnd DateOffset (PR321)

e Added dot to DataFrame (GH65)

e Added orient option to Panel.from_dict (GH359, GH301)

* Added orient option to DataFrame.from_dict

* Added passing list of tuples or list of lists to DataFrame.from_records (GH357)

* Added multiple levels to groupby (GH103)

e Allow multiple columns in by argument of DataFrame . sort_index (GH92, PR362)
e Added fast get_value and put_value methods to DataFrame (GH360)

e Added cov instance methods to Series and DataFrame (GH194, PR362)

¢ Added kind="Dbar’ option to DataFrame.plot (PR348)

e Added idxmin and idxmax to Series and DataFrame (PR286)

* Added read_clipboard function to parse DataFrame from clipboard (GH300)

* Added nunique function to Series for counting unique elements (GH297)

* Made DataFrame constructor use Series name if no columns passed (GH373)

* Support regular expressions in read_table/read_csv (GH364)

* Added DataFrame.to_html for writing DataFrame to HTML (PR387)

¢ Added support for MaskedArray data in DataFrame, masked values converted to NaN (PR396)
e Added DataFrame.boxplot function (GH368)

e Can pass extra args, kwds to DataFrame.apply (GH376)

e Implement DataFrame . join with vector on argument (GH312)

e Added 1egend boolean flag to DataFrame.plot (GH324)

* Can pass multiple levels to stack and unstack (GH370)

* Can pass multiple values columns to pivot_table (GH381)

* Use Series name in GroupBy for result index (GH363)

* Added raw option to DataFrame . apply for performance if only need ndarray (GH309)
* Added proper, tested weighted least squares to standard and panel OLS (GH303)

22 Chapter 1. What’s New


https://github.com/pydata/pandas/pull/296
https://github.com/pydata/pandas/issues/289
https://github.com/pydata/pandas/issues/291
https://github.com/pydata/pandas/issues/343
https://github.com/pydata/pandas/issues/319
https://github.com/pydata/pandas/issues/347
https://github.com/pydata/pandas/pull/321
https://github.com/pydata/pandas/issues/65
https://github.com/pydata/pandas/issues/359
https://github.com/pydata/pandas/issues/301
https://github.com/pydata/pandas/issues/357
https://github.com/pydata/pandas/issues/103
https://github.com/pydata/pandas/issues/92
https://github.com/pydata/pandas/pull/362
https://github.com/pydata/pandas/issues/360
https://github.com/pydata/pandas/issues/194
https://github.com/pydata/pandas/pull/362
https://github.com/pydata/pandas/pull/348
https://github.com/pydata/pandas/pull/286
https://github.com/pydata/pandas/issues/300
https://github.com/pydata/pandas/issues/297
https://github.com/pydata/pandas/issues/373
https://github.com/pydata/pandas/issues/364
https://github.com/pydata/pandas/pull/387
https://github.com/pydata/pandas/pull/396
https://github.com/pydata/pandas/issues/368
https://github.com/pydata/pandas/issues/376
https://github.com/pydata/pandas/issues/312
https://github.com/pydata/pandas/issues/324
https://github.com/pydata/pandas/issues/370
https://github.com/pydata/pandas/issues/381
https://github.com/pydata/pandas/issues/363
https://github.com/pydata/pandas/issues/309
https://github.com/pydata/pandas/issues/303

pandas: powerful Python data analysis toolkit, Release 0.9.0

1.9.2 Performance Enhancements
* VBENCH Cythonized cache_readonly, resulting in substantial micro-performance enhancements through-
out the codebase (GH361)

e VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better perfor-
mance than np.apply_along_axis (GH309)

* VBENCH Improved performance of MultiIndex.from_tuples

¢ VBENCH Special Cython matrix iterator for applying arbitrary reduction operations

e VBENCH + DOCUMENT Add raw option to DataFrame . apply for getting better performance when
* VBENCH Faster cythonized count by level in Series and DataFrame (GH341)

* VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combina-
tions

e VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map sig-
nificantly when passed elementwise Python function, motivated by (PR355)

* VBENCH Significantly improved performance of Series.order, which also makes np.unique called on a
Series faster (GH327)

e VBENCH Vastly improved performance of GroupBy on axes with a Multilndex (GH299)

1.10 v.0.5.0 (October 24, 2011)

1.10.1 New Features

* Added DataFrame.align method with standard join options

* Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the
index columns

* Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two
return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)

* Added ability to join on multiple columns in DataFrame. join (GH214)

* Added private _get_duplicates function to Index for identifying duplicate values more easily (ENHS5c)
* Added column attribute access to DataFrame.

* Added Python tab completion hook for DataFrame columns. (PR233, GH230)

* Implemented Series.describe for Series containing objects (PR241)

* Added inner join option to DataFrame . join when joining on key(s) (GH248)

» Implemented selecting DataFrame columns by passing alistto ___getitem__ (GH253)
e Implemented & and | to intersect / union Index objects, respectively (GH261)

* Added pivot_table convenience function to pandas namespace (GH234)

e Implemented Panel . rename_axis function (GH243)

* DataFrame will show index level names in console output (PR334)

* Implemented Panel .take

* Added set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)
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Added convenience set_index function for creating a DataFrame index from its existing columns
Implemented groupby hierarchical index level name (GH223)

Added support for different delimiters in DataFrame.to_csv (PR244)

TODO: DOCS ABOUT TAKE METHODS

1.10.2 Performance Enhancements

VBENCH Major performance improvements in file parsing functions read_csv and read_table

VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many Multilndex-related
operations

VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the
float/object case, thus getting about 10% better performance (GH211)

VBENCH Improved speed of DataFrame . xs on mixed-type DataFrame objects by about 5x, regression from
0.3.0 (GH215)

VBENCH With new DataFrame . align method, speeding up binary operations between differently-indexed
DataFrame objects by 10-25%.

VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)

VBENCH Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

1.11 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

1.11.1 New Features

Added Python 3 support using 2to3 (PR200)

Added name attribute to Series, now prints as part of Series.___repr_

Added instance methods isnull and notnull to Series (PR209, GH203)

Added Series.align method for aligning two series with choice of join method (ENH56)
Added method get_level_valuestoMultiIndex (IS188)

Set values in mixed-type DataFrame objects via . ix indexing attribute (GH135)

Added new DataFrame methods get_dtype_counts and property dtypes (ENHdc)
Added ignore_index option to Dat aFrame . append to stack DataFrames (ENH 1b)
read_csv tries to sniff delimiters using csv.Sniffer (PR146)

read_csv can read multiple columns into a Mult i Index; DataFrame’s t o_csv method writes out a cor-
responding MultiIndex (PRI51)

DataFrame.rename has a new copy parameter to rename a DataFrame in place (ENHed)
Enable unstacking by name (PR 142)

Enable sortlevel to work by level (PR141)
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1.11.2 Performance Enhancements
* Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment
logic which is faster with a larger number of blocks (GH205)
* Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
* Improved performance of isnull and notnull, aregression from v0.3.0 (GH187)

* Refactored code related to DataFrame. join so that intermediate aligned copies of the data in each
DataFrame argument do not need to be created. Substantial performance increases result (GH176)

* Substantially improved performance of generic Index.intersection and Index.union

e Implemented BlockManager.take resulting in significantly faster take performance on mixed-type
DataFrame objects (GH104)

* Improved performance of Series.sort_index

* Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals
that were slowing down slicing operations to retrieve groups

* Optimized _ensure_index function resulting in performance savings in type-checking Index objects

* Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and
related functions
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CHAPTER
TWO

INSTALLATION

You have the option to install an official release or to build the development version. If you choose to install from
source and are running Windows, you will have to ensure that you have a compatible C compiler (MinGW or Visual
Studio) installed. How-to install MinGW on Windows

2.1 Python version support

Officially Python 2.5 to 2.7 and Python 3.1+, although Python 3 support is less well tested. Python 2.4 support is being
phased out since the userbase has shrunk significantly. Continuing Python 2.4 support will require either monetary
development support or someone contributing to the project to maintain compatibility.

2.2 Binary installers

2.2.1 All platforms

Stable installers available on PyPI

Preliminary builds and installers on the Pandas download page .
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2.2.2 Overview

Plat-| Distri- Status Download / Repository Link Install method
form | bution
Win- | all stable All platforms pip install
dows pandas
Mac | all stable All platforms pip install
pandas
Linux| Debian | stable official Debian repository sudo apt-get
install
python-pandas
Linux| Debian | unstable NeuroDebian sudo apt-get
& (latest install
Ubuntu | packages) python-pandas
Linux| Ubuntu | stable official Ubuntu repository sudo apt-get
install
python-pandas
Linux| Ubuntu | unstable PythonXY PPA; activate by: sudo sudo apt-get
(daily add-apt-repository install
builds) ppa:pythonxy/pythonxy—-devel && sudo python-pandas
apt—-get update
Linux| Open- stable OpenSuse Repository zypper in
Suse & python-pandas
Fedora

2.3 Dependencies

e NumPy: 1.6.1 or higher

 python-dateutil 1.5

2.4 Optional dependencies

¢ SciPy: miscellaneous statistical functions

* PyTables: necessary for HDF5-based storage

» matplotlib: for plotting

« statsmodels: 0.4.0 or higher

— Needed for parts of pandas.stats

* pytz

— Needed for time zone support with date_range

Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that

you install these. A packaged distribution like the Enthought Python Distribution may be worth considering.
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2.5 Installing from source

Note: Installing from the git repository requires a recent installation of Cython as the cythonized C sources are no
longer checked into source control. Released source distributions will contain the built C files. I recommend installing
the latest Cython via easy_install -U Cython

The source code is hosted at http://github.com/pydata/pandas, it can be checked out using git and compiled / installed
like so:

git clone git://github.com/pydata/pandas.git
cd pandas
python setup.py install

On Windows, I suggest installing the MinGW compiler suite following the directions linked to above. Once configured
property, run the following on the command line:

python setup.py build —--compiler=mingw32
python setup.py install

Note that you will not be able to import pandas if you open an interpreter in the source directory unless you build the
C extensions in place:

python setup.py build_ext --inplace

The most recent version of MinGW (any installer dated after 2011-08-03) has removed the ‘-mno-cygwin’ option but
Distutils has not yet been updated to reflect that. Thus, you may run into an error like “unrecognized command line
option ‘-mno-cygwin’’. Until the bug is fixed in Distutils, you may need to install a slightly older version of MinGW
(2011-08-02 installer).

2.6 Running the test suite

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it
on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed),
make sure you have nose and run:

$ nosetests pandas

Ran 818 tests in 21.631s

OK (SKIP=2)
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CHAPTER
THREE

FREQUENTLY ASKED QUESTIONS
(FAQ)

3.1 Migrating from scikits.timeseries to pandas >= 0.8.0

Starting with pandas 0.8.0, users of scikits.timeseries should have all of the features that they need to migrate their code
to use pandas. Portions of the scikits.timeseries codebase for implementing calendar logic and timespan frequency
conversions (but not resampling, that has all been implemented from scratch from the ground up) have been ported to
the pandas codebase.

The scikits.timeseries notions of Date and DateArray are responsible for implementing calendar logic:
In [16]: dt = ts.Date('Q’, ’71984Q3")
# sic

In [17]: dt
Out[17]: <Q-DEC : 19840Q1>

In [18]: dt.asfreq(’'D’, ’start’)
Out[18]: <D : 01-Jan-1984>

In [19]: dt.asfreqg(’'D’, ’"end’)
Out[19]: <D : 31-Mar-1984>

In [20]: dt + 3
Out [20]: <Q-DEC : 1984Q04>

Date and DateArray from scikits.timeseries have been reincarnated in pandas Period and PeriodIndex:

In [392]: pnow(’'D’") # scikits.timeseries.now()
Out [392]: Period(’2013-01-05", ’'D")

In [393]: Period(year=2007, month=3, day=15, freg='D’)
Out [393]: Period(’2007-03-15", ’'D")

In [394]: p = Period(’1984Q03")

In [395]: p
Out [395]: Period(’19840Q3", ’"Q-DEC’)

In [396]: p.asfreqg(’'D’, ’'start’)
Out [396]: Period(’1984-07-01", ’'D")
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In [397]: p.asfreg(’'D’, ’"end’)
Out [397]: Period(’1984-09-30", ’'D")

In [398]: (p + 3).asfreq('T’) + 6 % 60 + 30
Out[398]: Period(’1985-07-01 06:29", 'T")

In [399]: rng = period_range(’1990", "2010", freg='A’")

In [400]: rng

Oout [4007 :

<class ’pandas.tseries.period.PeriodIndex’>
freq: A-DEC

[1990, ..., 2010]

length: 21

In [401]: rng.asfreq(’'B’, ’'end’) - 3

Out [401]:

<class ’'pandas.tseries.period.PeriodIndex’>

freqg: B

[1990-12-26, ..., 2010-12-28]

length: 21
scikits.timeseries | pandas Notes
Date Period A span of time, from yearly through to secondly
DateArray PeriodIndex | An array of timespans
convert resample Frequency conversion in scikits.timeseries
convert_to_annual | pivot_annual | currently supports up to daily frequency, see issue 736

3.1.1 Periodindex / DateArray properties and functions

The scikits.timeseries DateArray had a number of information properties. Here are the pandas equivalents:

scikits.timeseries pandas Notes
get_steps np.diff (idx.values)

has_missing_dates not idx.is_full

is_full idx.1is_full

is_valid idx.is_monotonic and idx.is_unique
is_chronological is_monotonic

arr.sort_chronologically () idx.order ()

3.1.2 Frequency conversion

Frequency conversion is implemented using the resample method on TimeSeries and DataFrame objects (multiple
time series). resample also works on panels (3D). Here is some code that resamples daily data to montly with
scikits.timeseries:

In [402]: import scikits.timeseries as ts
In [403]: data = ts.time_series (np.random.randn(50), start_date=’"Jan-2000", freg='M")

In [404]: data
out [404]:
timeseries ([ 0.4691 -0.2829 -1.5091 -1.1356 1.2121 -0.1732 0.1192 -1.0442 -0.8618
-2.1046 -0.4949 1.0718 0.7216 -0.7068 -1.0396 0.2719 -0.425 0.567
0.2762 -1.0874 -0.6737 0.1136 -1.4784 0.525 0.4047 0.577 -=1.715
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-1.0393 -0.3706 -1.1579 -1.3443 0.8449 1.0758 -0.109 1.6436 —-1.4694
0.357 -0.6746 -1.7769 -0.9689 -1.2945 0.4137 0.2767 -0.472 -0.014
-0.3625 -0.0062 -0.9231 0.8957 0.80527,
dates = [Jan-2013 ... Feb-20177,
freg = M)

In [405]: data.convert (’A’, func=np.mean)
Out [405]:
timeseries ([-0.394509620575 -0.24462765889 -0.221632512996 -0.453772693384
0.85048066387,
dates = [2013 ... 201771,
freqg = A-DEC)

Here is the equivalent pandas code:

In [406]: rng = period_range(’Jan-2000", periods=50, freqg="M")
In [407]: data = Series(np.random.randn(50), index=rng)

In [408]: data

Out [408] :

2000-01 -1.206412
2000-02 2.565646
2000-03 1.431256
2000-04 1.340309
2000-05 -1.170299
2000-06 -0.226169
2000-07 0.410835
2000-08 0.813850
2000-09 0.132003
2000-10 -0.827317
2000-11 -0.076467
2000-12 -1.187678
2001-01 1.130127
2001-02 -1.436737
2001-03 -1.413681
2001-04 1.607920
2001-05 1.024180
2001-06 0.569605
2001-07 0.875906
2001-08 -2.211372
2001-09 0.9744¢66
2001-10 -2.006747
2001-11 -0.410001
2001-12 -0.078638
2002-01 0.545952
2002-02 -1.219217
2002-03 -1.226825
2002-04 0.769804
2002-05 -1.281247
2002-06 -0.727707
2002-07 -0.121306
2002-08 -0.097883
2002-09 0.695775
2002-10 0.341734
2002-11 0.959726
2002-12 -1.110336
2003-01 -0.619976
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2003-02 0.149748
2003-03 -0.732339
2003-04 0.687738
2003-05 0.176444
2003-06 0.403310
2003-07 -0.154951
2003-08 0.301624
2003-09 -2.179861
2003-10 -1.369849
2003-11 -0.954208
2003-12 1.462696
2004-01 -1.743161
2004-02 -0.826591
Freg: M

In [409]: data.resample(’A’, how=np.mean)

Out [409]:

2000 0.166630
2001 -0.114581
2002 -0.205961
2003 -0.235802
2004 -1.284876

Freq: A-DEC

3.1.3 Plotting

Much of the plotting functionality of scikits.timeseries has been ported and adopted to pandas’s data structures. For
example:

In [410]: rng = period_range(’1987Q2", periods=10, freg='"Q-DEC’)
In [411]: data = Series(np.random.randn(10), index=rng)

In [412]: plt.figure(); data.plot ()
Out [412]: <matplotlib.axes.AxesSubplot at 0x1148171d0>
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Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
1988 1989

3.1.4 Converting to and from period format

Use the to_timestamp and to_period instance methods.

3.1.5 Treatment of missing data

Unlike scikits.timeseries, pandas data structures are not based on NumPy’s MaskedArray object. Missing data is
represented as NaN in numerical arrays and either as None or NaN in non-numerical arrays. Implementing a version of
pandas’s data structures that use MaskedArray is possible but would require the involvement of a dedicated maintainer.
Active pandas developers are not interested in this.

3.1.6 Resampling with timestamps and periods

resample has a kind argument which allows you to resample time series with a DatetimeIndex to PeriodIndex:

In [413]: rng = date_range('1/1/2000", periods=200, freg='D")
In [414]: data = Series(np.random.randn(200), index=rng)

In [415]: datal[:10]

Out [4157]:

2000-01-01 -0.487602
2000-01-02 -0.082240
2000-01-03 -2.182937
2000-01-04 0.380396
2000-01-05 0.084844
2000-01-06 0.432390
2000-01-07 1.519970
2000-01-08 -0.493662
2000-01-09 0.600178
2000-01-10 0.274230
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Freqg: D

In [416]: data.index

Out [416]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2000-01-01 00:00:00, ..., 2000-07-18 00:00:00]

Length: 200, Freqgq: D, Timezone: None

In [417]: data.resample('M’, kind='period’)

Out [417]:

2000-01 0.163775
2000-02 0.026549
2000-03 -0.089563
2000-04 -0.079405
2000-05 0.160348
2000-06 0.101725
2000-07 -0.708770
Freg: M

Similarly, resampling from periods to timestamps is possible with an optional interval (* start’ or  end’ ) conven-
tion:

In [418]: rng = period_range ('’ Jan-2000", periods=50, freg="M")
In [419]: data = Series (np.random.randn(50), index=rng)
In [420]: resampled = data.resample(’A’, kind=’timestamp’, convention=’end’)

In [421]: resampled.index

Out [421]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2000-12-31 00:00:00, ..., 2004-12-31 00:00:00]

Length: 5, Freq: A-DEC, Timezone: None
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CHAPTER
FOUR

PACKAGE OVERVIEW

pandas consists of the following things

A set of labeled array data structures, the primary of which are Series/TimeSeries and DataFrame
Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
An integrated group by engine for aggregating and transforming data sets

Date range generation (date_range) and custom date offsets enabling the implementation of customized frequen-
cies

Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading
pandas objects from the fast and efficient PyTables/HDF5 format.

Memory-efficent “sparse” versions of the standard data structures for storing data that is mostly missing or
mostly constant (some fixed value)

Moving window statistics (rolling mean, rolling standard deviation, etc.)

Static and moving window linear and panel regression

4.1 Data structures at a glance

Dimen- Name Description
sions
1 Series 1D labeled homogeneously-typed array
1 Time- Series with index containing datetimes
Series
2 DataFrame| General 2D labeled, size-mutable tabular structure with potentially
heterogeneously-typed columns
3 Panel General 3D labeled, also size-mutable array

4.1.1 Why more than 1 data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For
example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be
able to insert and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical
orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a
burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered
more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are
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intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to
orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in
downstream functions.

For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the
columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more
readable code:

for col in df.columns:
series = df[col]
# do something with series

4.2 Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The
length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast
majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor
immutability where sensible.

4.3 Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community
experts can answer through Stack Overflow.

Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should
be sent to: support@lambdafoundry.com

4.4 Credits

pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR
continued to provide resources for development through the end of 2011, and continues to contribute bug reports today.

Since January 2012, Lambda Foundry, has been providing development resources, as well as commercial support,
training, and consulting for pandas.

pandas is only made possible by a group of people around the world like you who have contributed new code, bug
reports, fixes, comments and ideas. A complete list can be found on Github.

4.5 Development Team

pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the
improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re
interested in contributing, please visit the project website.

4.6 License
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pandas 1is distributed under a 3-clause ("Simplified" or "New") BSD
license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have
BSD-compatible licenses, are included. Their licenses follow the pandas
license.

pandas license

Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.

Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met :

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the copyright holder nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Copyright Holders

AQR Capital Management began pandas development in 2008. Development was
led by Wes McKinney. AQR released the source under this license in 2009.
Wes is now an employee of Lambda Foundry, and remains the pandas project
lead.

The PyData Development Team is the collection of developers of the PyData
project. This includes all of the PyData sub-projects, including pandas. The
core team that coordinates development on GitHub can be found here:
http://github.com/pydata.
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Full credits for pandas contributors can be found in the documentation.

Our Copyright Policy

PyData uses a shared copyright model. Each contributor maintains copyright
over their contributions to PyData. However, it is important to note that
these contributions are typically only changes to the repositories. Thus,
the PyData source code, in its entirety, is not the copyright of any single

person or institution. Instead, it is the collective copyright of the

entire PyData Development Team. If individual contributors want to maintain

a record of what changes/contributions they have specific copyright on,

they should indicate their copyright in the commit message of the change

when they commit the change to one of the PyData repositories.

With this in mind, the following banner should be used in any source code

file to indicate the copyright and license terms:

Copyright (c) 2012, PyData Development Team
All rights reserved.

Distributed under the terms of the BSD Simplified License.

s

Copyright (c) 2005-2012, NumPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

The full license is in the LICENSE file, distributed with this software.
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(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
itions of this License Agreement.

SciPy license

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2012 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

c. Neither the name of the Enthought nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE .

numpydoc license

The numpydoc license is in pandas/doc/sphinxext/LICENSE.txt

Bottleneck license

Copyright (c) 2010-2012 Archipel Asset Management AB.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
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documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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CHAPTER
FIVE

INTRO TO DATA STRUCTURES

We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started.
The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To
get started, import numpy and load pandas into your namespace:

In [267]: import numpy as np

# will use a lot in examples
In [268]: randn = np.random.randn

In [269]: from pandas import =

Here is a basic tenet to keep in mind: data alignment is intrinsic. Link between labels and data will not be broken
unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in
separate sections.

When using pandas, we recommend the following import convention:

import pandas as pd

5.1 Series

Series is a one-dimensional labeled array (technically a subclass of ndarray) capable of holding any data type
(integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the
index. The basic method to create a Series is to call:

>>> g = Series(data, index=index)

Here, data can be many different things:

* a Python dict

* an ndarray

e a scalar value (like 5)
The passed index is a list of axis labels. Thus, this separates into a few cases depending on what data is:
From ndarray

If data is an ndarray, index must be the same length as data. If no index is passed, one will be created having values
[0, ..., len(data) - 1].
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In [270]: s = Series(randn(5), index=["a’, ’'b’, ’'c¢’, 'd’", "e’]l)

In [271]: s

out[271]:

a 0.664
b -0.487
c -0.504
d 0.307
e 1.570

In [272]: s.index
Out[272]: Index([a, b, c, d, e], dtype=object)

In [273]: Series (randn(5))

out[273]:

0 -0.431
1 -0.705
2 0.555
3 0.939
4 0.722

Note: Starting in v0.8.0, pandas supports non-unique index values. In previous version, if the index values are not
unique an exception will not be raised immediately, but attempting any operation involving the index will later result
in an exception. In other words, the Index object containing the labels “lazily” checks whether the values are unique.
The reason for being lazy is nearly all performance-based (there are many instances in computations, like parts of
GroupBy, where the index is not used).

From dict

If data is a dict, if index is passed the values in data corresponding to the labels in the index will be pulled out.
Otherwise, an index will be constructed from the sorted keys of the dict, if possible.

In [274]: d = {"a" : 0., 'b" : 1., 'c’" : 2.}

In [275]: Series (d)

out [275]:
a 0
b 1
c 2

In [276]: Series(d, index=["b’, ’'c’, 'd’, ’"a’'l)

Out[276]:
b 1
c 2
d NaN
a 0

Note: NaN (not a number) is the standard missing data marker used in pandas

From scalar value If data is a scalar value, an index must be provided. The value will be repeated to match the
length of index

In [277]: Series (5., index=['a’, 'b’, 'c’, 'd’, ’'e’])

out [277] :
a 5
b 5
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c 5
d 5
e 5

5.1.1 Series is ndarray-like

As a subclass of ndarray, Series is a valid argument to most NumPy functions and behaves similarly to a NumPy array.
However, things like slicing also slice the index.

In [278]:
Oout [278] :
In [279]:
Oout [279] :
a 0.664
b -0.487
c -0.504
In [280]:
Out [280] :
a 0.664
e 1.570
In [281]:
Oout [281]:
e 1.570
d 0.307
b -0.487
In [282]:
out [282]:
a 1.943
b 0.614
c 0.604
d 1.359
e 4.807

s[0]
0.66444516201494186

s[:3]

s[s > s.median ()]

s[l4, 3, 111

np.exp(s)

We will address array-based indexing in a separate section.

5.1.2 Series is dict-like

A Series is alike a fixed-size dict in that you can get and set values by index label:

In [283]:
Oout [283]:
In [284]:
In [285]:
Oout [285]:
a 0.66
b -0.48
c -0.50
d 0.30
e 12.00

s[’a’]
0.66444516201494186

s[’e’] = 12.

S

4
7
4
7
0

5.1. Series
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In [286]: e’ in s
Out [286]: True

In [287]: 'f’ in s
Out [287]: False

If a label is not contained, an exception is raised:

>>> g [/ 7]

KeyError: ’'f’

Using the get method, a missing label will return None or specified default:

In [288]: s.get('f’)

In [289]: s.get(’f’, np.nan)
Out [289]: nan

5.1.3 Vectorized operations and label alignment with Series

When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary.
Series can be also be passed into most NumPy methods expecting an ndarray.

In [290]: s + s

out [2907:

a 1.329
b -0.974
c -1.009
d 0.613
e 24.000

In [291]: s * 2

out[2917]:

a 1.329
b -0.974
c -1.009
d 0.613
e 24.000

In [292]: np.exp(s)

Out [292]:

a 1.943
b 0.614
c 0.604
d 1.359
e 162754.791

A key difference between Series and ndarray is that operations between Series automatically align the data based on
label. Thus, you can write computations without giving consideration to whether the Series involved have the same
labels.

In [293]: s[l:] + s[:-1]

out [293]:

a NaN
b -0.974
c -1.009
d 0.613
e NaN
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The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not found
in one Series or the other, the result will be marked as missing (NaN). Being able to write code without doing any
explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated
data alignment features of the pandas data structures set pandas apart from the majority of related tools for working
with labeled data.

Note: In general, we chose to make the default result of operations between differently indexed objects yield the
union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is
typically important information as part of a computation. You of course have the option of dropping labels with
missing data via the dropna function.

5.1.4 Name attribute

Series can also have a name attribute:

In [294]: s = Series(np.random.randn(5), name=’something’)

In [295]: s
out[295]:
0.015
1.987
-0.259
0.111
1.012
Name: something

Sw N RO

In [296]: s.name
Out[296]: "something’

The Series name will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as
you will see below.

5.2 DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it
like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object.
Like Series, DataFrame accepts many different kinds of input:

* Dict of 1D ndarrays, lists, dicts, or Series
¢ 2-D numpy.ndarray

e Structured or record ndarray

* ASeries

* Another DataFrame

Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass
an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict
of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.
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5.2.1 From dict of Series or dicts

The result index will be the union of the indexes of the various Series. If there are any nested dicts, these will be first
converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

In [297]: d = {’one’ : Series([l., 2., 3.1, index=['a’, 'b’, ’'c’1),
..... : "two’ : Series([l., 2., 3., 4.1, index=["a’, 'b’, ’'c’, 'd’"1)}

In [298]: df = DataFrame (d)

In [299]: df
out[299]:
one two
1
2
3
NaN

0O Q0 oo
Bw N e

In [300]: DataFrame(d, index=['d’, ’"b’, ’'a’l])

Out [300] :
one two
d NaN 4
b 2 2
a 1 1

In [301]: DataFrame(d, index=['d’, ’"b’, ’"a’]l, columns=['two’, ’'three’])
Out [3017:
two three

d 4 NaN
b 2 NaN
a 1 NaN

The row and column labels can be accessed respectively by accessing the index and columns attributes:

Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in
the dict.

In [302]: df.index
Out [302]: Index([a, b, c, d], dtype=object)

In [303]: df.columns
Out [303]: Index([one, two], dtype=object)

5.2.2 From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays.
If no index is passed, the result will be range (n), where n is the array length.

In [304]: d = {'one’” : [1., 2., 3., 4.1,
..... : "two’ : [4., 3., 2., 1.1}

In [305]: DataFrame (d)
Out [305]:
one two
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w N = O
DSw N
=N W

In [306]: DataFrame(d, index=['a’, ’'b’, ’'c’, "d’])
Oout [306] :
one two

Sw N
=N W

0O Q0 o0 w

5.2.3 From structured or record array

This case is handled identically to a dict of arrays.

In [307]: data = np.zeros((2,),dtype=[ (A", 71i4"),('B", "£47),('C’, 7al0’")1)
In [308]: datal[:] = [(1,2.,"Hello’), (2,3.,"World")]

In [309]: DataFrame (data)
Oout [309]:
A B C
0 1 2 Hello
1 2 3 World

In [310]: DataFrame (data, index=[’'first’, ’second’])

Oout [3107:

A B C
first 1 2 Hello
second 2 3 World

In [311]: DataFrame (data, columns=[’C’, 'A’, "B’])

Out [3117]:

cC A B
0 Hello 1 2
1 World 2 3

Note: DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.

5.2.4 From a list of dicts
In [312]: data2 = [{’a’: 1, "b": 2}, {’a’: 5, "b’: 10, ’"c’: 20}]

In [313]: DataFrame (dataZ2)

Out [313]:

a b c
0 1 2 NaN
1 5 10 20

In [314]: DataFrame (data2, index=[’first’, ’second’])
Out [314]:
a b c
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first 1 2 NaN
second 5 10 20

In [315]: DataFrame (data2, columns=["a’, 'b’])

Out [315]:

a b
0 1 2
1 5 10

5.2.5 From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the
original name of the Series (only if no other column name provided).

Missing Data

Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, use
np.nan for those values which are missing. Alternatively, you may pass a numpy .MaskedArray as the data
argument to the DataFrame constructor, and its masked entries will be considered missing.

5.2.6 Alternate Constructors

DataFrame.from_dict

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates
like the DataFrame constructor except for the orient parameter which is * columns’ by default, but which can
be setto / index’ in order to use the dict keys as row labels. DataFrame.from_records

DataFrame. from_records takes a list of tuples or an ndarray with structured dtype. Works analogously to the
normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the
index. For example:

In [316]: data

Out [316]:

array ([ (1, 2.0, "Hello’), (2, 3.0, ’'World" )],
dtype=[("A", ’'<id4"), ('B’', '<f4’'), ('C’', "|S10")1])

In [317]: DataFrame.from_ records (data, index='C’")
Oout [317]:
A B
C
Hello 1 2
World 2 3

DataFrame.from_items

DataFrame. from_items works analogously to the form of the dict constructor that takes a sequence of (key,
value) pairs, where the keys are column (or row, in the case of orient=' index’) names, and the value are the
column values (or row values). This can be useful for constructing a DataFrame with the columns in a particular order
without having to pass an explicit list of columns:

In [318]: DataFrame.from items ([ ('A’, [1, 2, 31), ('B’, 1[4, 5, 61)])
Out [318]:
B

= o
w N -

4
5
6
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If you pass orient='index’, the keys will be the row labels. But in this case you must also pass the desired
column names:

In [319]: DataFrame.from_items ([ ('A", [1, 2, 31), ('B", 1[4, 5, 61)1,
..... : orient=’'index’, columns=[’one’, ’"two’, ’"three’])

Out [319]:

one two three
A 1 2 3
B 4 5 6

5.2.7 Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting
columns works with the same syntax as the analogous dict operations:

In [320]: df[’one’]

Oout [3207:
a 1
b 2
c 3
d NaN

Name: one
In [321]: df[’three’] = df[’one’] = df[’two’]
In [322]: df[’flag’] = df[’one’] > 2

In [323]: df

Oout [323]:

one two three flag
a 1 1 1 False
b 2 2 4 False
c 3 3 9 True
d NaN 4 NaN False

Columns can be deleted or popped like with a dict:

In [324]: del df[’two’]
In [325]: three = df.pop(’'three’)

In [326]: df

Out [326] :

one flag
a 1 False
b 2 False
c 3 True
d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:

In [327]: df[’foo’] = ’'bar’

In [328]: df

Out [328]:
one flag foo
a 1 False Dbar
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b 2 False Dbar
c 3 True Dbar
d NaN False bar

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s
index:

In [329]: df[’one_trunc’] = df[’one’][:2]

In [330]: df

Oout [3307]:

one flag foo one_trunc
a 1 False Dbar 1
b 2 False Dbar 2
c 3 True Dbar NaN
d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.

By default, columns get inserted at the end. The insert function is available to insert at a particular location in the
columns:

In [331]: df.insert (1, ’'bar’, df[’one’])

In [332]: df

Out [332]:

one bar flag foo one_trunc
a 1 1 False Dbar 1
b 2 2 False Dbar 2
c 3 3 True bar NaN
d NaN NaN False bar NaN

5.2.8 Indexing / Selection

The basics of indexing are as follows:

Operation Syntax Result
Select column df [col] Series
Select row by label df .xs (label) ordf.ix[label] | Series
Select row by location (int) df.ix[loc] Series
Slice rows df[5:10] DataFrame
Select rows by boolean vector | df [bool_vec] DataFrame

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

In [333]: df.xs('b’")

Out [3337]:

one 2
bar 2
flag False
foo bar
one_trunc 2
Name: b

In [334]: df.ix[2]

Out [334]:
one 3
bar 3
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flag True
foo bar
one_trunc NaN
Name: c

Note if a DataFrame contains columns of multiple dtypes, the dtype of the row will be chosen to accommodate all of
the data types (dtype=object is the most general).

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing.
We will address the fundamentals of reindexing / conforming to new sets of lables in the section on reindexing.

5.2.9 Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on both the columns and the index (row labels).
Again, the resulting object will have the union of the column and row labels.

In [335]: df = DataFrame (randn (10, 4), columns=['A’, 'B’, 'C’, 'D’])
In [336]: df2 = DataFrame(randn (7, 3), columns=["A’, 'B’, 'C’"1])

In [337]: df + df2
Out [337]:

A B C D
2.752 -0.429 0.702 NaN
0.067 -3.397 1.775 NaN
-0.499 -1.138 -1.277 NaN
0.731 0.988 0.505 NaN
-0.538 -1.828 -1.974 NaN
.100 -2.885 1.676 NaN
1.405 -1.078 0.320 NaN

O 00 J o U WDNEFE O
|
o

NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the
DataFrame columns, thus broadcasting row-wise. For example:

In [338]: df - df.ix[0]
Out [338]:

A B C D
0.000 0.000 0.000 0.000
-0.586 —-3.234 -1.119 -2.876
-1.136 -3.727 -2.066 -1.500
-0.799 -0.803 -1.860 -2.038
.632 -2.216 -2.384 -1.367
-0.485 -2.545 -1.044 -1.190
-0.168 0.395 -1.333 -1.060
-2.367 -0.799 -3.479 -2.653
-2.953 -1.565 -2.251 -2.978
-1.615 -1.712 -2.521 -2.106

O 00 J oy Ul s W N O
|
[y

In the special case of working with time series data, if the Series is a TimeSeries (which it will be automatically if the
index contains datetime objects), and the DataFrame index also contains dates, the broadcasting will be column-wise:

In [339]: index = date_range(’1/1/2000’, periods=8)

In [340]: df = DataFrame (randn (8, 3), index=index,
..... : columns=["A", 'B’, 'C’'1])
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In [341]:
Out [341]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

In [342]:
Out [342]:

In [343]:
Out [343]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

Technical purity aside,

In [344]:
Out [344]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

df

A

B

-1.209 -1.257 -0.
0.430 -0.242 -0.
1.257 -0.871 -0.

-0.766 -0.219 0.

-1.566 1.780 -2.

-0.593 -1.059 0.

-0.123 1.306 -0.

-0.389 0.143 -1.

type (Af[7 A" ]

pandas.core.series.TimeSeries

df - df["A"]

B
-0.048

)

c
0.709

-0.672 -1.154
-2.128 -1.801

.547

-0.466

OO O O OO O o ¥
o

(dE.T - df[’

B
-0.048

1.429

3.346 -0.572

0.711

1.429 -0.006
0.532 -1.326

AT]).T

c
0.709

-0.672 -1.154
-2.128 -1.801

.547

-0.466

OO O OO OO o P
o

1.429

3.346 -0.572

0.711

1.429 -0.006
0.532 -1.326

C
500
724
544
663
139
119
129
715

this case is so common in practice that supporting the special case is preferable to the alternative
of forcing the user to transpose and do column-based alignment like so:

For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.

Operations with scalars are just as you would expect:

In [345]: df * 5 + 2
Out [345]:
A B C
2000-01-01 -4.043 -4.285 -0.499
2000-01-02 4.149  0.789 -1.619
2000-01-03 8.286 -2.355 -0.719
2000-01-04 -1.830  0.907 5.314
2000-01-05 -5.831 10.900 -8.693
2000-01-06 -0.963 -3.296 2.594
2000-01-07 1.385 8.528 1.354
2000-01-08 0.054 2.716 -6.575
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In [346]: 1 / df
Out [346]:

A B C
2000-01-01 -0.827 -0.796 -2.001
2000-01-02 2.327 -4.129 -1.382
2000-01-03 0.795 -1.148 -1.839
2000-01-04 -1.305 -4.574 1.509
2000-01-05 -0.638 0.562 -0.468
2000-01-06 -1.687 —-0.944 8.416
2000-01-07 -8.128 0.766 —-7.746
2000-01-08 -2.570 6.983 -0.583

In [347]: df xx 4

Out [347]:

A B C
2000-01-01 2.133 2.497 0.062
2000-01-02 0.034 0.003 0.275
2000-01-03 2.499 0.576 0.087
2000-01-04 0.344 0.002 0.193
2000-01-05 6.018 10.038 20.918
2000-01-06 0.123 1.258 0.000
2000-01-07 0.000 2.906 0.000
2000-01-08 0.023 0.000 8.652

Boolean operators work as well:

In [348]: dfl = DataFrame({’a’ : [1, 0, 1], ’'b" : [0, 1, 1] }, dtype=bool)
In [349]: df2 = DataFrame({’a’” : [0, 1, 11, ’'b’” : [1, 1, 0] }, dtype=bool)

In [350]: dfl & df2

Out [350] :

a b
0 False False
1 False True
2 True False

In [351]: dfl | df2
Out [3517:
a b
0 True True
1 True True
2 True True

In [352]: dfl ~ df2

Out [352]:

a b
0 True True
1 True False
2 False True

In [353]: —dfl

Out [353]:

a b
0 False True
1 True False

2 False False
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5.2.10 Transposing

To transpose, access the T attribute (also the t ranspose function), similar to an ndarray:

# only show the first 5 rows
In [354]: df[:5].T

Out [354]:
2000-01-01
A -1.209
B -1.257
C -0.500

2000-01-02
0.430
-0.242
-0.724

2

000-01-03 2000-01-04 2000-01-05

1.257 -0.766 -1.566
-0.871 -0.219 1.780
-0.544 0.663 -2.139

5.2.11 DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on
DataFrame, assuming the data within are numeric:

In [355]: np.exp(df)

Out [3557]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

O O O O O Wwr o

A

.299
.537
.516
.465
.209
.553
.884
.678

P Ww o Ul o o o o

B
.285
.785
.419
.804
.930
.347
.690
.154

In [356]: np.asarray (df)

Out [356
array ([[-1.208
0.429
1.257
0.766
1.566
0.592
0.123
0

1:
[_
[

[

[_
[7
[_
[_
[-0.389

5,
8/
3/
1,
3/
7/

’

2,

.257 ,
.2422,
.871 ,
.2186,
.78,
.0591,
.3056,
.1432,

O O OFr OO O

-0.

-0.

-1

c

.607
.485
.581
.940
.118
.126
.879
.180

499771,
.72387,
.54377,
.66287,
.1386]
.1188]
1291]
]

715 171)

’

4

The dot method on DataFrame implements matrix multiplication:

In [357]: df.T.dot (df)

Out [357]:
A
A 6.784 -1.88

B

9

C

3.064

B -1.889 8.460 -3.214

Cc 3.064 -3.21

4

9.055

Similarly, the dot method on Series implements dot product:

In [358]: s1 =

Series (np.arange (5,10))

In [359]: sl.dot (sl)

Out [359]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in
places from a matrix.
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5.2.12 Console display

For very large DataFrame objects, only a summary will be printed to the console (here I am reading a CSV version of
the baseball dataset from the plyr R package):

In [360]: baseball = read_csv(’data/baseball.csv’)

In [361]: print baseball

<class ’pandas.core.frame.DataFrame’>
Int64Index: 100 entries, 88641 to 89534
Data columns:

id 100 non-null values
year 100 non-null values
stint 100 non-null values
team 100 non-null values
lg 100 non-null values
g 100 non-null values
ab 100 non-null wvalues
r 100 non-null values
h 100 non-null values
X2b 100 non-null values
X3b 100 non-null values
hr 100 non-null values
rbi 100 non-null values
sb 100 non-null values
cs 100 non-null values
bb 100 non-null wvalues
so 100 non-null values
ibb 100 non-null wvalues
hbp 100 non-null values
sh 100 non-null values
sf 100 non-null values
gidp 100 non-null values

dtypes: float64(9), int64(10), object (3)

However, using to_string will return a string representation of the DataFrame in tabular form, though it won’t
always fit the console width:

In [362]: print baseball.ix[-20:, :12].to_string()

id vyear stint team 1lg g ab r h X2b X3b hr
88641 womacto0Ol 2006 2 CHN NL 19 50 6 14 1 0 1
88643 schilcu0l 2006 1 BOS AL 31 2 0 1 0 0 0
88645 myersmiOl 2006 1 NYA AL 62 0 0 0 0 0 0
88649 helliriOl 2006 1 MIL NL 20 3 0 0 0 0 0
88650 johnsra05 2006 1 NYA AL 33 6 0 1 0 0 0
88652 finlest0l 2006 1 SFN NL 139 426 66 105 21 12 6
88653 gonzaluOl 2006 1 ARI NL 153 586 93 159 52 2 15
88662 seleaal0l 2006 1 LAN NL 28 26 2 5 1 0 0
89177 francijul0l 2007 2 ATL NL 15 40 1 10 3 0 0
89178 francju0l 2007 1 NYN NL 40 50 7 10 0 0 1
89330 zaungr0l 2007 1 TOR AL 110 331 43 80 24 1 10
89333 witasja0l 2007 1 TBA AL 3 0 0 0 0 0 0
89334 williwo02 2007 1 HOU NL 33 59 3 6 0 0 1
89335 wickmboOl 2007 2 ARI NL 8 0 0 0 0 0 0
89336 wickmboOl 2007 1 ATL NL 47 0 0 0 0 0 0
89337 whitero02 2007 1 MIN AL 38 109 8 19 4 0 4
89338 whiteriOl 2007 1 HOU NL 20 1 0 0 0 0 0
89339 wellsdaOl 2007 2 LAN NL 7 15 2 4 1 0 0
89340 wellsdaOl 2007 1 SDN NL 22 38 1 4 0 0 0
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89341 weathdaOl 2007 1 CIN NL 67 0 0 0 0 0 0
89343 walketo04 2007 1 OAK AL 18 48 5 13 1 0 0
89345 wakefti0l 2007 1 BOS AL 1 2 0 0 0 0 0
89347 wvizquomO0l 2007 1 SFN NL 145 513 54 126 18 3 4
89348 wvilloro01l 2007 1 NYA AL 6 0 0 0 0 0 0
89352 wvalenjo03 2007 1 NYN NL 51 166 18 40 11 1 3
89354 trachst0l 2007 2 CHN NL 4 7 0 1 0 0 0
89355 trachst01l 2007 1 BAL AL 3 5 0 0 0 0 0
89359 timlimiO1l 2007 1 BOS AL 4 0 0 0 0 0 0
89360 thomejiOl 2007 1 CHA AL 130 432 79 119 19 0 35
89361 thomafr04 2007 1 TOR AL 155 531 63 147 30 0 26
89363 tavarju0l 2007 1 BOS AL 2 4 0 1 0 0 0
89365 sweenmaOl 2007 2 LAN NL 30 33 2 9 1 0 0
89366 sweenmalOl 2007 1 SFN NL 76 90 18 23 8 0 2
89367 suppaje0l 2007 1 MIL NL 33 61 4 8 0 0 0
89368 stinnke0l 2007 1 SLN NL 26 82 7 13 3 0 1
89370 stantmi02 2007 1 CIN NL 67 2 0 0 0 0 0
89371 stairmaOl 2007 1 TOR AL 125 357 58 103 28 1 21
89372 sprinru0l 2007 1 SLN NL 72 1 0 0 0 0 0
89374 sosasalOl 2007 1 TEX AL 114 412 53 104 24 1 21
89375 smoltjo0l 2007 1 ATL NL 30 54 1 5 1 0 0
89378 sheffgalOl 2007 1 DET AL 133 494 07 131 20 1 25
89381 seleaal0l 2007 1 NYN NL 31 4 0 0 0 0 0
89382 seaneru0l 2007 1 LAN NL 68 1 0 0 0 0 0
89383 schmija0l 2007 1 LAN NL 6 7 1 1 0 0 1
89384 schilcu0l 2007 1 BOS AL 1 2 0 1 0 0 0
89385 sandere02 2007 1 KCA AL 24 73 12 23 7 0 2
89388 rogerke0l 2007 1 DET AL 1 2 0 0 0 0 0
89389 rodriiv01l 2007 1 DET AL 129 502 50 141 31 3 11
89396 ramirmaO02 2007 1 BOS AL 133 483 84 143 33 1 20
89398 piazzmiOl 2007 1 OAK AL 83 309 33 85 17 1 8
89400 perezne0l 2007 1 DET AL 33 64 5 11 3 0 1
89402 parkch01l 2007 1 NYN NL 1 1 0 0 0 0 0
89406 oliveda02 2007 1 LaA AL 5 0 0 0 0 0 0
89410 myersmiOl 2007 1 NYA AL 6 1 0 0 0 0 0
89411 mussimiOl 2007 1 NYA AL 2 2 0 0 0 0 0
89412 moyerjal0l 2007 1 PHI NL 33 73 4 9 2 0 0
89420 mesajo0l 2007 1 PHI NL 38 0 0 0 0 0 0
89421 martipe02 2007 1 NYN NL 5 9 1 1 1 0 0
89425 maddugr0l 2007 1 SDN NL 33 62 2 9 2 0 0
89426 mabryjo0l 2007 1 COL NL 28 34 4 4 1 0 1
89429 loftoke01l 2007 2 CLE AL 52 173 24 49 9 3 0
89430 loftoke01l 2007 1 TEX AL 84 317 62 96 16 3 7
89431 loaizes01l 2007 1 LAN NL 5 7 0 1 0 0 0
89438 kleskry0l 2007 1 SFN NL 116 362 51 94 27 3 6
89439 kentje01l 2007 1 LAN NL 136 494 78 149 36 1 20
89442 jonesto02 2007 1 DET AL 5 0 0 0 0 0 0
89445 johnsraO5 2007 1 ARI NL 10 15 0 1 0 0 0
89450 hoffmtr0l 2007 1 SDN NL 60 0 0 0 0 0 0
89451 hernaro0l 2007 2 LAN NL 22 0 0 0 0 0 0
89452 hernaro0l 2007 1 CLE AL 2 0 0 0 0 0 0
89460 guarded0l 2007 1 CIN NL 15 0 0 0 0 0 0
89462 griffke02 2007 1 CIN NL 144 528 78 146 24 1 30
89463 greensh01l 2007 1 NYN NL 130 446 62 130 30 1 10
89464 graffto0l 2007 1 MIL NL 86 231 34 55 8 0 9
89465 gordoto0l 2007 1 PHI NL 44 0 0 0 0 0 0
89466 gonzaluOl 2007 1 LAN NL 139 464 70 129 23 2 15
89467 gomezch02 2007 2 CLE AL 19 53 4 15 2 0 0
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89468 gomezch02 2007 1 BAL AL 73 169 17 51 10 1 1
89469 glavito02 2007 1 NYN NL 33 56 3 12 1 0 0
89473 floydclO0l 2007 1 CHN NL 108 282 40 80 10 1 9
89474 finlest01l 2007 1 COL NL 43 94 9 17 3 0 1
89480 embrealOl 2007 1 OAK AL 4 0 0 0 0 0 0
89481 edmonjiOl 2007 1 SLN NL 117 365 39 92 15 2 12
89482 easledaOl 2007 1 NYN NL 76 193 24 54 6 0 10
89489 delgacalOl 2007 1 NYN NL 139 538 71 139 30 0 24
89493 cormirh01 2007 1 CIN NL 6 0 0 0 0 0 0
89494 coninje0l 2007 2 NYN NL 21 41 2 8 2 0 0
89495 coninje01l 2007 1 CIN NL 80 215 23 57 11 1 6
89497 clemero02 2007 1 NYA AL 2 2 0 1 0 0 0
89498 claytro0l 2007 2 BOS AL 8 6 1 0 0 0 0
89499 claytro0l 2007 1 TOR AL 69 189 23 48 14 0 1
89501 ciriljeO0l 2007 2 ARI NL 28 40 6 8 4 0 0
89502 cirilje01l 2007 1 MIN AL 50 153 18 40 9 2 2
89521 DbondsbalOl 2007 1 SFN NL 126 340 75 94 14 0 28
89523 Dbiggicr0l 2007 1 HOU NL 141 517 68 130 31 3 10
89525 Dbenitar01l 2007 2 FLO NL 34 0 0 0 0 0 0
89526 benitar0l 2007 1 SFN NL 19 0 0 0 0 0 0
89530 ausmubr0l 2007 1 HOU NL 117 349 38 82 16 3 3
89533 aloumo01l 2007 1 NYN NL 87 328 51 112 19 1 13
89534 alomasa02 2007 1 NYN NL 8 22 1 3 1 0 0

5.2.13 DataFrame column types

The four main types stored in pandas objects are float, int, boolean, and object. A convenient dt ypes attribute return
a Series with the data type of each column:

In [363]: baseball.dtypes

Out [363]:

id object
year int64
stint inte64
team object
lg object
g int64
ab int64
r inte4
h int64
X2b int64
X3b inte4
hr int64
rbi float64
sb floato64
cs float64
bb int64
so floato64
ibb float64
hbp float64
sh floato64
st floato64
gidp float64

The related method get_dtype_counts will return the number of columns of each type:
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In [364]: baseball.get_dtype_counts ()

Out [364]:

floato4 9
int64 10
object 3

5.2.14 DataFrame column attribute access and IPython completion

If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:

In [365]: df = DataFrame({’fool’” : np.random.randn(5),
et "foo2’ : np.random.randn(5) })

In [366]: df

Out [366] :

fool foo2
0 0.759091 -0.648742
1 -0.050457 0.209870
2 0.959219 -0.325391
3 -0.817600 -1.978199
4 -0.200407 -0.211127

In [367]: df.fool
Out [367]:

0.759091
-0.050457

0.959219
-0.817600
-0.200407
Name: fool

S w N PO

The columns are also connected to the [Python completion mechanism so they can be tab-completed:

In [5]: df.fo<TAB>
df.fool df.foo2

5.3 Panel

Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived
from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are
intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric
analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you
may find the axis names slightly arbitrary:

* items: axis 0, each item corresponds to a DataFrame contained inside
* major_axis: axis 1, it is the index (rows) of each of the DataFrames
e minor_axis: axis 2, it is the columns of each of the DataFrames

Construction of Panels works about like you would expect:
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5.3.1 From 3D ndarray with optional axis labels

In [368]: wp = Panel (randn(2, 5, 4), items=[’Iteml’, ’"Item2’],
..... : major_axis=date_range(’1/1/2000’, periods=5),
et minor_axis=["A’, 'B’, 'C’, '"D’])

In [369]: wp

Oout [369]:

<class ’pandas.core.panel.Panel’>

Dimensions: 2 (items) x 5 (major) x 4 (minor)

Items: Iteml to Item2

Major axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor axis: A to D

5.3.2 From dict of DataFrame objects

In [370]: data = {’Iteml’ : DataFrame (randn (4, 3))
..... : "Ttem2’” : DataFrame (randn (4, 2))

— ~

In [371]: Panel (data)

Oout [371]:

<class ’'pandas.core.panel.Panel’>

Dimensions: 2 (items) x 4 (major) x 3 (minor)
Items: Iteml to Item2

Major axis: 0 to 3

Minor axis: 0 to 2

Note that the values in the dict need only be convertible to DataFrame. Thus, they can be any of the other valid
inputs to DataFrame as per above.

One helpful factory method is Panel. from_dict, which takes a dictionary of DataFrames as above, and the
following named parameters:

Parameter Default | Description
intersect False drops elements whose indices do not align
orient items use minor to use DataFrames’ columns as panel items

For example, compare to the construction above:

In [372]: Panel.from_dict (data, orient="minor’)
out [372]:

<class ’pandas.core.panel.Panel’>

Dimensions: 3 (items) x 4 (major) x 2 (minor)
Items: 0 to 2

Major axis: 0 to 3

Minor axis: Iteml to Item2

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type
columns, all of the data will get upcasted to dt ype=ob ject unless you pass orient="minor’:
In [373]: df = DataFrame({’a’: [’foo’, ’"bar’, ’"baz’],

...... "b’: np.random.randn (3) })

In [374]: df
out[374]:
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a b
0 foo 0.080597
1 bar -0.000185
2 baz -0.264704
In [375]: data = {’iteml’: df, ’"item2’: df}

In [376]: panel = Panel.from_dict (data, orient='minor’)

In [377]: panel[’a’]

out [377]:
iteml item2

0 foo foo

1 bar bar

2 baz baz

In [378]: panel[’'b’]
out [378]:

iteml item2
0 0.080597 0.080597
1 -0.000185 -0.000185
2 -0.264704 -0.264704

In [379]: panel[’b’].dtypes

Oout [379]:
iteml float64
item?2 floatoe4d

Note: Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-
wise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on,
of course, in future releases. And faster if you join me in working on the codebase.

5.3.3 From DataFrame using to_panel method

This method was introduced in v0.7 to replace LongPanel.to_long, and converts a DataFrame with a two-level
index to a Panel.

In [380]: midx = MultiIndex(levels=[[’one’, ’'two’], ['x',’y’]1], labels=[[1,1,0,0],[1,0,1,011)

In [381]: df = DataFrame({’'A’ : [1, 2, 3, 4], "B": [5, 6, 7, 81}, index=midx)

In [382]: df.to_panel()

out [382]:

<class ’'pandas.core.panel.Panel’>

Dimensions: 2 (items) x 2 (major) x 2 (minor)
Items: A to B

Major axis: one to two

Minor axis: x to y

5.3.4 Item selection / addition / deletion

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:
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In [383]: wp[’/Iteml’]
Out [383]:

A B C D
2000-01-01 -0.519332 -1.765523 -0.966196 -0.890524
2000-01-02 -1.314597 -1.458515 -0.919663 -0.699091
2000-01-03 1.357258 -0.098278 -0.987183 -1.362030
2000-01-04 -1.309989 -1.153000 0.606382 -0.681101
2000-01-05 -0.289724 -0.996632 -1.407699 1.014104

In [384]: wp[’/Item3’] = wp[’/Iteml’] / wp[’Item2’]

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python
identifier, you can access it as an attribute and tab-complete it in [Python.

5.3.5 Transposing

A Panel can be rearranged using its t ranspose method (which does not make a copy by default unless the data are
heterogeneous):

In [385]: wp.transpose(2, 0, 1)

Out [385]:

<class ’'pandas.core.panel.Panel’>

Dimensions: 4 (items) x 3 (major) x 5 (minor)

Items: A to D

Major axis: Iteml to Item3

Minor axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

5.3.6 Indexing / Selection

Operation Syntax Result

Select item wp[item] DataFrame
Get slice at major_axis label | wp.major_xs (val) | DataFrame
Get slice at minor_axis label | wp.minor_xs (val) | DataFrame

For example, using the earlier example data, we could do:

In [386]: wp[’/Iteml’]
Out [386]:

A B C D
2000-01-01 -0.519332 -1.765523 -0.966196 -0.890524
2000-01-02 -1.314597 -1.458515 -0.919663 -0.699091
2000-01-03 1.357258 -0.098278 -0.987183 -1.362030
2000-01-04 -1.309989 -1.153000 0.606382 -0.681101
2000-01-05 -0.289724 -0.996632 -1.407699 1.014104

In [387]: wp.major_xs(wp.major_axis[2])
out [387]:
Iteml Item?2 Item3
A 1.357258 -0.177665 —=7.639427
B -0.098278 0.490838 -0.200224
C -0.987183 -1.360102 0.725815
D -1.362030 1.592456 -0.855302

In [388]: wp.minor_axis
Out [388]: Index([A, B, C, D], dtype=object)
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In [389]: wp.minor_xs(’C’)
Out [389]:

Iteml Item2 Item3
2000-01-01 -0.966196 0.071823 -13.452418
2000-01-02 -0.919663 0.214910 -4.279288
2000-01-03 -0.987183 -1.360102 0.725815
2000-01-04 0.606382 -1.890591 -0.320737
2000-01-05 -1.407699 -0.151652 9.282439

5.3.7 Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section hierarchical indexing
for more on this. To convert a Panel to a DataFrame, use the to__f rame method:

In [390]: panel = Panel (np.random.randn(3, 5, 4), items=['one’, 'two’, ’three’],
..... : major_axis=date_range(’1/1/2000’, periods=5),
et minor_axis=["a’, ’'b’, ’'c’, "d'1])

In [391]: panel.to_frame ()

Oout [3917]:
one two three
major minor
2000-01-01 a -0.566820 0.597468 0.716659
b -1.643966 -0.491240 -0.919717
c 1.471262 1.281674 -0.024595
d 0.677634 -0.099685 0.068997
2000-01-02 a -0.485743 -1.823043 0.601797
b -0.342272 -0.779213 0.866615
c -1.042291 -0.949327 0.092911
d -0.611457 0.768043 -2.606892
2000-01-03 a -0.141224 -0.054860 0.309303
b 0.007220 —-1.493561 -0.548401
c -0.516147 0.106004 -2.044772
d 0.446161 -0.903513 -1.666264
2000-01-04 a 0.483368 -0.719875 —-1.439775
b 0.186405 0.301945 1.326361
c -1.439567 1.112546 0.221680
d -0.503782 -0.542770 1.840992
2000-01-05 a 0.890769 -2.695540 1.165150
b -0.777798 0.431284 -1.420521
c -0.552820 -0.431092 1.616679
d -1.428744 1.666631 -1.030912
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CHAPTER
SIX

ESSENTIAL BASIC FUNCTIONALITY

Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some
of the objects used in the examples from the previous section:

In [1]: index = date_range(’1/1/2000’, periods=8)
In [2]: s = Series(randn(5), index=['a’, 'b’, ’'c’, ’d’, 'e’])

In [3]: df = DataFrame(randn (8, 3), index=index,
: columns=["A", ’'B’, 'C’'])

Panel (randn (2, 5, 4), items=[’Iteml’, ’'Item2’],
major_axis=date_range(’'1/1/2000’, periods=5),
minor_axis=["A’, 'B’, 'C’, "D’1])

In [4]: wp

6.1 Head and Tail

To view a small sample of a Series or DataFrame object, use the head and tail methods. The default number of
elements to display is five, but you may pass a custom number.

In [5]: long_series = Series(randn(1000))

In [6]: long_series.head()

Out [6]:

0 0.335504
1 0.269719
2 -0.098057
3 -0.526786
4 0.896511

In [7]: long_series.tail (3)

Oout[7]:

997 1.361478
998 0.319943
999 -0.934244
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6.2 Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata
« shape: gives the axis dimensions of the object, consistent with ndarray
* Axis labels
— Series: index (only axis)
— DataFrame: index (rows) and columns
— Panel: items, major_axis, and minor_axis
Note, these attributes can be safely assigned to!

In [8]: df[:2]
Oout [8]:

A B C
2000-01-01 -0.983003 -0.796896 -1.688996
2000-01-02 1.060319 1.618764 0.701717

In [9]: df.columns = [x.lower() for x in df.columns]

In [10]: df
Out[10]:

a b c
2000-01-01 -0.983003 -0.796896 —-1.688996
2000-01-02 1.060319 1.618764 0.701717
2000-01-03 -0.221476 -0.143426 1.157109
2000-01-04 1.573618 0.789571 1.184530
2000-01-05 -1.313863 -0.208595 0.240951
2000-01-06 -0.180712 -0.229452 1.034335
2000-01-07 -0.040443 -0.472683 1.159358
2000-01-08 1.206865 0.690638 -0.168824

To get the actual data inside a data structure, one need only access the values property:

In [11]: s.values
Out[1l1l]: array ([ 2.0066, 0.5081, 0.1165, -0.6522, -0.2912])

In [12]: df.values

Oout[1l2]:

array ([[-0.983 , -0.7969, -1.689 1,
[ 1.0603, 1.6188, 0.7017],
[-0.2215, -0.1434, 1.15717],
[ 1.5736, 0.7896, 1.1845],
[-1.3139, -0.2086, 0.241 7],
[-0.1807, -0.2295, 1.0343],
[-0.0404, -0.4727, 1.1594],
[ 1.2069, 0.6906, -0.1688]1])

In [13]: wp.values

Out [13]:
array ([[[ 0.6371, 0.236 , 0.5881, 0.4055],
[ 0.5632, 0.2592, -0.0239, 0.6453],
[-0.4783, 0.1582, -0.628 , -0.718 ],
[ 1.8318, 0.3024, -0.1126, 1.1123],
[-0.6902, 0.2105, -1.2264, 0.4147]11,
[[-1.6552, -0.3444, 1.1404, -0.2254],
[-0.2462, -0.6313, 1.018 , -1.0681],
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[-0.1739, -0.8775, -1.0366, -0.9515],
[ 0.8671, 1.5971, -0.1907, 0.1615],
[ 0.3245, -0.185 , -1.0757, 0.8194]111])

If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the
changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not
all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all
of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and
integers, the resulting array will be of float dtype.

6.3 Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:
* Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
» Missing data in computations

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

6.3.1 Matching / broadcasting behavior

DataFrame has the methods add, sub, mul, div and related functions radd, rsub, ... for carrying out binary operations.
For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on
the index or columns via the axis keyword:

In [14]: df

Oout[14]:

one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [15]: row = df.ix[1]

In [16]: column = df[’two’]

In [17]: df.sub(row, axis=’columns’)

Out[17]:

one three two
a —0.457558 NaN -1.165533
b 0.000000 0.000000 0.000000
c 3.172225 -0.791578 -0.552879
d NaN 0.284071 -1.525895

In [18]: df.sub(row, axis=1)
Oout[18]:

one three two
a -0.457558 NaN -1.165533
b 0.000000 0.000000 0.000000
c 3.172225 -0.791578 -0.552879
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d NaN 0.284071 -1.525895
In [19]: df.sub(column, axis=’index’)
Oout[1l9]:
one three two
a —-0.690661 NaN 0
b -1.398636 —-0.284609 0
c 2.326468 -0.523309 0
d NaN 1.525356 0
In [20]: df.sub(column, axis=0)
out[20]:
one three two
a —-0.690661 NaN 0
b -1.398636 —-0.284609 0
c 2.326468 -0.523309 0
d NaN 1.525356 0

With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps
confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data
over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

In [21]: major_mean = wp.mean(axis='major’)

In [22]: major_mean
out[22]:
Iteml Item2
A 0.372700 -0.176754
B 0.233256 -0.088221
C -0.280561 -0.028928
D 0.371969 -0.252780
In [23]: wp.sub(major_mean, axis=’'major’)
out [23]:
<class ’'pandas.core.panel.Panel’>

Dimensions: 2 (items) x 5 (major) x 4 (minor)

Iteml to Item2
2000-01-01 00:00:00 to 2000-01-05 00:00:00
A to D

Items:
Major axis:
Minor axis:

And similarly for axis="items" and axis="minor".

Note: I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of
Panel. Though it would require a transition period so users can change their code...

6.3.2 Missing data / operations with fill values

In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a fill_value,
namely a value to substitute when at most one of the values at a location are missing. For example, when adding two
DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the
result will be NaN (you can later replace NaN with some other value using £i11na if you wish).

In [24]:
Oout [24]:

one
a —-0.870517

df

three two
NaN -0.179856
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b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [25]: df2

Oout [25]:

one three two
a —-0.870517 1.000000 -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [26]: df + df2

Oout [26]:

one three two
a —1.741035 NaN -0.359713
b -0.825919 1.402134 1.971353
c 5.518530 -0.181022 0.865595
d NaN 1.970276 -1.080436

In [27]: df.add(df2, fill_value=0)

out[27]:

one three two
a —-1.741035 1.000000 -0.359713
b -0.825919 1.402134 1.971353
c 5.518530 -0.181022 0.865595
d NaN 1.970276 -1.080436

6.3.3 Flexible Comparisons

Starting in v0.8, pandas introduced binary comparison methods eq, ne, It, gt, le, and ge to Series and DataFrame whose
behavior is analogous to the binary arithmetic operations described above:

In [28]: df.gt(df2)
out [28]:

one three two
False False False
False False False
False False False
False False False

O Q0 oo

In [29]: df2.ne (df)
Oout [29]:

one three two
a False True False
b False False False
c False False False
d True False False

6.3.4 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the
other. An example would be two data series representing a particular economic indicator where one is considered to
be of “higher quality”. However, the lower quality series might extend further back in history or have more complete
data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame
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are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation
is combine_first, which we illustrate:

In [30]: dfl = DataFrame({’A’" : [l., np.nan, 3., 5., np.nan],
e "B’ : [np.nan, 2., 3., np.nan, 6.]})

In [31]: df2 = DataFrame({’'A" : [5., 2., 4., np.nan, 3., 7.1,
et "B’ : [np.nan, np.nan, 3., 4., 6., 8.1})

In [32]: dfl

Oout [32]:
A B
0 1 NaN
1 NaN 2
2 3 3
3 5 NaN
4 NaN 6

In [33]: df2

Oout [33]:
A B
0 5 NaN
1 2 NaN
2 4 3
3 NaN 4
4 3 6
5 7 8

In [34]: dfl.combine_first (df2)

Oout [34]:

A B
0 1 NaN
1 2 2
2 3 3
3 5 4
4 3 6
5 7 8

6.3.5 General DataFrame Combine

The combine_first method above calls the more general DataFrame method combine. This method takes
another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs
of Series (ie, columns whose names are the same).

So, for instance, to reproduce combine_first as above:

In [35]: combiner = lambda x, y: np.where(isnull(x), vy, Xx)

In [36]: dfl.combine (df2, combiner)
Oout [36]:
A B
1 NaN
2
3
4

w N PO
o w N
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6.4 Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on Series, DataFrame, and
Panel. Most of these are aggregations (hence producing a lower-dimensional result) like sum, mean, and quantile,
but some of them, like cumsum and cumprod, produce an object of the same size. Generally speaking, these methods
take an axis argument, just like ndarray.{sum, std, ...}, but the axis can be specified by name or integer:

* Series: no axis argument needed

¢ DataFrame: “index” (axis=0, default), “columns” (axis=1)

e Panel: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)
For example:

In [37]: df

Oout [37]:

one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [38]: df.mean (0)

Oout [38]:

one 0.491929
three 0.531898
two 0.174600

In [39]: df.mean (1)

Out [39]:

a -0.525187
b 0.424595
c 1.033851
d 0.222460

All such methods have a skipna option signaling whether to exclude missing data (True by default):

In [40]: df.sum(0, skipna=False)

Oout [40] :

one NaN
three NaN
two 0.6984

In [41]: df.sum(axis=1, skipna=True)

Out [41]:

a -1.050374
b 1.273784
c 3.101552
d 0.444920

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standard-
ization (rendering data zero mean and standard deviation 1), very concisely:
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In [42]: ts_stand = (df - df.mean())
In [43]: ts_stand.std()

Oout [43]:

one 1

three 1

two 1

In [44]: xs_stand = df.sub(df.mean(1l),
In [45]: xs_stand.std(1l)

Oout [45]:

a 1

b 1

c 1

d 1

/ df.std()

axis=0) .div(df.std (1), axis=0)

Note that methods like cumsum and cumprod preserve the location of NA values:

In [46]:
out [46]:
one
-0.870517
-1.283477
1.475788
NaN

O Q0 oo

df . cumsum ()

three two
NaN -0.179856
0.701067 0.805820
0.610556 1.238618
1.595694 0.698400

Here is a quick reference summary table of common functions. Each also takes an optional 1evel parameter which
applies only if the object has a hierarchical index.

Function Description

count Number of non-null observations
sum Sum of values

mean Mean of values

mad Mean absolute deviation
median Arithmetic median of values
min Minimum

max Maximum

abs Absolute Value

prod Product of values

std Unbiased standard deviation
var Unbiased variance

skew Unbiased skewness (3rd moment)
kurt Unbiased kurtosis (4th moment)
quantile | Sample quantile (value at %)
cumsum Cumulative sum

cumprod Cumulative product

cummax Cumulative maximum

cummin Cumulative minimum

Note that by chance some NumPy methods, like mean, std, and sum, will exclude NAs on Series input by default:

In [47]: np.mean(df[’one’])

Out[47]: 0.4919294526810159

In [48]: np.mean(df[’one’].values)

Out [48]: nan
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Series also has a method nunique which will return the number of unique non-null values:

In [49]: series = Series(randn(500))

In [50]: series[20:500] np.nan
In [51]: series[10:20] =5

In [52]: series.nunique ()
Out [52]: 11

6.4.1 Summarizing data: describe

There is a convenient describe function which computes a variety of summary statistics about a Series or the
columns of a DataFrame (excluding NAs of course):

In [53]: series = Series(randn(1000))
In [54]: series[::2] = np.nan

In [55]: series.describe()

Oout [55] :

count 500.000000
mean -0.020938
std 1.010248
min -3.281617
25% -0.687009
50% -0.056300
75% 0.657131
max 2.735593

In [56]: frame = DataFrame(randn (1000, 5), columns=['&a’, 'b’, ’'c’, 'd’, 7e’])

In [57]: frame.ix[::2] = np.nan

In [58]: frame.describe()

Out [58]:

a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean -0.048015 0.054843 0.062752 -0.063190 -0.014026
std 1.022844 1.028833 0.976080 0.970559 0.992620
min -3.033710 -3.189738 -2.950164 -2.848784 -2.558847
25% -0.704183 -0.625279 -0.54244¢6 -0.719371 -0.763581
50% -0.048535 0.064119 0.016228 -0.039262 0.018997
75% 0.613895 0.711665 0.699206 0.504007 0.629266
max 2.800058 3.211389 3.111206 3.266256 2.493795

For a non-numerical Series object, describe will give a simple summary of the number of unique values and most
frequently occurring values:

In [59]: s = Series([’a’, 'a’', 'b’, 'b", ’a’, ’'a’, np.nan, ’‘c’, ’'d’", "a’l)

In [60]: s.describe ()

Out [60]:

count 9
unique 4
top a
freq 5
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There also is a utility function, value_range which takes a DataFrame and returns a series with the mini-
mum/maximum values in the DataFrame.

6.4.2 Index of Min/Max Values

The idxmin and idxmax functions on Series and DataFrame compute the index labels with the minimum and
maximum corresponding values:

In [61]: sl = Series(randn(5))

In [62]: sl

Oout[62]:

0 0.223436
1 0.242724
2 -0.424091
3 -1.408992
4 -0.835075

In [63]: sl.idxmin(), sl.idxmax ()
out[63]: (3, 1)

In [64]: dfl = DataFrame (randn(5,3), columns=["A’,’B’,’C’1])

In [65]: dfl

Oout [65]:

A B C
0 -0.715335 -1.004579 0.415654
1 -1.534674 -0.378600 0.663463
2 0.730815 -0.886041 -0.243434
3 -0.288722 -1.069535 0.513199
4 -2.273450 0.576698 -0.972615

In [66]: dfl.idxmin (axis=0)

Oout [66] :
A 4
B 3
C 4

In [67]: dfl.idxmax (axis=1)
Oout[67]:
¢}

B W N E o
w QPO

When there are multiple rows (or columns) matching the minimum or maximum value, idxmin and idxmax return
the first matching index:

In [68]: df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A’], index=list (’edcba’))

In [69]: df3

out[69]:
A

e 2

d 1

c 1

b 3
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a NaN

In [70]: df3[’A’].idxmin ()
Out [70]: "d’

6.4.3 Value counts (histogramming)

The value_counts Series method and top-level function computes a histogram of a 1D array of values. It can also
be used as a function on regular arrays:

In [71]: data = np.random.randint (0, 7, size=50)

In [72]: data

Out [72]:

array([3, 5, 0, 5, 0, 4, 4, 1, 6, 5, 1, 6, 4, 6, 3, 5, 3, 3, 0, 4, 6, 2, 2,
3, 5, 6, 3, 6, 3, 5, 3, 4, 2, 3, 2, 1, 3, 0, 4, 3, 6, 3, 5, 0, 2, 3,
4, 0, 6, 6])

In [73]: s = Series(data)

In [74]: s.value_counts()

out[74]:
3 13
6 9
5 7
4 7
0 6
2 5
1 3

In [75]: value_counts (data)

Out [75]:
3 13
6 9
5 7
4 7
0 6
2 5
1 3

6.4.4 Discretization and quantiling

Continuous values can be discretized using the cut (bins based on values) and gcut (bins based on sample quantiles)
functions:

In [76]: arr = np.random.randn (20)
In [77]: factor = cut (arr, 4)

In [78]: factor

out[78]:
Categorical:
array ([(-1.522, -0.591], (0.34, 1.272], (-0.591, 0.34]1, (-0.591, 0.34],

(-0.591, 0.34], (-1.522, -0.591], (0.34, 1.272], (0.34, 1.272],
(-0.591, 0.34], (0.34, 1.2721, (0.34, 1.272]1, (0.34, 1.272],
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(0.34, 1.2721, (-0.591, 0.34], (-0.591, 0.34], (0.34, 1.272]1,
(-1.522, -0.591], (-2.457, -1.522]1, (-2.457, -1.522],
(-2.457, -1.522]], dtype=object)

Levels (4): Index([(-2.457, -1.522], (-1.522, -0.591], (-0.591, 0.347],

(0.34, 1.272]1]1, dtype=obiject)

In [79]: factor = cut(arr, [-5, -1, 0, 1, 51])

In [80]: factor

Oout [80] :

Categorical:

array ([ (-1, 0], (%, 5], (-1, 0], (-1, O], (-1, O], (-5, -11, (O, 117,
(0, 11, (-1, O], (O, 11, (O, 11, (O, 1], (1, 5], (-1, O], (=1, 01,
(0, 11, (=5, -11, (=5, -11, (=5, -11, (=5, =111, dtype=obiject)

Levels (4): Index([ (-5, -11, (-1, ©O1, (O, 1], (1, 511, dtype=object)

gcut computes sample quantiles. For example, we could slice up some normally distributed data into equal-size
quartiles like so:

In [81]: arr = np.random.randn (30)

In [82]: factor = gcut(arr, [0, .25, .5, .75, 11)

In [83]: factor

Out [831]:

Categorical:

array ([(0.154, 0.519], (-0.564, 0.154], [-1.306, -0.564], (0.154, 0.519],
(-0.564, 0.154], [-1.306, -0.564], (0.519, 2.147], [-1.306, -0.564],
(0.519, 2.1471, (0.154, 0.519], [-1.306, -0.564], [-1.306, -0.564],
(0.519, 2.147], (0.154, 0.519], (-0.564, 0.154], [-1.306, -0.564],
(0.154, 0.519], (0.154, 0.519], (-0.564, 0.154], [-1.306, -0.5647,
(0.519, 2.147], (0.519, 2.147]1, (0.519, 2.147], (0.519, 2.147],
[-1.306, -0.564], (0.154, 0.519], (0.519, 2.147], (-0.564, 0.154],
(-0.564, 0.154], (-0.564, 0.154]1], dtype=object)

Levels (4): Index([[-1.306, -0.564], (-0.564, 0.154], (0.154, 0.519],

(0.519, 2.147]1]1, dtype=obiject)

In [84]: value_counts (factor)

Oout [84]:

[-1.306, -0.564] 8

(0.519, 2.147] 8

(0.154, 0.519] 7

(-0.564, 0.154] 7

6.5 Function application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the apply method, which, like the
descriptive statistics methods, take an optional axis argument:

In [85]: df.apply (np.mean)

Oout [85]:

one 0.491929

three 0.531898

two 0.174600

In [86]: df.apply(np.mean, axis=1)
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Oout [86] :

a -0.525187
b 0.424595
c 1.033851
d 0.222460

In [87]: df.apply(lambda x: x.max() - x.min())
Oout [87]:

one 3.629783

three 1.075649

two 1.525895

In [88]: df.apply(np.cumsum)

Oout [88]:

one three two
a —-0.870517 NaN -0.179856
b -1.283477 0.701067 0.805820
c 1.475788 0.610556 1.238618
d NaN 1.595694 0.698400

In [89]: df.apply(np.exp)

Oout [89]:

one three two
a 0.418735 NaN 0.835390
b 0.661689 2.015903 2.679624
c 15.788238 0.913464 1.541564
d NaN 2.678181 0.582621

Depending on the return type of the function passed to apply, the result will either be of lower dimension or the same
dimension.

apply combined with some cleverness can be used to answer many questions about a data set. For example, suppose
we wanted to extract the date where the maximum value for each column occurred:

In [90]: tsdf = DataFrame (randn (1000, 3), columns=['A’, 'B’, ’'C’'],
e index=date_range ('1/1/2000’, periods=1000))

In [91]: tsdf.apply(lambda x: x.index[x.dropna() .argmax()])

Oout[91]:
A 2002-08-06 00:00:00
B 2001-02-05 00:00:00

C 2001-10-17 00:00:00

You may also pass additional arguments and keyword arguments to the apply method. For instance, consider the
following function you would like to apply:

def subtract_and_divide (x, sub, divide=1):
return (x - sub) / divide
You may then apply this function as follows:

df.apply (subtract_and_divide, args=(5,), divide=3)

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

In [92]: tsdf
Oout[92]:

A B C
2000-01-01 0.397163 -0.274735 1.330425
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2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08
2000-01-09
2000-01-10

In [93]: tsdf.

out[93]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08
2000-01-09
2000-01-10

.962257
.532658
NaN
NaN
NaN
NaN
.496078
.458635
.471860

A
.397163
.962257
.532658
.725342
.918026
.110710
.303394
.496078
.458635
.471860

-0.
-1.

-0.
-1.

.558382
.223648
NaN
NaN
NaN
NaN
134822
083705
.021949

B
274735
558382
.223648
.151954
.080260
.008566
.063128
.134822
.083705
.021949

.297888
.450402

NaN
NaN
NaN
NaN

.056432
.901762
.344832

apply (Series.interpolate)

c

.330425
.297888
.450402
.771608
.092814
.414020
.735226
.056432
.901762
.344832

Finally, apply takes an argument raw which is False by default, which converts each row or column into a Series
before applying the function. When set to True, the passed function will instead receive an ndarray object, which has
positive performance implications if you do not need the indexing functionality.

See Also:

The section on GroupBy demonstrates related, flexible functionality for grouping by some criterion, applying, and
combining the results into a Series, DataFrame, etc.

6.5.1 Applying elementwise Python functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods
applymap on DataFrame and analogously map on Series accept any Python function taking a single value and
returning a single value. For example:

In [94]: £

lambda x:

len(str(x))

In [95]: df[’one’] .map (f)

Oout [95]:
a 15
b 15
c 13
d 3

Name: one

In [96]: df.applymap (£f)

Oout [96]:
one three two
a 15 3 15
b 15 14 14
c 13 16 13
d 3 13 15
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Series.map has an additional feature which is that it can be used to easily “link” or “map” values defined by a
secondary series. This is closely related to merging/joining functionality:

In [97]: s = Series([’six’, ’'seven’, ’'six’, ’seven’, ’'six’],
el index=["a’, 'b’, 'c’, 'd", "e’l)

In [98]: t = Series({’'six’ : 6., ’'seven’ : 7.})
In [99]: s

Oout [99]:

a six

b seven

c six

d seven

e six

In [100]: s.map(t)

Out [1007:
a 6
b 7
c 6
d 7
e 6

6.6 Reindexing and altering labels

reindex is the fundamental data alignment method in pandas. It is used to implement nearly all other features
relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a
particular axis. This accomplishes several things:

* Reorders the existing data to match a new set of labels

¢ Inserts missing value (NA) markers in label locations where no data for that label existed

« If specified, fill data for missing labels using logic (highly relevant to working with time series data)
Here is a simple example:

In [101]: s = Series(randn(5), index=["a’, ’'b’, ’'c’, 'd", "e’])

In [102]: s

Oout[1027]:

a -0.296043
b -0.437766
c 0.528272
d -0.020866
e -1.700601

In [103]: s.reindex([’e’, 'b’, "£f/, 7d"])

Out [103]:

e -1.700601
b -0.437766
f NaN
d -0.020866

Here, the f label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:
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In [104]: df

Out [104]:

one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [105]: df.reindex(index=['c’, 'f’, 'b’], columns=['three’, 'two’, ’one’])
Out [1057:

three two one
c -0.090511 0.432798 2.759265
f NaN NaN NaN

b 0.701067 0.985676 -0.412959

For convenience, you may utilize the reindex_axis method, which takes the labels and a keyword axis parame-
ter.

Note that the Tndex objects containing the actual axis labels can be shared between objects. So if we have a Series
and a DataFrame, the following can be done:

In [106]: rs = s.reindex (df.index)

In [107]: rs

Out [107]:

a -0.296043
b -0.437766
c 0.528272
d -0.020866

In [108]: rs.index is df.index
Out [108]: True

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.
See Also:

Advanced indexing is an even more concise way of doing reindexing.

Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing
ninja: many operations are faster on pre-aligned data. Adding two unaligned DataFrames internally triggers a
reindexing step. For exploratory analysis you will hardly notice the difference (because reindex has been heavily
optimized), but when CPU cycles matter sprinking a few explicit reindex calls here and there can have an impact.

6.6.1 Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this
is straightforward albeit verbose, it is a common enough operation that the reindex_1ike method is available to
make this simpler:

In [109]: df

Out[109]:

one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218
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In [110]: df2
Out [110]:

one two
a —1.362447 -0.592729
b -0.904889 0.572804
c 2.267336 0.019925

In [111]: df.reindex_like (df2)
Out[1117]:
one two
a —-0.870517 -0.179856
b -0.412959 0.985676
c 2.759265 0.432798

6.6.2 Reindexing with reindex_axis

6.6.3 Aligning objects with each other with align
The align method is the fastest way to simultaneously align two objects. It supports a join argument (related to
Jjoining and merging):
* join='outer’: take the union of the indexes
* join='1left’: use the calling object’s index
* join='right’: use the passed object’s index
* join='inner’: intersect the indexes
It returns a tuple with both of the reindexed Series:

In [112]: s = Series(randn(5), index=["a’, ’'b’, ’'c’, 7d’, 'e’])
In [113]: sl = s[:4]
In [114]: s2 = s[l:]

In [115]: sl.align(s2)
Out[1157:
(a -0.361985
1.287984
0.188743
-2.446139
NaN,

® O Q O

1.287984

0.188743
-2.446139
-0.478270)

O QO Q0 O

In [116]: sl.align(s2, join=’inner’)
Out[l1l6]:

(b 1.287984

c 0.188743

d -2.446139,

b 1.287984

c 0.188743

d -2.446139)
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In [117]: sl.align(s2, join=’"left’)

Oout [117]:
(a -0.361985
b 1.287984
(¢} 0.188743
d -2.446139,
a NaN
b 1.287984
¢} 0.188743
-2.446139)

For DataFrames, the join method will be applied to both the index and the columns by default:

In [118]: df.align(df2, join=’inner’)
Out[118]:
( one two
a —-0.870517 -0.179856
b -0.412959 0.985676
c 2.759265 0.432798,
one two
-1.362447 -0.592729
b -0.904889 0.572804
c 2.267336 0.019925)

o))

You can also pass an axis option to only align on the specified axis:

In [119]: df.align(df2, join=’inner’, axis=0)
Out[119]:
( one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798,
one two
-1.362447 -0.592729
b -0.904889 0.572804
c 2.267336 0.019925)

[\})

If you pass a Series to DataFrame.align, you can choose to align both objects either on the DataFrame’s index or
columns using the axis argument:

In [120]: df.align(df2.ix[0], axis=1)

Oout[1207:

( one three two
a —-0.870517 NaN -0.179856

b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798

d NaN 0.985138 -0.540218,
one -1.362447

three NaN

two -0.592729

Name: a)

6.6.4 Filling while reindexing

reindex takes an optional parameter method which is a filling method chosen from the following table:
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Method Action
pad / ffill Fill values forward
bfill / backfill | Fill values backward

Other fill methods could be added, of course, but these are the two most commonly used for time series data. In a way
they only make sense for time series or otherwise ordered data, but you may have an application on non-time series
data where this sort of “interpolation” logic is the correct thing to do. More sophisticated interpolation of missing
values would be an obvious extension.

We illustrate these fill methods on a simple TimeSeries:

In [121]: rng = date_range(’1/3/2000", periods=8)
In [122]: ts = Series(randn(8), index=rng)
In [123]: ts2 = ts[[0, 3, 6]]

In [124]: ts

Out[124]:

2000-01-03 -0.973722
2000-01-04 -0.743799
2000-01-05 -0.514520
2000-01-06 1.202940
2000-01-07 2.073680
2000-01-08 -1.218284
2000-01-09 1.494972
2000-01-10 0.230865
Freqgq: D

In [125]: ts2

Out[125]:

2000-01-03 -0.973722
2000-01-06 1.202940
2000-01-09 1.494972

In [126]: ts2.reindex (ts.index)

Out[1l26]:

2000-01-03 -0.973722
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 1.202940
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 1.494972
2000-01-10 NaN
Freqg: D

In [127]: ts2.reindex(ts.index, method=’ffill’")

Out [127]:

2000-01-03 -0.973722
2000-01-04 -0.973722
2000-01-05 -0.973722
2000-01-06 1.202940
2000-01-07 1.202940
2000-01-08 1.202940
2000-01-09 1.494972
2000-01-10 1.494972
Freq: D
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In [128]: ts2.reindex(ts.index, method="bfill’")

Out[128]:

2000-01-03 -0.973722
2000-01-04 1.202940
2000-01-05 1.202940
2000-01-06 1.202940
2000-01-07 1.494972
2000-01-08 1.494972
2000-01-09 1.494972
2000-01-10 NaN
Freq: D

Note the same result could have been achieved using fillna:

In [129]: ts2.reindex(ts.index) .fillna (method="ffill")

Oout[129]:

2000-01-03 -0.973722
2000-01-04 -0.973722
2000-01-05 -0.973722
2000-01-06 1.202940
2000-01-07 1.202940
2000-01-08 1.202940
2000-01-09 1.494972
2000-01-10 1.494972
Freg: D

Note these methods generally assume that the indexes are sorted. They may be modified in the future to be a bit more
flexible but as time series data is ordered most of the time anyway, this has not been a major priority.

6.6.5 Dropping labels from an axis

A method closely related to reindex is the drop function. It removes a set of labels from an axis:

In [130]: df

Out[1307]:

one three two
a —-0.870517 NaN -0.179856
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
d NaN 0.985138 -0.540218

In [131]: df.drop([’a’, "d"], axis=0)
Out [131]:
one three two
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798

In [132]: df.drop([’one’], axis=1)
Oout[132]:
three two
a NaN -0.179856
b 0.701067 0.985676
c -0.090511 0.432798
d 0.985138 -0.540218

Note that the following also works, but is a bit less obvious / clean:
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In [133]: df.reindex(df.index - ["a’, ’'d’])
Out [133]:
one three two
b -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798

6.6.6 Renaming / mapping labels

The rename method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [134]: s

Out [134]:

a -0.361985
b 1.287984
c 0.188743
d -2.446139
e -0.478270

In [135]: s.rename (str.upper)

Out[135]:

A -0.361985
B 1.287984
C 0.188743
D -2.446139
E -0.478270

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique
values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:

In [136]: df.rename(columns={’one’ : 'foo’, ’'two’ : ’'bar’},
et index={"a’ : ’"apple’, ’'b’ : ’'banana’, ’'d’ : ’"durian’})
Out[136]:
foo three bar
apple -0.870517 NaN -0.179856
banana -0.412959 0.701067 0.985676
c 2.759265 -0.090511 0.432798
durian NaN 0.985138 -0.540218

The rename method also provides an inplace named parameter that is by default False and copies the underlying
data. Pass inplace=True to rename the data in place. The Panel class has a related rename_axis class which
can rename any of its three axes.

6.7 lteration

Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention
of iterating over the “keys” of the objects. In short:

¢ Series: values
e DataFrame: column labels
¢ Panel: item labels

Thus, for example:
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In [137]:

for col in df:
print col

6.7.1 iteritems

Consistent with the dict-like interface, iteritems iterates through key-value pairs:

* Series: (index, scalar value) pairs

e DataFrame: (column, Series) pairs

e Panel: (item, DataFrame) pairs

For example:

2000-01-01 0.637062
2000-01-02 0.563153
2000-01-03 -0.478302
2000-01-04 1.831759
2000-01-05 -0.690172

Item2

2000-01-01 -1.655212 -0.344358 1.140400 -0.
2000-01-02 -0.246238 -0.631267 1.018045 -1.
2000-01-03 -0.173927 -0.877534 -1.036643 -0.
2000-01-04 0.867100 1.597059 -0.190735 0.
2000-01-05 0.324506 -0.185006 -1.075707 O.

for item, frame in wp.iteritems():

print item
print frame

A B C
0.235990 0.588114 O.
0.259248 -0.023878 0.
0.158210 -0.627965 -0.
0.302368 -0.112629 1.
0.210464 -1.226446 O.

A B C

6.7.2 iterrows

D
405520
645297
717968
112259
414738

D
225359
068059
951455
161550
819424

New in v0.7 is the ability to iterate efficiently through rows of a DataFrame. It returns an iterator yielding each index
value along with a Series containing the data in each row:

In [139]: for row_index, row in df2.iterrows/() :
...... print ' 2¢s\n¢s’ ¢ (row_index, row)

a

one -1.362447

two -0.592729

Name: a

b

one -0.904889

two 0.572804

Name: b

c

one 2.267336
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two 0.019925
Name: c

For instance, a contrived way to transpose the dataframe would be:

In [140]: df2 = DataFrame({’'x’": [1, 2, 31, 'vy’': [4, 5, 61})

In [141]: print df2
X Yy

0 1 4

1 2 5

2 3 6

In [142]: print df2.T

o 1 2
x 1 2 3
y 4 5 6

In [143]: df2_t DataFrame (dict ( (1dx,values) for idx, values in df2.iterrows()))

In [144]: print df2_t

o 1 2
x 1 2 3
y 4 5 6

6.7.3 itertuples

This method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will
be the row’s corresponding index value, while the remaining values are the row values proper.

For instance,

In [145]: for r in df2.itertuples(): print r
(0, 1, 4)
(1, 2, 5)
(2, 3, 6)

6.8 Vectorized string methods

Series is equipped (as of pandas 0.8.1) with a set of string processing methods that make it easy to operate on each
element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These
are accessed via the Series’s st r attribute and generally have names matching the equivalent (scalar) build-in string
methods:

In [146]: s = Series([’A’, 'B’, ’C’, ’"Raba’, ’'Baca’, np.nan, ’'CABA’, ’'dog’, ’'cat’])

In [147]: s.str.lower()

Oout[147]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
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7 dog
cat

o]

In [148]: s.str.upper/()
Out[148]:
A
B
C
AABA
BACA
NaN
CABA
DOG
CAT

O J o U W N O

In [149]: s.str.len()

Out [149]:
0 1
1 1
2 1
3 4
4 4
5 NaN
6 4
7 3
8 3

Methods like split return a Series of lists:

In [150]: s2 = Series([’a_b c¢’, 'c_d e’, np.nan, "f_g h’])

In [151]: s2.str.split(’_")

Out [1517:

O [’a,, Vb!, VCV]
1 [ICI’ Idl, Iel]
2 NaN
3 [Vfl, ngl Vh!]

Elements in the split lists can be accessed using get or [] notation:

In [152]: s2.str.split(’_").str.get (1)

Out[152]:
0 b
1 d
2 NaN
3 g

In [153]: s2.str.split(’_’").str[1l]

Out [153]:
0 b
1 d
2 NaN
3 g

Methods like replace and £indall take regular expressions, too:

In [154]: s3 = Series([’'A’, ’'B’", 'C’, "Raba’, ’"Baca’,

rr

...... , np.nan, 'CABA’, ’'dog’, 'cat’])
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In [155]: s3
Out [155]:

A

B

C
Aaba
Baca

NaN
CABA
dog
cat

O 00 J o U WDN B O

In [156]: s3.str.replace(’".aldog’, "XX-XX ', case=False)

Out [156]:

0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5

6 NaN
7 XX—XX BA
8 XX=XX

9 XX-XX t

Methods like contains, startswith, and endswith takes an extra na arguement so missing values can be
considered True or False:

In [157]: s4 = Series([’A’, 'B’, ’'C’, "Raba’, ’Baca’, np.nan, ’'CABA’, ’'dog’, ’'cat’])

In [158]: s4.str.contains(’A’, na=False)
Oout[158]:
True
False
False
True
False
NaN
True
False
False

QO J oy U1 W NP O
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Method Description

cat Concatenate strings

split Split strings on delimiter

get Index into each element (retrieve i-th element)

join Join strings in each element of the Series with passed separator
contains Return boolean array if each string contains pattern/regex
replace Replace occurrences of pattern/regex with some other string
repeat Duplicate values (s .str.repeat (3) equivalentto x * 3)
pad Add whitespace to left, right, or both sides of strings

center Equivalent to pad (side='"both’)

slice Slice each string in the Series

slice_replace

Replace slice in each string with passed value

count

Count occurrences of pattern

startswith Equivalent to str.startswith (pat) for each element
endswidth Equivalent to str.endswith (pat) for each element
findall Compute list of all occurrences of pattern/regex for each string
match Call re .match on each element, returning matched groups as list
len Compute string lengths

strip Equivalentto str.strip

rstrip Equivalentto str.rstrip

lstrip Equivalentto str.lstrip

lower Equivalent to str. lower

upper Equivalent to str.upper

6.9 Sorting by index and value

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.
The primary method for sorting axis labels (indexes) across data structures is the sort_index method.

In [159]: unsorted_df = df.reindex (index=["a’, ’'d’, 'c’, "b’],

columns=["three’, ’"two’, ’'one’])

In [160]: unsorted_df.sort_index ()

Out[1607:
three

two one

a NaN -0.179856 —-0.870517
b 0.701067 0.985676 —-0.412959
c —-0.090511 0.432798 2.759265
d 0.985138 -0.540218 NaN

In [161]: unsorted_df.sort_index (ascending=False)

Out[lel]:

three two one
d 0.985138 -0.540218 NaN
c -0.090511 0.432798 2.759265
b 0.701067 0.985676 —-0.412959
a NaN -0.179856 -0.870517

In [162]: unsorted_df.sort_index (axis=1)

out [162] :
one three two

a -0.870517 NaN -0.179856

d NaN 0.985138 -0.540218
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c 2.759265 -0.090511 0.432798
b -0.412959 0.701067 0.985676

DataFrame.sort_index can accept an optional by argument for axis=0 which will use an arbitrary vector or
a column name of the DataFrame to determine the sort order:

In [163]: df.sort_index(by="two’)

Out[163]:

one three two
d NaN 0.985138 -0.540218
a —-0.870517 NaN -0.179856
c 2.759265 -0.090511 0.432798
b -0.412959 0.701067 0.985676

The by argument can take a list of column names, e.g.:

In [164]: df = DataFrame({’one’:[2,1,1,1],"two” :[1,3,2,4]1, three’ :[5,4,3,21})

In [165]: df[[’one’, "two’, 'three’]].sort_index(by=[’one’,’ two’])

Out[165]:

one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5

Series has the method order (analogous to R’s order function) which sorts by value, with special treatment of NA
values via the na_last argument:

In [166]: s[2] = np.nan

In [167]: s.order()
Oout[167]:
A
Aaba
B
Baca
CABA
cat
dog
NaN
NaN

GO N 300 o P Wwo

In [168]: s.order (na_last=False)
Out[1l68]:
NaN
NaN
A
Aaba
B
Baca
CABA
cat
dog

~J 0O o WO uUN

Some other sorting notes / nuances:

* Series.sort sorts a Series by value in-place. This is to provide compatibility with NumPy methods which
expect the ndarray.sort behavior.
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* DataFrame. sort takes a column argument instead of by. This method will likely be deprecated in a future
release in favor of just using sort_index.

6.10 Copying, type casting

The copy method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable)
and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of
ways to alter a DataFrame in-place:

* Inserting, deleting, or modifying a column
* Assigning to the index or columns attributes
» For homogeneous data, directly modifying the values via the values attribute or advanced indexing

To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects,
leaving the original object untouched. If data is modified, it is because you did so explicitly.

Data can be explicitly cast to a NumPy dtype by using the ast ype method or alternately passing the dt ype keyword
argument to the object constructor.

In [169]: df = DataFrame (np.arange(12) .reshape((4, 3)))

In [170]: df[0].dtype
Out [170]: dtype(’int64’)

In [171]: df.astype(float) [0].dtype
Out [171]: dtype (' float64d’)

In [172]: df = DataFrame (np.arange (12) .reshape((4, 3)), dtype=float)

In [173]: df[0].dtype
Out[173]: dtype (' float64’)

6.10.1 Inferring better types for object columns

The convert_objects DataFrame method will attempt to convert dt ype=object columns to a better NumPy
dtype. Occasionally (after transposing multiple times, for example), a mixed-type DataFrame will end up with every-
thing as dt ype=ob ject. This method attempts to fix that:

In [174]: df = DataFrame (randn (6, 3), columns=['a’, 'b’, ’'c’])
In [175]: df[’d’] = 'foo’

In [176]: df

Out[1l76]:

a b c d
0 1.571052 -0.374771 -0.903639 foo
1 -0.303380 0.823377 -1.180293 foo
2 0.614131 -0.135688 0.166819 foo
3 0.143633 0.245816 —-1.239073 foo
4 -0.202816 -2.011053 -0.858282 foo
5 1.197840 -1.321993 1.550186 foo

In [177]: df df.T.T
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In [178]: df
Out [178]:

a object
b object
c object
d object
In [179]:

In [180]:
Out [180]:

a floato4d
b float64
c floato64d
d object

.dtypes

converted.dtypes

converted = df.convert_objects ()

6.11 Pickling and serialization

All pandas objects are equipped with save methods which use Python’s cPickle module to save data structures to
disk using the pickle format.

In [181]: df
Out [181]:

0
1
2
3
4
5

a
1.571052
.3033799
.6141313
.1436326
.2028159
1.19784

In [182]: df

b
-0.3747709
0.8233775
-0.1356879
0.2458164
-2.011053
-1.321993

c
-0.9036394
-1.180293
0.1668194
-1.239073
-0.8582823
1.550186

.save (' foo.pickle’)

foo
foo
foo
foo
foo
foo

The load function in the pandas namespace can be used to load any pickled pandas object (or any other pickled
object) from file:

In [183]:

Oout[183]:

0
1
2
3
4
5

a
1.571052
.3033799
.6141313
.1436326
.2028159
1.19784

b
-0.3747709
0.8233775
-0.1356879
0.2458164
-2.011053
-1.321993

load(’ foo.pickle’)

c
-0.9036394
-1.180293
0.1668194
-1.239073
-0.8582823
1.550186

d
foo
foo
foo
foo
foo
foo

There is also a save function which takes any object as its first argument:

In [184]:
In [185]:
Out [185]:

a
0 1.571052

1 -0.3033799
0.6141313 -0.1356879

2

save (df,

b
-0.3747709
0.8233775

"foo.pickle’)

load(’ foo.pickle’)

c
-0.9036394
-1.180293
0.1668194

d
foo
foo
foo
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3 0.1436326 0.2458164 -1.239073 foo
4 -0.2028159 -2.011053 -0.8582823 foo
5 1.19784 -1.321993 1.550186 foo

6.12 Console Output Formatting

Use the set_eng_float_format function in the pandas.core.common module to alter the floating-point
formatting of pandas objects to produce a particular format.

For instance:

In [186]: set_eng_float_format (accuracy=3, use_eng_prefix=True)

In [187]: df[’a’]l/1.e3

out[187]:

0 1.571m
1 -303.380u
2 614.131u
3 143.633u
4 -202.816u
5 1.198m
Name: a

In [188]: df[’a’]l/l.e6

Oout[188]:

0 1.571u
1 -303.380n
2 614.131n
3 143.633n
4 -202.816n
5 1.198u
Name: a

The set_printoptions function has a number of options for controlling how floating point numbers are formatted
(using hte precision argument) in the console and . The max_rows and max_columns control how many rows
and columns of DataFrame objects are shown by default. If max_columns is set to O (the default, in fact), the library
will attempt to fit the DataFrame’s string representation into the current terminal width, and defaulting to the summary
view otherwise.
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CHAPTER
SEVEN

INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:

* Identifies data (i.e. provides metadata) using known indicators, important for for analysis, visualization, and
interactive console display

* Enables automatic and explicit data alignment
* Allows intuitive getting and setting of subsets of the data set

In this section / chapter, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets
of pandas objects. The primary focus will be on Series and DataFrame as they have received more development
attention in this area. Expect more work to be invested higher-dimensional data structures (including Panel) in the
future, especially in label-based advanced indexing.

7.1 Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a.
__getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional
slices. Thus,

* Series: series[label] returns a scalar value

e DataFrame: frame [colname] returns a Series corresponding to the passed column name

* Panel: panel [itemname] returns a DataFrame corresponding to the passed item name
Here we construct a simple time series data set to use for illustrating the indexing functionality:

In [550]: dates = np.asarray (date_range(’1/1/2000’, periods=8))
In [551]: df = DataFrame(randn (8, 4), index=dates, columns=['A’, 'B’, ’'C’, 'D’'1])

In [552]: df
Oout [5527]:

A B C D
2000-01-01 0.469112 -0.282863 —-1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 —-1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 —-1.344312 0.844885
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In [553]: panel = Panel({’one’ : df, "two’ : df - df.mean()})

In [554]: panel

Out [5547]:

<class ’pandas.core.panel.Panel’>

Dimensions: 2 (items) x 8 (major) x 4 (minor)

Items: one to two

Major axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor axis: A to D

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using [ ]:

In [555]: s = df[’A’]

In [556]: s[dates[5]]
Out [556]: -0.67368970808837059

In [557]: panel[’two’]
Oout [557] :

A B C D
2000-01-01 0.409571 0.113086 -0.610826 —-0.936507
2000-01-02 1.152571 0.222735 1.017442 -0.845111
2000-01-03 -0.921390 -1.708620 0.403304 1.270929
2000-01-04 0.662014 -0.310822 -0.141342 0.470985
2000-01-05 -0.484513 0.962970 1.174465 -0.888276
2000-01-06 -0.733231 0.509598 -0.580194 0.724113
2000-01-07 0.345164 0.972995 -0.816769 -0.840143
2000-01-08 -0.430188 -0.761943 -0.446079 1.044010

7.1.1 Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of
overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to
use the get_value method, which is implemented on all of the data structures:

In [558]: s.get_value (dates[5])
Out [558]: -0.67368970808837059

In [559]: df.get_value(dates[5], ’"A")
Out [559]: -0.67368970808837059

There is an analogous set_value method which has the additional capability of enlarging an object. This method
always returns a reference to the object it modified, which in the fast of enlargement, will be a new object:

In [560]: df.set_value(dates[5], 'E’, 7)
Oout [560] :

A B C D B
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN
2000-01-04 0.721555 -0.706771 -1.039575 0.271860 NaN
2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN
2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7
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2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN

7.1.2 Additional Column Access

You may access a column on a dataframe directly as an attribute:

In [561]: df.A

Out [561]:

2000-01-01 0.469112
2000-01-02 1.212112
2000-01-03 -0.861849
2000-01-04 0.721555
2000-01-05 -0.424972
2000-01-06 -0.673690
2000-01-07 0.404705
2000-01-08 -0.370647
Name: A

If you are using the IPython environment, you may also use tab-completion to see the accessible columns of a
DataFrame.

You can pass a list of columns to [] to select columns in that order: If a column is not contained in the DataFrame,
an exception will be raised. Multiple columns can also be set in this manner:

In [562]: df
Out [562] :

A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

In [563]: df[[’'B’, "A’]] = df[[’'A", "B']]

In [564]: df
Oout [564]:

A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-06 0.113648 -0.673690 —-1.478427 0.524988
2000-01-07 0.577046 0.404705 -1.715002 -1.039268
2000-01-08 -1.157892 -0.370647 —-1.344312 0.844885

You may find this useful for applying a transform (in-place) to a subset of the columns.

7.1.3 Data slices on other axes

It’s certainly possible to retrieve data slices along the other axes of a DataFrame or Panel. We tend to refer to these
slices as cross-sections. DataFrame has the xs function for retrieving rows as Series and Panel has the analogous
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major_xs andminor_xs functions for retrieving slices as DataFrames for a givenma jor_axisorminor_axis
label, respectively.

In [565]: date = dates[5]

In [566]: df.xs (date)

Out [566] :

A 0.113648
B -0.673690
C -1.478427
D 0.524988

Name: 2000-01-06 00:00:00

In [567]: panel.major_xs (date)
Out [567] :
one two
A -0.673690 -0.733231
B 0.113648 0.509598
C —-1.478427 -0.580194
D 0.524988 0.724113

In [568]: panel.minor_xs('A’)
Out [568] :

one two
2000-01-01 0.469112 0.409571
2000-01-02 1.212112 1.152571
2000-01-03 -0.861849 -0.921390
2000-01-04 0.721555 0.662014
2000-01-05 -0.424972 -0.484513
2000-01-06 -0.673690 -0.733231
2000-01-07 0.404705 0.345164
2000-01-08 -0.370647 -0.430188

7.1.4 Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the Advanced indexing section
detailing the . ix method. For now, we explain the semantics of slicing using the [] operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

In [569]: s[:5]

Oout [569]:

2000-01-01 -0.282863
2000-01-02 -0.173215
2000-01-03 -2.104569
2000-01-04 -0.706771
2000-01-05 0.567020
Name: A

In [570]: s[::2]

Out [570] :

2000-01-01 -0.282863
2000-01-03 -2.104569
2000-01-05 0.567020
2000-01-07 0.577046
Name: A

In [571]: s[::-1]
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Oout [5717:

2000-01-08 -1.157892
2000-01-07 0.577046
2000-01-06 0.113648
2000-01-05 0.567020
2000-01-04 -0.706771
2000-01-03 -2.104569
2000-01-02 -0.173215
2000-01-01 -0.282863
Name: A

Note that setting works as well:

In [572]: s2 = s.copy/()
In [573]: s2[:5] =0

In [574]: s2

Oout [574]:

2000-01-01 0.000000
2000-01-02 0.000000
2000-01-03 0.000000
2000-01-04 0.000000
2000-01-05 0.000000
2000-01-06 0.113648
2000-01-07 0.577046
2000-01-08 -1.157892
Name: A

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a
common operation.

In [575]: df[:3]
Oout [575]:

A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 .212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804

=

In [576]: df[::-1]
Out [576]:

A B C D
2000-01-08 -1.157892 -0.370647 -1.344312 0.844885
2000-01-07 0.577046 0.404705 -1.715002 -1.039268
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632

7.1.5 Boolean indexing

Another common operation is the use of boolean vectors to filter the data.

Using a boolean vector to index a Series works exactly as in a numpy ndarray:
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In [577]: s[s > 0]

Out [577]:

2000-01-05 0.567020
2000-01-06 0.113648
2000-01-07 0.577046
Name: A

In [578]: s[(s < 0) & (s > -0.5)]

out [5787]:

2000-01-01 -0.282863
2000-01-02 -0.173215
Name: A

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example,
something derived from one of the columns of the DataFrame):

In [579]: df[df[’A"] > 0]
Out [579] :

A B C D
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
2000-01-07 0.577046 0.404705 -1.715002 -1.039268

Consider the i s1in method of Series, which returns a boolean vector that is true wherever the Series elements exist in
the passed list. This allows you to select rows where one or more columns have values you want:

In [580]: df2 = DataFrame({’a’ : [’"one’, 'one’, 'two’, ’'three’, ’"two’, 'one’, ’'six’],
. !bl . [,X’ !yl !yl 14
...... : , , ,
et "¢’ ¢ randn(7)})

’ I, ’

'y tyt, b,

x" 1,

In [581]: df2[df2[’a’].isin([’one’, "two’])]

Out [581]:

a b c
0 one x 1.075770
1 one vy -0.109050
2 two vy 1.643563
4 two vy 0.357021
5 one x -0.674600

List comprehensions and map method of Series can also be used to produce more complex criteria:

# only want ’‘two’ or ’three’
In [582]: criterion = df2[’a’].map(lambda x: x.startswith('t’))

In [583]: df2[criterion]

Oout [5837]:

a b c
2 two y 1.643563
3 three x -1.469388
4 two y 0.357021

# equivalent but slower
In [584]: df2[[x.startswith(’'t’) for x in df2[’a’]]]

Out [584]:

a b ¢}
2 two y 1.643563
3 three x -1.469388
4 two y 0.357021
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# Multiple criteria

In [585]:
Out [585]:
a

3 three

Note, with th

df2[criterion &

(df2["b" ]

b c
x —-1.469388

e advanced indexing ix method, you may select along more than one axis using boolean vectors com-

bined with other indexing expressions.

7.1.6 Indexing a DataFrame with a boolean DataFrame

You may wish to set values on a DataFrame based on some boolean criteria derived from itself or another DataFrame
or set of DataFrames. This can be done intuitively like so:

In [586]:

In [587]:
Oout [587]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

In [588]:

In [589]:
Out [589]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05
2000-01-06
2000-01-07
2000-01-08

df2 = df.copy ()
df2 < 0
A B C D
True False True True
True False False True
True True True False
True False True False
False True False True
False True True False
False False True True
True True True False
df2[df2 < 0] =0
df2
A B C D
0.000000 0.469112 0.000000 0.000000
0.000000 1.212112 0.119209 0.000000
0.000000 0.000000 0.000000 1.071804
0.000000 0.721555 0.000000 0.271860
0.567020 0.000000 0.276232 0.000000
0.113648 0.000000 0.000000 0.524988
0.577046 0.404705 0.000000 0.000000
0.000000 0.000000 0.000000 0.844885

Note that such an operation requires that the boolean DataFrame is indexed exactly the same.

7.1.7 Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the t ake method that retrieves ele-
ments along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index

positions.

In [590]: index = Index (randint (0, 1000, 10))

In [591]: index

Out [591]: Inté64Index([969, 412, 496, 195, 288, 101, 881, 900, 732, 658])

In [592]: positions = [0, 9, 3]
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In [593]: index[positions]

Out [593]: Int64Index([969, 658, 195])
In [594]: index.take(positions)
Out[594]: Int64Index([969, 658, 195])
In [595]: ser = Series(randn(10))

In [596]: ser.ix[positions]

Out [596] :

0 -0.968914

9 -1.131345

3 1.247642

In [597]: ser.take(positions)

Oout [597] :

0 -0.968914

9 -1.131345

3 1.247642

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

In [598]: frm = DataFrame (randn (5,
In [599]: frm.take([1, 4, 31)
Oout [599]:
0 1 2
1 -0.932132 1.956030 0.017587
4 -0.077118 -0.408530 -0.862495
3 -1.143704 0.215897 1.193555
In [600]: frm.take ([0, 2], axis=1)
Oout [6007 :
0 2
0 -0.089329 -0.945867
1 -0.932132 0.017587
2 -0.016692 0.254161
3 -1.143704 1.193555
4 -0.077118 -0.862495

3))

It is important to note that the t ake method on pandas objects are not intended to work on boolean indices and may

return unexpected results.

In [601]: arr = randn(10)

In [602]: arr.take([False, False, True, True])
Out[602]: array ([ 1.3461, 1.3461, 1.5118, 1.5118])
In [603]: arr[[0, 111

Out [603]: array ([ 1.3461, 1.511817)

In [604]: ser = Series(randn(10))

In [605]: ser.take([False, False, True, Truel)

Out [6057]:

0 -0.105381

0 -0.105381

1 -0.532532
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1 -0.532532

In [606]: ser.ix[[0, 1]]

Out[606]:
0 -0.105381
1 -0.532532

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer

performance that is a good deal faster than fancy indexing.

7.1.8 Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated
and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is

duplicated.

drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a take_last param-

eter that indicates the last observed row should be taken instead.

In [607]: df2 = DataFrame({’a’ : [’"one’, 'one’, "two’, ’'three’, ’"two’,
‘.‘.': Vbl : [,X’, ’y,, lyI’ ,X,, lyl, ,X,, ,X,],
et "¢’ : np.random.randn(7)})

In [608]: df2.duplicated(['a’,’'b"])
Oout[608]:

False

False

False

False

True

True

False

o U1 W DN O

In [609]: df2.drop_duplicates([’a’,’'b’])

Out [609] :

a b c
0 one x —-0.339355
1 one vy 0.593616
2 two y 0.884345
3 three x 1.591431
6 six x 0.435589

In [610]: df2.drop_duplicates([’a’,’b’], take_last=True)
Out [610]:

"one’, ’'six’],

a b ¢}
1 one vy 0.593616
3 three x 1.591431
4 two y 0.141809
5 one x 0.220390
6 six x 0.435589
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7.1.9 Dictionary-like get method

Each of Series, DataFrame, and Panel have a get method which can return a default value.

In [611]: s = Series([1,2,3], index=["a’,’'b’,’c’])

In [612]: s.get('a’) # equivalent to s[’a’]
Oout[612]: 1

In [613]: s.get('x’, default=-1)
Out[613]: -1

7.2 Advanced indexing with labels

We have avoided excessively overloading the [] / __getitem___ operator to keep the basic functionality of the
pandas objects straightforward and simple. However, there are often times when you may wish get a subset (or
analogously set a subset) of the data in a way that is not straightforward using the combination of reindex and [].
Complicated setting operations are actually quite difficult because reindex usually returns a copy.

By advanced indexing we are referring to a special . ix attribute on pandas objects which enable you to do get-
ting/setting operations on a DataFrame, for example, with matrix/ndarray-like semantics. Thus you can combine the
following kinds of indexing:

* An integer or single label, e.g. 5 or ' a’
e Alistorarray of labels ["a’, "b’, ’c’] orintegers [4, 3, 0]
* Asslice object withints 1: 7 or labels " a’ : 7 £”
* A boolean array
We’ll illustrate all of these methods. First, note that this provides a concise way of reindexing on multiple axes at once:

In [614]: subindex = dates[[3,4,5]]

In [615]: df.reindex (index=subindex, columns=['C’, ’'B’])
Out[615]:
C B
2000-01-04 -1.039575 0.721555
2000-01-05 0.276232 -0.424972
2000-01-06 -1.478427 -0.673690

In [616]: df.ix[subindex, [’'C’, "B’"]]
Out[616]:

C B
2000-01-04 -1.039575 0.721555
2000-01-05 0.276232 -0.424972
2000-01-06 -1.478427 -0.673690

Assignment / setting values is possible when using ix:

In [617]: df2 = df.copy()
In [618]: df2.ix[subindex, ['C’, 'B’]] =0

In [619]: df2
Out[619]:

A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
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2000-01-02 -0.173215
2000-01-03 -2.104569 -
2000-01-04 -0.706771
2000-01-05 0.567020
2000-01-06 0.113648
2000-01-07 0.577046
2000-01-08 -1.157892 -

.212112 0.119209 -1.044236
.861849 -0.494929 1.071804
.000000 0.000000 0.271860
.000000 0.000000 -1.087401
.000000 0.000000 0.524988
.404705 -1.715002 -1.039268
.370647 -1.344312 0.844885

O O O O O O

Indexing with an array of integers can also be done:

In [620]: df.ix[[4,3,11]1]
out[6207]:

A B C D
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-02 -0.173215 1.212112 0.119209 -1.044236

In [621]: df.ix[dates[[4,3,111]
Out[621]:

A B C D
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-02 -0.173215 1.212112 0.119209 -1.044236

Slicing has standard Python semantics for integer slices:

In [622]: df.ix[1:7, :2]
out [622]:

A B
2000-01-02 -0.173215 1.212112

2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705

Slicing with labels is semantically slightly different because the slice start and stop are inclusive in the label-based
case:

In [623]: datel, date2 = dates[[2, 4]]

In [624]: print datel, date2
1970-01-11 232:00:00 1970-01-11 24:00:00

In [625]: df.ix[datel:date?2]

Out [625]:

Empty DataFrame

Columns: array([A, B, C, D], dtype=object)

Index: <class ’'pandas.tseries.index.DatetimeIndex’>
Length: 0, Freq: None, Timezone: None

In [626]: df[’A’].ix[datel:date?2]
Out [626]: TimeSeries ([], dtype=float64)

Getting and setting rows in a DataFrame, especially by their location, is much easier:

In [627]: df2 = df[:5].copy ()

In [628]: df2.ix[3]
out[628]:
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A -0.706
B 0.721
C -1.039
D 0.271
Name :

In [629]:

In [630]:
Out[6307]:

2000-01-01
2000-01-02
2000-01-03
2000-01-04
2000-01-05

771
555
575
860

df2.

df2

ix[3] =

A

.282863
.173215
.104569
.000000
.567020

2000-01-04 00:00:00

np.arange (len (df2.columns))

B
0.469112
1.212112 0.

-0.861849
1.000000 2.
-0.424972 0.

-1.

-0.

c
509059
119209
494929
000000
276232

-1.
-1.
1
3.
-1.

D
135632
044236

.071804

000000
087401

Column or row selection can be combined as you would expect with arrays of labels or even boolean vectors:

In [631]:
Out[631]:
2000-01-05
2000-01-06
2000-01-07
Name: B

In [632]:
Oout[632]:

In [633]:
Out [633]:

df .ix[df[’A

df.ix[datel:date2,
TimeSeries ([],

df.ix[datel,

0.40470

r] >O, 'B’J

-0.424972
-0.673690

5

IBI]

rBr]

-0.86184896334779992

dtype=float64)

Slicing with labels is closely related to the t runcate method which does precisely . ix [start:stop] butreturns
a copy (for legacy reasons).

7.2.1 Returning a view versus a copy

The rules about when a view on the data is returned are entirely dependent on NumPy. Whenever an array of labels or
a boolean vector are involved in the indexing operation, the result will be a copy. With single label / scalar indexing

and slicing, e.g. df .ix[3:6] ordf.ix[:,

7.2.2 The select method

"A’ 1, aview will be returned.

Another way to extract slices from an object is with the select method of Series, DataFrame, and Panel. This
method should be used only when there is no more direct way. select takes a function which operates on labels
along axis and returns a boolean. For instance:

In [634]: df.select (lambda x: x == 'A’, axis=1)
out[634]:
A
2000-01-01 -0.282863
2000-01-02 -0.173215
2000-01-03 -2.104569
2000-01-04 -0.706771
2000-01-05 0.567020
2000-01-06 0.113648
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2000-01-07 0.577046
2000-01-08 -1.157892

7.2.3 The lookup method
Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the Lookup
method allows for this and returns a numpy array. For instance,

In [635]: dflookup = DataFrame (np.random.rand(20,4), columns = ['A’,’'B’,’C’,’D'])

In [636]: dflookup.lookup(xrange(0,10,2), [’B’,’'C’,’A","B",’'D"])
Out[636]: array([ 0.0227, 0.4199, 0.529 , 0.9674, 0.5357])

7.2.4 Advanced indexing with integer labels

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and
among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter
more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the
standard tools like . ix. The following code will generate exceptions:

s = Series (range(5))

s[-1]

df = DataFrame (np.random.randn (5, 4))
df

df .ix[-2:]

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the
API change was made to stop “falling back” on position-based indexing).

7.2.5 Setting values in mixed-type DataFrame

Setting values on a mixed-type DataFrame or Panel is supported when using scalar values, though setting arbitrary
vectors is not yet supported:

In [637]: df2 = df[:4]
In [638]: df2[’'foo’] = "bar’

In [639]: print df2

A B C D foo
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632 bar
2000-01-02 -0.173215 1.212112 0.119209 -1.044236 Dbar
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804 bar
2000-01-04 -0.706771 0.721555 -1.039575 0.271860 bar

In [640]: df2.ix[2] = np.nan

In [641l]: print df2

A B C D foo
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632 bar
2000-01-02 -0.173215 1.212112 0.119209 -1.044236 Dbar
2000-01-03 NaN NaN NaN NaN NaN
2000-01-04 -0.706771 0.721555 -1.039575 0.271860 bar
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In [642]: print df2.dtypes

A floato64
B floato64
C floato4
D floato64d
foo object

7.3 Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered set in addition to providing the
support infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create one directly is
to pass a list or other sequence to Index:

In [643]: index = Index(['e’, 'd’, 7a’", '"b’"])
In [644]: index

Out[644]: Index([e, d, a, bl, dtype=object)
In [645]: 'd’ in index

Out [645]: True

You can also pass a name to be stored in the index:

In [646]

In [647]
out [647]

: index Index(['e", "d’, "a’, 'b’], name='something’)

: index.name
: "something’

Starting with pandas 0.5, the name, if set, will be shown in the console display:

In [648]: index = Index(range(5), name=’'rows’)

In [649]: columns = Index([’A’, 'B’, ’'C’], name='cols’)
In [650]: df = DataFrame (np.random.randn (5, 3), index=index, columns=columns)
In [651]: df

Out[651]:

cols A B C

rows

0 0.192451 0.629675 -1.425966

1 1.857704 -1.193545 0.677510

2 -0.153931 0.520091 -1.475051

3 0.722570 -0.322646 -1.601631

4 0.778033 -0.289342 0.233141

In [652]: df[’A’]

Out [652]:

rows

0 0.192451

1 1.857704

2 -0.153931

3 0.722570

4 0.778033

Name: A
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7.3.1 Set operations on Index objects
The three main operations are union (|), intersection (&),and diff (-). These can be directly called
as instance methods or used via overloaded operators:

In [653]: a = Index(['c’, 'b", "a’l)
In [654]: b = Index(['c’, ’'e’, 7d'])

In [655]: a.union (b)
Out [655]: Index([a, b, c, d, e], dtype=object)

In [656]: a | b
Out [656]: Index([a, b, c, d, e], dtype=object)

In [657]: a & b
Out [657]: Index([c], dtype=object)

In [658]: a — b
Out [658]: Index([a, b], dtype=object)

7.3.2 isin method of Index objects

One additional operation is the isin method that works analogously to the Series. isin method found Zere.

7.4 Hierarchical indexing (Multilndex)

Hierarchical indexing (also referred to as “multi-level” indexing) is brand new in the pandas 0.4 release. It is very
exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with
higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions
in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with the all of
the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting
and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

Note: Given that hierarchical indexing is so new to the library, it is definitely “bleeding-edge” functionality but
is certainly suitable for production. But, there may inevitably be some minor API changes as more use cases are
explored and any weaknesses in the design / implementation are identified. pandas aims to be “eminently usable” so
any feedback about new functionality like this is extremely helpful.

7.4.1 Creating a Multilndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the
axis labels in pandas objects. You can think of MultiIndex an array of tuples where each tuple is unique. A
MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays) or an array of tuples
(using MultiIndex.from_tuples).

In [659]: arrays = [[’'bar’, ’'bar’, ’'baz’, ’'baz’, ’'foo’, "foo’, ’'qux’, ’'qux’],
..... : ["one’, "two’, ’'one’, 'two’, 'one’, "two’, ’'one’, "two’]]
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In [660]:

In [661]:
Out[661]:

In [662]:

In [663]:

In [664]:
Out[664]:
first sec
bar one
two
baz one
two
foo one
two
qux one
two

tuples = zip(xarrays)

tuples

index = MultiIndex.from_tuples (tuples, names=[’first’, ’'second’])
s = Series(randn(8), index=index)
s

ond
-0.223540
0.542054
-0.688585
-0.352676
-0.711411
-2.122599
1.962935
1.672027

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a Multilndex automati-

cally:
In [665]:
In [666]:
In [667]:
Oout[667]:
bar one
two
baz one
two
foo one
two

qux one
two

In [668]:

In [669]:
Out [669]:

bar one 1.
two -0.
baz one 0.
two -0.

arrays = [np.array([’'bar’, ’'bar’, ’'baz’, ’'baz’, ’'foo’, ’'foo’, ’'qux’, ’'qux’]),
np.array([’one’, ’"two’, 'one’, ’'two’, ’one’, 'two’, ’'one’, 'two’])]

s = Series(randn(8), index=arrays)

-0.880984
0.997289
-1.693316
-0.179129
-1.598062
0.936914
0.912560
-1.003401

df = DataFrame (randn (8, 4), index=arrays)
df

0 1 2 3
632781 -0.724626 0.178219 0.310610
108002 -0.974226 -1.147708 -2.281374
760010 -0.742532 1.533318 2.495362
432771 -0.068954 0.043520 0.112246
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foo one 0.871721 -0.816064 -0.784880 1.030659
two 0.187483 -1.933946 0.377312 0.734122
qux one 2.141616 -0.011225 0.048869 -1.360687
two -0.479010 -0.859661 -0.231595 -0.527750

All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves.
If no names are provided, some arbitrary ones will be assigned:

In [670]: index.names
Out[670]: [’first’, ’'second’]

This index can back any axis of a pandas object, and the number of levels of the index is up to you:

In [671]: df = DataFrame (randn (3, 8), index=['A’, ’'B’, ’'C’], columns=index)

In [672]: df

Out[672]:

first bar baz foo qux

second one two one two one two one two
A -1.296337 0.150680 0.123836 0.571764 1.555563 -0.823761 0.535420 -1.032853
B 1.469725 1.304124 1.449735 0.203109 -1.032011 0.969818 -0.962723 1.382083
c -0.938794 0.669142 -0.433567 -0.273610 0.680433 -0.308450 -0.276099 -1.821168

In [673]: DataFrame (randn (6, 6), index=index[:6], columns=index[:6])
Out[673]:

first bar baz foo

second one two one two one two

first second

bar one -1.993606 -1.927385 -2.027924 1.624972 0.551135 3.059267
two 0.455264 -0.030740 0.935716 1.061192 -2.107852 0.199905

baz one 0.323586 -0.641630 -0.587514 0.053897 0.194889 -0.381994
two 0.318587 2.089075 -0.728293 -0.090255 -0.748199 1.318931

foo one -2.029766 0.792652 0.461007 -0.542749 -0.305384 -0.479195
two 0.095031 -0.270099 -0.707140 -0.773882 0.229453 0.304418

We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.
It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

In [674]: Series(randn(8), index=tuples)

Oout [674]:

("bar’, ’one’) 0.736135
("bar’, "two’) -0.859631
("baz’, ’"one’) -0.424100
("baz’, "two’) -0.776114
(" foo’, ’'one’) 1.279293
(" foo’, ’"two’) 0.943798
("qux’, ’'one’) -1.001859
("qux’, ’"two’) 0.306546

The reason that the Mult i Index matters is that it can allow you to do grouping, selection, and reshaping operations
as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find
yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However,
when loading data from a file, you may wish to generate your own Mult i Index when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in
pandas.set_printoptions:

In [675]: pd.set_printoptions (multi_sparse=False)
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In [676]: df

Out[676]:

first bar bar baz baz foo foo qux qux
second one two one two one two one two
A -1.296337 0.150680 0.123836 0.571764 1.555563 -0.823761 0.535420 -1.032853
B 1.469725 1.304124 1.449735 0.203109 -1.032011 0.969818 -0.962723 1.382083
C -0.938794 0.669142 -0.433567 -0.273610 0.680433 -0.308450 -0.276099 -1.821168

In [677]: pd.set_printoptions (multi_sparse=True)

7.4.2 Reconstructing the level labels

The method get__level_values will return a vector of the labels for each location at a particular level:

In [678]: index.get_level_values (0)
Out[678]: array([bar, bar, baz, baz, foo, foo, qux, qux], dtype=object)

In [679]: index.get_level_values (’second’)
Out[679]: array([one, two, one, two, one, two, one, two], dtype=object)

7.4.3 Basic indexing on axis with Multilndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a
subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous
way to selecting a column in a regular DataFrame:

In [680]: df[’bar’]

Out[6807:

second one two
A -1.296337 0.150680
B 1.469725 1.304124
C -0.938794 0.669142

In [681]: df[’bar’, ’"one’]
Out [681]:

A -1.296337

B 1.469725

C -0.938794

Name: (’'bar’, ’one’)

In [682]: df[’bar’][’one’]

out[682]:

A -1.296337
B 1.469725
C -0.938794

Name: one

In [683]: s[’qux’]

Out [683]:
one 0.912560
two -1.003401
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7.4.4 Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data
alignment will work the same as an Index of tuples:

In [684]: s + s[:-2]

Out[684]:

bar one -1.761968
two 1.994577

baz one -3.386631
two -0.358257

foo one -3.196125
two 1.873828

qux one NaN
two NaN

In [685]: s + s[::2]

Out [685]:

bar one -1.761968
two NaN

baz one -3.386631
two NaN

foo one -3.196125
two NaN

qux one 1.825119
two NaN

reindex can be called with another Mult i Index or even a list or array of tuples:

In [686]: s.reindex (index[:31])

Oout [686] :

first second

bar one -0.880984
two 0.997289

baz one -1.693316

In [687]: s.reindex ([ (' foo’, "two’), ('bar’, ’one’), ('qux’, ’'one’), ('baz’, 'one’)])

Out [687]:

foo two 0.936914

bar one -0.880984

qux one 0.912560

baz one -1.693316

7.4.5 Advanced indexing with hierarchical index

Syntactically integrating MultiIndex in advanced indexing with .ix is a bit challenging, but we’ve made every
effort to do so. for example the following works as you would expect:

In [688]: df = df.T

In [689]: df

Out [689]:
A B C
first second
bar one -1.296337 1.469725 -0.938794
two 0.150680 1.304124 0.669142
baz one 0.123836 1.449735 -0.433567
two 0.571764 0.203109 -0.273610
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foo one 1.555563 -1.032011 0.680433
two -0.823761 0.969818 -0.308450
qux one 0.535420 -0.962723 -0.276099
two -1.032853 1.382083 -1.821168

In [690]: df.ix[’'bar’]

Oout[6907:

A B C
second
one -1.296337 1.469725 -0.938794
two 0.150680 1.304124 0.669142

In [691]: df.ix[’"bar’, ’"two’]
Out [691]:

A 0.150680

B 1.304124

C 0.669142

Name: (’'bar’, ’"two’)

“Partial” slicing also works quite nicely:

In [692]: df.ix[’'baz’:’foo’]
out[692]:

A B C
first second

baz one 0.123836 1.449735 -0.433567
two 0.571764 0.203109 -0.273610
foo one 1.555563 -1.032011 0.680433
two -0.823761 0.969818 -0.308450
In [693]: df.ix[('baz’, ’"two’):('qux’, ’'one’)]
out[693]:
A B ¢}
first second
baz two 0.571764 0.203109 -0.273610
foo one 1.555563 -1.032011 0.680433
two -0.823761 0.969818 -0.308450
qux one 0.535420 -0.962723 -0.276099

In [694]: df.ix[('baz’, "two’):’foo’]

out[694]:
A B C
first second
baz two 0.571764 0.203109 -0.273610
foo one 1.555563 -1.032011 0.680433
two -0.823761 0.969818 -0.308450

Passing a list of labels or tuples works similar to reindexing:

In [695]: df.ix[[('bar’, "two’), ('qux’, ’'one’)]]
Out [695]:
A B C
first second
bar two 0.15068 1.304124 0.669142
qux one 0.53542 -0.962723 -0.276099

The following does not work, and it’s not clear if it should or not:
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>>> df.ix[['bar’, "qux’]]

The code for implementing . i x makes every attempt to “do the right thing” but as you use it you may uncover corner
cases or unintuitive behavior. If you do find something like this, do not hesitate to report the issue or ask on the mailing
list.

7.4.6 Cross-section with hierarchical index

The xs method of DataFrame additionally takes a level argument to make selecting data at a particular level of a
Multilndex easier.

In [696]: df.xs('one’, level=’second’)

Out [696] :

A B C
first
bar -1.296337 1.469725 -0.938794
baz 0.123836 1.449735 -0.433567
foo 1.555563 -1.032011 0.680433
qux 0.535420 -0.962723 -0.276099

7.4.7 Advanced reindexing and alignment with hierarchical index

The parameter level has been added to the reindex and align methods of pandas objects. This is useful to
broadcast values across a level. For instance:

In [697]: midx = MultiIndex(levels=[[’zero’, 'one’], ['x",’'v']1],
..... : labels=[[1,1,0,0]1,[1,0,1,011)

In [698]: df = DataFrame (randn(4,2), index=midx)

In [699]: print df
0 1
one y 0.307453 -0.906534
x —-1.505397 1.392009
zero y —-0.027793 -0.631023
x —-0.662357 2.725042

In [700]: df2 = df.mean(level=0)
In [701]: print df2
0 1
zero —-0.345075 1.047010
one -0.598972 0.242737

In [702]: print df2.reindex(df.index, level=0)

0 1

one y —-0.598972 0.242737
x -0.598972 0.242737

zero y —-0.345075 1.047010
x -0.345075 1.047010

In [703]: df_aligned, df2_aligned = df.align(df2, level=0)

In [704]: print df_aligned
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one vy O.
x —1.
zero y —0.
x —0.
In [705]:
one vy —0.
x —0.
zero y —0.
x —0.

0
307453
505397
027793
662357

print df2_aligned

0
598972
598972
345075
345075

1
-0.906534
1.392009
-0.631023
2.725042

1
0.242737
0.242737
1.047010
1.047010

7.4.8 The need for sortedness

Caveat emptor: the present implementation of MultiIndex requires that the labels be sorted for some of the
slicing / indexing routines to work correctly. You can think about breaking the axis into unique groups, where at
the hierarchical level of interest, each distinct group shares a label, but no two have the same label. However, the
MultiIndex does not enforce this: you are responsible for ensuring that things are properly sorted. There is an
important new method sortlevel to sort an axis within a MultiIndex so that its labels are grouped and sorted
by the original ordering of the associated factor at that level. Note that this does not necessarily mean the labels will
be sorted lexicographically!

In [706]:

In [707]:

In [708]:
Oout [7087]:
baz two
bar two
foo one
qux two

one
foo two
baz one
bar one

In [709]:
Out [709]:
bar one
two
baz one
two
foo one
two
qux one
two
In [710]:
Out [710] :

bar one
baz one
foo one
qux one
bar two

import random;

s = Series (randn(8),

-1.847240
-0.529247

0.614656
-1.590742
-0.156479
-1.696377

0.819712
-2.107728

s.sortlevel (0)

-2.107728
-0.529247

0.819712
-1.847240

0.614656
-1.696377
-0.156479
-1.590742

s.sortlevel (1)

-2.107728
0.819712
0.614656

-0.156479

-0.529247

random.shuffle (tuples)

index=MultilIndex.from_tuples (tuples))
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baz two -1.847240
foo two -1.696377
qux two -1.590742

Note, you may also pass a level name to sortlevel if the Multilndex levels are named.

In [711]: s.index.names = ['L1’, "L2"]

In [712]: s.sortlevel (level="11")

Oout[712]:

L1 L2

bar one -2.107728
two -0.529247

baz one 0.819712
two -1.847240

foo one 0.614656
two -1.696377

qux one -0.156479
two -1.590742

In [713]: s.sortlevel (level="12")

Oout [7137]:

Ll L2

bar one -2.107728
baz one 0.819712
foo one 0.614656
qux one -0.156479
bar two -0.529247
baz two -1.847240
foo two -1.696377
qux two -1.590742

Some indexing will work even if the data are not sorted, but will be rather inefficient and will also return a copy of the
data rather than a view:

In [714]: s[’qux’]

Out[714]:

L2

two -1.590742
one -0.156479

In [715]: s.sortlevel (1) [ gux’]

Oout [7157]:

L2

one -0.156479
two -1.590742

On higher dimensional objects, you can sort any of the other axes by level if they have a Multilndex:

In [716]: df.T.sortlevel(l, axis=1)
Out[716]:
zZero one zZero one
X X Yy Yy
0 -0.662357 -1.505397 -0.027793 0.307453
1 2.725042 1.392009 -0.631023 -0.906534

The MultiIndex object has code to explicity check the sort depth. Thus, if you try to index at a depth at which
the index is not sorted, it will raise an exception. Here is a concrete example to illustrate this:
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In [717]: tuples = [(a’, 'a’), ("a’, 'b"), ('b’, "a’), ('b’, "b")]
In [718]: idx = MultiIndex.from_tuples (tuples)

In [719]: idx.lexsort_depth
Oout[719]: 2

In [720]: reordered = idx[[1, 0, 3, 211
In [721]: reordered.lexsort_depth
Out[721]: 1

In [722]: s = Series(randn(4), index=reordered)

In [723]: s.ix['a’:"a’]
Oout [723]:
a b -0.488326

a 0.851918

However:

>>> g.ix[('a’, 'b’):('b", Ta’)]
Exception: MultiIndex lexsort depth 1, key was length 2

7.4.9 Swapping levels with swaplevel

The swaplevel function can switch the order of two levels:

In [724]: df[:5]
out[724]:
0 1
one vy 0.307453 -0.906534
x —1.505397 1.392009
zero y —-0.027793 -0.631023
x —-0.662357 2.725042

In [725]: df[:5].swaplevel (0, 1, axis=0)
Oout [725]:
0 1
one 0.307453 -0.906534
one -1.505397 1.392009
zero —0.027793 -0.631023
zero —-0.662357 2.725042

XX K

7.4.10 Reordering levels with reorder_levels

The reorder_levels function generalizes the swaplevel function, allowing you to permute the hierarchical
index levels in one step:

In [726]: df[:5].reorder_levels([1,0], axis=0)
Oout[726]:
0 1
one 0.307453 -0.906534
one -—1.505397 1.392009
zero —-0.027793 -0.631023
zero —0.662357 2.725042

XX K
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7.4.11 Some gory internal details

Internally, the Mult i Index consists of a few things: the levels, the integer labels, and the level names:

In [727]: index

out [727] :

MultiIndex

[("bar’, 'one’) ('bar’, 'two’) ('baz’, 'one’) ('baz’, "two’)
("foo’, ’'one’) ('foo’, 'two’) ('qux’, ’'one’) ('qux’, 'two’)]

In [728]: index.levels
Oout [728]: [Index([bar, baz, foo, qux], dtype=object), Index([one, two], dtype=object)]

In [729]: index.labels
out[729]: [array([O, O, 1, 1, 2, 2, 3, 31), array([O, 1, O, 1, O, 1, O, 11)]

In [730]: index.names
Out [730]: [’first’, ’'second’]

You can probably guess that the labels determine which unique element is identified with that location at each layer
of the index. It’s important to note that sortedness is determined solely from the integer labels and does not check
(or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays
ensure that this is true, but if you compute the levels and labels yourself, please be careful.

7.5 Adding an index to an existing DataFrame

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done
so. There are a couple of different ways.

7.5.1 Add an index using DataFrame columns

DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names
(for a MultiIndex), to create a new, indexed DataFrame:

In [731]: data

Oout [731]:

a b ¢ d
0 bar one =z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

In [732]: indexedl = data.set_index(’'c’)

In [733]: indexedl

Out [733]:

a b d
c
z bar one 1
y bar two 2
x foo one 3
w foo two 4

In [734]: indexed2 = data.set_index([’a’, "b’])
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In [735]: indexed2

Out [735]:
c d
a b
bar one =z 1
two y 2
foo one x 3
two w 4

The append keyword option allow you to keep the existing index and append the given columns to a Multilndex:

In [736]: frame = data.set_index(’c’, drop=False)
In [737]: frame = frame.set_index([’a’, 'b’], append=True)

In [738]: frame

Out [738]:

c d
c a b
z bar one z 1
y bar two y 2
x foo one x 3
w foo two w 4

Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a
new object):

In [739]: data.set_index(’c’, drop=False)

Out [739]:

a b ¢ d
c
z bar one z 1
y bar two y 2
x foo one x 3
w foo two w 4

In [740]: df

data.set_index([’a’, ’'b’], inplace=True)

In [741]: data

Oout [741]:
c d
a b
bar one =z 1
two vy 2
foo one x 3
two w 4

7.5.2 Remove / reset the index, reset_index

As a convenience, there is a new function on DataFrame called reset_index which transfers the index values into
the DataFrame’s columns and sets a simple integer index. This is the inverse operation to set_index

In [742]: df

out [742]:
c d
a b
bar one =z 1
two vy 2
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foo one x 3
two w 4

In [743]: df.reset_index()

Oout [743]:

a b ¢ d
0 bar one =z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the
ones stored in the names attribute.

You can use the 1evel keyword to remove only a portion of the index:

In [744]: frame

Oout [744]:

c d
c a b
z bar one =z 1
y bar two y 2
x foo one x 3
w foo two w 4

In [745]: frame.reset_index (level=1)

Out [7457]:

a ¢ d
c b
z one bar =z 1
y two bar y 2
x one foo x 3
w two foo w 4

reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index
values in the DataFrame’s columns.

Note: The reset_index method used to be called delevel which is now deprecated.

7.5.3 Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

df.index = index

7.6 Indexing internal details

Note: The following is largely relevant for those actually working on the pandas codebase. And the source code is
still the best place to look at the specifics of how things are implemented.

In pandas there are a few objects implemented which can serve as valid containers for the axis labels:
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Index: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The
labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do
O(1) lookups.

Int64Index: aversion of Index highly optimized for 64-bit integer data, such as time stamps
MultiIndex: the standard hierarchical index object

date_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python
datetime objects

The motivation for having an Index class in the first place was to enable different implementations of indexing.
This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a
particular application than the ones provided in pandas. For example, we plan to add a more efficient datetime index
which leverages the new numpy . datet ime 64 dtype in the relatively near future.

From an internal implementation point of view, the relevant methods that an Index must define are one or more of
the following (depending on how incompatible the new object internals are with the Index functions):

get_loc: returns an “indexer” (an integer, or in some cases a slice object) for a label
slice_locs: returns the “range” to slice between two labels

get_indexer: Computes the indexing vector for reindexing / data alignment purposes. See the source /
docstrings for more on this

reindex: Does any pre-conversion of the input index then calls get_indexer
union, intersection: computes the union or intersection of two Index objects
insert: Inserts a new label into an Index, yielding a new object

delete: Delete a label, yielding a new object

drop: Deletes a set of labels

take: Analogous to ndarray.take
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CHAPTER
EIGHT

COMPUTATIONAL TOOLS

8.1 Statistical functions

8.1.1 Percent Change

Both Series and DataFrame has a method pct_change to compute the percent change over a given number of
periods (using £111_method to fill NA/null values).

In [189]: ser

Series (randn (8))

In [190]: ser.pct_change()

Out[1907:

~N oUW N O

In [191]: df

NaN
-1.602976
4.334938
-0.247456
-2.067345
-1.142903
-1.688214
-9.759729

DataFrame (randn (10,

In [192]: df.pct_change (periods=3)

Oout[192]:

0
NaN
NaN
NaN
-0.218320
.439121
-0.127833
-2.596833
-0.117826
2.492606
-1.012977

O 00 ~J oy U s W DN O
|
o

1
NaN
NaN
NaN

.054001
.816454
.042065
.959538
.169058
.357320
.324558

8.1.2 Covariance

2
NaN
NaN
NaN

.987147
.649715
.866604
.111697
.036094
.205802
.003744

3
NaN
NaN
NaN

.510183
.822809
776977
.798900
.067696
.558697
.371806

The Series object has a method cov to compute covariance between series (excluding NA/null values).
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In [193]: sl = Series(randn(1000))
In [194]: s2 = Series(randn(1000))

In [195]: sl.cov(s2)
Out[195]: 0.00068010881743110524

Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame,
also excluding NA/null values.

In [196]: frame = DataFrame (randn (1000, 5), columns=['a’, ’'b’, ’'c’, ’'d’, "e’])

In [197]: frame.cov()

Out[197]:

a b c d e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 .000191 0.950735 -0.031743 -0.005087

0
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487

8.1.3 Correlation

Several methods for computing correlations are provided. Several kinds of correlation methods are provided:

Method name Description

pearson (default) | Standard correlation coefficient
kendall Kendall Tau correlation coefficient
spearman Spearman rank correlation coefficient

All of these are currently computed using pairwise complete observations.

In [198]: frame = DataFrame (randn (1000, 5), columns=["a’, ’'b’, 'c’, 7d’, "e’])
In [199]: frame.ix[::2] = np.nan

# Series with Series

In [200]: frame[’a’].corr(frame[’'b’])
Out [200]: 0.010052135416653471

In [201]: frame[’a’].corr(frame[’b’], method=’spearman’)
Out[201]: -0.0097383749534998149

# Pairwise correlation of DataFrame columns
In [202]: frame.corr ()

out [202]:

a b c d e
a 1.000000 0.010052 -0.047750 -0.031461 -0.025285
b 0.010052 1.000000 -0.014172 -0.020590 -0.001930
c -0.047750 -0.014172 1.000000 0.006373 —-0.049479

d -0.031461 -0.020590 0.006373 1.000000 -0.012379
e -0.025285 -0.001930 -0.049479 -0.012379 1.000000

Note that non-numeric columns will be automatically excluded from the correlation calculation.

A related method corrwith is implemented on DataFrame to compute the correlation between like-labeled Series
contained in different DataFrame objects.
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In [203]: index = [’a’, 'b’, ’'c’, ’'d’", ’'e’]
In [204]: columns = [‘one’, 'two’, ’'three’, ’four’]
In [205]: dfl = DataFrame (randn (5, 4), index=index, columns=columns)

In [206]: df2 = DataFrame (randn (4, 4), index=index[:4], columns=columns)

In [207]: dfl.corrwith (df2)

out [2077] :

one 0.803464
two 0.142469
three -0.498774
four 0.806420

In [208]: df2.corrwith(dfl, axis=1)

Out [208] :

a 0.011572
b 0.388066
¢} -0.335819
d 0.232412
e NaN

8.1.4 Data ranking

The rank method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:
In [209]: s = Series(np.random.randn(5), index=list (’abcde’))
In [210]: s[’d’] = s[’'b’] # so there’s a tie

In [211]: s.rank()

Oout[211]
a 2.0
b 4.5
c 3.0
d 4.5
e 1.0

rank is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are
excluded from the ranking.

In [212]: df = DataFrame (np.random.randn (10, 6))
In [213]: df[4] = df[2][:5] # some ties

In [214]: df

Oout[214]:

0 1 2 3 4 5
0 0.085011 -0.459422 -1.660917 -1.913019 -1.660917 0.833479
1 -0.557052 0.775425 0.003794 0.555351 0.003794 -1.169977
2 0.815695 -0.295737 -0.534290 0.068917 -0.534290 -0.513855
3 1.465947 0.021757 0.523224 -0.439297 0.523224 -0.959568
4 -0.678378 0.091855 1.337956 0.792551 1.337956 0.711776
5 -0.190285 0.187520 -0.355562 1.730964 NaN -1.362312
6 -0.776678 —-2.082637 -0.165877 0.357163 NaN 0.631662
7 -1.295037 0.367656 —-1.886797 -0.531790 NaN 1.270408
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8 1.106052 0.848312 -0.613544 1.338296 NaN -1.150652
9 0.309979 1.088439 0.920366 —-0.750322 NaN 1.563956

In [215]: df.rank(1)

Out [215]:

0 1 2 3 4 5
0 5 4 2.5 1 2.5 6
1 2 6 3.5 5 3.5 1
2 6 4 1.5 5 1.5 3
3 6 3 4.5 2 4.5 1
4 1 2 5.5 4 5.5 3
5 3 4 2.0 5 NaN 1
6 2 1 3.0 4 NaN 5
7 2 4 1.0 3 NaN 5
8 4 3 2.0 5 NaN 1
9 2 4 3.0 1 NaN 5

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with
larger values assigned a smaller rank.

rank supports different tie-breaking methods, specified with the method parameter:
* average : average rank of tied group
* min : lowest rank in the group
* max : highest rank in the group

e first : ranks assigned in the order they appear in the array

Note: These methods are significantly faster (around 10-20x) than scipy.stats.rankdata.

8.2 Moving (rolling) statistics / moments

For working with time series data, a number of functions are provided for computing common moving or rolling
statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skew-
ness, and kurtosis. All of these methods are in the pandas namespace, but otherwise they can be found in
pandas.stats.moments.

Function Description

rolling_count Number of non-null observations
rolling_sum Sum of values

rolling_mean Mean of values
rolling_median Arithmetic median of values
rolling min Minimum

rolling_max Maximum

rolling_std Unbiased standard deviation
rolling_var Unbiased variance
rolling_skew Unbiased skewness (3rd moment)
rolling_kurt Unbiased kurtosis (4th moment)
rolling_quantile Sample quantile (value at %)
rolling_apply Generic apply

rolling_cov Unbiased covariance (binary)
rolling_corr Correlation (binary)
rolling_corr_pairwise | Pairwise correlation of DataFrame columns
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Generally these methods all have the same interface. The binary operators (e.g. rolling_corr) take two Series or
DataFrames. Otherwise, they all accept the following arguments:

* window: size of moving window
* min_periods: threshold of non-null data points to require (otherwise result is NA)

* freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pan-
das v0.8.0, a keyword argument t ime_rule was used instead of freq that referred to the legacy time rule
constants

These functions can be applied to ndarrays or Series objects:

In [216]: ts = Series(randn(1000), index=date_range(’1/1/2000’, periods=1000))
In [217]: ts = ts.cumsum/()

In [218]: ts.plot(style="k-—-")
Out [218]: <matplotlib.axes.AxesSubplot at 0x109ce96d0>

In [219]: rolling mean(ts, 60).plot(style="k’")
Out [219]: <matplotlib.axes.AxesSubplot at 0x109ce96d0>
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They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window
operator to all of the DataFrame’s columns:

In [220]: df = DataFrame (randn (1000, 4), index=ts.index,
..... : columns=["A", 'B’, 'C", 'D"1])

In [221]: df = df.cumsum/()

In [222]: rolling_sum(df, 60).plot (subplots=True)
out[222]:
array ([Axes (0.125,0.772727;0.775x0.127273),
Axes (0.125,0.581818;0.775x0.127273),
Axes (0.125,0.390909;0.775x0.127273), Axes(0.125,0.2;0.775x0.127273)], dtype=object)
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The rolling apply function takes an extra func argument and performs generic rolling computations. The
func argument should be a single function that produces a single value from an ndarray input. Suppose we wanted
to compute the mean absolute deviation on a rolling basis:

In [223]: mad = lambda x: np.fabs(x - x.mean()) .mean ()

In [224]: rolling_apply(ts, 60, mad) .plot (style="k’)
Out[224]: <matplotlib.axes.AxesSubplot at 0x10675a410>
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8.2.1 Binary rolling moments

rolling_covand rolling_corr can compute moving window statistics about two Series or any combination
of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:

* two Series: compute the statistic for the pairing

128 Chapter 8. Computational tools



pandas: powerful Python data analysis toolkit, Release 0.9.0

* DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus
returning a DataFrame

* DataFrame/DataFrame: compute statistic for matching column names, returning a DataFrame
For example:

In [225]: df2 = df[:20]

In [226]: rolling_corr(df2, df2[’B’], window=5)

Out [226]:

A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 NaN NaN NaN NaN
2000-01-04 NaN NaN NaN NaN
2000-01-05 0.703188 -0.746130 0.714265
2000-01-06 0.065322 -0.209789 0.635360
2000-01-07 -0.429914 -0.100807 0.266005
2000-01-08 -0.387498 0.512321 0.592033

2000-01-09 0.442207
2000-01-10 0.572983
2000-01-11 0.325889
2000-01-12 -0.389584

0.570186 -0.653242
0.713876 -0.366806
0.899489 -0.337436
0.482351 0.246871

2000-01-13 -0.714206 .593838 0.090279
2000-01-14 -0.933238 -0.936087 0.471866
2000-01-15 -0.991959 -0.943218 0.637434
2000-01-16 -0.645081 -0.520788 0.322264

2000-01-17 -0.348338
2000-01-18 0.193914
2000-01-19 0.465424
2000-01-20 0.645630

-0.183528 0.385915
-0.308346 -0.157765
-0.072219 -0.714273
0.211302 -0.651308

PR R R R R R RRR R PR R RP R
|
o

8.2.2 Computing rolling pairwise correlations

In financial data analysis and other fields it’s common to compute correlation matrices for a collection of
time series. More difficult is to compute a moving-window correlation matrix. This can be done using the
rolling_corr_pairwise function, which yields a Panel whose items are the dates in question:

In [227]: correls = rolling_corr_pairwise(df, 50)

In [228]: correls[df.index[-501]

Oout [228] :

A B C D
A 1.000000 0.289597 0.673828 -0.589002
B 0.289597 1.000000 -0.041244 0.204692
C 0.673828 -0.041244 1.000000 -0.848632
D -0.589002 0.204692 -0.848632 1.000000

You can efficiently retrieve the time series of correlations between two columns using ix indexing:

In [229]: correls.ix[:, 'A’, 'C’].plot()
Out [229]: <matplotlib.axes.AxesSubplot at 0x107df6250>
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8.3 Expanding window moment functions

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with
all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are
implemented in pandas such that the following two calls are equivalent:

In [230]: rolling mean(df, window=len (df), min_periods=1)[:5]
out [2307:

A B C D
2000-01-01 -0.417884 -2.757922 -0.307713 0.150568
2000-01-02 -0.040474 -3.725653 0.196122 0.190333
2000-01-03 -0.401161 -4.246998 0.060725 -0.148770
2000-01-04 -0.797595 -4.788888 0.426269 -0.198859
2000-01-05 -0.978829 -5.523162 0.577954 -0.313535

In [231]: expanding_mean(df) [:5]
out[2317]:

A B C D
2000-01-01 -0.417884 -2.757922 -0.307713 0.150568
2000-01-02 -0.040474 -3.725653 0.196122 0.190333
2000-01-03 -0.401161 -4.246998 0.060725 -0.148770
2000-01-04 -0.797595 -4.788888 0.426269 -0.198859
2000-01-05 -0.978829 -5.523162 0.577954 -0.313535

Like the rol1ling_ functions, the following methods are included in the pandas namespace or can be located in
pandas.stats.moments.
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Function Description
expanding_count Number of non-null observations
expanding_sum Sum of values
expanding_mean Mean of values
expanding_median Arithmetic median of values
expanding_min Minimum

expanding_max Maximum

expanding_std Unbiased standard deviation
expanding_var Unbiased variance
expanding_skew Unbiased skewness (3rd moment)
expanding_kurt Unbiased kurtosis (4th moment)
expanding_gquantile Sample quantile (value at %)
expanding_apply Generic apply
expanding_cov Unbiased covariance (binary)
expanding_corr Correlation (binary)
expanding_corr_pairwise | Pairwise correlation of DataFrame columns

Aside from not having a window parameter, these functions have the same interfaces as their ro11ing_ counterpart.
Like above, the parameters they all accept are:

* min_periods: threshold of non-null data points to require. Defaults to minimum needed to compute statistic.
No NaNs will be output once min_periods non-null data points have been seen.

* freq: optionally specify a frequency string or DateOffset to pre-conform the data to. Note that prior to pan-
das v0.8.0, a keyword argument t ime_rule was used instead of freq that referred to the legacy time rule
constants

Note:  The output of the rolling_ and expanding_ functions do not return a NaN if there are at least
min_periods non-null values in the current window. This differs from cumsum, cumprod, cummax, and
cummin, which return NaN in the output wherever a NaN is encountered in the input.

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as
the increasing window size decreases the relative impact of an individual data point. As an example, here is the
expanding_mean output for the previous time series dataset:

In [232]: ts.plot(style="k-—-")
Out[232]: <matplotlib.axes.AxesSubplot at 0x107cabb50>

In [233]: expanding_mean (ts) .plot (style="k’)
Out[233]: <matplotlib.axes.AxesSubplot at 0x107cabb50>
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8.4 Exponentially weighted moment functions

A related set of functions are exponentially weighted versions of many of the above statistics. A number of EW
(exponentially weighted) functions are provided using the blending method. For example, where y, is the result and
x; the input, we compute an exponentially weighted moving average as

ye = ayi—1 + (1 — @)y

One must have 0 < o < 1, but rather than pass « directly, it’s easier to think about either the span or center of mass
(com) of an EW moment:

2 —
o= m,s—span

1 _
-1 ¢ = center of mass
You can pass one or the other to these functions but not both. Span corresponds to what is commonly called a “20-
day EW moving average” for example. Center of mass has a more physical interpretation. For example, span = 20
corresponds to com = 9.5. Here is the list of functions available:

Function Description

ewma EW moving average

ewmvar EW moving variance

ewmstd EW moving standard deviation
ewmcorr | EW moving correlation
ewmcov EW moving covariance

Here are an example for a univariate time series:

In [234]: plt.close(’all’)

In [235]: ts.plot (style="k-—-")
Out [235]: <matplotlib.axes.AxesSubplot at 0x110e5bcd0>
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In [236]: ewma (ts, span=20).plot (style="k’)
Out [236]: <matplotlib.axes.AxesSubplot at 0x110e5bcd0>
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Note: The EW functions perform a standard adjustment to the initial observations whereby if there are fewer obser-
vations than called for in the span, those observations are reweighted accordingly.

8.5 Linear and panel regression

Note: We plan to move this functionality to statsmodels for the next release. Some of the result attributes may change
names in order to foster naming consistency with the rest of statsmodels. We will provide every effort to provide
compatibility with older versions of pandas, however.

We have implemented a very fast set of moving-window linear regression classes in pandas. Two different types of
regressions are supported:

 Standard ordinary least squares (OLS) multiple regression

* Multiple regression (OLS-based) on panel data including with fixed-effects (also known as entity or individual
effects) or time-effects.

Both kinds of linear models are accessed through the ols function in the pandas namespace. They all take the
following arguments to specify either a static (full sample) or dynamic (moving window) regression:

* window_type: ' full sample’ (default), ' expanding’,or rolling

* window: size of the moving window in the window_type='rolling’ case. If window is specified,
window_type will be automatically setto ' rolling’

* min_periods: minimum number of time periods to require to compute the regression coefficients
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Generally speaking, the o1s works by being given a y (response) object and an x (predictors) object. These can take
many forms:

 y: a Series, ndarray, or DataFrame (panel model)
¢ x: Series, DataFrame, dict of Series, dict of DataFrame or Panel

Based on the types of y and x, the model will be inferred to either a panel model or a regular linear model. If the y
variable is a DataFrame, the result will be a panel model. In this case, the x variable must either be a Panel, or a dict
of DataFrame (which will be coerced into a Panel).

8.5.1 Standard OLS regression

Let’s pull in some sample data:

In [237]: from pandas.io.data import DataReader
In [238]: symbols = [’MSFT’, ’GOOG’, ’'AAPL’]

In [239]: data = dict((sym, DataReader (sym, "yahoo"))
et for sym in symbols)

In [240]: panel = Panel (data) .swapaxes(’items’, ’'minor’)
In [241]: close_px = panel[’Close’]

# convert closing prices to returns
In [242]: rets = close_px / close_px.shift(l) - 1

In [243]: rets.info ()

<class ’pandas.core.frame.DataFrame’>

DatetimeIndex: 757 entries, 2010-01-04 00:00:00 to 2013-01-04 00:00:00
Data columns:

AAPL 756 non-null values
GOOG 756 non-null values
MSFT 756 non-null values

dtypes: float64(3)

Let’s do a static regression of AAPL returns on GOOG returns:

In [244]: model = ols(y=rets[’AAPL’], x=rets.ix[:, [/GO0G"]])

In [245]: model

out [245]:

————————————————————————— Summary of Regression Analysis-—————-----"-""-------———
Formula: Y ~ <GOOG> + <intercept>

Number of Observations: 756

Number of Degrees of Freedom: 2

R-squared: 0.2814

Adj R-squared: 0.2805

Rmse: 0.0147

F-stat (1, 754): 295.2873, p-value: 0.0000

Degrees of Freedom: model 1, resid 754

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
GOOG 0.5442 0.0317 17.18 0.0000 0.4822 0.6063
intercept 0.0011 0.0005 2.14 0.0327 0.0001 0.0022
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In [246]: model.beta

Oout [246]:
GOOG 0.544224
intercept 0.001147

If we had passed a Series instead of a DataFrame with the single GOOG column, the model would have assigned the
generic name x to the sole right-hand side variable.

We can do a moving window regression to see how the relationship changes over time:

In [247]: model = ols(y=rets[’AAPL’], x=rets.ix[:, ['GO0OG"]1],
et window=250)

# just plot the coefficient for GOOG
In [248]: model.beta[’GOOG’].plot ()
Out [248]: <matplotlib.axes.AxesSubplot at 0x110ed5c90>
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It looks like there are some outliers rolling in and out of the window in the above regression, influencing the results.
We could perform a simple winsorization at the 3 STD level to trim the impact of outliers:

In [249]: winz = rets.copy()
In [250]: std_lyear = rolling_std(rets, 250, min_periods=20)

# cap at 3 * 1 year standard deviation
In [251]: cap_level = 3 % np.sign(winz) * std_lyear

In [252]: winz[np.abs(winz) > 3 % std_lyear] = cap_level

In [253]: winz_model = ols(y=winz[’AAPL’], x=winz.ix[:, [/GOOG’']],
et window=250)
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In [254]: model.beta[’GOOG’].plot (label="With outliers")
Out [254]: <matplotlib.axes.AxesSubplot at 0x113b0eel0>

In [255]: winz_model.beta[’ GOOG’] .plot (label="Winsorized"); plt.legend(loc="best’)
Out [255]: <matplotlib.legend.Legend at 0x1139c2950>
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So in this simple example we see the impact of winsorization is actually quite significant. Note the correlation after
winsorization remains high:

In [256]: winz.corrwith (rets)

Out [256] :
AAPL 0.994969
GOOG 0.972473

MSFET 0.998387

Multiple regressions can be run by passing a DataFrame with multiple columns for the predictors x:

In [257]: ols(y=winz[’AAPL’], x=winz.drop([’AAPL’], axis=1))
Oout [257] :

Formula: Y ~ <GOOG> + <MSFT> + <intercept>

Number of Observations: 756

Number of Degrees of Freedom: 3

R-squared: 0.3661

Adj R-squared: 0.3644

Rmse: 0.0133

F-stat (2, 753): 217.4516, p-value: 0.0000

Degrees of Freedom: model 2, resid 753

Variable Coef std Err t-stat p-value CI 2.5% CI 97.5%
GOOG 0.4698 0.0373 12.58 0.0000 0.3967 0.5430
MSFT 0.3164 0.0412 7.68 0.0000 0.2357 0.3972
intercept 0.0011 0.0005 2.27 0.0235 0.0002 0.0021
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8.5.2 Panel regression

We’ve implemented moving window panel regression on potentially unbalanced panel data (see this article if this
means nothing to you). Suppose we wanted to model the relationship between the magnitude of the daily return and
trading volume among a group of stocks, and we want to pool all the data together to run one big regression. This is
actually quite easy:

# make the units somewhat comparable
In [258]: volume = panel[’Volume’] / 1le8

In [259]: model = ols(y=volume, x={'return’ : np.abs(rets)})

In [260]: model

out [2607]:

————————————————————————— Summary of Regression Analysis——————--"---""""""----———
Formula: Y ~ <return> + <intercept>

Number of Observations: 2268

Number of Degrees of Freedom: 2

R-squared: 0.0207

Adj R-squared: 0.0203

Rmse: 0.2683

F-stat (1, 2266): 47.9262, p-value: 0.0000

Degrees of Freedom: model 1, resid 2266

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
return 3.4632 0.5003 6.92 0.0000 2.4827 4.4437
intercept 0.2247 0.0081 27.76 0.0000 0.2088 0.2406

In a panel model, we can insert dummy (0-1) variables for the “entities” involved (here, each of the stocks) to account
the a entity-specific effect (intercept):

In [261]: fe_model = ols(y=volume, x={'return’ : np.abs(rets)},
..... : entity_effects=True)

In [262]: fe_model
out [262]:

Formula: Y ~ <return> + <FE_GOOG> + <FE_MSFT> + <intercept>

Number of Observations: 2268

Number of Degrees of Freedom: 4

R-squared: 0.7398

Adj R-squared: 0.7395

Rmse: 0.1383

F-stat (3, 2264): 2145.6389, p-value: 0.0000

Degrees of Freedom: model 3, resid 2264

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
return 4.5178 0.2589 17.45 0.0000 4.0103 5.0253
FE_GOOG -0.1568 0.0071 -22.01 0.0000 -0.1708 -0.1428
FE_MSFT 0.3904 0.0071 54.67 0.0000 0.3764 0.4044
intercept 0.1346 0.0060 22.29 0.0000 0.1227 0.1464

Because we ran the regression with an intercept, one of the dummy variables must be dropped or the design matrix
will not be full rank. If we do not use an intercept, all of the dummy variables will be included:
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In [263]: fe_model = ols(y=volume, x={’return’ : np.abs(rets)},
..... : entity_effects=True, intercept=False)

In [264]: fe_model
out[264]:

Formula: Y ~ <return> + <FE_AAPL> + <FE_GOOG> + <FE_MSFT>

Number of Observations: 2268

Number of Degrees of Freedom: 4

R-squared: 0.7398

Adj R-squared: 0.7395

Rmse: 0.1383

F-stat (4, 2264): 2145.6389, p-value: 0.0000

Degrees of Freedom: model 3, resid 2264

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
return 4.5178 0.2589 17.45 0.0000 4.0103 5.0253
FE_AAPL 0.1346 0.0060 22.29 0.0000 0.1227 0.1464
FE_GOOG -0.0222 0.0058 -3.80 0.0001 -0.0337 -0.0108
FE_MSFT 0.5250 0.0057 91.74 0.0000 0.5138 0.5362

————————————————————————————————— End of Summary-—————-—"—"—————————————————————————

We can also include time effects, which demeans the data cross-sectionally at each point in time (equivalent to including
dummy variables for each date). More mathematical care must be taken to properly compute the standard errors in
this case:

In [265]: te_model = ols(y=volume, x={’return’ : np.abs(rets)},
..... : time_effects=True, entity_effects=True)

In [266]: te_model
Out [266]:

Formula: Y ~ <return> + <FE_GOOG> + <FE_MSFT>

Number of Observations: 2268

Number of Degrees of Freedom: 759

R-squared: 0.8165

Adj R-squared: 0.7243

Rmse: 0.1332

F-stat (3, 1509): 8.8584, p-value: 0.0000

Degrees of Freedom: model 758, resid 1509

Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
return 3.7208 0.3739 9.95 0.0000 2.9880 4.4535
FE_GOOG -0.1579 0.0069 -22.98 0.0000 -0.1714 -0.1445
FE_MSFT 0.3885 0.0069 56.25 0.0000 0.3750 0.4021

Here the intercept (the mean term) is dropped by default because it will be 0 according to the model assumptions,
having subtracted off the group means.
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8.5.3 Result fields and tests

We’ll leave it to the user to explore the docstrings and source, especially as we’ll be moving this code into statsmodels
in the near future.
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CHAPTER
NINE

WORKING WITH MISSING DATA

In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons.
It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy
will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

9.1 Missing data basics

9.1.1 When / why does data become missing?

Some might quibble over our usage of missing. By “missing” we simply mean null or “not present for whatever
reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never
existed. For example, in a collection of financial time series, some of the time series might start on different dates.
Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is introduced into a data set is by reindexing. For example

In [933]: df = DataFrame (randn (5, 3), index=["a’, ’'c¢c’, ’'e’, "f’, "h'],
..... : columns=["one’, ’'two’, "three’])

In [934]: df[’four’] = "bar’
In [935]: df[’five’] = df[’one’] > 0

In [936]: df

Out [936]:

one two three four five
a 0.059117 1.138469 -2.400634 bar True
c —-0.280853 0.025653 -1.386071 bar False
e 0.863937 0.252462 1.500571 Dbar True
f 1.053202 -2.338595 -0.374279 Dbar True
h -2.359958 -1.157886 -0.551865 Dbar False

In [937]: df2 = df.reindex(['a’, 'b’', 'c’, 'd’, ’'e’, "£', 'g’, "h'])

In [938]: df2
out[938]:
one two three four five
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0.059117 1.138469 -2.400634 Dbar True
NaN NaN NaN NaN NaN
-0.280853 0.025653 -1.386071 bar False
NaN NaN NaN NaN NaN

0.863937 0.252462 1.500571 Dbar True
1.053202 -2.338595 -0.374279 bar True
NaN NaN NaN NaN NaN
-2.359958 -1.157886 -0.551865 bar False

oQ Hh O QO QO o

9.1.2 Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While
NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to
easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases,
however, the Python None will arise and we wish to also consider that “missing” or “null”. Lastly, for legacy reasons
inf and —inf are also considered to be “null” in computations. Since in NumPy divide-by-zero generates inf or
—inf and not NaN, I think you will find this is a worthwhile trade-off (Zen of Python: “practicality beats purity”).

To make detecting missing values easier (and across different array dtypes), pandas provides the i snull () and
notnull () functions, which are also methods on Series objects:

In [939]: df2[’one’]
Oout[939]:

a 0.059117
b NaN
c -0.280853
d NaN
e 0.863937
f 1.053202
g NaN
h -2.359958
Name: one

In [940]: isnull(df2[’one’])
out[9407 :
False
True
False
True
False
False
True
False

oWQ Hh O O Q09

Name: one

In [941]: df2[’ four’].notnull ()
Oout[941]:

True

False

True

False

True

True

False

True

oWQ Hh OO Q09

Summary: NaN, inf, -inf, and None (in object arrays) are all considered missing by the isnull and notnull
functions.
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9.2 Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

In [942]: a

out[942]:

one two
a 0.059117 1.138469
b 0.059117 1.138469
c —-0.280853 0.025653
d -0.280853 0.025653
e 0.863937 0.252462

In [943]: b

out[943]:

one two three
a 0.059117 1.138469 -2.400634
b NaN NaN NaN
c —-0.280853 0.025653 -1.386071
d NaN NaN NaN
e 0.863937 0.252462 1.500571

In [944]: a + b

out[944]:

one three two
a 0.118234 NaN 2.276938
b NaN NaN NaN
c -0.561707 NaN 0.051306
d NaN NaN NaN
e 1.727874 NaN 0.504923

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and
here) are all written to account for missing data. For example:

* When summing data, NA (missing) values will be treated as zero
¢ If the data are all NA, the result will be NA
* Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays

In [945]: df

Out [945]:

one two three
a 0.059117 1.138469 -2.400634
b NaN NaN NaN
c —-0.280853 0.025653 -1.386071
d NaN NaN NaN
e 0.863937 0.252462 1.500571
f 1.053202 -2.338595 -0.374279
g NaN NaN NaN
h -2.359958 -1.157886 -0.551865

In [946]: df[’one’].sum()
Out [946]: -0.66455558290247652

In [947]: df.mean (1)

Oout[947]:
a -0.401016
b NaN
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-0.547090
NaN
0.872323
.553224

NaN
-1.356570

oQ D QO
|
o

In [948]: df.cumsum()

out[948]:

one
a 0.059117 1.
b NaN
c -0.221736 1.
d NaN
e 0.642200 1.
f 1.695403 -0.
g NaN
h -0.664556 -2.

two
138469 -2.
NaN
164122 -3.
NaN
416584 -2.
922011 -2.
NaN
079897 -3.

three
400634
NaN
786705
NaN
286134
660413
NaN
212278

9.2.1 NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example.

9.3 Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

9.3.1 Filling missing values: fillna

The fillna function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

In [949]: df2

Out [949]:

one two three four five
a 0.059117 1.138469 -2.400634 bar True
b NaN NaN NaN NaN NaN
c -0.280853 0.025653 -1.386071 Dbar False
d NaN NaN NaN NaN NaN
e 0.863937 0.252462 1.500571 Dbar True
f 1.053202 -2.338595 -0.374279 bar True
g NaN NaN NaN NaN NaN
h -2.359958 -1.157886 -0.551865 Dbar False
In [950]: df2.fillna(0)
Out [950] :

one two three four five
a 0.059117 1.138469 -2.400634 bar True
b 0.000000 0.000000 0.000000 0 0
c -0.280853 0.025653 -1.386071 bar False
d 0.000000 0.000000 0.000000 0 0
e 0.863937 0.252462 1.500571 Dbar True
f 1.053202 -2.338595 -0.374279 bar True
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g 0.000000 0.000000 0.000000 0 0
h -2.359958 -1.157886 —-0.551865 Dbar False

In [951]: df2[’'four’].fillna('missing’)

Out [951]:
a bar
b missing
¢} bar
d missing
e bar
£ bar
g missing
bar

Name: four
Fill gaps forward or backward

Using the same filling arguments as reindexing, we can propagate non-null values forward or backward:

In [952]: df

Oout [952]:

one two three
a 0.059117 1.138469 -2.400634
b NaN NaN NaN
c —-0.280853 0.025653 -1.386071
d NaN NaN NaN
e 0.863937 0.252462 1.500571
£f 1.053202 -2.338595 -0.374279
g NaN NaN NaN
h -2.359958 -1.157886 -0.551865

In [953]: df.fillna (method="pad’)

Oout [953]:

one two three
a 0.059117 1.138469 -2.400634
b 0.059117 1.138469 -2.400634
c -0.280853 0.025653 -1.386071
d -0.280853 0.025653 -1.386071
e 0.863937 0.252462 1.500571
f 1.053202 -2.338595 -0.374279
g 1.053202 -2.338595 -0.374279
h -2.359958 -1.157886 -0.551865

Limit the amount of filling
If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:

In [954]: df

Out [954]:

one two three
a 0.059117 1.138469 -2.400634
b NaN NaN NaN
c NaN NaN NaN
d NaN NaN NaN
e 0.863937 0.252462 1.500571
£f 1.053202 -2.338595 -0.374279
g NaN NaN NaN

oy

-2.359958 -1.157886 -0.551865

In [955]: df.fillna (method="pad’, limit=1)
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Out [955]:

one two three
a 0.059117 1.138469 -2.400634
b 0.059117 1.138469 -2.400634
C NaN NaN NaN
d NaN NaN NaN
e 0.863937 0.252462 1.500571
f 1.053202 -2.338595 -0.374279
g 1.053202 -2.338595 -0.374279
h -2.359958 -1.157886 -0.551865

To remind you, these are the available filling methods:

Method Action
pad / ffill Fill values forward
bfill / backfill | Fill values backward

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time
point.

9.3.2 Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:

In [956]: df

out [956] :

one two three
a 0.059117 1.138469 -2.400634
b NaN 0.000000 0.000000
c NaN 0.000000 0.000000
d NaN 0.000000 0.000000
e 0.863937 0.252462 1.500571
f 1.053202 -2.338595 -0.374279
g NaN 0.000000 0.000000

h -2.359958 -1.157886 -0.551865

In [957]: df.dropna(axis=0)

Oout[957]:

one two three
a 0.059117 1.138469 -2.400634
e 0.863937 0.252462 1.500571
f 1.053202 -2.338595 -0.374279
h -2.359958 -1.157886 -0.551865

In [958]: df.dropna(axis=1)

out [958]:

two three
a 1.138469 -2.400634
b 0.000000 0.000000
c 0.000000 0.000000
d 0.000000 0.000000
e 0.252462 1.500571
f -2.338595 -0.374279
g 0.000000 0.000000
h -1.157886 -0.551865

In [959]: df[’one’] .dropna/ ()
Out [959]:
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0.059117
0.863937
1.053202
-2.359958
Name: one

dropna is presently only implemented for Series and DataFrame, but will be eventually added to Panel. Series.dropna
is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options, which can
be examined in the API.

9.3.3 Interpolation

A linear interpolate method has been implemented on Series. The default interpolation assumes equally spaced points.

In [960]: ts.count ()

Oout[960]: 61

In [961]: ts.head()

Oout[961]:

2000-01-31
2000-02-29
2000-03-31
2000-04-28
2000-05-31
Freg: BM

In [962]: ts.interpolate () .count ()

Oout[962]: 100

In [963]: ts.interpolate () .head()

out[963]:

2000-01-31
2000-02-29
2000-03-31
2000-04-28
2000-05-31
Freg: BM

In [964]: ts.interpolate() .plot ()

0.

O O O O o

469112
NaN
NaN
NaN
NaN

.469112
.435428
.401743
.368059
.334374

Out[964]: <matplotlib.axes.AxesSubplot at 0x11909df50>
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-1

0 0
2000

2001

2002 2003 2004 12005 2006

Index aware interpolation is available via the method keyword:

In [965]:

Oout[965] :

2000-01-31
2000-02-29
2002-07-31
2005-01-31
2008-04-30

In [966]:

out[966] :

2000-01-31
2000-02-29
2002-07-31
2005-01-31
2008-04-30

In [967]:
out [967] :

2000-01-31
2000-02-29
2002-07-31
2005-01-31
2008-04-30

0.469112
NaN
-5.689738
NaN
-8.916232

ts.interpolate ()

0.469112
-2.610313
-5.689738
-7.302985
-8.916232

ts.interpolate (method="time’”)

0.469112
0.273272
-5.689738
-7.095568
-8.916232

For a floating-point index, use method='values’:

2007 2008

148

Chapter 9

. Working with missing data



pandas: powerful Python data analysis toolkit, Release 0.9.0

In [968]: ser

Oout [968]:
0 0
1 NaN
10 10

In [969]: ser.interpolate()

out[969]:
0 0
1 5
10 10

In [970]: ser.interpolate (method=’'values’)

out[970]:
0 0
1 1
10 10

9.3.4 Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v(.8 is the replace method in Se-
ries/DataFrame that provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

In [971]: ser = Series([0., 1., 2., 3., 4.1)

In [972]: ser.replace (0, 5)

Out [972]:
0 5
1 1
2 2
3 3
4 4

You can replace a list of values by a list of other values:

In [973]: ser.replace([0, 1, 2, 3, 41, [4, 3, 2, 1, 01)

Oout [973]:
0 4

1

2 2

3 1

4 0

You can also specify a mapping dict:

In [974]: ser.replace({0: 10, 1: 100})

out[974]:
0 10
1 100
2 2
3 3
4 4

For a DataFrame, you can specify individual values by column:
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In [975]: df = DataFrame({’a’: [0, 1, 2, 3, 4], ’'b’: [5, 6, 7, 8, 91})

In [976]: df.replace({’a’: 0, "b’: 5}, 100)

out[976]:

a b
0 100 100
1 1 6
2 2 7
3 3 8
4 4 9

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

In [977]: ser.replace([l, 2, 3], method='pad’)

Oout [977]:
0 0
1 0
2 0
3 0
4 4

9.4 Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data.
Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will
cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

data type Cast to
integer float
boolean object
float no cast
object no cast

For example:

In [978]: s = Series(randn(5), index=[0, 2, 4, 6, 7])

In [979]: s > O

Oout[979]:

0 False
2 True
4 True
6 True
7 True

In [980]: (s > 0).dtype
Oout[980]: dtype (’bool”)

In [981]: crit = (s > 0).reindex(range(8))

In [982]: crit

out[982]:

0 False
1 NaN
2 True
3 NaN
4 True
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5 NaN
6 True
7 True

In [983]: crit.dtype
Oout [983]: dtype (' object’)

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a
boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector
contains NAs, an exception will be generated:

In [984]: reindexed = s.reindex(range(8)).fillna(0)

In [985]: reindexed[crit]

ValueError Traceback (most recent call last)
<ipython-input-985-2da204edlac7> in <module> ()

————> 1 reindexed[crit]

/Users/changshe/code/pandas/pandas/core/series.py in _ getitem_ (self, key)

482 # special handling of boolean data with NAs stored in object
483 # arrays. Since we can’t represent NA with dtype=bool
—-—> 484 if _is_bool_indexer (key) :
485 key = self._check_bool_indexer (key)
486 key = np.asarray (key, dtype=bool)
/Users/changshe/code/pandas/pandas/core/common.pyc in _is_bool_indexer (key)
511 if not lib.is_bool_array (key):
512 if isnull (key) .any () :
-——> 513 raise ValueError (' cannot index with vector containing ’
514 "NA / NaN values’)
515 return False

ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using fillna and it will work fine:

In [986]: reindexed[crit.fillna (False)]

Oout [986] :

2 1.314232
4 0.690579
6 0.995761
7 2.396780

In [987]: reindexed[crit.fillna (True)]
out[987]:

0.000000

.314232

.000000

.690579

.000000

.995761

.396780

~ o U W N
N O O O O
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CHAPTER
TEN

GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are refer to a process involving one or more of the following steps
* Splitting the data into groups based on some criteria
» Applying a function to each group independently
* Combining the results into a data structure

Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into
groups and do something with those groups yourself. In the apply step, we might wish to one of the following:

e Aggregation: computing a summary statistic (or statistics) about each group. Some examples:
— Compute group sums or means
— Compute group sizes / counts
* Transformation: perform some group-specific computations and return a like-indexed. Some examples:
— Standardizing data (zscore) within group
— Filling NAs within groups with a value derived from each group

* Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly
combined result if it doesn’t fit into either of the above two categories

Since the set of object instance method on pandas data structures are generally rich and expressive, we often simply
want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who
have used a SQL-based tool (or itertools), in which you can write code like:

SELECT Columnl, Column2, mean (Column3), sum(Columni4)
FROM SomeTable
GROUP BY Columnl, Column2

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy
functionality then provide some non-trivial examples / use cases.

10.1 Splitting an object into groups

pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels
to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:

>>> grouped = obj.groupby (key)
>>> grouped = obj.groupby (key, axis=1)
>>> grouped = obj.groupby ([keyl, key2])
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The mapping can be specified many different ways:
* A Python function, to be called on each of the axis labels
* A list or NumPy array of the same length as the selected axis
e A dict or Series, providing a Label -> group name mapping

* For DataFrame objects, a string indicating a column to be used to group. Of course df .groupby (A’ ) is
just syntactic sugar for df . groupby (df [* A’ ]), but it makes life simpler

* A list of any of the above things

Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:

In [452]: df = DataFrame({’'A’" : [’ foo’, 'bar’, ’'foo’, ’'bar’,
e "foo’, ’'bar’, ’'foo’, "foo’],
e "B’ : ['one’, 'one’, "two’, ’'three’,
e "two’, ’'two’, ’'one’, "three’],
et "C’ : randn(8), ’'D’ : randn(8)})

In [453]: df

Out [453]:

A B C D
0 foo one 0.469112 -0.861849
1 bar one —-0.282863 -2.104569
2 foo two —-1.509059 -0.494929
3 bar three -1.135632 1.071804
4 foo two 1.212112 0.721555
5 bar two -0.173215 -0.706771
6 foo one 0.119209 -1.039575
7 foo three -1.044236 0.271860

We could naturally group by either the A or B columns or both:

In [454]: grouped = df.groupby (’'A")
In [455]: grouped = df.groupby ([’A’, 'B’])

These will split the DataFrame on its index (rows). We could also split by the columns:

In [456]: def get_letter_type(letter):
e if letter.lower () in "aeiou’:
PR return ’'vowel’
else:
et return ’'consonant’

In [457]: grouped = df.groupby(get_letter_type, axis=1)

Starting with 0.8, pandas Index objects now supports duplicate values. If a non-unique index is used as the group key
in a groupby operation, all values for the same index value will be considered to be in one group and thus the output
of aggregation functions will only contain unique index values:

In [458]: 1st = [1, 2, 3, 1, 2, 3]
In [459]: s = Series([1, 2, 3, 10, 20, 30], 1st)
In [460]: grouped = s.groupby(level=0)

In [461]: grouped.first ()
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Out [461]
1 1
2 2
3 3

In [462]: grouped.last /()

Oout [462]:
1 10
2 20
3 30

In [463]: grouped.sum()

Oout [463]:
1 11
2 22
3 33

Note that no splitting occurs until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid
mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t
be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

10.1.1 GroupBy object attributes

The groups attribute is a dict whose keys are the computed unique groups and corresponding values being the axis
labels belonging to each group. In the above example we have:

In [464]: df.groupby (’A’) .groups
Out[464]: {'bar’: [1, 3, 5], "foo’: [0, 2, 4, 6, 7]}

In [465]: df.groupby(get_letter_type, axis=1) .groups
Out[465]: {’consonant’: [’'B’", ’'C’, 'D’'], ’'vowel’: [’A"]}

Calling the standard Python 1en function on the GroupBy object just returns the length of the groups dict, so it is
largely just a convenience:

In [466]: grouped = df.groupby([’A’, "B’])

In [467]: grouped.groups

out [467] :

{("bar’, 'one’): [11,
("bar’, "three’): [3],
("bar’, 'two’): [5],
(" foo’, ’'one’): [O,
("foo’, "three’): [7],
(" foo’, "two’): [2, 4]}

In [468]: len(grouped)
Out [468]: 6

By default the group keys are sorted during the groupby operation. You may however pass sort ‘=" ‘False for
potential speedups:

In [469]: df2 = DataFrame({’X’ : ['B’, 'B’, 'A’, "A"1, 'Y’ = [1, 2, 3, 41})
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In [470]: df2.groupby([’X"], sort=True) .sum/()

Oout [470] :
Y

X

A 7

B 3

In [471]: df2.groupby([’'X’], sort=False).sum()

out[471]:
Y

X

B 3

A 7

10.1.2 GroupBy with Multilndex

With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.

In [472]: s

out[472]:

first second

bar one -0.424972
two 0.567020

baz one 0.276232
two -1.087401

foo one -0.673690
two 0.113648

qux one -1.478427
two 0.524988

In [473]: grouped = s.groupby(level=0)

In [474]: grouped.sum/()

Out[474]:

first

bar 0.142048
baz -0.811169
foo -0.560041
qux -0.953439

If the Multilndex has names specified, these can be passed instead of the level number:

In [475]: s.groupby(level='"second’) .sum()

out [475]:

second

one -2.300857
two 0.118256

The aggregation functions such as sum will take the level parameter directly. Additionally, the resulting index will be
named according to the chosen level:

In [476]: s.sum(level='second’)

out[476]:

second

one -2.300857
two 0.118256

Also as of v0.6, grouping with multiple levels is supported.
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In [477]: s

out [477]:

first second third

bar doo one 0.404705
two 0.577046

baz bee one -1.715002
two -1.039268

foo bop one -0.370647
two -1.157892

qux bop one -1.344312
two 0.844885

In [478]: s.groupby (level=[’first’,’second’]) .sum()

out[478]:

first second

bar doo 0.981751
baz bee -2.754270
foo bop -1.528539
qux bop -0.499427

More on the sum function and aggregation later.

10.1.3 DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different
for each of the columns. Thus, using [ ] similar to getting a column from a DataFrame, you can do:

In [479]: grouped = df.groupby ([’A’])

In [480]: grouped_C = grouped[’C’]

In [481]: grouped_D = grouped[’'D’]

This is mainly syntactic sugar for the alternative and much more verbose:
In [482]: df[’C’].groupby (df[’A’])
Out [482]: <pandas.core.groupby.SeriesGroupBy at 0x116£763d0>

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

10.2 lterating through groups

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to
itertools.groupby:

In [483]: grouped = df.groupby (’'A’)

In [484]: for name, group in grouped:
et print name
et print group

A B c D
1 Dbar one -0.282863 -2.104569
3 bar three -1.135632 1.071804
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5 bar two -0.173215 -
foo

A B C
0 foo one 0.469112 -
2 foo two -1.509059 -
4 foo two 1.212112
6 foo one 0.119209 -
7 foo three -1.044236

0.706771

D
0.861849
0.494929
0.721555
1.039575
0.271860

In the case of grouping by multiple keys, the group name will be a tuple:

In [485]: for name, group in df.groupby ([’A’, "B’]):
...... print name
...... print group

("bar’, ’one’)

A B C D

1 bar one -0.282863 —-2.104569

("bar’, ’"three’)

A B C D

3 bar three -1.135632 1.071804

("bar’, "two’)

A B C D

5 bar two -0.173215 -0.706771

(" foo’, ’"one’)

A B C D

0 foo one 0.469112 -0.861849

6 foo one 0.119209 -1.039575

(" foo’, ’"three’)

A B C D

7 foo three -1.044236 0.27186

(" foo’, "two’)

A B C D

2 foo two -1.509059 -0.494929

4 foo two 1.212112 0.721555

It’s standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: for
k2), group in grouped:.

(k1,

10.3 Aggregation

Once the GroupBy object has been created, several methods are available to perform a computation on the grouped
data. An obvious one is aggregation via the aggregate or equivalently agg method:

In [486]: grouped = df.groupby (’'A’)
In [487]: grouped.aggregate (np.sum)
out [487]:

C D
A

bar -1.591710 -1.739537
foo -0.752861 -1.402938

In [488]: grouped = df.groupby([’A’, 'B’])

In [489]: grouped.aggregate (np.sum)

Oout [489]:
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C D

A B
bar one -0.282863 -2.104569
three -1.135632 1.071804
two -0.173215 -0.706771
foo one 0.588321 -1.901424
three -1.044236 0.271860
two -0.296946 0.226626

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In
the case of multiple keys, the result is a Multilndex by default, though this can be changed by using the as_index
option:

In [490]: grouped = df.groupby([’A’, 'B’], as_index=False)

In [491]: grouped.aggregate (np.sum)

Oout [491]:

A B C D
0 Dbar one —-0.282863 —-2.104569
1 bar three -1.135632 1.071804
2 bar two -0.173215 -0.706771
3 foo one 0.588321 -1.901424
4 foo three -1.044236 0.271860
5 foo two -0.296946 0.226626

In [492]: df.groupby(’'A’, as_index=False) .sum()
Oout [492]:
A C D
0 bar -1.591710 -1.739537
1 foo -0.752861 -1.402938

Note that you could use the reset_index DataFrame function to achieve the same result as the column names are
stored in the resulting MultiIndex:

In [493]: df.groupby ([’A’, 'B’]).sum().reset_index()

out [493]:

A B C D
0 Dbar one —-0.282863 -2.104569
1 bar three -1.135632 1.071804
2 bar two -0.173215 -0.706771
3 foo one 0.588321 -1.901424
4 foo three -1.044236 0.271860
5 foo two -0.296946 0.226626

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size
method. It returns a Series whose index are the group names and whose values are the sizes of each group.

In [494]: grouped.size()

out[494]:

A B

bar one 1
three 1
two 1

foo one 2
three 1
two 2
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10.3.1 Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

In [495]: grouped = df.groupby ('A’)

In [496]: grouped[’C’].agg([np.sum, np.mean, np.std])
Out [496] :
sum mean std
A
bar -1.591710 -0.530570 0.526860
foo -0.752861 -0.150572 1.113308

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function
object) will be used.

In [497]: grouped[’D’].agg({’resultl’” : np.sum,
..... : "result2’ : np.mean})
out [497]:
result2 resultl
A
bar -0.579846 -1.739537
foo -0.280588 -1.402938

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated
result with a hierarchical index:

In [498]: grouped.agg([np.sum, np.mean, np.std])
out [498]:
C D
sum mean std sum mean std
A
bar -1.591710 -0.530570 0.526860 -1.739537 -0.579846 1.591986
foo -0.752861 -0.150572 1.113308 -1.402938 -0.280588 0.753219

Passing a dict of functions has different behavior by default, see the next section.

10.3.2 Applying different functions to DataFrame columns

By passing a dict to aggregate you can apply a different aggregation to the columns of a DataFrame:

In [499]: grouped.agg({’C’ : np.sum,
et "D’ : lambda x: np.std(x, ddof=1)})
Out [499]:
C D
A

bar -1.591710 1.591986
foo -0.752861 0.753219

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or
available via dispatching:

In [500]: grouped.agg({’C’ : ’sum’, ’'D’ : ’"std’})
Out [500] :

¢} D
A
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bar -1.591710 1.591986
foo -0.752861 0.753219

10.3.3 Cython-optimized aggregation functions

Some common aggregations, currently only sum, mean, and std, have optimized Cython implementations:

In [501]: df.groupby (’A’).sum()
Out [5017:
C D
A
bar -1.591710 -1.739537
foo -0.752861 -1.402938

In [502]: df.groupby([’A’, 'B’]).mean()

Out [502] :
C D
A B
bar one -0.282863 -2.104569
three -1.135632 1.071804
two -0.173215 -0.706771
foo one 0.294161 -0.950712
three -1.044236 0.271860
two -0.148473 0.113313

Of course sum and mean are implemented on pandas objects, so the above code would work even without the special
versions via dispatching (see below).

10.4 Transformation

The t ransform method returns an object that is indexed the same (same size) as the one being grouped. Thus, the
passed transform function should return a result that is the same size as the group chunk. For example, suppose we
wished to standardize the data within each group:

In [503]: index = date_range(’10/1/1999’, periods=1100)
In [504]: ts = Series(np.random.normal (0.5, 2, 1100), index)
In [505]: ts = rolling_mean(ts, 100, 100).dropna/()

In [506]: ts.head()

Out [506] :

2000-01-08 0.536925
2000-01-09 0.494448
2000-01-10 0.496114
2000-01-11 0.443475
2000-01-12 0.474744
Freq: D

In [507]: ts.tail()

Out [507] :

2002-09-30 0.978859
2002-10-01 0.994704
2002-10-02 0.953789
2002-10-03 0.932345
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2002-10-04 0.915581
Freq: D

In [508]: key = lambda x: x.year
In [509]: zscore = lambda x: (x — x.mean()) / x.std()
In [510]: transformed = ts.groupby (key) .transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily
check:

# Original Data
In [511]: grouped = ts.groupby (key)

In [512]: grouped.mean ()

Out [5127]:

2000 0.416344
2001 0.416987
2002 0.599380

In [513]: grouped.std()

Out [5137]:

2000 0.174755
2001 0.309640
2002 0.266172

# Transformed Data
In [514]: grouped_trans = transformed.groupby (key)

In [515]: grouped_trans.mean ()

Out [5157]:

2000 -4.784164e-16
2001 -3.832551e-16
2002 -3.006019%9e-16

In [516]: grouped_trans.std()

Out [516]:
2000 1
2001 1
2002 1

We can also visually compare the original and transformed data sets.

In [517]: compare = DataFrame ({’Original’: ts, ’'Transformed’: transformed})

In [518]: compare.plot ()
Out [518]: <matplotlib.axes.AxesSubplot at 0x116£f49a50>
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— Original
— Transformed

.Jan... Jul.. .Jan... Jul.
2001 2002

Another common data transform is to replace missing data with the group mean.

In [519]: data_df

Out [519]:

<class ’'pandas.core.frame.DataFrame’>
Int64Index: 1000 entries, 0 to 999
Data columns:

A 908 non-null values
B 953 non-null values
C 820 non-null values

dtypes: float64(3)

In [520]: countries = np.array([’US’, 'UK’, "GR’, "JP’1])
In [521]: key = countries[np.random.randint (0, 4, 1000)]
In [522]: grouped = data_df.groupby (key)

# Non—-NA count in each group
In [523]: grouped.count ()
Out [523]:
A B C
GR 219 223 194
Jp 238 250 211
UK 228 239 213
Us 223 241 202

In [524]: f = lambda x: x.fillna(x.mean())
In [525]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains
no NAs.

In [526]: grouped_trans = transformed.groupby (key)

In [527]: grouped.mean() # original group means
Out [527] :
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A B C
GR 0.093655 -0.004978 -0.049883
JpP -0.067605 0.025828 0.006752
UK -0.054246 0.031742 0.068974
US 0.084334 -0.013433 0.056589

In [528]: grouped_trans.mean() # transformation did not change group means
Oout [528]:
A B C
GR 0.093655 -0.004978 -0.049883
JP -0.067605 0.025828 0.006752
UK -0.054246 0.031742 0.068974
US 0.084334 -0.013433 0.056589

In [529]: grouped.count () # original has some missing data points
out [529]:
A B C

GR 219 223 194
Jp 238 250 211
UK 228 239 213
Uus 223 241 202

In [530]: grouped_trans.count () # counts after transformation
Out [530] :
A B C

GR 234 234 234
Jp 264 264 264
UK 251 251 251
Us 251 251 251

In [531]: grouped_trans.size() # Verify non-NA count equals group size
Out [531]:
GR 234
Jp 264
UK 251
Us 251

10.5 Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group.
This is pretty easy to do by passing lambda functions:

In [532]: grouped = df.groupby (’'A’)

In [533]: grouped.agg(lambda x: x.std())
Oout [533]:
B ¢} D
A
bar NaN 0.526860 1.591986
foo NaN 1.113308 0.753219

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming
cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

In [534]: grouped.std()
Oout [5347]:
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C D
A
bar 0.526860 1.591986
foo 1.113308 0.753219

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed
arguments and invokes the function with any arguments on each group (in the above example, the st d function). The
results are then combined together much in the style of agg and transform (it actually uses apply to infer the
gluing, documented next). This enables some operations to be carried out rather succinctly:

In [535]: tsdf = DataFrame (randn (1000, 3),
..... : index=date_range (’1/1/2000’, periods=1000),
et columns=["A", ’'B’, 'C’'1])

In [536]: tsdf.ix[::2] = np.nan
In [537]: grouped = tsdf.groupby(lambda x: x.year)

In [538]: grouped.fillna (method='pad’)

Oout [538]:

<class ’'pandas.core.frame.DataFrame’>

DatetimeIndex: 1000 entries, 2000-01-01 00:00:00 to 2002-09-26 00:00:00

Freg: D

Data columns:

A 998 non-null values
B 998 non-null values
C 998 non-null values

dtypes: float64(3)

In this example, we chopped the collection of time series into yearly chunks then independently called fillna on the
groups.

10.6 Flexible apply

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply
want GroupBy to infer how to combine the results. For these, use the apply function, which can be substituted for
both aggregate and t ransform in many standard use cases. However, apply can handle some exceptional use
cases, for example:

In [539]: df

Oout [539]:

A B C D
0 foo one 0.469112 -0.861849
1 bar one —-0.282863 —-2.104569
2 foo two -1.509059 -0.494929
3 bar three -1.135632 1.071804
4  foo two 1.212112 0.721555
5 bar two -0.173215 -0.706771
6 foo one 0.119209 -1.039575
7 foo three -1.044236 0.271860

In [540]: grouped = df.groupby ('A’)

# could also just call .describe()
In [541]: grouped[’C’].apply(lambda x: x.describe())
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Oout [5417:

A

bar count 3.000000
mean -0.530570
std 0.526860
min -1.135632
25% -0.709248
50% -0.282863
75% -0.228039
max -0.173215

foo count 5.000000
mean -0.150572
std 1.113308
min -1.509059
25% -1.044236
50% 0.119209
75% 0.469112
max 1.212112

The dimension of the returned result can also change:

In [542]: grouped = df.groupby ('A’)['C"]

In [543]: def f (group):
e return DataFrame ({’original’ : group,
FE "demeaned’ : group - group.meanf()})

In [544]: grouped.apply (f)
Out [544]:

demeaned original
0.619685 0.469112
0.247707 -0.282863
-1.358486 -1.509059
.605062 -1.135632
1.362684 1.212112
0.357355 -0.173215
0.269781 0.119209
-0.893664 -1.044236

~N o U W N O
|
o

10.7 Other useful features

10.7.1 Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:

In [545]: df

Out [5457] :

A B C D
0 foo one 0.469112 -0.861849
1 Dbar one —-0.282863 —-2.104569
2 foo two -1.509059 -0.494929
3 bar three -1.135632 1.071804
4 foo two 1.212112 0.721555
5 Dbar two -0.173215 -0.706771
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6 foo one 0.119209 -1.039575
7 foo three -1.044236 0.271860

Supposed we wished to compute the standard deviation grouped by the A column. There is a slight problem, namely
that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation
function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not
pose any problems:

In [546]: df.groupby (’'A’) .std()
Out [546] :
C D
A
bar 0.526860 1.591986
foo 1.113308 0.753219

10.7.2 NA group handling

If there are any NaN values in the grouping key, these will be automatically excluded. So there will never be an “NA
group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway
(and supporting it was an implementation headache).

10.7.3 Grouping with ordered factors

Categorical variables represented as instance of pandas’s Factor class can be used as group keys. If so, the order of
the levels will be preserved:

In [547]: data = Series (np.random.randn(100))
In [548]: factor = gcut (data, [0, .25, .5, .75, 1.])

In [549]: data.groupby (factor) .mean ()

Oout [549]:

[-3.713, -0.815] -1.432664
(-0.815, 0.105] -0.306693
(0.105, 0.609] 0.356789
(0.609, 2.154] 1.314491
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CHAPTER
ELEVEN

MERGE, JOIN, AND CONCATENATE

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various
kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

11.1 Concatenating objects

The concat function (in the main pandas namespace) does all of the heavy lifting of performing concatenation
operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other

axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of concat and what it can do, here is a simple example:

In [829]: df = DataFrame (np.random.randn (10,

In [830]: df
Out [830] :
0 1

O 00 J o U WN B O
|
o

# break it into pieces

In [831]: pieces = [df[:3

In [832]: concatenated =

In [833]: concatenated
Out [833]:

0 1
0 0.469112 -0.282863 -1.
1 1.212112 -0.173215 0.
2 -0.861849 -2.104569 -0.
3 0.721555 -0.706771 -1.
4 -0.424972 0.567020 0.
5 -0.673690 0.113648 -1.
6 0.404705 0.577046 -1.

0.469112 -0.282863 -1.
1.212112 -0.173215 O.
-0.861849 -2.104569 -0.
0.721555 -0.706771 -1.
.424972 0.567020 0.
-0.673690 0.113648 -1.
0.404705 0.577046 -1.
-0.370647 -1.157892 -1.
1.075770 -0.109050 1.
0.357021 -0.674600 -1.

2
509059
119209
494929
039575
276232
478427
715002
344312
643563
776904

1, df[3:7], df[7:

3

.135632
.044236
.071804
.271860
.087401
.524988
.039268
.844885
.469388
.968914

concat (pieces)

2
509059
119209
494929
039575
276232
478427
715002

3

.135632
.044236
.071804
.271860
.087401
.524988
.039268
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7 -0.370647 -1.157892 -1.344312 0.844885
8 1.075770 -0.109050 1.643563 -1.469388
9 0.357021 -0.674600 -1.776904 -0.968914

Like its sibling function on ndarrays, numpy.concatenate, pandas.concat takes a list or dict of
homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other
axes”:

concat (objs, axis=0, join='outer’, join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False)

* objs: list or dict of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the
keys argument, unless it is passed, in which case the values will be selected (see below)

e axis: {0, 1, ...}, default 0. The axis to concatenate along

* join: {‘inner’, ‘outer’}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner
for intersection

* join_axes: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing
inner/outer set logic

* keys: sequence, default None. Construct hierarchical index using the passed keys as the outermost level If
multiple levels passed, should contain tuples.

e levels: list of sequences, default None. If keys passed, specific levels to use for the resulting Multilndex.
Otherwise they will be inferred from the keys

* names: list, default None. Names for the levels in the resulting hierarchical index

e verify_integrity: boolean, default False. Check whether the new concatenated axis contains duplicates.
This can be very expensive relative to the actual data concatenation

e ignore_index : boolean, default False. If True, do not use the index values on the concatenation axis. The
resulting axis will be labeled O, ..., n - 1. This is useful if you are concatenating objects where the concatenation
axis does not have meaningful indexing information.

Without a little bit of context and example many of these arguments don’t make much sense. Let’s take the above
example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can
do this using the keys argument:

In [834]: concatenated = concat (pieces, keys=[’first’, ’second’, ’third’])

In [835]: concatenated
Out [835]:

0 1 2 3
0.469112 -0.282863 -1.509059 -1.135632
1.212112 -0.173215 0.119209 -1.044236

-0.861849 -2.104569 -0.494929 1.071804
0.721555 -0.706771 -1.039575 0.271860
-0.424972 0.567020 0.276232 -1.087401

first O
1
2
3
4
5 -0.673690 0.113648 —-1.478427 0.524988
6
7
8
9

second

0.404705 0.577046 -1.715002 -1.039268
-0.370647 -1.157892 -1.344312 0.844885
1.075770 -0.109050 1.643563 -1.469388
0.357021 -0.674600 -1.776904 -0.968914

third

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index.
This means that we can now do stuff like select out each chunk by key:
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In [836]: concatenated.ix[’second’]

Out [836] :

0 1 2 3
3 0.721555 -0.706771 -1.039575 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 -0.673690 0.113648 —-1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

11.1.1 Set logic on the other axes

When gluing together multiple DataFrames (or Panels or...), for example, you have a choice of how to handle the other
axes (other than the one being concatenated). This can be done in three ways:

* Take the (sorted) union of them all, join='" outer’. This is the default option as it results in zero information
loss.

¢ Take the intersection, join='inner’.

» Use a specific index (in the case of DataFrame) or indexes (in the case of Panel or future higher dimensional
objects), i.e. the join_axes argument

Here is a example of each of these methods. First, the default join='outer’ behavior:

In [837]: from pandas.util.testing import rands

In [838]: df = DataFrame (np.random.randn (10, 4), columns=['a’, ’'b’, ’'c’, 7d'1,
e index=[rands (5) for _ in xrange (10)])

In [839]: df
Out [839]:

a b ¢} d
PEolH -1.294524 0.413738 0.276662 —-0.472035
cijfax -0.013960 -0.362543 -0.006154 -0.923061
ksKKF 0.895717 0.805244 -1.206412 2.565646
k20JM 1.431256 1.340309 -1.170299 -0.226169
7ulbi 0.410835 0.813850 0.132003 -0.827317
uab60 -0.076467 -1.187678 1.130127 -1.436737
gg3fr -1.413681 1.607920 .024180 0.569605
Dwudw 0.875906 -2.211372 .974466 -2.006747
0J9fo -0.410001 -0.078638 .545952 -1.219217
ivhkl -1.226825 0.769804 -1.281247 -0.727707

= o O

In [840]: concat ([df.ix[:7, [’a’, ’'b’]], df.ix[2:-2, ['c’]],
-7

e df . ix[ :, [7d711], axis=1)
Oout [8407 :
a b c d
0J9fo NaN NaN NaN -1.219217
7ulbi 0.410835 0.813850 0.132003 -0.827317
Dwudw NaN NaN 0.974466 -2.006747
PEolH -1.294524 0.413738 NaN NaN
cjfax -0.013960 -0.362543 NaN NaN
gg3fr -1.413681 1.607920 1.024180 0.569605
ivhk1l NaN NaN NaN -0.727707

k20JM 1.431256 1.340309 -1.170299 -0.226169
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ksKKEF 0.895717 0.805244 -1.206412 NaN
uab60 -0.076467 -1.187678 1.130127 -1.436737

Note that the row indexes have been unioned and sorted. Here is the same thing with join=' inner’:

In [841]: concat ([df.ix[:7, ['a’, '"b’]1], df.ix[2:-2, ['c'"]1],
e df .ix[-7

:, [7d”111, axis=1, join=’inner’)

a b c d
k20JM 1.431256 1.340309 -1.170299 -0.226169
7ulbi 0.410835 0.813850 0.132003 -0.827317
uab60 -0.076467 -1.187678 1.130127 -1.436737
gg3fr -1.413681 1.607920 1.024180 0.569605

Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:

In [842]: concat ([df.ix[:7, ['a’, '"b’]1], df.ix[2:-2, ['c’]1],
: -7

...... df . ix[ :, [7d’]11]1, axis=1, join_axes=[df.index])
Out [842]:
a b c d
PEolH -1.294524 0.413738 NaN NaN
cjfax -0.013960 -0.362543 NaN NaN
ksKKF 0.895717 0.805244 -1.206412 NaN

k20JM 1.431256 1.340309 -1.170299 -0.226169
7ulbi 0.410835 0.813850 0.132003 -0.827317

uab60 -0.076467 -1.187678 1.130127 -1.436737
gg3fr -1.413681 1.607920 1.024180 0.569605
Dwudw NaN NaN 0.974466 -2.006747
0J9fo NaN NaN NaN -1.219217
ivhk1l NaN NaN NaN -0.727707

11.1.2 Concatenating using append

A useful shortcut to concat are the append instance methods on Series and DataFrame. These methods actually
predated concat. They concatenate along axis=0, namely the index:

In [843]: s = Series(randn(10), index=np.arange(10))
In [844]: sl = s[:5] # note we’re slicing with labels here, so 5 is included

In [845]: s2

s[6:]

In [846]: sl.append(s2)
Oout [846] :
-0.121306
-0.097883
0.695775
0.341734
0.959726
-0.619976
0.149748
-0.732339
0.687738

O 0w J o d W+ O

In the case of DataFrame, the indexes must be disjoint but the columns do not need to be:
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In [847]: df = DataFrame(randn (6, 4), index=date_range(’1/1/2000’, periods=6),
FE columns=["A", 'B’, 'C’", 'D"1])

In [848]: dfl df.ix[:3]

In [849]: df2 df.ix[3:, :3]
In [850]: df1l
Out [8507 :

A B C D
2000-01-01 0.176444 0.403310 -0.154951 0.301624
2000-01-02 -2.179861 -1.369849 -0.954208 1.462696
2000-01-03 -1.743161 -0.826591 -0.345352 1.314232

In [851]: df2
Out [851]:

A B C
2000-01-04 0.690579 0.995761 2.396780
2000-01-05 3.357427 -0.317441 -1.236269
2000-01-06 -0.487602 -0.082240 -2.182937

In [852]: dfl.append(df2)
Oout [852]:

A B C D
2000-01-01 0.176444 0.403310 -0.154951 0.301624
2000-01-02 -2.179861 -1.369849 -0.954208 1.462696
2000-01-03 -1.743161 -0.826591 -0.345352 1.314232

2000-01-04 0.690579 0.995761 2.396780 NaN
2000-01-05 3.357427 -0.317441 -1.236269 NaN
2000-01-06 -0.487602 —-0.082240 -2.182937 NaN

append may take multiple objects to concatenate:

In [853]: dfl = df.ix[:2]

In [854]: df2 df.ix[2:4]

In [855]: df3 df.ix[4:]

In [856]: dfl.append([df2,d£f3])

Oout [856] :

A B C D
2000-01-01 0.176444 0.403310 -0.154951 0.301624
2000-01-02 -2.179861 -1.369849 -0.954208 1.462696
2000-01-03 -1.743161 -0.826591 -0.345352 1.314232
2000-01-04 0.690579 0.995761 2.396780 0.014871
2000-01-05 3.357427 -0.317441 -1.236269 0.896171
2000-01-06 -0.487602 -0.082240 -2.182937 0.380396

Note: Unlike /ist.append method, which appends to the original list and returns nothing, append here does not
modify df1 and returns its copy with df2 appended.
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11.1.3 Ignoring indexes on the concatenation axis

For DataFrames which don’t have a meaningful index, you may wish to append them and ignore the fact that they may
have overlapping indexes:

In [857]: dfl = DataFrame (randn (6, 4), columns=['A’, 'B’, 'C’, 'D’])
In [858]: df2 = DataFrame (randn (3, 4), columns=['A’, 'B’, 'C’, 'D’])

In [859]: dfl

Out [859] :

A B C D
0 0.084844 0.432390 1.519970 -0.493662
1 0.600178 0.274230 0.132885 -0.023688
2 2.410179 1.450520 0.206053 -0.251905
3 -2.213588 1.063327 1.266143 0.299368
4 -0.863838 0.408204 -1.048089 -0.025747
5 -0.988387 0.094055 1.262731 1.289997
In [860]: df2
Out [860] :

A B C D

0 0.082423 -0.055758 0.536580 -0.489682
1 0.369374 -0.034571 -2.484478 -0.2814¢61
2 0.030711 0.109121 1.126203 -0.977349

To do this, use the ignore_index argument:

In [861]: concat ([dfl, df2], ignore_index=True)

Out [861]:

A B C D
0 0.084844 0.432390 1.519970 -0.493662
1 0.000178 0.274230 0.132885 -0.023688
2 2.410179 1.450520 0.206053 -0.251905
3 -2.213588 1.063327 1.266143 0.299368
4 -0.863838 0.408204 -1.048089 -0.025747
5 -0.988387 0.094055 1.262731 1.289997
6 0.082423 -0.055758 0.536580 -0.489682
7 0.369374 -0.034571 -2.484478 -0.2814061
8 0.030711 0.109121 1.126203 -0.977349

This is also a valid argument to DataFrame . append:

In [862]: dfl.append(df2, ignore_index=True)

Oout [862] :

A B C D
0 0.084844 0.432390 1.519970 -0.493662
1 0.0600178 0.274230 0.132885 -0.023688
2 2.410179 1.450520 0.206053 -0.251905
3 -2.213588 1.063327 1.266143 0.299368
4 -0.863838 0.408204 -1.048089 -0.025747
5 -0.988387 0.094055 1.262731 1.289997
6 0.082423 -0.055758 0.536580 -0.489682
7 0.369374 -0.034571 -2.484478 -0.2814061
8 0.030711 0.109121 1.126203 -0.977349
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11.1.4 More concatenating with group keys

Let’s consider a variation on the first example presented:

In [863]: df = DataFrame (np.random.randn (10, 4))

In [864]: df

Out [864] :
0 1 2 3
1.474071 -0.064034 -1.282782 0.781836
-1.071357 0.441153 2.353925 0.583787
0.221471 -0.744471 0.758527 1.729689
-0.964980 -0.845696 -1.340896 1.846883
-1.328865 1.682706 -1.717693 0.888782
.228440 0.901805 1.171216 0.520260

-1.197071 -1.066969 -0.303421 -0.858447
0.306996 -0.028665 0.384316 1.574159
1.588931 0.476720 0.473424 -0.242861
-0.014805 -0.284319 0.650776 -1.461665

O 00 J o U WDNBHFE O
o

# break it into pieces
In [865]: pieces = [df.ix[:, [0, 111, df.ix[:, [2]], df.ix[:, [311]

In [866]: result = concat (pieces, axis=1, keys=['one’, ’"two’, ’three’])

In [867]: result

Out [867] :
one two three
0 1 2 3
1.474071 -0.064034 -1.282782 0.781836
-1.071357 0.441153 2.353925 0.583787
0.221471 -0.744471 0.758527 1.729689
-0.964980 -0.845696 —-1.340896 1.846883
.328865 1.682706 -1.717693 0.888782
0.228440 0.901805 1.171216 0.520260

-1.197071 -1.066969 -0.303421 -0.858447
0.306996 -0.028665 0.384316 1.574159
1.588931 0.476720 0.473424 -0.2428¢61
-0.014805 -0.284319 0.650776 -1.461665

O 00 J o U WNEFE O
|
[y

You can also pass a dict to concat in which case the dict keys will be used for the keys argument (unless other keys
are specified):

In [868]: pieces = {’one’: df.ix[:, [0, 111,
..... : "two’: df.ix[:, [2]],
e "three’: df.ix[:, [3]1]}

In [869]: concat (pieces, axis=1)

Out [869]:
one three two
0 1 3 2
0 1.474071 -0.064034 0.781836 —-1.282782
1 -1.071357 0.441153 0.583787 2.353925
2 0.221471 -0.744471 1.729689 0.758527
3 -0.964980 -0.845696 1.846883 —-1.340896
4 -1.328865 1.682706 0.888782 —-1.717693
5 0.228440 0.901805 0.520260 1.171216
6 -1.197071 -1.066969 -0.858447 -0.303421
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7 0.306996 -0.028665 1.574159 0.384316
8 1.588931 0.476720 -0.242861 0.473424
9 -0.014805 -0.284319 -1.461665 0.650776

In [870]: concat (pieces, keys=[’three’, "two’])

Oout [8707]:
2 3
three 0 NaN 0.781836
1 NaN 0.583787
2 NaN 1.729689
3 NaN 1.846883
4 NaN 0.888782
5 NaN 0.520260
6 NaN -0.858447
7 NaN 1.574159
8 NaN -0.242861
9 NaN -1.461665
two 0 -1.282782 NaN
1 2.353925 NaN
2 0.758527 NaN
3 -1.340896 NaN
4 -1.717693 NaN
5 1.171216 NaN
6 -0.303421 NaN
7 0.384316 NaN
8 0.473424 NaN
9 0.650776 NaN

The Multilndex created has levels that are constructed from the passed keys and the columns of the DataFrame pieces:

In [871]: result.columns.levels
Out[871]: [Index([one, two, three], dtype=object), Int64Index ([0, 1, 2, 31)]

If you wish to specify other levels (as will occasionally be the case), you can do so using the 1evels argument:

In [872]: result = concat (pieces, axis=1, keys=[’one’, ’'two’, ’'three’],
..... : levels=[[’'three’, ’'two’, ’'one’, ’"zero’]l],
et names=["group_key’])

In [873]: result

Out [873]:
group_key one two three
0 1 2 3
0 1.474071 -0.064034 -1.282782 0.781836
1 -1.071357 0.441153 2.353925 0.583787
2 0.221471 -0.744471 0.758527 1.729689
3 -0.964980 -0.845696 —-1.340896 1.846883
4 -1.328865 1.682706 -1.717693 0.888782
5 0.228440 0.901805 1.171216 0.520260
6 -1.197071 -1.066969 -0.303421 -0.858447
7 0.306996 -0.028665 0.384316 1.574159
8 1.588931 0.476720 0.473424 -0.242861
9 -0.014805 -0.284319 0.650776 -1.461665

In [874]: result.columns.levels
Out[874]: [Index([three, two, one, zero], dtype=object), Int64Index ([0, 1, 2, 31)]

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a
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categorical variable is meaningful.

11.1.5 Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by
passing a Series or dict to append, which returns a new DataFrame as above.

In [875]: df = DataFrame (np.random.randn (8, 4), columns=["A’,’B’,’C’,’D"])

In [876]: df

Out [876] :

A B C D
0 -1.137707 -0.891060 -0.693921 1.613616
1 0.464000 0.227371 -0.496922 0.306389
2 —-2.290613 -1.134623 -1.561819 -0.260838
3 0.281957 1.523962 -0.902937 0.068159
4 -0.057873 -0.368204 -1.144073 0.861209
5 0.800193 0.782098 -1.069094 -1.099248
6 0.255269 0.009750 0.661084 0.379319
7 -0.008434 1.952541 -1.056652 0.533946

In [877]: s = df.xs(3)

In [878]: df.append(s, ignore_index=True)

Oout [878]:

A B C D
0 -1.137707 -0.891060 -0.693921 1.613616
1 0.464000 0.227371 -0.496922 0.306389
2 =2.290613 -1.134623 -1.561819 -0.260838
3 0.281957 1.523962 -0.902937 0.068159
4 -0.057873 -0.368204 -1.144073 0.861209
5 0.800193 0.782098 -1.069094 -1.0992438
6 0.255269 0.009750 0.661084 0.379319
7 -0.008434 1.952541 -1.056652 0.533946
8 0.281957 1.523962 -0.902937 0.068159

You should use ignore_index with this method to instruct DataFrame to discard its index. If you wish to preserve
the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

In [879]: df = DataFrame (np.random.randn (5, 4),
..... : columns=[’foo’, ’"bar’, ’'baz’, "qux’])

In [880]: dicts = [{’foo’: 1, 'bar’: 2, ’'baz’: 3, ’'peekaboo’: 4},
..... : {"foo’": 5, ’"bar’: 6, 'baz’: 7, 'peekaboo’: 8}]

In [881]: result = df.append(dicts, ignore_index=True)

In [882]: result

Oout [882]:

bar baz foo peekaboo qux
0 0.040403 -0.507516 -1.226970 NaN -0.230096
1 -1.934370 -1.652499 0.394500 NaN 1.488753
2 0.576897 1.146000 -0.896484 NaN 1.487349
3 2.121453 0.597701 0.604603 NaN 0.563700
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4 -1.057909 1.375020 0.967661 NaN -0.928797
5 2.000000 3.000000 1.000000 4 NaN
6 6.000000 7.000000 5.000000 8 NaN

11.2 Database-style DataFrame joining/merging

pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational
databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better)
than other open source implementations (like base: :merge.data.frame in R). The reason for this is careful
algorithmic design and internal layout of the data in DataFrame.

pandas provides a single function, merge, as the entry point for all standard database join operations between
DataFrame objects:

merge (left, right, how=’left’, on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=(’".x", ’".y"), copy=True)

Here’s a description of what each argument is for:
* left: A DataFrame object

e right: Another DataFrame object

e on: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed
and left_index and right_index are False, the intersection of the columns in the DataFrames will be
inferred to be the join keys

e left_on: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length
equal to the length of the DataFrame

e right_on: Columns from the right DataFrame to use as keys. Can either be column names or arrays with
length equal to the length of the DataFrame

e left_index: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a
DataFrame with a Multilndex (hierarchical), the number of levels must match the number of join keys from the
right DataFrame

* right_index: Same usage as left_index for the right DataFrame

e how: One of " left’, 'right’, 'outer’, ' inner’. Defaults to inner. See below for more detailed
description of each method

* sort: Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False
will improve performance substantially in many cases

* suffixes: A tuple of string suffixes to apply to overlapping columns. Defaultsto (’ .x", ’.y’).

e copy: Always copy data (default True) from the passed DataFrame objects, even when reindexing is not
necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where
copying can be avoided are somewhat pathological but this option is provided nonetheless.

merge is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling
DataFrame being implicitly considered the left object in the join.

The related DataFrame . join method, uses me rge internally for the index-on-index and index-on-column(s) joins,
but joins on indexes by default rather than trying to join on common columns (the default behavior for merge). If you
are joining on index, you may wish to use DataFrame. join to save yourself some typing.
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11.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join opera-
tions between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very
important to understand:

* one-to-one joins: for example when joining two DataFrame objects on their indexes (which must contain unique
values)

* many-to-one joins: for example when joining an index (unique) to one or more columns in a DataFrame

* many-to-many joins: joining columns on columns.

Note: When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame
objects will be discarded.

It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational
algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian
product of the associated data. Here is a very basic example with one unique key combination:

In [883]: left = DataFrame({’key’: [’foo’, "foo’], ’"lval’: [1, 21})
In [884]: right = DataFrame({’key’: [’foo’, "foo’], ’"xrval’: [4, 51})

In [885]: left

Oout [885]:
key 1lval

0 foo 1

1 foo 2

In [886]: right

Oout [886] :
key rval

0 foo 4

1 foo 5

In [887]: merge(left, right, on="key’)

out [887]:

key 1lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

Here is a more complicated example with multiple join keys:

In [888]: left = DataFrame({’keyl’: [’foo’, ’foo’, ’'bar’],
..... : "key2’: ['one’, ’"two’, ’'one’],
e "lval’: [1, 2, 31})

In [889]: right = DataFrame ({’keyl’: [’foo’, ’"foo’, ’'bar’, ’'bar’],
..... : "key2’: ['one’, ’'one’,
e "rval’: [4, 5, 6, T711})

"one’, ’"two’],

In [890]: merge(left, right, how=’outer’)
out [8907 :
keyl key2 1lval rval
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0 bar one 3 6
1 bar two NaN 7
2 foo one 1 4
3 foo one 1 5
4 foo two 2 NaN

In [891]: merge(left, right, how=’inner’)

Out [891]:

keyl key2 1lval rval
0 bar one 3 6
1 foo one 1 4
2 foo one 1 5

The how argument to merge specifies how to determine which keys are to be included in the resulting table. If a
key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a
summary of the how options and their SQL equivalent names:

Merge method SQL Join Name Description

left LEFT OUTER JOIN Use keys from left frame only

right RIGHT OUTER JOIN | Use keys from right frame only

outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames

Note that if using the index from either the left or right DataFrame (or both) using the 1eft_index/right_index
options, the join operation is no longer a many-to-many join by construction, as the index values are necessarily unique.
There will be some examples of this below.

11.2.2 Joining on index

DataFrame. join is a convenient method for combining the columns of two potentially differently-indexed
DataFrames into a single result DataFrame. Here is a very basic example:

In [892]: df = DataFrame (np.random.randn(8, 4), columns=["A’,’B’,’C’,’D"])
In [893]: dfl = df.ix[1:, ['A", "B"]]
In [894]: df2 = df.ix[:5, [’'C’, 'D’"1]1]

In [895]: dfl

Oout [895] :

A B
1 -2.461467 -1.553902
2 1.771740 -0.670027
3 -3.201750 0.792716
4 -0.747169 -0.309038
5 0.936527 1.255746
6 0.062297 -0.110388
7 0.077849 0.629498

In [896]: df2

Oout [896] :

C D
0 0.377953 0.493672
1 2.015523 -1.833722
2 0.049307 -0.521493
3 0.146111 1.903247
4 0.393876 1.861468
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5 —-2.655452 1.219492

In [897]: dfl.join(df2)

Oout [897]:

A B C D
1 -2.461467 -1.553902 2.015523 -1.833722
2 1.771740 -0.670027 0.049307 -0.521493
3 -3.201750 0.792716 0.146111 1.903247
4 -0.747169 -0.309038 0.393876 1.861468
5 0.936527 1.255746 -2.655452 1.219492
6 0.062297 -0.110388 NaN NaN
7 0.077849 0.629498 NaN NaN

In [898]: dfl.join(df2, how=’outer’)

out [898]:

A B C D
0 NaN NaN 0.377953 0.493672
1 -2.461467 -1.553902 2.015523 -1.833722
2 1.771740 -0.670027 0.049307 -0.521493
3 -3.201750 0.792716 0.146111 1.903247
4 -0.747169 -0.309038 0.393876 1.861468
5 0.936527 1.255746 -2.655452 1.219492
6 0.062297 -0.110388 NaN NaN
7 0.077849 0.629498 NaN NaN

In [899]: dfl.join(df2, how=’inner’)

Oout [899]:

A B C D
1 -2.461467 -1.553902 2.015523 -1.833722
2 1.771740 -0.670027 0.049307 -0.521493
3 -3.201750 0.792716 0.146111 1.903247
4 -0.747169 -0.309038 0.393876 1.861468
5 0.936527 1.255746 —-2.655452 1.219492

The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus
additional arguments instructing it to use the indexes:

In [900]: merge(dfl, df2, left_index=True, right_index=True, how=’'outer’)
Oout [900] :

A B C D
0 NaN NaN 0.377953 0.493672
1 -2.461467 -1.553902 2.015523 -1.833722
2 1.771740 -0.670027 0.049307 -0.521493
3 -3.201750 0.792716 0.146111 1.903247
4 -0.747169 -0.309038 0.393876 1.861468
5 0.936527 1.255746 -2.655452 1.219492
6 0.062297 -0.110388 NaN NaN
7 0.077849 0.629498 NaN NaN

11.2.3 Joining key columns on an index

join takes an optional on argument which may be a column or multiple column names, which specifies that the
passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equiva-
lent:

left.join(right, on=key_or_keys)
merge (left, right, left_on=key_or_keys, right_index=True,

11.2. Database-style DataFrame joining/merging 181



pandas: powerful Python data analysis toolkit, Release 0.9.0

how="1eft’, sort=False)
Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the
DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:
In [901]: df[’key’] = ["foo’, 'bar’] x 4
In [902]: to_join = DataFrame (randn (2, 2), index=[’bar’, ’'foo’],

...... columns=[’ 41", ’92'])

In [903]: df

Oout [903]:

A B C D key
0 -0.308853 -0.681087 0.377953 0.493672 foo
1 -2.461467 -1.553902 2.015523 -1.833722 bar
2 1.771740 -0.670027 0.049307 -0.521493 foo
3 -3.201750 0.792716 0.146111 1.903247 bar
4 -0.747169 -0.309038 0.393876 1.861468 foo
5 0.936527 1.255746 -2.655452 1.219492 bar
6 0.062297 -0.110388 -1.184357 -0.558081 foo
7 0.077849 0.629498 -1.035260 -0.438229 bar

In [904]: to_join
Oout [904]:

Jj1 Jj2
bar 0.503703 0.413086
foo -1.139050 0.660342

In [905]: df.join(to_join, on=’"key’)

Oout [905] :

A B C D key Jjl j2
0 -0.308853 -0.681087 0.377953 0.493672 foo —-1.139050 0.660342
1 -2.461467 -1.553902 2.015523 -1.833722 Dbar 0.503703 0.413086
2 1.771740 -0.670027 0.049307 -0.521493 foo -1.139050 0.660342
3 -3.201750 0.792716 0.146111 1.903247 Dbar 0.503703 0.413086
4 -0.747169 -0.309038 0.393876 1.861468 foo —-1.139050 0.660342
5 0.936527 1.255746 -2.655452 1.219492 Dbar 0.503703 0.413086
6 0.062297 -0.110388 -1.184357 -0.558081 foo -1.139050 0.660342
7 0.077849 0.629498 -1.035260 -0.438229 Dbar 0.503703 0.413086

In [906]: merge(df, to_join, left_on="key’, right_index=True,
e how=’"1left’, sort=False)

out[906]:

A B C D key j1 32
0 -0.308853 -0.681087 0.377953 0.493672 foo -1.139050 0.660342
1 -2.461467 -1.553902 2.015523 -1.833722 Dbar 0.503703 0.413086
2 1.771740 -0.670027 0.049307 -0.521493 foo -1.139050 0.660342
3 -3.201750 0.792716 0.146111 1.903247 Dbar 0.503703 0.413086
4 -0.747169 -0.309038 0.393876 1.861468 foo —-1.139050 0.660342
5 0.936527 1.255746 -2.655452 1.219492 Dbar 0.503703 0.413086
6 0.062297 -0.110388 -1.184357 -0.558081 foo -1.139050 0.660342
7 0.077849 0.629498 -1.035260 -0.438229 Dbar 0.503703 0.413086

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [907]: index = MultiIndex(levels=[[’'foo’, ’'bar’, ’'baz’, ’"qux’'],
..... : ["one’, "two’, ’'three’]],
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P labels=[[0, O, O, 1, 1, 2, 2, 3, 3, 31,
[O/ l/ 2r Or 1/ l/ 2r Or 1/ 2]]/
et names=[’first’, ’'second’])

In [908]: to_join = DataFrame (np.random.randn (10, 3), index=index,
..... : columns=[’j_one’, ’"J_two’, ’"J_three’])

# a little relevant example with NAs
In [909]: keyl = [’'bar’, ’'bar’, ’'bar’, ’'foo’, ’foo’, ’'baz’, ’'baz’, 'qux’,
..... : "qux’, ’snap’]

In [910]: key2 = [’'two’, 'one’, ’'three’, ’'one’, ’'two’, ’'one’, ’"two’, ’'two’,
..... : "three’, ’"one’]

In [911]: data = np.random.randn (len(keyl))

In [912]: data = DataFrame ({’'keyl’ : keyl, ’key2’ : key2,
..... : "data’ : data})

In [913]: data

-2.006481 qux three
0.301016 snap one

Out[913]:

data keyl key2
0 -1.004168 bar two
1 -1.377627 bar one
2 0.499281 bar three
3 -1.405256 foo one
4 0.162565 foo two
5 -0.067785 baz one
6 -1.260006 baz two
7 -1.132896 qux two
8
9

In [914]: to_join
Out [914]:

j_one j_two j_three
first second

foo one 0.464794 -0.309337 -0.649593
two 0.683758 -0.643834 0.421287
three 1.032814 -1.290493 0.787872
bar one 1.515707 -0.276487 -0.223762
two 1.397431 1.503874 -0.478905
baz two -0.135950 -0.730327 -0.033277
three 0.281151 -1.298915 -2.819487
qux one -0.851985 -1.106952 -0.937731
two -1.537770 0.555759 -2.277282

three -0.390201 1.207122 0.178690

Now this can be joined by passing the two key column names:

In [915]: data.join(to_join, on=["keyl’, ’"key2’])
Oout[9157]:

data keyl key2 j_one j_two Jj_three
0 -1.004168 bar two 1.397431 1.503874 -0.478905
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1 -1.377627 bar one 1.515707 -0.276487 -0.223762
2 0.499281 bar three NaN NaN NaN
3 -1.405256 foo one 0.464794 -0.309337 -0.649593
4 0.162565 foo two 0.683758 -0.643834 0.421287
5 -0.067785 baz one NaN NaN NaN
6 -1.260006 baz two -0.135950 -0.730327 -0.033277
7 -1.132896 qux two -1.537770 0.555759 -2.277282
8 —-2.006481 qux three -0.390201 1.207122 0.178690
9 0.301016 snap one NaN NaN NaN

The default for DataFrame. join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users),
which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily
performed:

In [916]: data.join(to_join, on=["keyl’, "key2’], how=’inner’)

Out[916]:

data keyl key2 j_one j_two j_three
0 -1.004168 Dbar two 1.397431 1.503874 -0.478905
1 -1.377627 Dbar one 1.515707 -0.276487 -0.223762
3 -1.405256 foo one 0.464794 -0.309337 -0.649593
4 0.162565 foo two 0.683758 -0.643834 0.421287
6 -1.260006 baz two -0.135950 -0.730327 -0.033277
7 -1.132896 qux two -1.537770 0.555759 -2.277282
8 -2.006481 qux three -0.390201 1.207122 0.178690

As you can see, this drops any rows where there was no match.

11.2.4 Overlapping value columns

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input
DataFrames to disambiguate the result columns:

In [917]: left = DataFrame({’'key’: [’foo’, ’"foo’], ’'value’: [1, 2]})
In [918]: right = DataFrame({’key’: [’foo’, ’"foo’], ’'value’: [4, 51})
In [919]: merge(left, right, on="key’, suffixes=[’_left’, ’_right’])

Oout[919]:
key wvalue_left wvalue_right

0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

DataFrame. join has 1suffix and rsuffix arguments which behave similarly.

11.2.5 Merging Ordered Data

New in v0.8.0 is the ordered_merge function for combining time series and other ordered data. In particular it has an
optional fi11_method keyword to fill/interpolate missing data:

In [920]: A

Oout [920]:

group key lvalue
0 a a 1
1 a c 2
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In [921]: B

Oout[9217]:

key rvalue
0 b 1
1 c 2
2 d 3

In [922]: ordered_merge (A, B, fill method=’ffill’, left_by='group’)
out[922]:
group key lvalue rvalue

0 a a 1 NaN
1 a b 1 1
2 a c 2 2
3 a d 2 3
4 a e 3 3
5 b a 1 NaN
6 b b 1 1
7 b c 2 2
8 b d 2 3
9 b e 3 3

11.2.6 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame. join to join them together on their indexes. The
same is true for Panel. join.

In [923]: dfl = df.ix[:, ['A’, "B’]]
In [924]: df2 = df.ix[:, ['C’, 'D’'1]]
In [925]: df3 = df.ix[:, ['key’']]

In [926]: dfl

out[926]:

A B
0 -0.308853 -0.681087
1 -2.461467 -1.553902
2 1.771740 -0.670027
3 -3.201750 0.792716
4 -0.747169 -0.309038
5 0.936527 1.255746
6 0.062297 -0.110388
7 0.077849 0.629498

In [927]: dfl.join([df2, df3])

out[927]:

A B cC D key
0 -0.308853 -0.681087 0.377953 0.493672 foo
1 -2.461467 -1.553902 2.015523 -1.833722 Dbar
2 1.771740 -0.670027 0.049307 -0.521493 foo
3 -3.201750 0.792716 0.146111 1.903247 Dbar
4 -0.747169 -0.309038 0.393876 1.861468 foo
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5 0.936527 1.255746 -2.655452 1.219492 bar
6 0.062297 -0.110388 -1.184357 -0.558081 foo
7 0.077849 0.629498 -1.035260 -0.438229 bar

11.2.7 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and
wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

In [928]: dfl = DataFrame([[nan, 3., 5.], [-4.6, np.nan, nan],
..... : [nan, 7., nanll])

In [929]: df2 = DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 411,
..... : index=[1, 2])

For this, use the combine_first method:

In [930]: dfl.combine_first (df2)
out [9307] :

0 1
0 NaN 3 5.
1 -4.6 NaN -8.
2 -5.0 7 4.

O N O DN

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related
method, update, alters non-NA values inplace:

In [931]: dfl.update (df2)

In [932]: df1l
Oout[932]:

0 1
0 NaN 3.0 5.
1 -42.6 NaN -8.
2 -5.0 1.6 4.

O N O DN
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CHAPTER
TWELVE

RESHAPING AND PIVOT TABLES

12.1 Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

In [999]: df

Out[999]:

date wvariable value
0 2000-01-03 00:00:00 A 0.469112
1 2000-01-04 00:00:00 A -0.282863
2 2000-01-05 00:00:00 A -1.509059
3 2000-01-03 00:00:00 B -1.135632
4 2000-01-04 00:00:00 B 1.212112
5 2000-01-05 00:00:00 B -0.173215
6 2000-01-03 00:00:00 C 0.119209
7 2000-01-04 00:00:00 C -1.0442306
8 2000-01-05 00:00:00 C -0.861849
9 2000-01-03 00:00:00 D -2.104569
10 2000-01-04 00:00:00 D -0.494929
11 2000-01-05 00:00:00 D 1.071804

For the curious here is how the above DataFrame was created:

import pandas.util.testing as tm; tm.N = 3
def unpivot (frame) :
N, K = frame.shape
data = {’value’ : frame.values.ravel ('F’),
"variable’ : np.asarray (frame.columns) .repeat (N),
"date’ : np.tile(np.asarray (frame.index), K)}

return DataFrame (data, columns=['date’, ’'variable’, ’'value’])
df = unpivot (tm.makeTimeDataFrame ())

To select out everything for variable A we could do:

In [1000]: df[df[’variable’] == "A’]
Out [10007] :

date variable value
0 2000-01-03 00:00:00 A 0.469112
1 2000-01-04 00:00:00 A -0.282863
2 2000-01-05 00:00:00 A -1.509059

But suppose we wish to do time series operations with the variables. A better representation would be where the
columns are the unique variables and an index of dates identifies individual observations. To reshape the data into
this form, use the pivot function:
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In [1001]: df.pivot (index="date’, columns=’variable’, values=’value’)
Out [10017:

variable A B C D

date

2000-01-03 0.469112 -1.135632 0.119209 -2.104569

2000-01-04 -0.282863 1.212112 -1.044236 —-0.494929

2000-01-05 -1.509059 -0.173215 -0.861849 1.071804

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used
as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns whose
topmost level indicates the respective value column:

In [1002]: df[’value2’] = df[’value’] * 2
In [1003]: pivoted = df.pivot (’date’, ’'variable’)

In [1004]: pivoted

Out [10047]:

value value?2
variable A B C D A B C
date

2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608

You of course can then select subsets from the pivoted DataFrame:

In [1005]: pivoted[’value2’]

Oout [1005]:

variable A B C D
date

2000-01-03 0.938225 -2.271265 0.238417 -4.209138
2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698 2.143608

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

12.2 Reshaping by stacking and unstacking

Closely related to the pivot function are the related st ack and unstack functions currently available on Series and
DataFrame. These functions are designed to work together with Mult i Index objects (see the section on hierarchical
indexing). Here are essentially what these functions do:

e stack: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with
a new inner-most level of row labels.

* unstack: inverse operation from stack: “pivot” a level of the (possibly hierarchical) row index to the column
axis, producing a reshaped DataFrame with a new inner-most level of column labels.

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

In [1006]: tuples = zip(x[['bar’, ’'bar’, ’'baz’, ’'baz’,
...... : "foo’, ’"foo’, 'qux’, ’'qux’'l,
et ["one’, 'two’, ’'one’, ’"two’,
e "one’, 'two’, ’'one’, 'two’l])

In [1007]: index = MultilIndex.from_tuples (tuples, names=[’'first’, ’'second’])
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In [1008]: df = DataFrame (randn (8, 2), index=index, columns=["A’, ’'B’])

In [1009]: df2 = df[:4]

In [1010]: df2

Oout [1010]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:
¢ A Series, in the case of a simple column Index
¢ A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest
level in a MultiIndex on the columns:

In [1011]: stacked = df2.stack()

In [1012]: stacked

Out[1012]:
first second
bar one A 0.721555
B -0.706771
two A -1.039575
B 0.271860
baz one A -0.424972
B 0.567020
two A 0.276232
B -1.087401

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is
unstack, which by default unstacks the last level:

In [1013]: stacked.unstack ()

Out [1013]:
A B
first second
bar one 0.721555 -0.706771
two -1.039575 0.271860
baz one -0.424972 0.567020
two 0.276232 —-1.087401

In [1014]: stacked.unstack (1)

Oout[1014]:

second one two

first

bar A 0.721555 -1.039575
B -0.706771 0.271860

baz A -0.424972 0.276232
B 0.567020 -1.087401

In [1015]: stacked.unstack (0)
Out [10157:
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first bar baz
second
one A 0.721555 -0.424972

B -0.706771 0.567020
two A -1.039575 0.276232
B 0.271860 -1.087401

If the indexes have names, you can use the level names instead of specifying the level numbers:

In [1016]: stacked.unstack (’second’)

Out[1016]:

second one two
first

bar 721555 -1.039575

424972 0.276232
567020 -1.087401

A 0.

B -0.706771 0.271860
baz A -0.
B 0.

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is
as if each level in the list were processed individually.

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical
index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by
calling sortlevel, of course). Here is a more complex example:
In [1017]: columns = MultiIndex.from_tuples([('A’, 'cat’), ('B’, ’'dog’),

...... : ("B", ’cat’), ('A", ’'dog")],

et names=['exp’, ‘animal’])

In [1018]: df = DataFrame (randn (8, 4), index=index, columns=columns)
In [1019]: df2 = df.ix[[0, 1, 2, 4, 5, 711

In [1020]: df2

Oout[1020]:

exp A B A

animal cat dog cat dog

first second

bar one -0.370647 -1.157892 -1.344312 0.844885
two 1.075770 -0.109050 1.643563 -1.469388

baz one 0.357021 -0.674600 -1.776904 -0.968914

foo one -0.013960 -0.362543 -0.006154 -0.923061
two 0.895717 0.805244 -1.206412 2.565646

qux two 0.410835 0.813850 0.132003 -0.827317

As mentioned above, stack can be called with a 1evel argument to select which level in the columns to stack:

In [1021]: df2.stack(’exp’)

Oout [1021]:
animal cat dog
first second exp
bar one A -0.370647 0.844885
B -1.344312 -1.157892
two A 1.075770 -1.469388
B 1.643563 -0.109050
baz one A 0.357021 -0.968914
B -1.776904 -0.674600
foo one A -0.013960 -0.923061
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B -0.006154 -0.362543

two A 0.895717 2.565646

B -1.206412 0.805244

qux two A 0.410835 -0.827317
B

0.132003 0.813850

In [1022]: df2.stack(’animal’)

Oout[1022]:
exp A B
first second animal
bar one cat -0.370647 -1.344312
dog 0.844885 —-1.157892
two cat 1.075770 1.643563
dog -1.469388 -0.109050
baz one cat 0.357021 -1.776904
dog -0.968914 -0.674600
foo one cat -0.013960 -0.006154
dog -0.923061 -0.362543
two cat 0.895717 —-1.206412
dog 2.565646 0.805244
qux two cat 0.410835 0.132003
dog -0.827317 0.813850

Unstacking when the columns are a Mult iIndex is also careful about doing the right thing:

In [1023]: df[:3].unstack(0)

Oout [10237:

exp A B A

animal cat dog cat dog

first bar baz bar baz bar baz bar baz
second

one -0.370647 0.357021 -1.157892 -0.6746 -1.344312 -1.776904 0.844885 -0.968914
two 1.075770 NaN -0.109050 NaN 1.643563 NaN -1.469388 NaN

In [1024]: df2.unstack (1)

Oout[1024]:

exp A B A

animal cat dog cat dog

second one two one two one two one two
first

bar -0.370647 1.075770 -1.157892 -0.109050 -1.344312 1.643563 0.844885 -1.469388
baz 0.357021 NaN -0.674600 NaN -1.776904 NaN -0.968914 NaN
foo -0.013960 0.895717 -0.362543 0.805244 -0.006154 -1.206412 -0.923061 2.565646
qux NaN 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317

12.3 Reshaping by Melt

The me 1t function found in pandas.core.reshape is useful to massage a DataFrame into a format where one
or more columns are identifier variables, while all other columns, considered measured variables, are “pivoted” to the
row axis, leaving just two non-identifier columns, “variable” and “value”.

For instance,

In [1025]: cheese = DataFrame({’'first’ : [’John’, ’'Mary’],
e e "last’ : [’'Doe’, '"Bo’],
e "height’ : [5.5, 6.01],
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...... : "weight’ : [130, 150]})

In [1026]: cheese

Out[1026]:

first height last weight
0 John 5.5 Doe 130
1 Mary 6.0 Bo 150

In [1027]: melt (cheese, id_vars=['first’, ’"last’])

Oout[1027]:

first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0

12.4 Combining with stats and GroupBy

It should be no shock that combining pivot / stack /unstack with GroupBy and the basic Series and DataFrame
statistical functions can produce some very expressive and fast data manipulations.

In [1028]: df

Oout [10287]:

exp A B A

animal cat dog cat dog

first second

bar one -0.370647 -1.157892 -1.344312 0.844885
two 1.075770 -0.109050 1.643563 -1.469388

baz one 0.357021 -0.674600 -1.776904 -0.968914
two -1.294524 0.413738 0.276662 —-0.472035

foo one -0.013960 -0.362543 -0.006154 -0.923061
two 0.895717 0.805244 -1.206412 2.565646

qux one 1.431256 1.340309 -1.170299 -0.226169
two 0.410835 0.813850 0.132003 -0.827317

In [1029]: df.stack () .mean(l) .unstack ()

Out [10297]:

animal cat dog

first second

bar one -0.857479 -0.156504
two 1.359666 -0.789219

baz one -0.709942 -0.821757
two -0.508931 -0.029148

foo one -0.010057 -0.642802
two -0.155347 1.685445

qux one 0.130479 0.557070
two 0.271419 -0.006733

# same result, another way
In [1030]: df.groupby(level=1, axis=1) .mean()

Oout [1030]:

animal cat dog

first second

bar one -0.857479 -0.156504
two 1.359666 -0.789219
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baz one -0.709942 -0.821757
two -0.508931 -0.029148
foo one -0.010057 -0.642802
two -0.155347 1.685445
qux one 0.130479 0.557070
two 0.271419 -0.006733

In [1031]: df.stack () .groupby(level=1) .mean ()

Out [1031]:

exp A B
second

one 0.016301 -0.644049
two 0.110588 0.346200

In [1032]: df.mean () .unstack (0)

Out[1032]:

exp A B
animal

cat 0.311433 -0.431481
dog -0.184544 0.133632

12.5 Pivot tables and cross-tabulations

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. It takes a number of
arguments

* data: A DataFrame object

e values: a column or a list of columns to aggregate

* rows: list of columns to group by on the table rows

e cols: list of columns to group by on the table columns

* aggfunc: function to use for aggregation, defaulting to numpy . mean

Consider a data set like this:

In [1033]: df = DataFrame({’A’ : [’'one’, 'one’, 'two’, ’'three’] =« 6,
"B’ : ['A’, 'B’, 'C'] x 8,
e rc’ ¢ [’"foo’, 'foo’, 'foo’, '"bar’, ’'bar’, ’'bar’]l x 4,
e D" : np.random.randn(24),
e "E’ : np.random.randn (24) })
In [1034]: df
out[1034]:
A B C D E
0 one A foo -0.076467 0.959726
1 one B foo -1.187678 -1.110336
2 two C foo 1.130127 -0.619976
3 three A bar -1.436737 0.149748
4 one B Dbar -1.413681 -0.732339
5 one C Dbar 1.607920 0.687738
6 two A foo 1.024180 0.176444
7 three B foo 0.569605 0.403310
8 one C foo 0.875906 -0.154951
9 one A bar -2.211372 0.301624
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10 two
11 three
12 one
13 one
14 two
15 three
16 one
17 one
18 two
19 three
20 one
21 one
22 two
23 three

bar
bar
foo
foo
foo
bar
bar
bar
foo
foo
foo
bar
bar
bar

QwWroQwWwrQwW QWX QW

0.974466
-2.006747
-0.410001
-0.078638

0.545952
-1.219217
-1.226825

0.769804
-1.281247
-0.727707
-0.121306
-0.097883

0.695775

0.341734

-2.
-1.
-0.

1.
.743161
-0.
-0.

1.
.690579
.995761
.396780
.014871
.357427
.317441

-1

O W o N O o

179861
369849
954208
462696

826591
345352
314232

We can produce pivot tables from this data very easily:

In [1035]:
Out[1035]:
C
A B
one A 1.
B -1
c 1.
three A -1.
B
Cc -0
two A
B O
C
In [1036]:
Out [1036]:
A one
C bar
B

A -2.309255
B -2.640506
C 2.377724

In [1037]:
out [1037]:

D
A one
C bar
B

A -2.309255
B -2.640506
C 2.377724

pivot_table (df,

bar

154627

.320253

188862
327977
NaN

.832506

NaN

.835120

NaN

foo

-0.243234
-0.633158
0.377300
NaN
-0.079051
NaN
-0.128534
NaN
0.838040

pivot_table (df,

-0.486468 -2.655954

three
bar

foo

-1.266315

pivot_table (df,

-0.486468 -2.655954

three
bar

foo

-1.266315

NaN
0.754600 -1.665013

NaN
0.754600 -1.665013

values='D’,

values='D",

rows=["A",

rows=["B’'],

foo

NaN

-0.158102

NaN

values=['D’","E"],

foo

NaN

-0.158102

NaN

two
bar

NaN
1.670241
NaN

two
bar

NaN
1.670241
NaN

IBI]’

rows=["

cols=["A",

foo

-0.257067
NaN
1.676079

B”]1, cols=

foo

-0.257067
NaN
1.676079

cols=['C"1)

"C’”]1, aggfunc=np.sum)

[IAI, !cl],

E
one
bar

0.316495
-1.077692
2.001971

aggfunc=

foo

0.005518
0.352360
2.241830

np.sum)

three
bar

-0.676843
NaN
-1.687290

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values
column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of
hierarchy in the columns:

In [1038]: pivot_table(df, rows=['A’, 'B’], cols=['C'])
Out[10387]:
D E
C bar foo bar foo
A B
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one A -1.154627 -0.243234 0.158248 0.002759
B -1.320253 -0.633158 -0.538846 0.176180
Cc 1.188862 0.377300 1.000985 1.120915
three A -1.327977 NaN -0.338421 NaN
B NaN -0.079051 NaN 0.699535
C -0.832506 NaN -0.843645 NaN
two A NaN -0.128534 NaN 0.433512
B 0.835120 NaN 0.588783 NaN
C NaN 0.838040 NaN -1.181568

You can render a nice output of the table omitting the missing values by calling to_string if you wish:

In [1039]: table = pivot_table(df, rows=['A’, 'B’], cols=['C"])

In [1040]: print table.to_string(na_rep='")

D E
C bar foo bar foo
A B
one A -1.154627 -0.243234 0.158248 0.002759
B -1.320253 -0.633158 -0.538846 0.176180
C 1.188862 0.377300 1.000985 1.120915
three A -1.327977 -0.338421
B -0.079051 0.699535
C -0.832506 -0.843645
two A -0.128534 0.433512
B 0.835120 0.588783
C 0.838040 -1.181568

Note that pivot_table is also available as an instance method on DataFrame.

12.5.1 Cross tabulations
Use the crosstab function to compute a cross-tabulation of two (or more) factors. By default crosstab computes
a frequency table of the factors unless an array of values and an aggregation function are passed.
It takes a number of arguments
* rows: array-like, values to group by in the rows
* cols: array-like, values to group by in the columns
* values: array-like, optional, array of values to aggregate according to the factors
* aggfunc: function, optional, If no values array is passed, computes a frequency table
e rownames: sequence, default None, must match number of row arrays passed
e colnames: sequence, default None, if passed, must match number of column arrays passed
* margins: boolean, default False, Add row/column margins (subtotals)

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are speci-
fied

For example:

In [1041]: foo, bar, dull, shiny, one, two = ’foo’, ’'bar’, ’'dull’, ’shiny’, ’‘one’, ’"two’

In [1042]: a = np.array([foo, foo, bar, bar, foo, fool, dtype=object)

In [1043]: b = np.array([one, one, two, one, two, one], dtype=object)
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In [1044]: ¢ = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)

In [1045]: crosstab(a, [b, c], rownames=["a’], colnames=["b’, 'c’])

Out [10457]:

b one two

c dull shiny dull shiny
a

bar 1 0 0 1
foo 2 1 1 0

12.5.2 Adding margins (partial aggregates)
If you pass margins=True to pivot_table, special A1l columns and rows will be added with partial group
aggregates across the categories on the rows and columns:

In [1046]: df.pivot_table(rows=["A’, 'B’], cols='C’, margins=True, aggfunc=np.std)
Oout[1046]:

D E

C bar foo All bar foo All

A B

one A 1.494463 0.235844 1.019752 0.202765 1.353355 0.795165
B 0.132127 0.784210 0.606779 0.273641 1.819408 1.139647
C 0.592638 0.705136 0.708771 0.442998 1.804346 1.074910

three A 0.153810 NaN 0.153810 0.690376 NaN 0.690376
B NaN 0.917338 0.917338 NaN 0.418926 0.418926
C 1.660627 NaN 1.660627 0.744165 NaN 0.744165

two A NaN 1.630183 1.630183 NaN 0.363548 0.363548
B 0.197065 NaN 0.197065 3.915454 NaN 3.915454
C NaN 0.413074 0.413074 NaN 0.794212 0.794212

All 1.294620 0.824989 1.064129 1.403041 1.188419 1.248988

12.6 Tiling

The cut function computes groupings for the values of the input array and is often used to transform continuous
variables to discrete or categorical variables:

In [1047]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

In [1048]: cut (ages, bins=3)

Out [1048]:

Categorical:

array ([(9.95, 26.667], (9.95, 26.667]1, (9.95, 26.667], (9.95, 26.667],
(9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60],
(43.333, 60]], dtype=object)

Levels (3): Index([(9.95, 26.667], (26.667, 43.333], (43.333, 60]], dtype=object)

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

In [1049]: cut(ages, bins=[0, 18, 35, 701])

Out [1049]:

Categorical:

array([(0O, 18], (0O, 181, (O, 18], (O, 18], (18, 35], (18, 35], (18, 3571,
(35, 701, (35, 70]], dtype=object)

Levels (3): Index([(0, 18], (18, 35], (35, 70]1, dtype=object)
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CHAPTER
THIRTEEN

TIME SERIES / DATE FUNCTIONALITY

pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis
space. With the 0.8 release, we have further improved the time series API in pandas by leaps and bounds. Using the
new NumPy datetime64 dtype, we have consolidated a large number of features from other Python libraries like
scikits.timeseries as well as created a tremendous amount of new functionality for manipulating time series
data.

In working with time series data, we will frequently seek to:
* generate sequences of fixed-frequency dates and time spans
» conform or convert time series to a particular frequency

e compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last
business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.
Create a range of dates:

# 72 hours starting with midnight Jan 1st, 2011
In [1073]: rng = date_range(’'1/1/2011", periods=72, freqg='H")

In [1074]: rng[:5]

Out [1074]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-01 00:00:00, ..., 2011-01-01 04:00:00]

Length: 5, Freq: H, Timezone: None

Index pandas objects with dates:

In [1075]: ts = Series(randn(len(rng)), index=rng)

In [1076]: ts.head()

Out [10767]:

2011-01-01 00:00:00 0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00 1.212112
Freqg: H

Change frequency and fill gaps:

# to 45 minute frequency and forward fill
In [1077]: converted = ts.asfreqg(’45Min’, method='pad’)
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In [1078]: converted.head()

Out [10787]:

2011-01-01 00:00:00 0.469112
2011-01-01 00:45:00 0.469112
2011-01-01 01:30:00 -0.282863
2011-01-01 02:15:00 -1.509059
2011-01-01 03:00:00 -1.135632
Freqg: 45T

Resample:

# Daily means
In [1079]: ts.resample(’D’, how='mean’)

Out [1079]:

2011-01-01 0.469112
2011-01-02 -0.322252
2011-01-03 -0.317244
2011-01-04 0.083412
Freg: D

13.1 Time Stamps vs. Time Spans

Time-stamped data is the most basic type of timeseries data that associates values with points in time. For pandas
objects it means using the points in time to create the index

In [1080]: dates = [datetime (2012, 5, 1), datetime (2012, 5, 2), datetime (2012, 5, 3)]
In [1081]: ts = Series(np.random.randn(3), dates)

In [1082]: type(ts.index)
Out [1082]: pandas.tseries.index.DatetimeIndex

In [1083]: ts

Out [10837:

2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03 0.545952

However, in many cases it is more natural to associate things like change variables with a time span instead.
For example:

In [1084]: periods = PeriodIndex([Period(’2012-01"), Period(’2012-02"),
...... : Period (’2012-037)1)

In [1085]: ts = Series(np.random.randn(3), periods)

In [1086]: type(ts.index)
Out [1086]: pandas.tseries.period.PeriodIndex

In [1087]: ts

Out [10877]:

2012-01 -1.219217
2012-02 -1.226825
2012-03 0.769804
Freg: M
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Starting with 0.8, pandas allows you to capture both representations and convert between them. Under the hood,
pandas represents timestamps using instances of Timestamp and sequences of timestamps using instances of
DatetimeIndex. For regular time spans, pandas uses Period objects for scalar values and PeriodIndex
for sequences of spans. Better support for irregular intervals with arbitrary start and end points are forth-coming in
future releases.

13.2 Generating Ranges of Timestamps

To generate an index with time stamps, you can use either the DatetimeIndex or Index constructor and pass in a list of
datetime objects:

In [1088]: dates = [datetime (2012, 5, 1), datetime (2012, 5, 2), datetime (2012, 5, 3)]
In [1089]: index = DatetimeIndex (dates)

In [1090]: index # Note the frequency information

Out [1090] :
<class ’pandas.tseries.index.DatetimeIndex’>
[2012-05-01 00:00:00, ..., 2012-05-03 00:00:00]

Length: 3, Freq: None, Timezone: None
In [1091]: index = Index(dates)

In [1092]: index # Automatically converted to DatetimelIndex

Out [10927]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2012-05-01 00:00:00, ..., 2012-05-03 00:00:00]

Length: 3, Freq: None, Timezone: None

Practically, this becomes very cumbersome because we often need a very long index with a large number of
timestamps. If we need timestamps on a regular frequency, we can use the pandas functions date_range and
bdate_range to create timestamp indexes.

In [1093]: index = date_range(’2000-1-1", periods=1000, freg='"M")

In [1094]: index

Oout [10947]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2000-01-31 00:00:00, ..., 2083-04-30 00:00:00]

Length: 1000, Freg: M, Timezone: None
In [1095]: index = bdate_range(’'2012-1-1", periods=250)

In [1096]: index

Out[10967]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2012-01-02 00:00:00, ..., 2012-12-14 00:00:00]

Length: 250, Freq: B, Timezone: None

Convenience functions like date_range and bdate_range utilize a variety of frequency aliases. The default
frequency for date_range is a calendar day while the default for bdate_range is a business day

In [1097]: start = datetime (2011, 1, 1)
In [1098]: end = datetime (2012, 1, 1)

In [1099]: rng

date_range (start, end)
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In [1100]: rng

Out [1100]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-01-01 00:00:00, ..., 2012-01-01 00:00:00]

Length: 366, Freq: D, Timezone: None
In [1101]: rng = bdate_range(start, end)

In [1102]: rng

Out[1102]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-03 00:00:00, ..., 2011-12-30 00:00:00]

Length: 260, Freq: B, Timezone: None

date_range and bdate_range makes it easy to generate a range of dates using various combinations of param-
eters like start, end, periods, and freq:

In [1103]: date_range(start, end, freg='BM’)

Out[1103]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-31 00:00:00, ..., 2011-12-30 00:00:00]1

Length: 12, Freqg: BM, Timezone: None

In [1104]: date_range (start, end, freg='W")

Out[1104]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-01-02 00:00:00, ..., 2012-01-01 00:00:00]

Length: 53, Freq: W-SUN, Timezone: None

In [1105]: bdate_range (end=end, periods=20)

Out[1105]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-12-05 00:00:00, ..., 2011-12-30 00:00:00]1

Length: 20, Freqg: B, Timezone: None

In [1106]: bdate_range (start=start, periods=20)

Out[1106]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-03 00:00:00, ..., 2011-01-28 00:00:00]

Length: 20, Freqg: B, Timezone: None

The start and end dates are strictly inclusive. So it will not generate any dates outside of those dates if specified.

13.2.1 Datetimelndex

One of the main uses for Datet imeIndex is as an index for pandas objects. The Datet imeIndex class contains
many timeseries related optimizations:

* A large range of dates for various offsets are pre-computed and cached under the hood in order to make gener-
ating subsequent date ranges very fast (just have to grab a slice)

* Fast shifting using the shift and t shift method on pandas objects

* Unioning of overlapping Datetimelndex objects with the same frequency is very fast (important for fast data
alignment)

* Quick access to date fields via properties such as year, month, etc.
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* Regularization functions like snap and very fast asof logic

DatetimeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing,
etc.

In [1107]: rng = date_range(start, end, freg=’'BM’)
In [1108]: ts = Series(randn(len(rng)), index=rng)

In [1109]: ts.index

Out[1109]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-01-31 00:00:00, ..., 2011-12-30 00:00:00]1

Length: 12, Freqg: BM, Timezone: None

In [1110]: ts[:5].index

Out[1110]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-31 00:00:00, ..., 2011-05-31 00:00:00]1

Length: 5, Freq: BM, Timezone: None

In [1111]: ts[::2].index

Out[1111]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-01-31 00:00:00, ..., 2011-11-30 00:00:00]1

Length: 6, Freq: 2BM, Timezone: None

You can pass in dates and strings that parses to dates as indexing parameters:

In [1112]: ts[’1/31/2011’]
Out[1112]: -1.2812473076599531

In [1113]: ts[datetime (2011, 12, 25):]
Out [1113]:

2011-12-30 0.687738

Freqg: BM

In [1114]: ts[’10/31/2011":"12/31/2011"]

Out[1114]:

2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM

A truncate convenience function is provided that is equivalent to slicing:

In [1115]: ts.truncate(before="10/31/2011", after='12/31/2011")

Out[1115]:

2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freg: BM

To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

In [1116]: ts[’2011"]

Out[1116]:

2011-01-31 -1.281247
2011-02-28 -0.727707
2011-03-31 -0.121306
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2011-04-29
2011-05-31
2011-06-30
2011-07-29
2011-08-31
2011-09-30
2011-10-31
2011-11-30
2011-12-30
Freq: BM

In [1117]:
Out[1117]:
2011-06-30
Freg: BM

-0.097883
0.695775
0.341734
0.959726

-1.110336

-0.619976
0.149748

-0.732339
0.687738

ts[’2011-6"]

0.341734

Even complicated fancy indexing that breaks the Datetimelndex’s frequency regularity will result in a

DatetimeIndex (but frequency is lost):

In [1118]:
Out[1118]:

<class ’'pandas.tseries.index.DatetimeIndex’>

ts[[0, 2, 6]].index

[2011-01-31 00:00:00,

Length: 3,

Freq: None,

2011-07-29 00:00:00]

Datetimelndex objects has all the basic functionality of regular Index objects and a smorgasbord of advanced

timeseries-specific methods for easy frequency processing.

See Also:

Reindexing methods

Note: While pandas does not force you to have a sorted date index, some of these methods may have unexpected or

incorrect behavior if the dates are unsorted. So please be careful.

13.3 DateOffset objects

In the preceding examples, we created Datetimelndex objects at various frequencies by passing in frequency strings
like ‘M’, “W’, and ‘BM to the freq keyword. Under the hood, these frequency strings are being translated into an
instance of pandas DateOf f set, which represents a regular frequency increment. Specific offset logic like “month”,
“business day”, or “one hour” is represented in its various subclasses.
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Class name Description
DateOffset Generic offset class, defaults to 1 calendar day
BDay business day (weekday)
Week one week, optionally anchored on a day of the week
WeekOfMonth | the x-th day of the y-th week of each month
MonthEnd calendar month end
MonthBegin calendar month begin
BMonthEnd business month end
BMonthBegin | business month begin
QuarterEnd calendar quarter end
QuarterBegin calendar quarter begin
BQuarterEnd business quarter end
BQuarterBegin | business quarter begin
YearEnd calendar year end
YearBegin calendar year begin
BYearEnd business year end
BYearBegin business year begin
Hour one hour
Minute one minute
Second one second
Milli one millisecond
Micro one microsecond

The basic DateOf fset takes the same arguments as dateutil.relativedelta, which works like:

In [1119]: d = datetime (2008, 8, 18)

In [1120]: d + relativedelta (months=4, days=5)
Out[1120]: datetime.datetime (2008, 12, 23, 0, 0)

We could have done the same thing with DateOf fset:

In [1121]: from pandas.tseries.offsets import =

In [1122]: d + DateOffset (months=4, days=5)
Out[1122]: datetime.datetime (2008, 12, 23, 0, 0)

The key features of a DateOf fset object are:

* it can be added / subtracted to/from a datetime object to obtain a shifted date

* it can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times

e ithas rollforward and rollback methods for moving a date forward or backward to the next or previous

“offset date”

Subclasses of DateOf fset define the apply function which dictates custom date increment logic, such as adding

business days:

class BDay (DateOffset) :
"""DateOffset increments between business days"""
def apply(self, other):

In [1123]: d - 5 % BDay()
Out[1123]: datetime.datetime (2008, 8, 11, 0, 0)

In [1124]: 4d + BMonthEnd()
Out[1124]: datetime.datetime (2008, 8, 29, 0, 0)

13.3. DateOffset objects
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The rollforward and rollback methods do exactly what you would expect:

In [1125]: d
Out[1125]: datetime.datetime (2008, 8, 18, 0, 0)

In [1126]: offset = BMonthEnd()

In [1127]: offset.rollforward(d)
Out[1127]: datetime.datetime (2008, 8, 29, 0, 0)

In [1128]: offset.rollback(d)
Out[1128]: datetime.datetime (2008, 7, 31, 0, 0)

It’s definitely worth exploring the pandas.tseries.offsets module and the various docstrings for the classes.

13.3.1 Parametric offsets

Some of the offsets can be “parameterized” when created to result in different behavior. For example, the Week offset
for generating weekly data accepts a weekday parameter which results in the generated dates always lying on a
particular day of the week:

In [1129]: d + Week()
Out[1129]: datetime.datetime (2008, 8, 25, 0, 0)

In [1130]: d + Week (weekday=4)
Out[1130]: datetime.datetime (2008, 8, 22, 0, 0)

In [1131]: (d + Week (weekday=4)) .weekday ()
Out[1131]: 4

Another example is parameterizing YearEnd with the specific ending month:

In [1132]: d + YearEnd()
Out[1132]: datetime.datetime (2008, 12, 31, 0, 0)

In [1133]: d + YearEnd(month=6)
Out[1133]: datetime.datetime (2009, 6, 30, 0, 0)

13.3.2 Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offser
aliases (referred to as time rules prior to v0.8.0).
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Alias Description

B business day frequency

D calendar day frequency

W weekly frequency

M month end frequency

BM business month end frequency
MS month start frequency

BMS business month start frequency
Q quarter end frequency

BQ business quarter endfrequency
QS quarter start frequency

BQS business quarter start frequency
A year end frequency

BA business year end frequency
AS year start frequency

BAS business year start frequency
H hourly frequency

T minutely frequency

S secondly frequency

L milliseonds

U microseconds

13.3.3 Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

In [1134]: date_range (start, periods=5, freg='B’)

Out[1134]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2011-01-03 00:00:00, ..., 2011-01-07 00:00:00]

Length: 5, Freqg: B, Timezone: None

In [1135]: date_range (start, periods=5, freg=BDay())

Out[1135]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-03 00:00:00, ..., 2011-01-07 00:00:00]1

Length: 5, Freqg: B, Timezone: None

You can combine together day and intraday offsets:

In [1136]: date_range(start, periods=10, freg=’2h20min’)

Out[1136]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-01 00:00:00, ..., 2011-01-01 21:00:00]

Length: 10, Freq: 140T, Timezone: None

In [1137]: date_range(start, periods=10, freg='1D10U")

Out[1137]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2011-01-01 00:00:00, ..., 2011-01-10 00:00:00.000090]

Length: 10, Freqg: 864000000100, Timezone: None
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13.3.4 Anchored Offsets

For some frequencies you can specify an anchoring suffix:

Alias Description

W-SUN weekly frequency (sundays). Same as ‘W’
W-MON weekly frequency (mondays)

W-TUE weekly frequency (tuesdays)

W-WED weekly frequency (wednesdays)

W-THU weekly frequency (thursdays)

W-FRI weekly frequency (fridays)

W-SAT weekly frequency (saturdays)

(B)Q(S)-DEC | quarterly frequency, year ends in December. Same as ‘Q’

(B)Q(S)-JAN | quarterly frequency, year ends in January

(B)Q(S)-FEB | quarterly frequency, year ends in February

(B)Q(S)-MAR | quarterly frequency, year ends in March

(B)Q(S)-APR | quarterly frequency, year ends in April

(B)Q(S)-MAY | quarterly frequency, year ends in May

(B)Q(S)-JUN | quarterly frequency, year ends in June

(B)Q(S)-JUL | quarterly frequency, year ends in July

(B)Q(S)-AUG | quarterly frequency, year ends in August

(B)Q(S)-SEP quarterly frequency, year ends in September

(B)Q(S)-OCT | quarterly frequency, year ends in October

(B)Q(S)-NOV | quarterly frequency, year ends in November

(B)A(S)-DEC | annual frequency, anchored end of December. Same as ‘A’

(B)A(S)-JAN annual frequency, anchored end of January

(B)A(S)-FEB annual frequency, anchored end of February

(B)A(S)-MAR | annual frequency, anchored end of March

(B)A(S)-APR | annual frequency, anchored end of April

(B)A(S)-MAY | annual frequency, anchored end of May

(B)A(S)-JUN | annual frequency, anchored end of June

(B)A(S)-JUL annual frequency, anchored end of July

(B)A(S)-AUG | annual frequency, anchored end of August

(B)A(S)-SEP annual frequency, anchored end of September

(B)A(S)-OCT | annual frequency, anchored end of October

(B)A(S)-NOV | annual frequency, anchored end of November

These can be used as arguments to date_range, bdate_range, constructors for Datet imeIndex, as well as

various other timeseries-related functions in pandas.

13.3.5 Legacy Aliases

Note that prior to v0.8.0, time rules had a slightly different look. Pandas will continue to support the legacy time rules
for the time being but it is strongly recommended that you switch to using the new offset aliases.

206

Chapter 13. Time Series / Date functionality



pandas: powerful Python data analysis toolkit, Release 0.9.0

Legacy Time Rule Offset Alias
WEEKDAY B
EOM BM
W@MON W-MON
W@TUE W-TUE
W@WED W-WED
W@THU W-THU
W@FRI W-FRI
W@SAT W-SAT
W@SUN W-SUN
Q@JAN BQ-JAN
Q@FEB BQ-FEB
Q@MAR BQ-MAR
A@JAN BA-JAN
A@FEB BA-FEB
A@MAR BA-MAR
A@APR BA-APR
A@MAY BA-MAY
A@JUN BA-JUN
A@JUL BA-JUL
A@AUG BA-AUG
A@SEP BA-SEP
A@OCT BA-OCT
A@NOV BA-NOV
A@DEC BA-DEC
min T

ms L

us: “U”

As you can see, legacy quarterly and annual frequencies are business quarter and business year ends. Please also note
the legacy time rule for milliseconds ms versus the new offset alias for month start MS. This means that offset alias
parsing is case sensitive.

13.4 Time series-related instance methods

13.4.1 Shifting / lagging

One may want to shift or lag the values in a TimeSeries back and forward in time. The method for this is shift,
which is available on all of the pandas objects. In DataFrame, shift will currently only shift along the index and
in Panel along the ma jor_axis.

In [1138]: ts = ts[:5]

In [1139]: ts.shift (1)

Out [1139]:

2011-01-31 NaN
2011-02-28 -1.281247
2011-03-31 -0.727707
2011-04-29 -0.121306
2011-05-31 -0.097883
Freg: BM

The shift method accepts an £ req argument which can accept a DateOf fset class or other t imede 1t a-like object
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or also a offset alias:

In [1140]: ts.shift (5, freg=datetools.bday)

Out [1140]:

2011-02-07 -1.281247
2011-03-07 -0.727707
2011-04-07 -0.121306
2011-05-06 -0.097883
2011-06-07 0.695775

In [1141]: ts.shift (5, freg='"BM’)

Out[1141]:

2011-06-30 -1.281247
2011-07-29 -0.727707
2011-08-31 -0.121306
2011-09-30 -0.097883
2011-10-31 0.695775
Freg: BM

Rather than changing the alignment of the data and the index, DataFrame and TimeSeries objects also have a
tshift convenience method that changes all the dates in the index by a specified number of offsets:

In [1142]: ts.tshift (5, freg='D’)

Out[1142]:

2011-02-05 -1.281247
2011-03-05 -0.727707
2011-04-05 -0.121306
2011-05-04 -0.097883
2011-06-05 0.695775

Note that with t shift, the leading entry is no longer NaN because the data is not being realigned.

13.4.2 Frequency conversion

The primary function for changing frequencies is the asfreq function. For a Datet imeIndex, this is basically
just a thin, but convenient wrapper around reindex which generates a date_range and calls reindex.

In [1143]: dr = date_range(’1/1/2010’, periods=3, freg=3 » datetools.bday)

In [1144]: ts = Series(randn(3), index=dr)

In [1145]: ts

Oout [1145]:

2010-01-01 0.176444
2010-01-06 0.403310
2010-01-11  -0.154951

Freqg: 3B

In [1146]: ts.asfreqg(BDay())
Out [1146]:

2010-01-01 0.176444
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 0.403310
2010-01-07 NaN
2010-01-08 NaN
2010-01-11  -0.154951

Freqg: B
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asfreqg provides a further convenience so you can specify an interpolation method for any gaps that may appear after
the frequency conversion

In [1147]: ts.asfreq(BDay (), method='pad’)
Out[1147]:

2010-01-01 0.176444

2010-01-04 0.176444

2010-01-05 0.176444

2010-01-06 0.403310

2010-01-07 0.403310

2010-01-08 0.403310

2010-01-11 -0.154951

Freg: B

13.4.3 Filling forward / backward

Related to asfreqgand reindex is the £i11na function documented in the missing data section.

13.5 Up- and downsampling

With 0.8, pandas introduces simple, powerful, and efficient functionality for performing resampling operations during
frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not
limited to, financial applications.

In [1148]: rng = date_range(’'1/1/2012’", periods=100, freg='S’")
In [1149]: ts = Series(randint (0, 500, len(rng)), index=rng)
In [1150]: ts.resample(’5Min’, how=’sum’)

Out [11507:

2012-01-01 00:00:00 230

2012-01-01 00:05:00 25562

Freqg: 5T

The resample function is very flexible and allows you to specify many different parameters to control the frequency
conversion and resampling operation.

The how parameter can be a function name or numpy array function that takes an array and produces aggregated
values:

In [1151]: ts.resample(’5Min’) # default is mean
Out[1151]:
2012-01-01 00:00:00 230.00000
2012-01-01 00:05:00 258.20202
Freqg: 5T
In [1152]: ts.resample(’5Min’, how=’ohlc’)
Out[1152]:

open high low close
2012-01-01 00:00:00 230 230 230 230
2012-01-01 00:05:00 202 492 0 214
In [1153]: ts.resample(’5Min’, how=np.max)
Out [11537]:
2012-01-01 00:00:00 230
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2012-01-01 00:05:00 492
Freqg: 5T

Any function available via dispatching can be given to the how parameter by name, including sum, mean, std, max,
min, median, first, last, ohlc
For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

In [1154]: ts.resample(’5Min’, closed='right’)

Out [1154]:

2012-01-01 00:00:00 230.00000
2012-01-01 00:05:00 258.20202
Freqg: 5T

In [1155]: ts.resample(’5Min’, closed='"left’)
Out [1155]:

2012-01-01 00:05:00 257.92

Freqg: 5T

For upsampling, the fi11_method and 1imit parameters can be specified to interpolate over the gaps that are
created:

# from secondly to every 250 milliseconds
In [1156]: ts[:2].resample(’250L")

Out[1156]:

2012-01-01 00:00:00 230
2012-01-01 00:00:00.250000 NaN
2012-01-01 00:00:00.500000 NaN
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01 202
Freqg: 250L

In [1157]: ts[:2].resample('250L", fill_method=’'pad’)

Out [1157]:

2012-01-01 00:00:00 230
2012-01-01 00:00:00.250000 230
2012-01-01 00:00:00.500000 230
2012-01-01 00:00:00.750000 230
2012-01-01 00:00:01 202
Freqg: 250L

In [1158]: ts[:2].resample(’250L", fill_method='pad’, limit=2)

Out[1158]:

2012-01-01 00:00:00 230
2012-01-01 00:00:00.250000 230
2012-01-01 00:00:00.500000 230
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01 202
Freqg: 250L

Parameters like 1abel and 1offset are used to manipulate the resulting labels. 1abel specifies whether the result
is labeled with the beginning or the end of the interval. 1offset performs a time adjustment on the output labels.

In [1159]: ts.resample(’'5Min’) # by default label=’right’

Out [1159]:

2012-01-01 00:00:00 230.00000
2012-01-01 00:05:00 258.20202
Freq: 5T
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In [1160]: ts.resample(’5Min’, label="left’)

Out[11607:

2011-12-31 23:55:00 230.00000
2012-01-01 00:00:00 258.20202
Freqg: 5T

In [1161]: ts.resample(’5Min’, label=’"left’, loffset="1s")

Out[1l1l61]:
2011-12-31 23:55:01 230.00000
2012-01-01 00:00:01 258.20202

The axis parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.

kind can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from time-stamp and time-span represen-
tations. By default resample retains the input representation.

convention can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency
periods are converted to higher frequency periods.

Note that 0.8 marks a watershed in the timeseries functionality in pandas. In previous versions, resampling had to be
done using a combination of date_range, groupby with asof, and then calling an aggregation function on the
grouped object. This was not nearly convenient or performant as the new pandas timeseries API.

13.6 Time Span Representation

Regular intervals of time are represented by Period objects in pandas while sequences of Period objects are
collected in a PeriodIndex, which can be created with the convenience function period_range.

13.6.1 Period

A Period represents a span of time (e.g., a day, a month, a quarter, etc). It can be created using a frequency alias:

In [1162]: Period(’2012’, freg='"A-DEC’)
Out[1162]: Period(’2012", "A-DEC")

In [1163]: Period(’2012-1-1", freg='D")
Out[1163]: Period(’2012-01-01", ’'D")

In [1164]: Period(’2012-1-1 19:00", freg="H")
Out[1164]: Period(’2012-01-01 19:00", "H")

Unlike time stamped data, pandas does not support frequencies at multiples of DateOffsets (e.g., ‘3Min’) for periods.
Adding and subtracting integers from periods shifts the period by its own frequency.

In [1165]: p = Period(’2012’, freg='"A-DEC’)

In [1166]: p + 1
Out[1166]: Period(’2013", "A-DEC")

In [1167]: p - 3
Out[1167]: Period(’2009", "A-DEC")

Taking the difference of Period instances with the same frequency will return the number of frequency units between
them:
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In [1168]: Period(’2012’, freq='A-DEC’) - Period(’2002’, freqg='A-DEC’)
Out[1l168]: 10

13.6.2 Periodindex and period_range

Regular sequences of Period objects can be collected in a PeriodIndex, which can be constructed using the
period_range convenience function:

In [1169]: prng = period_range(’1/1/2011", "1/1/2012", freg="M")

In [1170]: prng

Out [1170]:

<class ’'pandas.tseries.period.PeriodIndex’>
freg: M

[2011-01, ..., 2012-01]

length: 13

The PeriodIndex constructor can also be used directly:

In [1171]: PeriodIndex([’2011-1", ’2011-2", ’'2011-3"], freg="M")

Out[1171]:

<class ’pandas.tseries.period.PeriodIndex’>
freqg: M

[2011-01, ..., 2011-03]

length: 3

Just like Datet imeIndex, a PeriodIndex can also be used to index pandas objects:

In [1172]: Series(randn(len(prng)), prng)

Out [1172]:

2011-01 0.301624
2011-02 -1.460489
2011-03 0.610679
2011-04 1.195856
2011-05 -0.008820
2011-06 -0.045729
2011-07 -1.051015
2011-08 -0.422924
2011-09 -0.028361
2011-10 -0.782386
2011-11 0.861980
2011-12 1.438604
2012-01 -0.525492
Freg: M

13.6.3 Frequency Conversion and Resampling with Periodindex

The frequency of Periods and PeriodIndex can be converted via the asfreq method. Let’s start with the fiscal year
2011, ending in December:

In [1173]: p = Period(’2011", freg='"A-DEC’)

In [1174]: p
out[1174]: Period(’2011’, ’A-DEC’)
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We can convert it to a monthly frequency. Using the how parameter, we can specify whether to return the starting or
ending month:

In [1175]: p.asfreg(’'M’, how=’start’)
Out[1175]: Period(’2011-01", "M")

In [1176]: p.asfreg(’'M’, how=’'end’)
Out[1176]: Period(’2011-12", "M")

The shorthands ‘s’ and ‘e’ are provided for convenience:

In [1177]: p.asfreq('M’, ’'s’)
Out[1177]: Period(’2011-01", "M")

In [1178]: p.asfreq('M', ’'e’)
Out[1178]: Period(’2011-12", 'M")

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns
the super-period that includes the input period:

In [1179]: p = Period(’2011-12", freqg="M")

In [1180]: p.asfreg(’'A-NOV’)
Out[1180]: Period(’2012’, ’"A-NOV')

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December
2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful
for working with various quarterly data common to economics, business, and other fields. Many organizations define
quarters relative to the month in which their fiscal year start and ends. Thus, first quarter of 2011 could start in 2010
or a few months into 2011. Via anchored frequencies, pandas works all quarterly frequencies Q—JAN through Q—-DEC.

Q-DEC define regular calendar quarters:

In [1181]: p = Period(’2012Q1’, freg='Q-DEC’)

In [1182]: p.asfreq('D’, ’'s’)
Out[1182]: Period(’2012-01-01", ’'D")

In [1183]: p.asfreq('D’, 'e’)
Out[1183]: Period(’2012-03-31", ’'D")

Q—-MAR defines fiscal year end in March:

In [1184]: p = Period(’201104’, freg='Q-MAR’)

In [1185]: p.asfreq(’'D’, ’'s’)
Out[1185]: Period(’2011-01-01", ’'D’")

In [1186]: p.asfreq(’'D’, ’'e’)
Out[1186]: Period(’2011-03-31", ’'D’")

13.7 Converting between Representations

Timestamped data can be converted to Periodlndex-ed data using to_period and vice-versa using
to_timestamp:
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In [1187]: rng = date_range(’1/1/2012’, periods=5, fregq="M")
In [1188]: ts = Series(randn(len(rng)), index=rng)

In [1189]: ts

Out[1189]:

2012-01-31 -1.684469
2012-02-29 0.550605
2012-03-31 0.091955
2012-04-30 0.891713
2012-05-31 0.807078
Freg: M

In [1190]: ps = ts.to_period()

In [1191]: ps

Out [1191]:

2012-01 -1.684469
2012-02 0.550605
2012-03 0.091955
2012-04 0.891713
2012-05 0.807078
Freqg: M

In [1192]: ps.to_timestamp ()

Out[1192]:

2012-01-31 -1.684469
2012-02-29 0.550605
2012-03-31 0.091955
2012-04-30 0.891713
2012-05-31 0.807078
Freq: M

Remember that ‘s’ and ‘e’ can be used to return the timestamps at the start or end of the period:

In [1193]: ps.to_timestamp(’'D’, how='s’)

Out[1193]:

2012-01-01 -1.684469
2012-02-01 0.550605
2012-03-01 0.091955
2012-04-01 0.891713
2012-05-01 0.807078
Freqg: MS

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following
example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following
the quarter end:

In [1194]: prng = period_range(’199001", "200004’, freg='"Q-NOV’)
In [1195]: ts = Series(randn(len(prng)), prng)
In [1196]: ts.index = (prng.asfregq('M’, 'e’) + 1).asfreq('H’, 's’) + 9

In [1197]: ts.head()

Out [1197]:

1990-03-01 09:00 0.221441
1990-06-01 09:00 -0.113139
1990-09-01 09:00 -1.812900
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1990-12-01 09:00 -0.053708
1991-03-01 09:00 -0.114574
Freqg: H

13.8 Time Zone Handling

Using pytz, pandas provides rich support for working with timestamps in different time zones. By default, pandas
objects are time zone unaware:

In [1198]: rng = date_range(’3/6/2012 00:00’, periods=15, freg='D")

In [1199]: print(rng.tz)
None

To supply the time zone, you can use the t z keyword to date_range and other functions:

In [1200]: rng_utc = date_range(’3/6/2012 00:00’, periods=10, freqg='D’, tz='UTC’)

In [1201]: print(rng_utc.tz)
UuTC

Timestamps, like Python’s datetime.datet ime object can be either time zone naive or time zone aware. Naive
time series and DatetimeIndex objects can be localized using tz_localize:

In [1202]: ts = Series(randn(len(rng)), rng)
In [1203]: ts_utc = ts.tz_localize('UTC’)

In [1204]: ts_utc

Out [1204]:

2012-03-06 00:00:00+00:00 -0.114722
2012-03-07 00:00:00+00:00 0.168904
2012-03-08 00:00:00+00:00 -0.048048
2012-03-09 00:00:00+00:00 0.801196
2012-03-10 00:00:00+00:00 1.392071
2012-03-11 00:00:00+00:00 -0.048788
2012-03-12 00:00:00+00:00 -0.808838
2012-03-13 00:00:00+00:00 -1.003677
2012-03-14 00:00:00+00:00 -0.160766
2012-03-15 00:00:00+00:00 1.758853
2012-03-16 00:00:00+00:00 0.729195
2012-03-17 00:00:00+00:00 1.359732
2012-03-18 00:00:00+00:00 2.006296
2012-03-19 00:00:00+00:00 0.870210
2012-03-20 00:00:00+00:00 0.043464

Freqg: D

You can use the t z_convert method to convert pandas objects to convert tz-aware data to another time zone:

In [1205]: ts_utc.tz_convert ('US/Eastern’)

Out [1205]:

2012-03-05 19:00:00-05:00 -0.114722
2012-03-06 19:00:00-05:00 0.168904
2012-03-07 19:00:00-05:00 -0.048048
2012-03-08 19:00:00-05:00 0.801196
2012-03-09 19:00:00-05:00 1.392071
2012-03-10 19:00:00-05:00 -0.048788

13.8. Time Zone Handling 215



pandas: powerful Python data analysis toolkit, Release 0.9.0

2012-03-11
2012-03-12
2012-03-13
2012-03-14
2012-03-15
2012-03-16
2012-03-17
2012-03-18
2012-03-19
Freqgq: D

20:00:00-04:00 -0.808838
20:00:00-04:00 -1.003677
20:00:00-04:00 -0.160766
20:00:00-04:00 1.758853
20:00:00-04:00 0.729195
20:00:00-04:00 1.359732
20:00:00-04:00 2.006296
20:00:00-04:00 0.870210
20:00:00-04:00 0.043464

Under the hood, all timestamps are stored in UTC. Scalar values from a Datet ime Index with a time zone will have
their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still
considered to be equal even if they are in different time zones:

In [1206]:

In [1207]:

In [1208]:
Out[12087]:

In [12009]:
Out [12097]:

In [1210]:
Out [1210]:

rng_eastern = rng_utc.tz_convert ('US/Eastern’)
rng_berlin = rng_utc.tz_convert (' Europe/Berlin’)

rng_eastern[5]
<Timestamp: 2012-03-10 19:00:00-0500 EST, tz=US/Eastern>

rng_berlin[5]
<Timestamp: 2012-03-11 01:00:00+0100 CET, tz=Europe/Berlin>

rng_eastern[5] == rng_berlin[5]
True

Like Series, DataFrame, and DatetimeIndex, Timestamps can be converted to other time zones using tz_convert:

In [1211]:
Out[1211]:

In [1212]:
Out[1212]:

In [1213]:
Out [1213]:

rng_eastern([5]
<Timestamp: 2012-03-10 19:00:00-0500 EST, tz=US/Eastern>

rng_berlin[5]
<Timestamp: 2012-03-11 01:00:00+0100 CET, tz=Europe/Berlin>

rng_eastern[5] .tz_convert (' Europe/Berlin’)
<Timestamp: 2012-03-11 01:00:00+0100 CET, tz=Europe/Berlin>

Localization of Timestamps functions just like DatetimeIndex and TimeSeries:

In [1214]:
out[1214]:

In [1215]:
Out[1215]:

rng[5]
<Timestamp: 2012-03-11 00:00:00>

rng[5] .tz_localize(’Asia/Shanghai’)
<Timestamp: 2012-03-11 00:00:00+0800 CST, tz=Asia/Shanghai>

Operations between TimeSeries in difficult time zones will yield UTC TimeSeries, aligning the data on the UTC

timestamps:

In [1216]: eastern = ts_utc.tz_convert ('US/Eastern’)

In [1217]: berlin = ts_utc.tz_convert ('Europe/Berlin’)

In [1218]: result = eastern + berlin

In [1219]: result

Out[1219]:

2012-03-06 00:00:00+00:00 -0.229443
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2012-03-07
2012-03-08
2012-03-09
2012-03-10
2012-03-11
2012-03-12
2012-03-13
2012-03-14
2012-03-15
2012-03-16
2012-03-17
2012-03-18
2012-03-19
2012-03-20
Freg: D

In [1220]:
Out [1220]:

<class ’pandas.tseries.index.DatetimeIndex’>

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

result.index

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:
00+00:

[2012-03-06 00:00:00,

Length: 15,

Freg: D,

00
00
00
00
00
00
00
00
00
00
00
00
00
00

Timezone:

.337809
.096096
.602392
.784142
.097575
.617677
.007353
.321532
.517706
.458389
.719465
.012592
.740419
.086928

2012-03-20 00:00:00]
UTC

13.8. Time Zone Handling
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CHAPTER
FOURTEEN

PLOTTING WITH MATPLOTLIB

Note: We intend to build more plotting integration with matplotlib as time goes on.

We use the standard convention for referencing the matplotlib API:

In [1221]: import matplotlib.pyplot as plt

14.1 Basic plotting: plot

The plot method on Series and DataFrame is just a simple wrapper around plt .plot:

In [1222]: ts = Series(randn(1000), index=date_range(’1/1/2000’, periods=1000))
In [1223]: ts = ts.cumsum()

In [1224]: ts.plot ()
Out [1224]: <matplotlib.axes.AxesSubplot at 0x109e77110>

10
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If the index consists of dates, it calls gcf () .autofmt_xdate () to try to format the x-axis nicely as per above.
In [1225]:

The method takes a number of arguments for controlling the look of the plot:

plt.figure();
Oout[1225]:

ts.plot (style="k——", label=’Series’); plt.legend()
<matplotlib.legend.Legend at 0x11d7b81d0>
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On DataFrame, plot is a convenience to plot all of the columns with labels:
In [1226]: df

DataFrame (randn (1000,

4), index=ts.index,
columns=["A", ’'B’, 'C’", '"D"])
In [1227]: df = df.cumsum()

In [1228]: plt.figure();
Oout[1228]:

df.plot(); plt.legend(loc="best’)
<matplotlib.legend.Legend at 0x11f0ba390>
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You may set the 1legend argument to False to hide the legend, which is shown by default.

In [1229]: df.plot (legend=False)
Out[1229]: <matplotlib.axes.AxesSubplot at 0x11£05c290>
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Some other options are available, like plotting each Series on a different axis:

14.1. Basic plotting: plot
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In [1230]: df.plot (subplots=True, figsize=(8, 8)); plt.legend(loc="best’)
Out [1230]: <matplotlib.legend.Legend at 0x11£f07bdl10>

35$@ Jul BBQX Jul 3501 Jul
28° 8° 2o

You may pass 1ogy to get a log-scale Y axis.

In [1231]: plt.figure();
In [1231]: ts = Series(randn(1000), index=date_range(’1/1/2000’, periods=1000))

In [1232]: ts = np.exp(ts.cumsum{())

In [1233]: ts.plot (logy=True)
Out[1233]: <matplotlib.axes.AxesSubplot at 0x11£07bcl0>
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You can plot one column versus another using the x and y keywords in DataFrame.plot:

In [1234]: plt.figure()
Out[1234]: <matplotlib.figure.Figure at 0x11£2408d0>

In [1235]: df3 = DataFrame (np.random.randn (1000, 2), columns=[’'B’, 'C’]).cumsum/()
In [1236]: df3[’A’] = Series(range(len(df)))

In [1237]: df3.plot(x="A’", y='B’)
Out [1237]: <matplotlib.axes.AxesSubplot at 0x121257910>

10
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40

=50
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14.1.1 Plotting on a Secondary Y-axis

To plot data on a secondary y-axis, use the secondary_y keyword:

In [1238]: plt.figure()
Out [1238]: <matplotlib.figure.Figure at 0x120b2ec90>

In [1239]: df.A.plot ()
Out [1239]: <matplotlib.axes.AxesSubplot at 0x1216f£f090>

In [1240]: df.B.plot (secondary_y=True, style='g’)
Out [1240]: <matplotlib.axes.AxesSubplot at 0x1216f£f090>

Jan Jul Jan Jul Jan Jul
2000 2001 2002

14.1.2 Selective Plotting on Secondary Y-axis

To plot some columns in a DataFrame, give the column names to the secondary_y keyword:

In [1241]: plt.figure()
Out[1241]: <matplotlib.figure.Figure at 0x12128df50>

In [1242]: df.plot (secondary_y=["A’, 'B’])
Out[1242]: <matplotlib.axes.AxesSubplot at 0x121707510>
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Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off
the automatic marking, use the mark_right=False keyword:

In [1243]: plt.figure()
Out [1243]: <matplotlib.figure.Figure at 0x121600el0>

In [1244]: df.plot(secondary_y=["A’, 'B’], mark_right=False)
Out[1244]: <matplotlib.axes.AxesSubplot at 0x120acecl0>
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14.1.3 Targeting different subplots

You can pass an ax argument to Series.plot to plot on a particular axis:
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In [1245]:

In [1246]:
Out[1l246]:

In [1247]:
Out[1247]:

In [1248]:
Out[1248]:

In [12409]:
Out[1249]:

1@ i

Jan  Jul

2000

Jul

Jan

fig, axes = plt.subplots (nrows=2,
df["A’] .plot (ax=axes[0,0]); axes[0,0]

<matplotlib.text.Text at 0x121698d50>

df["B’].plot (ax=axes[0,1]); axes[0,1]
<matplotlib.text.Text at 0x12l6bea50>

df[’C’].plot (ax=axes[1,0]); axes[1,0]
<matplotlib.text.Text at 0x12169%9eel0>

df['D’].plot (ax=axes[1l,1]); axes[1l,1]
<matplotlib.text.Text at 0x1217a92d0>
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14.2 Other plotting features

14.2.1 Bar plots

ncols=2,

Jul Jan Jul

figsize=(8, 5))

.set_title('A")

.set_title('B’)

.set_title(’'C’")

.set_title(’'D")

ol

Jan
2002

40 |

”jéh'”jgi'
2002

For labeled, non-time series data, you may wish to produce a bar plot:

In [1250]: plt.figure();

In [1250]: df.ix[5].plot (kind="bar’); plt.axhline (0, color="k’)
Out [1250]: <matplotlib.lines.Line2D at 0x122964ed0>
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Calling a DataFrame’s plot method with kind='bar’ produces a multiple bar plot:
In [1251]: df2 = DataFrame (np.random.rand (10, 4), columns=['a’, 'b’, ’'c’, 'd’'])
In [1252]: df2.plot (kind='bar’);

1.0
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0.6

0.4

| ‘l = | |‘ = |
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To produce a stacked bar plot, pass stacked=True:

o W

o

In [1252]: df2.plot (kind="bar’, stacked=True);
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To get horizontal bar plots, pass kind='barh’:

In [1252]: df2.plot (kind="barh’, stacked=True);

w
o n O @

0.0 0.5 1.0 1.5 2.0 2.5
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14.2.2 Histograms

In [1252]: plt.figure();
In [1252]: df[’A’"].diff () .hist ()
Out [1252]: <matplotlib.axes.AxesSubplot at 0x1229d5550>

4

300

For a DataFrame, hist plots the histograms of the columns on multiple subplots:

In [1253]: plt.figure()
Out [1253]: <matplotlib.figure.Figure at 0x122faff50>

In [1254]: df.diff() .hist (color="k’, alpha=0.5, bins=50)

Out [1254]:
array ([ [Axes (0.125,0.552174;0.336957x0.347826),
Axes (0.563043,0.552174;0.336957x0.347826) 1],
[Axes (0.125,0.1;0.336957x0.347826),
Axes (0.563043,0.1;0.336957x0.347826) 1], dtype=object)

14.2. Other plotting features 229



pandas: powerful Python data analysis toolkit, Release 0.9.0

60 : : B : :
ool
oo AL,
ol .. .
-3 -2 -1 0] 1 2 3 4
60 7 - e —
LI W Y PO
o
o]
19 |||
L ... .
-4 0] 1 2 3 4

14.2.3 Box-Plotting

DataFrame has a boxplot method which allows you to visualize the distribution of values within each column.
For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

In [1255]: df = DataFrame (np.random.rand(10,5))

In [1256]: plt.figure();
In [1256]: bp = df.boxplot ()
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You can create a stratified boxplot using the by keyword argument to create groupings. For instance,
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In [1257]: df = DataFrame (np.random.rand(10,2), columns=[’'Coll’, "Col2’] )
In [1258]: df[’'X"] = Series([’'A’,’A’,'A","A" ,'A",'B",'B","B",'"B","B"])

In [1259]: plt.figure();
In [1259]: bp = df.boxplot (by='"X")

Coll Col2

4+
|
|
B |
L

['x'] ['x']

You can also pass a subset of columns to plot, as well as group by multiple columns:

In [1260]: df = DataFrame (np.random.rand(10,3), columns=[’Coll’, "Col2’, ’"Col3’1])
In [1261]: df[’X’"] = Series(['A’,'A’,'A’,'A’,'A",'B",'B",’"B",’"B","B"])

In [1262]: df['Y’"]

Series([lAI’lBI,!A!,IBI,IAI,!B!,IAI,IBI,!A!,IBIJ)

In [1263]: plt.figure();
In [1263]: bp = df.boxplot (column=['Coll’,’Col2"], by=["X","Y"])
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14.2.4 Scatter plot matrix
New in 0.7.3. You can create a scatter plot matrix using the scatter_matrix method in

pandas.tools.plotting:

In [1264]: from pandas.tools.plotting import scatter_matrix
In [1265]: df = DataFrame (np.random.randn (1000, 4), columns=['a’, 'b’, ’'c’, 'd'])

In [1266]: scatter_matrix(df, alpha=0.2, figsize=(8, 8), diagonal=’'kde’)
Out[1266]:

array ([[Axes (0.125,0.7;0.19375x0.2), Axes(0.31875,0.7;0.19375x0.2),
Axes (0.5125,0.7;0.19375x0.2), Axes(0.70625,0.7;0.19375x0.2)1],
[Axes (0.125,0.5;0.19375x0.2), Axes(0.31875,0.5;0.19375x0.2),
Axes (0.5125,0.5;0.19375x0.2), Axes(0.70625,0.5;0.19375x0.2)17,
[Axes (0.125,0.3;0.19375x0.2), Axes(0.31875,0.3;0.19375%x0.2),
Axes (0.5125,0.3;0.19375x0.2), Axes(0.70625,0.3;0.19375x0.2)1,
[Axes (0.125,0.1;0.19375x0.2), Axes(0.31875,0.1;0.19375x0.2),
Axes (0.5125,0.1;0.19375x0.2), Axes(0.70625,0.1;0.19375x0.2)]1], dtype=object)
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New in
0.8.0 You can create density plots using the Series/DataFrame.plot and setting kind="kde:

In [1267]: ser = Series (np.random.randn (1000))

In [1268]: ser.plot (kind='kde’)
Out [1268]: <matplotlib.axes.AxesSubplot at 0x12871b710>
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Density

14.2.5 Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes
of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to
visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form
larger structures.

In [1269]:

In [1270]:

In [1271]:

In [1272]:
Out[1272]:

In [1273]:
Out [1273]:

from pandas import read_csv
from pandas.tools.plotting import andrews_curves
data = read_csv(’data/iris.data’)

plt.figure()
<matplotlib.figure.Figure at 0x126d68£90>

andrews_curves (data, ’Name’)
<matplotlib.axes.AxesSubplot at 0x128761650>
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14.2.6 Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to
estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each
vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to
cluster will appear closer together.

In [1274]: from pandas import read_csv
In [1275]: from pandas.tools.plotting import parallel_coordinates
In [1276]: data = read_csv(’data/iris.data’)

In [1277]: plt.figure()
Out [1277]: <matplotlib.figure.Figure at 0x128751490>

In [1278]: parallel_coordinates(data, ’'Name’)
Out[1278]: <matplotlib.axes.AxesSubplot at 0x1296cd9d0>
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14.2.7 Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the
lag plot. Non-random structure implies that the underlying data are not random.

In [1279]: from pandas.tools.plotting import lag_plot
In [1280]: plt.figure()
Out[1280]: <matplotlib.figure.Figure at 0x12al3af90>
In [1281]: data = Series (0.1 * np.random.random(1000) +
....... 0.9 » np.sin(np.linspace(-99 % np.pi, 99 % np.pi, num=1000)))
In [1282]: lag_plot (data)
Out[1282]: <matplotlib.axes.AxesSubplot at 0x1296cd510>
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14.2.8 Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrela-
tions for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any
and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly
non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is
99% confidence band.

In [1283]: from pandas.tools.plotting import autocorrelation_plot

In [1284]: plt.figure()
Out[1284]: <matplotlib.figure.Figure at 0Oxl2al6ed50>

In [1285]: data = Series (0.7 = np.random.random(1000) +
et 0.3 *» np.sin(np.linspace (-9 * np.pi, 9 * np.pi, num=1000)))

In [1286]: autocorrelation_plot (data)
Out[1286]: <matplotlib.axes.AxesSubplot at 0x12al6c2d0>
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14.2.9 Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A
random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and
the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap
plot.

In [1287]: from pandas.tools.plotting import bootstrap_plot
In [1288]: data = Series (np.random.random(1000))

In [1289]: bootstrap_plot (data, size=50, samples=500, color='grey’)
Out[1289]: <matplotlib.figure.Figure at 0x12a19d110>
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14.2.10 RadViz

RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm.
Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point
represents a single attribute. You then pretend that each sample in the data set is attached to each of these points
by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to
unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an
equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it
will be colored differently.

In [1290]: from pandas import read_csv
In [1291]: from pandas.tools.plotting import radviz

In [1292]: data = read_csv(’data/iris.data’)

14.2. Other plotting features 239



pandas: powerful Python data analysis toolkit, Release 0.9.0

In [1293]: plt.figure()
Out [1293]: <matplotlib.figure.Figure at 0x12a19d890>

In [1294]: radviz (data, ’Name’)
Out[1294]: <matplotlib.axes.AxesSubplot at 0x12b323910>
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CHAPTER
FIFTEEN

IO TOOLS (TEXT, CSV, HDFS5, ...)

15.1 Clipboard

A handy way to grab data is to use the read_c1lipboard method, which takes the contents of the clipboard buffer
and passes them to the read_talble method described in the next section. For instance, you can copy the following

text to the clipboard (CTRL-C on many operating systems):

N X

w N -
oy U1 > W
5 QT Q

And then import the data directly to a DataFrame by calling:

clipdf = read_clipboard(sep='"\sx')

In [746]: clipdf

Out [746]:
A B C
x 1 4 p
y 2 5 g
z 3 6 1

15.2 CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are read_csv () and read_table (). They
both use the same parsing code to intelligently convert tabular data into a DataFrame object. They can take a number

of arguments:

e filepath_or_buffer: Either a string path to a file, or any object with a read method (such as an open

file or StringIO).

e sepordelimiter: A delimiter / separator to split fields on. read_csv is capable of inferring the delimiter
automatically in some cases by “sniffing.” The separator may be specified as a regular expression; for instance

you may use ‘s*’ to indicate arbitrary whitespace.

e dialect: string or csv.Dialect instance to expose more ways to specify the file format

* header: row number to use as the column names, and the start of the data. Defaults to O (first row); specify

None if there is no header row.

* skiprows: A collection of numbers for rows in the file to skip. Can also be an integer to skip the first n rows
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index_col: column number, column name, or list of column numbers/names, to use as the index (row
labels) of the resulting DataFrame. By default, it will number the rows without using any column, unless there
is one more data column than there are headers, in which case the first column is taken as the index.

names: List of column names to use. If passed, header will be implicitly set to None.

na_values: optional list of strings to recognize as NaN (missing values), either in addition to or in lieu of the
default set.

keep_default_na: whether to include the default set of missing values in addition to the ones specified in
na_values

parse_dates: if True then index will be parsed as dates (False by default). You can specify more complicated
options to parse a subset of columns or a combination of columns into a single date column (list of ints or names,
list of lists, or dict) [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column [[1, 3]] -> combine
columns 1 and 3 and parse as a single date column {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result
‘foo’

keep_date_col: if True, then date component columns passed into parse_dates will be retained in the
output (False by default).

date_parser: function to use to parse strings into datetime objects. If parse_dates is True, it defaults
to the very robust dateutil.parser. Specifying this implicitly sets parse_dates as True. You can also
use functions from community supported date converters from date_converters.py

dayfirst: if True then uses the DD/MM international/European date format (This is False by default)

thousands: sepcifies the thousands separator. If not None, then parser will try to look for it in the output and
parse relevant data to integers. Because it has to essentially scan through the data again, this causes a significant
performance hit so only use if necessary.

comment: denotes the start of a comment and ignores the rest of the line. Currently line commenting is not
supported.

nrows: Number of rows to read out of the file. Useful to only read a small portion of a large file
iterator: If True, return a TextParser to enable reading a file into memory piece by piece

chunksize: An number of rows to be used to “chunk” a file into pieces. Will cause an TextParser object
to be returned. More on this below in the section on iterating and chunking

skip_footer: number of lines to skip at bottom of file (default 0)

converters: adictionary of functions for converting values in certain columns, where keys are either integers
or column labels

encoding: a string representing the encoding to use if the contents are non-ascii
verbose: show number of NA values inserted in non-numeric columns

squeeze: if True then output with only one column is turned into Series

Consider a typical CSV file containing, in this case, some time series data:

In [747]: print open(’ foo.csv’) .read()
date,A,B,C

20090101,a,1,2

20090102,b,3,14

20090103,c, 4,5

The default for read_csv is to create a DataFrame with simple numbered rows:
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In [748]: read_csv ('’ foo.csv’)

Out [748]:

date A B C
0 20090101 a 1 2
1 20090102 b 3 4
2 20090103 ¢ 4 5

In the case of indexed data, you can pass the column number or column name you wish to use as the index:

In [749]: read_csv ('’ foo.csv’, index_col=0)

Out [749]:

A B C
date
20090101 a 1
20090102 b 3 4
20090103 ¢ 4

In [750]: read_csv ('’ foo.csv’, index_col=’'date’)

Out [750] :

A B C
date
20090101 a 1
20090102 b 3 4
20090103 ¢ 4

You can also use a list of columns to create a hierarchical index:

In [751]: read_csv ('’ foo.csv’, index_col=[0, "A’])

Out [751]:

B C
date A
20090101 a 1 2
20090102 b 3 4
20090103 ¢ 4 5

The dialect keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but
you can specify either the dialect name or a :class:python:csv.Dialect instance.

Suppose you had data with unenclosed quotes:

In [752]: print data
labell, label2, label3
index1, "a,c,e
index2,b,d, f

By default, read_csv uses the Excel dialect and treats the double quote as the quote character, which causes it to
fail when it finds a newline before it finds the closing double quote.

We can get around this using dialect

In [753]: dia = csv.excel()
In [754]: dia.gquoting = csv.QUOTE_NONE

In [755]: read_csv(StringIO(data), dialect=dia)

Out [755]:

labell label2 label3
index1 "a c e
index2 b d f
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The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So
if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will
come through as object dtype as with the rest of pandas objects.

15.2.1 Specifying Date Columns

To better facilitate working with datetime data, read_csv () and read_table () uses the keyword arguments
parse_dates and date_parser to allow users to specify a variety of columns and date/time formats to turn the
input text data into dat et ime objects.

The simplest case is to just pass in parse_dates=True:

# Use a column as an index, and parse it as dates.
In [756]: df = read_csv(’foo.csv’, index_col=0, parse_dates=True)

In [757]: df
Oout [757] :

A B C
date
2009-01-01 a 1 2
2009-01-02 Db 3
2009-01-03 ¢ 4 5

IS

# These are python datetime objects
In [758]: df.index

Oout [758]:
<class ’pandas.tseries.index.DatetimeIndex’>
[2009-01-01 00:00:00, ..., 2009-01-03 00:00:00]

Length: 3, Freq: None, Timezone: None

It is often the case that we may want to store date and time data separately, or store various date fields separately. the
parse_dates keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to parse_dates, the resulting date columns will be prepended to the output
(so as to not affect the existing column order) and the new column names will be the concatenation of the component
column names:

In [759]: print open(’'tmp.csv’) .read()

KORD, 19990127, 19:00:00, 18:56:00, 0.8100
KORD, 19990127, 20:00:00, 19:56:00, 0.0100
KORD, 19990127, 21:00:00, 20:56:00, -0.5900
KORD, 19990127, 21:00:00, 21:18:00, -0.9900
KORD, 19990127, 22:00:00, 21:56:00, -0.5900
KORD, 19990127, 23:00:00, 22:56:00, -0.5900

In [760]: df = read_csv(’tmp.csv’, header=None, parse_dates=[[1, 2], [1, 311])

In [761]: df

out [761]:

X1_X2 X1_X3 X0 X4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD —-0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
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By default the parser removes the component date columns, but you can choose to retain them via the
keep_date_col keyword:

In [762]: df =

In [763]: df
out [763]:

X1_
0 1999-01-27 19:00:
1 1999-01-27 20:00:
2 1999-01-27 21:00:
3 1999-01-27 21:00:
4 1999-01-27 22:00:
5 1999-01-27 23:00:

read_csv (' tmp.csv’,

X2
00
00
00
00
00
00

header=None,

keep_date_col=True)

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

21

18:
19:
20:
21:

22

X1_
56:
56:
56:
18:
:56:
56:

X3
00
00
00
00
00
00

X0
KORD
KORD
KORD
KORD
KORD
KORD

X1
19990127
19990127
19990127
19990127
19990127
19990127

parse_dates=[[1,

19:
20:
21:
21:

22

23:

21,

00:
00:
00:
00:
:00:
00:

X2
00
00
00
00
00
00

311,

18:
19:
20:
21:

21

22:

56:
56:
56:
18:
:56:
56:

X3
00
00
00
00
00
00

X4

.81
.01
.59
.99
.59
.59

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other

words, parse_dates=[1,

columns while parse_dates=[[1,

2] indicates that the second and third columns should each be parsed as separate date

You can also use a dict to specify custom name columns:

read_csv (' tmp.csv’,

In [764]: date_spec =
In [765]: df =
In [766]: df
Out[766]:

nominal
0 1999-01-27 19:00:00
1 1999-01-27 20:00:00
2 1999-01-27 21:00:00
3 1999-01-27 21:00:00
4 1999-01-27 22:00:00
5 1999-01-27 23:00:00

{’nominal’: [1,

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

18:
19:
20:
21:
21:
22

21,

"actual’ :

header=None,

actual

56:
56:
56:
18:
56:
56:

00
00
00
00
00
00

X0
KORD
KORD
KORD
KORD
KORD
KORD

(1, 31}

X4
0.81
0.01
.59
.99
.59
.59

parse_dates=date_spec)

211 means the two columns should be parsed into a single column.

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column
is prepended to the data. The index_col specification is based off of this new set of columns rather than the original

data columns:

In [767]: date_spec

df =

In [769]:
out[769]:

df

read_csv (' tmp.csv’,

{’nominal’: [1,

index_col=0)

nominal

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

19:
20:
21:
21:

22

23:

00:
00:
00:
00:
:00:
00:

00
00
00
00
00
00

1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27
1999-01-27

18:
19:
20:
21:

21

22:

21,

actual

56:
56:
56:
18:
:56:
56:

00
00
00
00
00
00

"actual’:

header=None,

X0
KORD O.
KORD 0.
KORD -0
KORD -0
KORD -0
KORD -0

(1, 31}

X4

81
01

.59
.99
.59
.59

parse_dates=date_spec,
#index 1s the nominal column
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15.2.2 Date Parsing Functions
Finally, the parser allows you can specify a custom date_parser function to take full advantage of the flexiblity of
the date parsing API:

In [770]: import pandas.io.date_converters as conv

In [771]: df = read_csv(’tmp.csv’, header=None, parse_dates=date_spec,
..... : date_parser=conv.parse_date_time)

In [772]: df

out[772]:

nominal actual X0 X4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

You can explore the date parsing functionality in date_converters.py and add your own. We would love to turn
this module into a community supported set of date/time parsers. To get you started, date_converters.py con-
tains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a generic_parser function so you can curry it with a function that deals with a single
date rather than the entire array.

15.2.3 International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For
convenience, a dayfirst keyword is provided:

In [773]: print open(’'tmp.csv’) .read()
date,value, cat

1/6/2000,5,a

2/6/2000,10,b

3/6/2000,15,c

In [774]: read_csv('tmp.csv’, parse_dates=[0])

out[774]:

date value cat
0 2000-01-06 00:00:00 5 a
1 2000-02-06 00:00:00 10 b
2 2000-03-06 00:00:00 15 c

In [775]: read_csv(’'tmp.csv’, dayfirst=True, parse_dates=[0])

Oout [775]:

date value cat
0 2000-06-01 00:00:00 5 a
1 2000-06-02 00:00:00 10 b
2 2000-06-03 00:00:00 15 c

15.2.4 Thousand Separators

For large integers that have been written with a thousands separator, you can set the thousands keyword to True
so that integers will be parsed correctly:
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By default, integers with a thousands separator will be parsed as strings

In [776]: print open(’'tmp.csv’) .read()
ID|level|category

Patient1|123,000|x

Patient2|23,000]y
Patient31]1,234,018]|z

In [777]: df = read_csv('tmp.csv’, sep="1|")

In [778]: df

out[778]:

ID level category
0 Patientl 123,000 X
1 Patient2 23,000 %
2 Patient3 1,234,018 Z

In [779]: df.level.dtype
Oout [779]: dtype (' object’)

The thousands keyword allows integers to be parsed correctly

In [780]: print open(’'tmp.csv’) .read()
ID|level |category

Patient1]123,000|x

Patient2]23,000]y
Patient3|1,234,018]|z

In [781]: df = read_csv(’'tmp.csv’, sep='|’, thousands=',")

In [782]: df

Out [782] :

D level category
0 Patientl 123000 X
1 Patient2 23000 y
2 Patient3 1234018 z

In [783]: df.level.dtype
Out [783]: dtype (’int64")

15.2.5 Comments

Sometimes comments or meta data may be included in a file:

In [784]: print open(’'tmp.csv’) .read()

ID, level,category

Patientl,123000,x # really unpleasant
Patient2,23000,y # wouldn’t take his medicine
Patient3,1234018,z # awesome

By default, the parse includes the comments in the output:

In [785]: df = read_csv(’tmp.csv’)

In [786]: df
out [786]:

ID level category
0 Patientl 123000 x # really unpleasant
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1 Patient2 23000 y # wouldn’t take his medicine
2 Patient3 1234018 z # awesome

We can suppress the comments using the comment keyword:

In [787]: df = read_csv(’'tmp.csv’, comment=’"4#")

In [788]: df

Out [788]:

ID level category
0 Patientl 123000 X
1 Patient2 23000 vy
2 Patient3 1234018 zZ

15.2.6 Returning Series

Using the squeeze keyword, the parser will return output with a single column as a Series:

In [789]: print open(’'tmp.csv’) .read()
level

Patient1, 123000

Patient2,23000

Patient3,1234018

In [790]: output = read_csv('tmp.csv’, squeeze=True)

In [791]: output

Oout [7917]:

Patientl 123000
Patient2 23000
Patient3 1234018

Name: level

In [792]: type (output)
Out [792]: pandas.core.series.Series

15.2.7 Files with Fixed Width Columns

While read_csv reads delimited data, the read_fwf () function works with data files that have known and fixed
column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters:

* colspecs: alist of pairs (tuples), giving the extents of the fixed-width fields of each line as half-open intervals

[from, to[

* widths: alist of field widths, which can be used instead of colspecs if the intervals are contiguous

Consider a typical fixed-width data file:

In [793]: print open(’bar.csv’) .read()

id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
1d1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
1d1948 502.953953 173.237159 12468.3

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf

function along with the file name:
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#Column specifications are a list of half-intervals
In [794]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]

In [795]: df = read_fwf ('bar.csv’, colspecs=colspecs, header=None, index_col=0)

In [796]: df
Oout[796]:

X1 X2 X3
X0
1d8141 360.242940 149.910199 11950.
1id1594 444.953632 166.985655 11788.
1d1849 364.136849 183.628767 11806.
id1230 413.836124 184.375703 11916.
1d1948 502.953953 173.237159 12468.

W 00 N

Note how the parser automatically picks column names X.<column number> when header=None argument is spec-
ified. Alternatively, you can supply just the column widths for contiguous columns:

#Widths are a list of integers
In [797]: widths = [6, 14, 13, 10]

In [798]: df = read_fwf ('bar.csv’, widths=widths, header=None)

In [799]: df

Oout [799]:

X0 X1 X2 X3
0 1d8141 360.242940 149.910199 11950.7
1 1d1594 444.953632 166.985655 11788.4
2 1d1849 364.136849 183.628767 11806.2
3 1d1230 413.836124 184.375703 11916.8
4 1d1948 502.953953 173.237159 12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the
columns in the file.

15.2.8 Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

In [800]: print open(’foo.csv’) .read()
A,B,C

20090101,a,1,2

20090102,b,3,14

20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

In [801]: read_csv ('’ foo.csv’)

Out [8017:

A B C
20090101 a 1 2
20090102 b 3 4
20090103 ¢ 4 5

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

In [802]: df = read_csv(’foo.csv’, parse_dates=True)
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In [803]: df.index

Out [803]:
<class ’'pandas.tseries.index.DatetimeIndex’>
[2009-01-01 00:00:00, ..., 2009-01-03 00:00:00]

Length: 3, Freq: None, Timezone: None

15.2.9 Reading DataFrame objects with MultiIndex

Suppose you have data indexed by two columns:

In [804]: print open(’data/mindex_ex.csv’) .read()
year, indiv, zit, xit

1977,"A",1.2,.6

1977,"B",1.5,.5

1977,"c",1.7,.8

1978, "A", .2, .06
1978, "B", .7, .2
1978,"C", .8, .3
1978, "D", .9, .5

1978,"E",1.4,.9
1979,"c", .2, .15
1979, "D", .14, .05
1979,"E", .5, .15
1979,"F",1.2,.5

1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"1",6.4,1.2

The index_col argument to read_csv and read_table can take a list of column numbers to turn multiple
columns into a MultiIndex:

In [805]: df = read_csv("data/mindex_ex.csv", index_col=[0,1])

In [806]: df

Oout [806] :
zit xit
year indiv
1977 A 1.20 0.60
B 1.50 0.50
C 1.70 0.80
1978 A 0.20 0.06
B 0.70 0.20
C 0.80 0.30
D 0.90 0.50
E 1.40 0.90
1979 C 0.20 0.15
D 0.14 0.05
E 0.50 0.15
F 1.20 0.50
G 3.40 1.90
H 5.40 2.70
I 6.40 1.20

In [807]: df.ix[1978]
out [807]:

zit xit
indiv
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A 0.2 0.06
B 0.7 0.20
c 0.8 0.30
D 0.9 0.50
E 1.4 0.90

15.2.10 Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files. YMMYV, as pandas uses the
csv.Sniffer class of the csv module.

In [808]: print open(’'tmp2.sv’) .read()

:0:1:2:3
:0.46911229990718628:-0.28286334432866328:-1.5090585031735124:-1.1356323710171934
:1.2121120250208506:-0.17321464905330858:0.11920871129693428:-1.0442359662799567
:—0.86184896334779992:-2.1045692188948086:-0.49492927406878129:1.0718038070373379
:0.72155516224436689:-0.70677113363008448:-1.0395749851146963:0.27185988554282986
:—0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
:-0.67368970808837059:0.1136484096888855:-1.4784265524372235:0.52498766711470468
:0.40470521868023651:0.57704598592048362:-1.7150020161146375:-1.0392684835147725
:—0.37064685823644639:-1.1578922506419993:-1.3443118127316671:0.84488514142488413
:1.0757697837155533:-0.10904997528022223:1.6435630703622064:-1.4693879595399115
:0.35702056413309086:-0.67460010372998824:-1.7769037169718671:-0.96891381244734975

W 0 J o U1 W DN - O

In [809]: read_csv(/'tmp2.sv’)

Out [809]:

:0:1:2:3
0 0:0.46911229990718628:-0.28286334432866328:—-1....
1 1:1.2121120250208506:-0.17321464905330858:0.11...
2 2:-0.86184896334779992:-2.1045692188948086:-0....
3 3:0.72155516224436689:-0.70677113363008448:-1....
4 4:-0.42497232978883753:0.567020349793672:0.276. ..
5 5:-0.67368970808837059:0.1136484096888855:~-1.4...
6 6:0.40470521868023651:0.57704598592048362:-1.7...
7 T7:-0.37064685823644639:-1.1578922506419993:-1....
8 8:1.0757697837155533:-0.10904997528022223:1.64...
9 9:0.35702056413309086:-0.67460010372998824:-1....

15.2.11 Ilterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory,
such as the following:

In [810]: print open(’'tmp.sv’) .read()

[01112]3
010.46911229990718628|-0.28286334432866328|-1.5090585031735124|-1.1356323710171934
111.2121120250208506|-0.1732146490533085810.11920871129693428|-1.0442359662799567
21-0.861848963347799921-2.1045692188948086|-0.49492927406878129|1.0718038070373379
310.72155516224436689|-0.70677113363008448|-1.0395749851146963|0.27185988554282986
41-0.42497232978883753|0.567020349793672|0.27623201927771873|-1.0874006912859915
5/-0.67368970808837059|0.1136484096888855|-1.4784265524372235|0.52498766711470468
610.4047052186802365110.57704598592048362[-1.7150020161146375[-1.0392684835147725
71-0.37064685823644639|-1.1578922506419993|-1.3443118127316671|0.84488514142488413
811.0757697837155533|-0.10904997528022223|1.6435630703622064|-1.4693879595399115
910.35702056413309086|-0.674600103729988241-1.77690371697186711-0.96891381244734975
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In [811]:

In [812]:
Out [812]:

Unnamed:

O 00 J o Ul WDN B O

table = read_table('tmp.sv’, sep="1|")

table

0
0
1
2
3
4
5
6
7
8
9

0
0.469112
1.212112

-0.861849
0.721555
-0.424972
-0.673690
0.404705
-0.370647
1.075770
0.357021

-1

1

.282863
.173215
.104569
.706771
.567020
.113648
.577046
.157892
-0.
-0.

109050
674600

-1.

0.
-0.
-1.

0.
-1.
-1.

-1

1.
-1.

2
509059 -1.
119209 -1.
494929 1.
039575 0.
276232 -1.
478427 0.
715002 -1.

.344312 0.
643563 -1.
776904 -0.

3
135632
044236
071804
271860
087401
524988
039268
844885
469388
968914

By specifiying a chunksize to read_csv or read_table, the return value will be an iterable object of type

TextParser:

In [813]: reader = read_table('tmp.sv’, sep=’|’, chunksize=4)

In [814]: reader

Out[814]: <pandas.io.parsers.TextParser at 0x116£68950>

In [815]: for chunk in reader:
...... print chunk
Unnamed: 0 0 1 2 3

0 0 0.469112 -0.282863 —-1.509059 -1.135632

1 1 1.212112 -0.173215 0.119209 -1.044236

2 2 -0.861849 -2.104569 -0.494929 1.071804

3 3 0.721555 -0.706771 -1.039575 0.271860
Unnamed: 0 0 1 2 3

0 4 -0.424972 0.567020 0.276232 -1.087401

1 5 -0.673690 0.113648 —-1.478427 0.524988

2 6 0.404705 0.577046 -1.715002 -1.039268

3 7 -0.370647 -1.157892 -1.344312 0.844885
Unnamed: 0 0 1 2 3

0 8 1.075770 -0.10905 1.643563 -1.469388

1 9 0.357021 -0.67460 -1.776904 -0.968914

Specifying iterator=True will also return the TextParser object:

In [816]: reader = read_table('tmp.sv’, sep=’|’, iterator=True)
In [817]: reader.get_chunk(5)
Oout[817]:
Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 —-1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
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15.2.12 Writing to CSV format

The Series and DataFrame objects have an instance method t o_csv which allows storing the contents of the object
as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

path: A string path to the file to write nanRep: A string representation of a missing value (default **)
cols: Columns to write (default None)

header: Whether to write out the column names (default True)

index: whether to write row (index) names (default True)

index_label: Column label(s) for index column(s) if desired. If None (default), and header and index are
True, then the index names are used. (A sequence should be given if the DataFrame uses Multilndex).

mode : Python write mode, default ‘w’
sep : Field delimiter for the output file (default “**)

encoding: a string representing the encoding to use if the contents are non-ascii, for python versions prior to
3

15.2.13 Writing a formatted string

The DataFrame object has an instance method t o_ st ring which allows control over the string representation of the
object. All arguments are optional:

buf default None, for example a StringlO object

columns default None, which columns to write

col_space default None, number of spaces to write between columns
na_rep default NaN, representation of NA value

formatters default None, a dictionary (by column) of functions each of which takes a single argument and
returns a formatted string

float_format default None, a function which takes a single (float) argument and returns a formatted string;
to be applied to floats in the DataFrame.

sparsify default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at
each row.

index_names default True, will print the names of the indices
index default True, will print the index (ie, row labels)
header default True, will print the column labels

justify default 1eft, will print column headers left- or right-justified

The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments.
There is also a 1ength argument which, if set to True, will additionally output the length of the Series.

15.2.14 Writing to HTML format

DataFrame object has an instance method to_html which renders the contents of the DataFrame as an html table.
The function arguments are as in the method t o_string described above.
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15.3 Excel files

The ExcelFile class can read an Excel 2003 file using the x1rd Python module and use the same parsing code as
the above to convert tabular data into a DataFrame. To use it, create the Exce1File object:

x1ls = ExcelFile('path_to_file.xls’)

Then use the parse instance method with a sheetname, then use the same additional arguments as the parsers above:
x1ls.parse (' Sheetl’, index_col=None, na_values=['NA’])

To read sheets from an Excel 2007 file, you can pass a filename with a . x1 sx extension, in which case the openpyx1
module will be used to read the file.

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read
in those columns. ExcelFile.parse takes a parse_cols keyword to allow you to specify a subset of columns to parse.

If parse_cols is an integer, then it is assumed to indicate the last column to be parsed.

x1ls.parse (' Sheetl’, parse_cols=2, index_col=None, na_values=['NA’])

If parse_cols is a list of integers, then it is assumed to be the file column indices to be parsed.

x1ls.parse ('’ Sheetl’, parse_cols=[0, 2, 3], index_col=None, na_values=['NA’'])

To write a DataFrame object to a sheet of an Excel file, you can use the t o_excel instance method. The arguments
are largely the same as t o_csv described above, the first argument being the name of the excel file, and the optional
second argument the name of the sheet to which the DataFrame should be written. For example:

df.to_excel ('path_to_file.xlsx’, sheet_name=’sheetl’)

Files with a .x1s extension will be written using x1wt and those with a .x1sx extension will be written using
openpyx1. The Panel class also has a t o_excel instance method, which writes each DataFrame in the Panel to a
separate sheet.

In order to write separate DataFrames to separate sheets in a single Excel file, one can use the ExcelWriter class, as in
the following example:

writer = ExcelWriter ('path_to_file.xlsx’)
dfl.to_excel (writer, sheet_name='sheetl’)
df2.to_excel (writer, sheet_name=’'sheet2’)
writer.save ()

15.4 HDF5 (PyTables)

HDFStore is a dict-like object which reads and writes pandas to the high performance HDF5 format using the
excellent PyTables library.

In [818]: store = HDFStore(’store.h5’)
In [819]: print store
<class ’'pandas.io.pytables.HDFStore’>

File path: store.h5
Empty

Objects can be written to the file just like adding key-value pairs to a dict:
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In [820]: index = date_range(’1/1/2000’, periods=8)
In [821]: s = Series(randn(5), index=["a’, ’'b’, 'c’, ’d’,
In [822]: df = DataFrame (randn (8, 3), index=index,

et columns=["A", 'B’, 'C’'1])

In [823]: wp = Panel(randn(2, 5, 4), items=['Iteml’, ’"Item2’],
e major_axis=date_range(’1/1/2000’, periods=5),

e minor_axis=['A’, 'B’, ’'C’, 'D’'])

In [824]: store[’s’] = s
In [825]: store[’df’] = df
In [826]: store[’'wp’] = wp

In [827]: store

out [827]:

<class ’'pandas.io.pytables.HDFStore’>
File path: store.h5

df DataFrame
s Series
wp Panel

In a current or later Python session, you can retrieve stored objects:

In [828]: store[’df’]
out [828]:

A B C
2000-01-01 -0.362543 -0.006154 -0.923061
2000-01-02 0.895717 0.805244 -1.206412
2000-01-03 2.565646 1.431256 1.340309
2000-01-04 -1.170299 -0.226169 0.410835
2000-01-05 0.813850 0.132003 -0.827317
2000-01-06 -0.076467 -1.187678 1.130127
2000-01-07 -1.436737 -1.413681 1.607920
2000-01-08 1.024180 0.569605 0.8759006

15.4. HDF5 (PyTables)
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CHAPTER
SIXTEEN

SPARSE DATA STRUCTURES

We have implemented “sparse” versions of Series, DataFrame, and Panel. These are not sparse in the typical “mostly
0”. You can view these objects as being “compressed” where any data matching a specific value (NaN/missing by
default, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been
“sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a
to_sparse method:

In [1050]: ts = Series(randn(10))
In [1051]: ts[2:-2] = np.nan
In [1052]: sts = ts.to_sparse()

In [1053]: sts

Out [1053]:

0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
BlockIndex

Block locations: array ([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)

The to_sparse method takes a kind argument (for the sparse index, see below) and a £i11_value. So if we
had a mostly zero Series, we could convert it to sparse with £i11_value=0:

In [1054]: ts.fillna(0) .to_sparse(fill_value=0)
out[1054]:
0.469112
-0.282863
0.000000
.000000
.000000
.000000
.000000
.000000
.861849
-2.104569
BlockIndex

O 00 J o Ul WDN HFH O
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Block locations: array ([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

In [1055]: df = DataFrame (randn (10000, 4))
In [1056]: df.ix[:9998] = np.nan
In [1057]: sdf = df.to_sparse()

In [1058]: sdf

Out[1058]:

<class ’pandas.sparse.frame.SparseDataFrame’>
Int64Index: 10000 entries, 0 to 9999

Columns: 4 entries, 0 to 3

dtypes: float64 (4)

In [1059]: sdf.density
Out [1059]: 0.0001

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes
up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly
identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling to_dense:

In [1060]: sts.to_dense()

Oout [1060]:

0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569

16.1 SparseArray

SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object
storing only values distinct from the £111_value:

In [1061]: arr = np.random.randn (10)
In [1062]: arr([2:5] = np.nan; arr[7:8] = np.nan
In [1063]: sparr = SparseArray(arr)

In [1064]: sparr

out[1064]:

SparseArray ([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.334271)

IntIndex

Indices: array ([0, 1, 5, 6, 8, 9], dtype=int32)

258 Chapter 16. Sparse data structures



pandas: powerful Python data analysis toolkit, Release 0.9.0

Like the indexed objects (SparseSeries, SparseDataFrame, SparsePanel), a SparseArray can be converted back to
a regular ndarray by calling to_dense:

In [1065]: sparr.to_dense ()

Out [10657]:

array ([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.3342])

16.2 SparselList

Sparselist is a list-like data structure for managing a dynamic collection of SparseArrays. To create one, simply
call the SparseList constructor witha £111_value (defaulting to NaN):

In [1066]: spl = SparselList()

In [1067]: spl
Out [1067]:
<pandas.sparse.list.SparselList object at 0x109e77£90>

The two important methods are append and to_array. append can accept scalar values or any 1-dimensional
sequence:

In [1068]: spl.append(np.array([l., nan, nan, 2., 3.]))
In [1069]: spl.append(5)
In [1070]: spl.append(sparr)

In [1071]: spl

Out [10717]:

<pandas.sparse.list.SparselList object at 0x109e77£90>
SparseArray ([ 1., nan, nan, 2., 3.1)

IntIndex

Indices: array ([0, 3, 4], dtype=int32)

SparseArray ([ 5.1)

IntIndex

Indices: array([0], dtype=int32)

SparseArray ([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.334271)

IntIndex

Indices: array ([0, 1, 5, 6, 8, 9], dtype=int32)

As you can see, all of the contents are stored internally as a list of memory-efficient SparseArray objects. Once
you’ve accumulated all of the data, you can call to_array to get a single SparseArray with all the data:

In [1072]: spl.to_array()

out [1072]:
SparseArray ([ 1. , nan, nan, 2. , 3. , 5. , —-1.9557,
-1.6589, nan, nan, nan, 1.1589, 0.1453, nan,
0.606 , 1.33421)
IntIndex

Indices: array ([ O, 3, 4, 5, 6, 7, 11, 12, 14, 15], dtype=int32)
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16.3 Sparselndex objects

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more
memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill
value. The block format tracks only the locations and sizes of blocks of data.
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SEVENTEEN

CAVEATS AND GOTCHAS

17.1 NaN, Integer NA values and NA type promotions

17.1.1 Choice of NA representation
For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult
choice between either

* A masked array solution: an array of data and an array of boolean values indicating whether a value

 Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best
decision given the state of affairs in NumPy and Python in general. The special value NaN (Not-A-Number) is used
everywhere as the NA value, and there are API functions i snull and notnull which can be used across the dtypes
to detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

17.1.2 Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is
the ability to represent NAs in integer arrays. For example:

In [422]: s = Series([1, 2, 3, 4, 5], index=1list (’abcde’))

In [423]: s

Oout [423]:
a 1
b 2
c 3
d 4
e 5

In [424]: s.dtype
Out [424]: dtype(’int64d’)

In [425]: s2 = s.reindex(['a’, 'b’, ’'c’', "f', "u’l)

In [426]: s2

Out [426]:
a 1
b 2
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c 3

f NaN

u NaN

In [427]: s2.dtype

Out [427]: dtype (' float64d’)

This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to
be “numeric”. One possibility is to use dt ype=ob ject arrays instead.
17.1.3 NA type promotions

When introducing NAs into an existing Series or DataFrame via reindex or some other means, boolean and integer
types will be promoted to a different dtype in order to store the NAs. These are summarized by this table:

Typeclass Promotion dtype for storing NAs
floating | nochange

object no change

integer castto floatoc4

boolean cast to object

While this may seem like a heavy trade-off, in practice I have found very few cases where this is an issue in practice.
Some explanation for the motivation here in the next section.

17.1.4 Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific
statistical programming langauge R. Part of the reason is the NumPy type hierarchy:

Typeclass Dtypes

numpy .floating floatl6e, float32, float6d, floatl28
numpy.integer int8, intl6, int32, int64
numpy.unsignedinteger | uint8, uintl6, uint32, uint64

numpy .object__ object_

numpy .bool__ bool_

numpy .character string_, unicode_

The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point),
character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used
as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more
substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.

An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean
mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I
feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly
high performance cost when working with numerical data compared with the simple approach of using NaN. Thus,
I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler
approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when
NAs must be introduced.
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17.2 Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and
among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter
more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the
standard tools like . ix. The following code will generate exceptions:

s = Series(range(5))

s[—1]

df = DataFrame (np.random.randn (5, 4))
df

df.ix[-2:]

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the
API change was made to stop “falling back™ on position-based indexing).

17.3 Label-based slicing conventions

17.3.1 Non-monotonic indexes require exact matches

17.3.2 Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in
pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or
next element after a particular label in an index. For example, consider the following Series:

In [428]: s = Series(randn(6), index=list (’abcdef’))

In [429]: s
Out [429]:
1.337122
-1.531095
1.331458
.571329
-0.026671
-1.085663

O Q00w
|
o

Suppose we wished to slice from c to e, using integers this would be

In [430]: s[2:5]

Out [430]:

c 1.331458
d -0.571329
e -0.026671

However, if you only had c and e, determining the next element in the index can be somewhat complicated. For
example, the following does not work:

s.ix['c’ e’ +1]
A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the
design design to make label-based slicing include both endpoints:

In [431]: s.ix['c’:"e’]
Oout[4317]:
c 1.331458
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d -0.571329
e -0.026671

This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect
label-based slicing to behave exactly in the way that standard Python integer slicing works.

17.4 Miscellaneous indexing gotchas

17.4.1 Reindex versus ix gotchas
Many users will find themselves using the ix indexing capabilities as a concise means of selecting data from a pandas
object:

In [432]: df = DataFrame (randn (6, 4), columns=[’one’, ’'two’, ’'three’, ’four’],
..... : index=1ist ('abcdef’))

In [433]: df

Oout [433]:

one two three four
a —-1.114738 -0.058216 -0.486768 1.685148
b 0.112572 -1.495309 0.898435 -0.148217
c -1.596070 0.159653 0.262136 0.036220
d 0.184735 -0.255069 -0.271020 1.288393
e 0.294633 -1.165787 0.846974 -0.685597
f 0.609099 -0.303961 0.625555 -0.059268

In [434]: df.ix[['b’, 'c', "e’]]
Out [434]:

one two three four
b 0.112572 -1.495309 0.898435 -0.148217
c -1.596070 0.159653 0.262136 0.036220
e 0.294633 -1.165787 0.846974 -0.685597

This is, of course, completely equivalent in this case to using th re index method:

In [435]: df.reindex(['b’, 'c’, ’"e’])
Out [435]:

one two three four
b 0.112572 -1.495309 0.898435 -0.148217
c -1.596070 0.159653 0.262136 0.036220
e 0.294633 -1.165787 0.846974 -0.685597

Some might conclude that ix and reindex are 100% equivalent based on this. This is indeed true except in the
case of integer indexing. For example, the above operation could alternately have been expressed as:

In [436]: df.ix[[1, 2, 4]]
Oout [436]:

one two three four
b 0.112572 -1.495309 0.898435 -0.148217
c -1.596070 0.159653 0.262136 0.036220
e 0.294633 -1.165787 0.846974 -0.685597

Ifyoupass [1, 2, 4] toreindex you will get another thing entirely:

In [437]: df.reindex([1, 2, 41)
out [437]:
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one two three four

1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
4 NaN NaN NaN NaN

Soit’s important to remember that re i ndex is strict label indexing only. This can lead to some potentially surprising
results in pathological cases where an index contains, say, both integers and strings:

In [438]: s = Series([1l, 2, 3], index=["a’, 0, 11)

In [439]: s

Out [439]:
a 1
0 2
1 3

In [440]: s.ix[[0, 11]

Out [440]:
0 2
1 3

In [441]: s.reindex ([0, 1])

Out [441]:
0 2
1 3

Because the index in this case does not contain solely integers, ix falls back on integer indexing. By contrast,
reindex only looks for the values passed in the index, thus finding the integers O and 1. While it would be possible
to insert some logic to check whether a passed sequence is all contained in the index, that logic would exact a very
high cost in large data sets.

17.5 Timestamp limitations

17.5.1 Minimum and maximum timestamps
Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit
integer is limited to approximately 584 years:

In [442]: begin = Timestamp (-9223285636854775809L)

In [443]: begin
Out [443]: <Timestamp: 1677-09-22 00:12:43.145224191>

In [444]: end = Timestamp (np.iinfo(np.int64) .max)

In [445]: end
Out [445]: <Timestamp: 2262-04-11 23:47:16.854775807>

If you need to represent time series data outside the nanosecond timespan, use PeriodIndex:

In [446]: span = period_range(’1215-01-01", 71381-01-01", freg='D’)

In [447]: span

Out [447]:

<class ’pandas.tseries.period.PeriodIndex’>
freg: D
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[1215-01-01, ..., 1381-01-01]
length: 60632

17.6 Parsing Dates from Text Files

When parsing multiple text file columns into a single date column, the new date column is prepended to the data and
then index_col specification is indexed off of the new set of columns rather than the original ones:

In [448]: print open(’'tmp.csv’) .read()

KORD, 19990127, 19:00:00, 18:56:00, 0.8100
KORD, 19990127, 20:00:00, 19:56:00, 0.0100
KORD, 19990127, 21:00:00, 20:56:00, -0.5900
KORD, 19990127, 21:00:00, 21:18:00, -0.9900
KORD, 19990127, 22:00:00, 21:56:00, -0.5900
KORD, 19990127, 23:00:00, 22:56:00, -0.5900

In [449]: date_spec = {’nominal’: [1, 2], ’actual’: [1, 31}

In [450]: df = read_csv(/tmp.csv’, header=None,
..... : parse_dates=date_spec,
e keep_date_col=True,
et index_col=0)

# index_col=0 refers to the combined column "nominal" and not the original
# first column of ’"KORD’ strings
In [451]: df
Oout [4517:

actual X0 X1 X2 X3 X4
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00 -0.59
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 21:18:00 -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 21:56:00 -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 22:56:00 -0.59

17.7 Differences with NumPy

For Series and DataFrame objects, var normalizes by N-1 to produce unbiased estimates of the sample variance,
while NumPy’s var normalizes by N, which measures the variance of the sample. Note that cov normalizes by N—-1
in both pandas and NumPy.
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CHAPTER
EIGHTEEN

RPY2 /R INTERFACE

Note: This is all highly experimental. I would like to get more people involved with building a nice RPy2 interface
for pandas

If your computer has R and rpy2 (> 2.2) installed (which will be left to the reader), you will be able to leverage the
below functionality. On Windows, doing this is quite an ordeal at the moment, but users on Unix-like systems should
find it quite easy. rpy2 evolves in time and the current interface is designed for the 2.2.x series, and we recommend
to use over other series unless you are prepared to fix parts of the code. Released packages are available in PyPi, but
should the latest code in the 2.2.x series be wanted it can be obtained with:

# if installing for the first time
hg clone http://bitbucket.org/lgautier/rpy2

cd rpy?2

hg pull

hg update version_2.2.x

sudo python setup.py install

Note: To use R packages with this interface, you will need to install them inside R yourself. At the moment it cannot
install them for you.

Once you have done installed R and rpy2, you should be able to import pandas . rpy . common without a hitch.

18.1 Transferring R data sets into Python

The load_data function retrieves an R data set and converts it to the appropriate pandas object (most likely a
DataFrame):

In [988]: import pandas.rpy.common as com
In [989]: infert = com.load_data(’infert’)

In [990]: infert.head()

out[9907:

education age parity induced case spontaneous stratum pooled.stratum
1 0-5yrs 26 6 1 1 2 1 3
2 0-5yrs 42 1 1 1 0 2 1
3 0-5yrs 39 6 2 1 0 3 4

267



pandas: powerful Python data analysis toolkit, Release 0.9.0

4 0-5yrs 34 4 2 1 0 4 2
5 6-1lyrs 35 3 1 1 1 5 32

18.2 Converting DataFrames into R objects

New in version 0.8. Starting from pandas 0.8, there is experimental support to convert DataFrames into the equivalent
R object (that is, data.frame):

In [991]: from pandas import DataFrame

In [992]: df = DataFrame({’'A’: [1, 2, 31, 'B’": [4, 5, 6], 'C":[7,8,91},
..... : index=["one", "two", "three"])

In [993]: r_dataframe = com.convert_to_r_dataframe (df)

In [994]: print type (r_dataframe)
<class ’'rpy2.robjects.vectors.DataFrame’>

In [995]: print r_dataframe

A B C
one 147
two 2 5 8
three 3 6 9

The DataFrame’s index is stored as the rownames attribute of the data.frame instance.

You can also use convert_to_r_matrix to obtain a Mat rix instance, but bear in mind that it will only work with
homogeneously-typed DataFrames (as R matrices bear no information on the data type):

In [996]: r_matrix = com.convert_to_r_matrix (df)

In [997]: print type(r_matrix)
<class ’'rpy2.robjects.vectors.Matrix’>

In [998]: print r_matrix

A B C
one 147
two 258
three 3 6 9

18.3 Calling R functions with pandas objects

18.4 High-level interface to R estimators
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CHAPTER
NINETEEN

RELATED PYTHON LIBRARIES

19.1 la (larry)

Keith Goodman’s excellent labeled array package is very similar to pandas in many regards, though with some key
differences. The main philosophical design difference is to be a wrapper around a single NumPy ndarray object
while adding axis labeling and label-based operations and indexing. Because of this, creating a size-mutable object
with heterogeneous columns (e.g. DataFrame) is not possible with the 1a package.

* Provide a single n-dimensional object with labeled axes with functionally analogous data alignment semantics
to pandas objects

* Advanced / label-based indexing similar to that provided in pandas but setting is not supported
 Stays much closer to NumPy arrays than pandas— larry objects must be homogeneously typed

* GroupBy support is relatively limited, but a few functions are available: group_mean, group_median, and
group_ranking

* It has a collection of analytical functions suited to quantitative portfolio construction for financial applications

* It has a collection of moving window statistics implemented in Bottleneck

19.2 statsmodels

The main statistics and econometrics library for Python. pandas has become a dependency of this library.

19.3 scikits.timeseries

scikits.timeseries provides a data structure for fixed frequency time series data based on the numpy.MaskedArray class.
For time series data, it provides some of the same functionality to the pandas Series class. It has many more functions
for time series-specific manipulation. Also, it has support for many more frequencies, though less customizable by the
user (so 5-minutely data is easier to do with pandas for example).

We are aiming to merge these libraries together in the near future.
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CHAPTER
TWENTY

COMPARISON WITH R/ R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page
was started to provide a more detailed look at the R language and it’s many 3rd party libraries as they relate to pandas.
In offering comparisons with R and CRAN libraries, we care about the following things:

* Functionality / flexibility: what can / cannot be done with each tool
¢ Performance: how fast are operations. Hard numbers / benchmarks are preferable

» Ease-of-use: is one tool easier or harder to use (you may have to be the judge of this given side-by-side code
comparisons)

As I do not have an encyclopedic knowledge of R packages, feel free to suggest additional CRAN packages to add to
this list. This is also here to offer a big of a translation guide for users of these R packages.

20.1 data.frame
20.2 zoo
20.3 xts
20.4 plyr

20.5 reshape / reshape2
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CHAPTER
TWENTYONE

APl REFERENCE

21.1 General functions

21.1.1 Data manipulations

pivot_table(datal, values, rows, cols, ...]) Create a spreadsheet-style pivot table as a DataFrame. The levels in the

pandas.tools.pivot.pivot_table

pandas.tools.pivot.pivot_table (data, values=None, rows=None, cols=None, aggfunc="mean’,
fill_value=None, margins=False)
Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in Multilndex
objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters data : DataFrame
values : column to aggregate, optional
rows : list of column names or arrays to group on
Keys to group on the x-axis of the pivot table
cols : list of column names or arrays to group on
Keys to group on the y-axis of the pivot table
aggfunc : function, default numpy.mean, or list of functions

If list of functions passed, the resulting pivot table will have hierarchical columns whose
top level are the function names (inferred from the function objects themselves)

fill_value : scalar, default None
Value to replace missing values with
margins : boolean, default False
Add all row / columns (e.g. for subtotal / grand totals)

Returns table : DataFrame
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Examples

>>> df

A B C

foo one small
foo one large
foo one large
foo two small
foo two small
bar one large
bar one small
bar two small
bar two large

QO J o Ul WD O
~ oo W w NN RO

>>> table = pivot_table(df, values='D’, rows=['A’, '"B’'],
C. cols=["C"], aggfunc=np.sum)
>>> table

small large

foo one 1 4
two 6 NaN

bar one 5 4
two 6 7

me rge(left, right[, how, on, left_on, ...]) Merge DataFrame objects by performing a database-style join operation by
concat(objs[, axis, join, join_axes, ...]) Concatenate pandas objects along a particular axis with optional set logic along the other ¢

pandas.tools.merge.merge

pandas.tools.merge.merge (left, right, how=’inner’, on=None, left on=None, right on=None,
left_index=False, right_index=False, sort=True, suffixes=(‘_x’, ‘_y’),
copy=True)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes
or indexes on a column or columns, the index will be passed on.

Parameters left : DataFrame
right : DataFrame
how : {‘left’, ‘right’, ‘outer’, ‘inner’ }, default ‘inner’
* left: use only keys from left frame (SQL.: left outer join)
* right: use only keys from right frame (SQL: right outer join)
* outer: use union of keys from both frames (SQL: full outer join)
* inner: use intersection of keys from both frames (SQL: inner join)
on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not
merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length
of the DataFrame to use a particular vector as the join key instead of columns
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right_on : label or list, or array-like
Field names to join on in right DataFrame or vector/list of vectors per left_on docs
left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a Multilndex, the
number of keys in the other DataFrame (either the index or a number of columns) must
match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index
sort : boolean, default True

Sort the join keys lexicographically in the result DataFrame
suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively
copy : boolean, default True

If False, do not copy data unnecessarily

Returns merged : DataFrame

Examples
>>> A >>> B
lkey value rkey value
0 foo 1 0 foo 5
1 bar 2 1 bar 6
2 baz 3 2 qux 7
3 foo 4 3 bar 8

>>> merge (A, B, left_on=’lkey’, right_on=’'rkey’, how=’outer’)
lkey wvalue_x rkey value_y

0 bar 2 bar 6
1 bar 2 bar 8
2 Dbaz 3 NaN NaN
3 foo 1 foo 5
4 foo 4 foo 5
5 NaN NaN qux 7

pandas.tools.merge.concat

pandas.tools.merge.concat (objs, axis=0, join=’outer’, join_axes=None, ignore_index=False,

keys=None, levels=None, names=None, verify_integrity=False)
Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add

a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or
overlapping) on the passed axis number

Parameters objs : list or dict of Series, DataFrame, or Panel objects

If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed,
in which case the values will be selected (see below). Any None objects will be dropped
silently unless they are all None in which case an Exception will be raised

axis : {0, 1, ...}, default O

21.1. General functions 275



pandas: powerful Python data analysis toolkit, Release 0.9.0

The axis to concatenate along
join : {‘inner’, ‘outer’}, default ‘outer’
How to handle indexes on other axis(es)
join_axes : list of Index objects

Specific indexes to use for the other n - 1 axes instead of performing inner/outer set
logic

verify_integrity : boolean, default False

Check whether the new concatenated axis contains duplicates. This can be very expen-
sive relative to the actual data concatenation

keys : sequence, default None

If multiple levels passed, should contain tuples. Construct hierarchical index using the
passed keys as the outermost level

levels : list of sequences, default None

Specific levels (unique values) to use for constructing a Multilndex. Otherwise they will
be inferred from the keys

names : list, default None
Names for the levels in the resulting hierarchical index
ignore_index : boolean, default False

If True, do not use the index values on the concatenation axis. The resulting axis will
be labeled O, ..., n - 1. This is useful if you are concatenating objects where the concate-
nation axis does not have meaningful indexing information.

Returns concatenated : type of objects

Notes

The keys, levels, and names arguments are all optional

21.1.2 Pickling

load(path) Load pickled pandas object (or any other pickled object) from the specified
save(obj, path) Pickle (serialize) object to input file path

pandas.core.common.load
pandas.core.common.load (path)
Load pickled pandas object (or any other pickled object) from the specified file path
Parameters path : string
File path

Returns unpickled : type of object stored in file
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pandas.core.common.save
pandas.core.common.save (obj, path)
Pickle (serialize) object to input file path
Parameters obj : any object
path : string
File path

21.1.3 File 1O

read_table(filepath_or_buffer[, sep, ...]) Read general delimited file into DataFrame

read_csv(filepath_or_buffer[, sep, dialect, ...]) Read CSV (comma-separated) file into DataFrame

ExcelFile.parse(sheetname[, header, ...]) Read Excel table into DataFrame

pandas.io.parsers.read_table

pandas.io.parsers.read_table (filepath_or_buffer, sep="\t’, dialect=None, header=0, in-
dex_col=None, names=None, skiprows=None, na_values=None,
keep_default na=True, thousands=None, comment=None,
parse_dates=Fualse, keep_date_col=False, dayfirst=False,
date_parser=None, nrows=None, iterator=False, chunksize=None,
skip_footer=0, converters=None, verbose=False, delimiter=None,

encoding=None, squeeze=False, **kwds)
Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.
Parameters filepath_or_buffer : string or file handle / StringlO. The string could be

a URL. Valid URL schemes include http, ftp, and file. For file URLs, a host is expected.
For instance, a local file could be file ://localhost/path/to/table.csv

sep : string, default t (tab-stop)
Delimiter to use. Regular expressions are accepted.
dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect
documentation for more details

header : int, default O

Row to use for the column labels of the parsed DataFrame. Specify None if there is no
header row.

skiprows : list-like or integer
Row numbers to skip (0-indexed) or number of rows to skip (int) at the start of the file
index_col : int or sequence, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a Multilndex
is used.

names : array-like

List of column names to use. If passed, header will be implicitly set to None.

21.1. General functions
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na_values : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to

parse_dates : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function
Function to use for converting dates to strings. Defaults to dateutil.parser
dayfirst : boolean, default False
DD/MM format dates, international and European format
thousands : str, default None
Thousands separator
comment : str, default None

Indicates remainder of line should not be parsed Does not support line commenting
(will return empty line)

nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large files
iterator : boolean, default False
Return TextParser object
chunksize : int, default None
Return TextParser object for iteration
skip_footer : int, default 0
Number of line at bottom of file to skip
converters : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers
or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns
delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None
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Encoding to use for UTF when reading/writing (ex. ‘utf-8”)
squeeze : boolean, default False
If the parsed data only contains one column then return a Series

Returns result : DataFrame or TextParser

pandas.io.parsers.read_csv

pandas.io.parsers.read_csv (filepath_or_buffer, sep=’, *, dialect=None, header=0, in-
dex_col=None, names=None, skiprows=None, na_values=None,
keep_default_na=True, thousands=None, comment=None,
parse_dates=False, keep_date_col=False, dayfirst=False,

date_parser=None, nrows=None, iterator=False, chunksize=None,
skip_footer=0, converters=None, verbose=False, delimiter=None,
encoding=None, squeeze=False, **kwds)

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.
Parameters filepath_or_buffer : string or file handle / StringlO. The string could be

a URL. Valid URL schemes include http, ftp, and file. For file URLSs, a host is expected.
For instance, a local file could be file ://localhost/path/to/table.csv

sep : string, default *;

Delimiter to use. If sep is None, will try to automatically determine this. Regular
expressions are accepted.

dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect
documentation for more details

header : int, default O

Row to use for the column labels of the parsed DataFrame. Specify None if there is no
header row.

skiprows : list-like or integer
Row numbers to skip (0-indexed) or number of rows to skip (int) at the start of the file
index_col : int or sequence, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used.

names : array-like
List of column names to use. If passed, header will be implicitly set to None.
na_values : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to

parse_dates : boolean, list of ints or names, list of lists, or dict
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If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function
Function to use for converting dates to strings. Defaults to dateutil.parser
dayfirst : boolean, default False
DD/MM format dates, international and European format
thousands : str, default None
Thousands separator
comment : str, default None

Indicates remainder of line should not be parsed Does not support line commenting
(will return empty line)

nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large files
iterator : boolean, default False
Return TextParser object
chunksize : int, default None
Return TextParser object for iteration
skip_footer : int, default O
Number of line at bottom of file to skip
converters : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers
or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns
delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.
encoding : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)
squeeze : boolean, default False

If the parsed data only contains one column then return a Series

Returns result : DataFrame or TextParser
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pandas.io.parsers.ExcelFile.parse

ExcelFile.parse (sheetname, header=0, skiprows=None, skip_footer=0, index_col=None,
parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thou-

sands=None, chunksize=None, **kwds)
Read Excel table into DataFrame

Parameters sheetname : string
Name of Excel sheet
header : int, default O
Row to use for the column labels of the parsed DataFrame
skiprows : list-like
Rows to skip at the beginning (0-indexed)
skip_footer : int, default O
Rows at the end to skip (0-indexed)
index_col : int, default None
Column to use as the row labels of the DataFrame. Pass None if there is no such column
parse_cols : int or list, default None

If None then parse all columns, If int then indicates last column to be parsed If list of
ints then indicates list of column numbers to be parsed

na_values : list-like, default None
List of additional strings to recognize as NA/NaN

Returns parsed : DataFrame

21.1.4 HDFStore: PyTables (HDF5)

HDFStore.put(key, valuel, table, append, ...])  Store object in HDFStore
HDFStore.get(key) Retrieve pandas object stored in file

pandas.io.pytables.HDFStore.put
HDFStore.put (key, value, table=False, append=False, compression=None)
Store object in HDFStore
Parameters Kkey : object
value : {Series, DataFrame, Panel }
table : boolean, default False

Write as a PyTables Table structure which may perform worse but allow more flexible
operations like searching / selecting subsets of the data

append : boolean, default False
For table data structures, append the input data to the existing table

compression : {None, ‘blosc’, ‘1zo’, ‘zlib’ }, default None
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Use a compression algorithm to compress the data If None, the compression settings
specified in the ctor will be used.

pandas.io.pytables.HDFStore.get

HDFStore.get (key)
Retrieve pandas object stored in file

Parameters key : object

Returns obj : type of object stored in file

21.1.5 Standard moving window functions

rolling_count(arg, windowl[, freq, time_rule]) Rolling count of number of non-NaN observations inside provided window.
rolling_sum(arg, window[, min_periods, ...]) Moving sum

rolling_mean(arg, window[, min_periods, ...]) Moving mean

rolling median(arg, window[, min_periods, ...]) O(N log(window)) implementation using skip list

rolling_var(arg, window[, min_periods, ...]) Unbiased moving variance

rolling_std(arg, window[, min_periods, ...]) Unbiased moving standard deviation

rolling_corr(argl, arg2, windowl[, ...])

Moving sample correlation

rolling_cov(argl, arg2, windowl[, ...])

Unbiased moving covariance

rolling_skew(arg, window[, min_periods, ...]) Unbiased moving skewness

rolling_kurt(arg, window[, min_periods, ...]) Unbiased moving kurtosis

rolling_apply(arg, window, funcl, ...])

Generic moving function application

rolling_guantile(arg, window, quantile[, ...]) Moving quantile

pandas.stats.moments.rolling_count

pandas.stats.moments.rolling_count (arg, window, freq=None, time_rule=None)
Rolling count of number of non-NaN observations inside provided window.

Parameters arg : DataFrame or numpy ndarray-like

window : Number of observations used for calculating statistic

freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

Returns rolling_count : type of caller

pandas.stats.moments.rolling_sum

pandas.stats.moments.rolling sum(arg, window, min_periods=None, freq=None,

Moving sum

time_rule=None, **kwargs)

Parameters arg : Series, DataFrame

window : Number of observations used for calculating statistic

min_periods : int

Minimum number of observations in window required to have a value

282

Chapter 21. API Reference



pandas: powerful Python data analysis toolkit, Release 0.9.0

freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns y : type of input argument

pandas.stats.moments.rolling_mean

pandas.stats.moments.rolling_mean (arg, window, min_periods=None, freq=None,

time_rule=None, **kwargs)
Moving mean

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns y : type of input argument

pandas.stats.moments.rolling_median

pandas.stats.moments.rolling_median (arg, window, min_periods=None,  freq=None,

time_rule=None, **kwargs)
O(N log(window)) implementation using skip list

Moving median
Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns Yy : type of input argument

pandas.stats.moments.rolling_var

pandas.stats.moments.rolling_var (arg, window, min_periods=None, freq=None,
time_rule=None, **kwargs)
Unbiased moving variance

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value

freq : None or string alias / date offset object, default=None
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Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns Yy : type of input argument

pandas.stats.moments.rolling_std

pandas.stats.moments.rolling std (arg, window, min_periods=None, freq=None,
time_rule=None, **kwargs)
Unbiased moving standard deviation

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns Yy : type of input argument

pandas.stats.moments.rolling_corr
pandas.stats.moments.rolling_corr (argl, arg2, window, min_periods=None, time_rule=None)
Moving sample correlation
Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq
Returns Yy : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) DataFrame / Series ->
Computes result for each column Series / Series -> Series

pandas.stats.moments.rolling_cov
pandas.stats.moments.rolling_cov (argl, arg2, window, min_periods=None, time_rule=None)
Unbiased moving covariance
Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray
window : Number of observations used for calculating statistic
min_periods : int

Minimum number of observations in window required to have a value
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freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq
Returns Yy : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) DataFrame / Series ->
Computes result for each column Series / Series -> Series

pandas.stats.moments.rolling_skew

pandas.stats.moments.rolling skew (arg, window, min_periods=None, freq=None,

time_rule=None, **kwargs)
Unbiased moving skewness

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns Yy : type of input argument

pandas.stats.moments.rolling_kurt

pandas.stats.moments.rolling kurt (arg, window, min_periods=None, freq=None,

time_rule=None, **kwargs)
Unbiased moving kurtosis

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

Returns Yy : type of input argument

pandas.stats.moments.rolling_apply

pandas.stats.moments.rolling apply (arg, window, func, min_periods=None, freq=None,

] ) ) o time_rule=None)
Generic moving function application

Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
func : function

Must produce a single value from an ndarray input
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min_periods : int

Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.rolling_quantile

pandas.stats.moments.rolling quantile (arg, window,  quantile,
freq=None, time_rule=None)

min_periods=None,

Moving quantile
Parameters arg : Series, DataFrame
window : Number of observations used for calculating statistic
quantile : 0 <= quantile <=1
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

21.1.6 Standard expanding window functions

expanding_count/(arg[, freq, time_rule])
expanding_sum(arg[, min_periods, freq, ...])

Expanding count of number of non-NaN observations.
Expanding sum

expanding_mean(arg[, min_periods, freq, ...])

Expanding mean

expanding_median(arg[, min_periods, freq, ...])

O(N log(window)) implementation using skip list

expanding_var(arg[, min_periods, freq, ...])

Unbiased expanding variance

expanding_std(arg[, min_periods, freq, ...])

Unbiased expanding standard deviation

expanding_corr(argl, arg2[, min_periods, ...])

Expanding sample correlation

expanding_cov(argl, arg2[, min_periods, ...])

Unbiased expanding covariance

expanding_skew(arg[, min_periods, freq, ...])

Unbiased expanding skewness

expanding_kurt(arg[, min_periods, freq, ...])

Unbiased expanding kurtosis

expanding_apply(arg, func[, min_periods, ...])

Generic expanding function application

expanding_quantile(arg, quantile[, ...])

Expanding quantile

pandas.stats.moments.expanding_count

pandas.stats.moments.expanding count (arg, freg=None, time_rule=None)
Expanding count of number of non-NaN observations.

Parameters arg : DataFrame or numpy ndarray-like
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns expanding_count : type of caller
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pandas.stats.moments.expanding_sum

pandas.stats.moments.expanding_sum (arg, min_periods=1, freq=None,
**kwargs)
Expanding sum

Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns y : type of input argument

pandas.stats.moments.expanding_mean

pandas.stats.moments.expanding_mean (arg, min_periods=1, freq=None,

**kwargs)
Expanding mean

Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_median

pandas.stats.moments.expanding_median (arg, min_periods=1, freq=None,
**kwargs)
O(N log(window)) implementation using skip list

Expanding median
Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_var

pandas.stats.moments.expanding_var (arg, min_periods=1, freq=None,

**kwargs)
Unbiased expanding variance

time_rule=None,

time_rule=None,

time_rule=None,

time_rule=None,
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Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_std

pandas.stats.moments.expanding_std (arg, min_periods=1, freq=None, time_rule=None,

**kwargs)
Unbiased expanding standard deviation

Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_corr
pandas.stats.moments.expanding_corr (argl, arg2, min_periods=1, time_rule=None)
Expanding sample correlation
Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic
Returns y : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) DataFrame / Series ->
Computes result for each column Series / Series -> Series

pandas.stats.moments.expanding_cov
pandas.stats.moments.expanding_cov (argl, arg2, min_periods=1, time_rule=None)
Unbiased expanding covariance
Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray

min_periods : int
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Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic
Returns y : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) DataFrame / Series ->
Computes result for each column Series / Series -> Series

pandas.stats.moments.expanding_skew

pandas.stats.moments.expanding_skew (arg, min_periods=1, freq=None, time_rule=None,

**kwargs)
Unbiased expanding skewness

Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_kurt

pandas.stats.moments.expanding_kurt (arg, min_periods=1, freq=None, time_rule=None,
*rkwargs)
Unbiased expanding kurtosis

Parameters arg : Series, DataFrame
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

pandas.stats.moments.expanding_apply

pandas.stats.moments.expanding_apply (arg, func, min_periods=1, Jfreq=None,

) ) ) o time_rule=None)
Generic expanding function application

Parameters arg : Series, DataFrame
func : function
Must produce a single value from an ndarray input
min_periods : int

Minimum number of observations in window required to have a value
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freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns y : type of input argument

pandas.stats.moments.expanding_quantile

pandas.stats.moments.expanding_quantile (arg, quantile, min_periods=1, freq=None,

time_rule=None)
Expanding quantile

Parameters arg : Series, DataFrame
quantile : 0 <= quantile <=1
min_periods : int
Minimum number of observations in window required to have a value
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

Returns Yy : type of input argument

21.1.7 Exponentially-weighted moving window functions

ewma(arg[, com, span, min_periods, freq, ...]) Exponentially-weighted moving average
ewmstd(arg[, com, span, min_periods, bias, ...]) Exponentially-weighted moving std
ewnvar(arg[, com, span, min_periods, bias, ...]) Exponentially-weighted moving variance
ewmcorr(argl, arg2[, com, span, ...]) Exponentially-weighted moving correlation
ewmcov(argl, arg2[, com, span, min_periods, ...]) Exponentially-weighted moving covariance

pandas.stats.moments.ewma

pandas.stats.moments.ewma (arg, com=None, span=None, min_periods=0, freq=None,
time_rule=None, adjust=True)
Exponentially-weighted moving average

Parameters arg : Series, DataFrame
com : float. optional
Center of mass: alpha =com/ (1 + com),
span : float, optional
Specify decay in terms of span, alpha =2/ (span + 1)
min_periods : int, default 0
Number of observations in sample to require (only affects beginning)
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq

adjust : boolean, default True
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Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have have that the decay parameter alpha is
related to the spanasa =1 —2/(s + 1) = ¢/(1 + ¢)

where c is the center of mass. Given a span, the associated center of massis ¢ = (s — 1)/2

So a “20-day EWMA” would have center 9.5.

pandas.stats.moments.ewmstd

pandas.stats.moments.ewmstd (arg, com=None, span=None, min_periods=0, bias=False,

time_rule=None)
Exponentially-weighted moving std

Parameters arg : Series, DataFrame
com : float. optional
Center of mass: alpha =com /(1 + com),
span : float, optional
Specify decay in terms of span, alpha =2/ (span + 1)
min_periods : int, default O
Number of observations in sample to require (only affects beginning)
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq
adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

bias : boolean, default False
Use a standard estimation bias correction

Returns Yy : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have have that the decay parameter alpha is
related to the spanas a =1 —2/(s+1) =c¢/(1 +¢)

where c is the center of mass. Given a span, the associated center of mass is ¢ = (s — 1)/2

So a “20-day EWMA” would have center 9.5.
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pandas.stats.moments.ewmvar

pandas.stats.moments.ewmvar (arg, com=None, span=None, min_periods=0, bias=False,
freq=None, time_rule=None)
Exponentially-weighted moving variance

Parameters arg : Series, DataFrame
com : float. optional
Center of mass: alpha =com /(1 + com),
span : float, optional
Specify decay in terms of span, alpha =2/ (span + 1)
min_periods : int, default O
Number of observations in sample to require (only affects beginning)
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq
adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

bias : boolean, default False
Use a standard estimation bias correction

Returns Yy : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have have that the decay parameter alpha is
related to the spanas a =1 —2/(s+ 1) =¢/(1 +¢)

where c is the center of mass. Given a span, the associated center of mass is ¢ = (s — 1)/2

So a “20-day EWMA” would have center 9.5.

pandas.stats.moments.ewmcorr

pandas.stats.moments.ewmecorr (argl, arg2, com=None, span=None, min_periods=0, freq=None,

time_rule=None)
Exponentially-weighted moving correlation

Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray
com : float. optional
Center of mass: alpha =com /(1 + com),
span : float, optional
Specify decay in terms of span, alpha =2/ (span + 1)

min_periods : int, default 0
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Number of observations in sample to require (only affects beginning)
freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic time_rule is a legacy alias for freq
adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have have that the decay parameter alpha is
related to the spanasa =1 —2/(s + 1) = ¢/(1 + ¢)

where c is the center of mass. Given a span, the associated center of massis ¢ = (s — 1)/2

So a “20-day EWMA” would have center 9.5.

pandas.stats.moments.ewmcov

pandas.stats.moments.ewmcov (argl, arg2, com=None, span=None, min_periods=0, bias=False,
freq=None, time_rule=None)
Exponentially-weighted moving covariance

Parameters argl : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray
com : float. optional
Center of mass: alpha =com /(1 + com),
span : float, optional
Specify decay in terms of span, alpha =2/ (span + 1)
min_periods : int, default 0
Number of observations in sample to require (only affects beginning)
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic time_rule is a legacy alias for freq
adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)

Returns Yy : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have have that the decay parameter alpha is
related to the spanas o =1 —2/(s +1) = ¢/(1 4+ ¢)
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where c is the center of mass. Given a span, the associated center of massis ¢ = (s — 1)/2

So a “20-day EWMA” would have center 9.5.

21.2 Series

21.2.1 Attributes and underlying data

Axes
* index: axis labels
Series.values Return Series as ndarray
Series.dtype Data-type of the array’s elements.

Series.isnull(obj) Replacement for numpy.isnan / -numpy.isfinite which is suitable for use on object arrays.

Series.notnull(obj) Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

pandas.Series.values
Series.values
Return Series as ndarray

Returns arr : numpy.ndarray

pandas.Series.dtype
Series.dtype
Data-type of the array’s elements.
Parameters None :
Returns d : numpy dtype object
See Also:

numpy .dtype

Examples

>>> x

array ([ [0, 17,
(2, 311

>>> x.dtype
dtype (" int32")

>>> type (x.dtype)
<type ’numpy.dtype’>

pandas.Series.isnull

Series.isnull (obj)
Replacement for numpy.isnan / -numpy.isfinite which is suitable for use on object arrays.

Parameters arr: ndarray or object value :

294 Chapter 21. API Reference



pandas: powerful Python data analysis toolkit, Release 0.9.0

Returns boolean ndarray or boolean :

pandas.Series.notnull

Series.notnull (obj)
Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

Parameters arr: ndarray or object value :

Returns boolean ndarray or boolean :

21.2.2 Conversion / Constructors

Series.__init__([data, index, dtype, name, copy]) One-dimensional ndarray with axis labels (including time series).
Series.astype(dtype) See numpy.ndarray.astype
Series.copy([order]) Return new Series with copy of underlying values

pandas.Series.__init__

Series.__init__ (data=None, index=None, dtype=None, name=None, copy=False)
One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be any
hashable type. The object supports both integer- and label-based indexing and provides a host of methods for
performing operations involving the index. Statistical methods from ndarray have been overridden to automati-
cally exclude missing data (currently represented as NaN)

Operations between Series (+, -, /,, *) align values based on their associated index values— they need not be the
same length. The result index will be the sorted union of the two indexes.

Parameters data : array-like, dict, or scalar value
Contains data stored in Series
index : array-like or Index (1d)

Values must be unique and hashable, same length as data. Index object (or other iterable
of same length as data) Will default to np.arange(len(data)) if not provided. If both a
dict and index sequence are used, the index will override the keys found in the dict.

dtype : numpy.dtype or None
If None, dtype will be inferred copy : boolean, default False Copy input data

copy : boolean, default False

pandas.Series.astype

Series.astype (dtype)
See numpy.ndarray.astype

pandas.Series.copy

Series.copy (order="C’)
Return new Series with copy of underlying values

Returns cp : Series
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21.2.3 Indexing, iteration

Series.get(labell, default]) Returns value occupying requested label, default to specified missing value if not present.

Series.ix

Series.__iter_ ()

Series.iteritems([index]) Lazily iterate over (index, value) tuples

pandas.Series.get

Series.get (label, default=None)

Returns value occupying requested label, default to specified missing value if not present. Analogous to dict.get

Parameters label : object
Label value looking for

default : object, optional

Value to return if label not in index

Returns y : scalar

pandas.Series.ix

Series.ix

pandas.Series.__iter

Series.__iter_ ()

pandas.Series.iteritems

Series.iteritems (index=True)
Lazily iterate over (index, value) tuples

21.2.4 Binary operator functions

Series.add(other[, level, fill_value])

Binary operator add with support to substitute a fill_value for missing data

Series.div(other[, level, fill_value])

Binary operator divide with support to substitute a fill_value for missing data

Series.mul(other[, level, fill_value])

Binary operator multiply with support to substitute a fill_value for missing data

Series. sub(other[, level, fill_value])

Binary operator subtract with support to substitute a fill_value for missing data

Series.combine(other, func[, fill_value])

Perform elementwise binary operation on two Series using given function

Series.combine_first(other)

Combine Series values, choosing the calling Series’s values

Series.round([decimals, out])

Return a with each element rounded to the given number of decimals.

pandas.Series.add

Series.add (other, level=None, fill_value=None)
Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value :
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fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be
missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : Series

pandas.Series.div
Series.div (other, level=None, fill_value=None)
Binary operator divide with support to substitute a fill_value for missing data in one of the inputs
Parameters other: Series or scalar value :
fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be
missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : Series

pandas.Series.mul
Series.mul (other, level=None, fill_value=None)
Binary operator multiply with support to substitute a fill_value for missing data in one of the inputs
Parameters other: Series or scalar value :
fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be
missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : Series

pandas.Series.sub
Series.sub (other, level=None, fill_value=None)
Binary operator subtract with support to substitute a fill_value for missing data in one of the inputs
Parameters other: Series or scalar value :
fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be
missing

level : int or name

Broadcast across a level, matching Index values on the passed Multilndex level
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Returns result : Series

pandas.Series.combine

Series.combine (other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an index
is missing from one Series or the other

Parameters other : Series or scalar value
func : function
fill_value : scalar value

Returns result : Series

pandas.Series.combine_first

Series.combine_ first (other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two
indexes

Parameters other : Series

Returns y : Series

pandas.Series.round

Series.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See Also:

numpy . around equivalent function

21.2.5 Function application, GroupBy

Series.apply(func[, convert_dtype, args]) Invoke function on values of Series. Can be ufunc or Python function

Series.map(arg[, na_action]) Map values of Series using input correspondence (which can be

Series.groupby([by, axis, level, as_index, ...])  Group series using mapper (dict or key function, apply given function

pandas.Series.apply
Series.apply (func, convert_dtype=True, args=(), **kwds)
Invoke function on values of Series. Can be ufunc or Python function expecting only single values
Parameters func : function
convert_dtype : boolean, default True
Try to find better dtype for elementwise function results. If False, leave as dtype=object

Returns y : Series
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See Also:

Series.map For element-wise operations

pandas.Series.map
Series.map (arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)
Parameters arg : function, dict, or Series
na_action : {None, ‘ignore’}
If ‘ignore’, propagate NA values
Returns Yy : Series

same index as caller

Examples

>>> x
one 1
two 2
three 3

>>> y
1 foo
2 bar
3 baz

>>> x.map (y)
one foo
two bar
three baz

pandas.Series.groupby

Series.groupby (by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a
series of columns

Parameters by : mapping function / list of functions, dict, Series, or tuple /

list of column names. Called on each element of the object index to determine the
groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine
the groups

axis : int, default O
level : int, level name, or sequence of such, default None

If the axis is a Multilndex (hierarchical), group by a particular level or levels
as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for
DataFrame input. as_index=False is effectively “SQL-style” grouped output
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sort : boolean, default True

Sort group keys. Get better performance by turning this off

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces

Returns GroupBy object :

Examples

# DataFrame result >>> data.groupby(func, axis=0).mean()

# DataFrame result >>> data.groupby([’coll’, ‘col2’])[’col3’].mean()

# DataFrame with hierarchical index >>> data.groupby([’coll’, ‘col2’]).mean()

21.2.6 Computations / Descriptive Stats

Series.abs() Return an object with absolute value taken.

Series.any([axis, out]) Returns True if any of the elements of a evaluate to True.
Series.autocorr() Lag-1 autocorrelation

Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right. NA values

Series

. clip([lower, upper, out])

Trim values at input threshold(s)

Series

.clip_lower(threshold)

Return copy of series with values below given value truncated

Series

.clip_upper(threshold)

Return copy of series with values above given value truncated

Series

. corr(other[, method])

Compute correlation two Series, excluding missing values

Series.count([level]) Return number of non-NA/null observations in the Series
Series.cov(other) Compute covariance with Series, excluding missing values
Series.cummax([axis, dtype, out, skipna]) Cumulative max of values.

Series.cummin([axis, dtype, out, skipna]) Cumulative min of values.

Series.cumprod([axis, dtype, out, skipna]) Cumulative product of values.

Series.cumsum([axis, dtype, out, skipna]) Cumulative sum of values.
Series.describe([percentile_width]) Generate various summary statistics of Series, excluding NaN
Series.dif f([periods]) Ist discrete difference of object

Series.kurt([skipna, level]) Return unbiased kurtosis of values

Series.mad([skipna, level]) Return mean absolute deviation of values
Series.max([axis, out, skipna, level]) Return maximum of values

Series.mean([axis, dtype, out, skipna, level]) Return mean of values

Series.median([axis, dtype, out, skipna, level]) Return median of values

Series.min([axis, out, skipna, level]) Return minimum of values

Series.nunique() Return count of unique elements in the Series

Series

.pct_change([periods, fill_method, ...])

Percent change over given number of periods

Series

. prod([axis, dtype, out, skipna, level])

Return product of values

Series

.quantile([q])

Return value at the given quantile, a la scoreatpercentile in

Series

. rank([method, na_option, ascending])

Compute data ranks (1 through n).

Series.

skew([skipna, level])

Return unbiased skewness of values

Series

. std([axis, dtype, out, ddof, skipna, ...])

Return standard deviation of values

Series.sum([axis, dtype, out, skipna, level]) Return sum of values
Series.unique() Return array of unique values in the Series. Significantly faster than
Series.var([axis, dtype, out, ddof, skipna, ...]) Return variance of values

Series

.value_counts()

Returns Series containing counts of unique values. The resulting Series
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pandas.Series.abs
Series.abs ()
Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns abs: type of caller :

pandas.Series.any
Series.any (axis=None, out=None)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See Also:

numpy . any equivalent function

pandas.Series.autocorr
Series.autocorr ()
Lag-1 autocorrelation

Returns autocorr : float

pandas.Series.between
Series.between (left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right. NA values will be treated as False
Parameters left : scalar
Left boundary
right : scalar
Right boundary

Returns is_between : Series

pandas.Series.clip
Series.clip (lower=None, upper=None, out=None)
Trim values at input threshold(s)
Parameters lower : float, default None
upper : float, default None

Returns clipped : Series
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pandas.Series.clip_lower
Series.clip_lower (threshold)
Return copy of series with values below given value truncated
Returns clipped : Series
See Also:

clip

pandas.Series.clip_upper
Series.clip_upper (threshold)
Return copy of series with values above given value truncated
Returns clipped : Series
See Also:

clip

pandas.Series.corr
Series.corr (other, method="pearson’)
Compute correlation two Series, excluding missing values
Parameters other : Series
method : {‘pearson’, ‘kendall’, ‘spearman’}

pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation

Returns correlation : float

pandas.Series.count
Series.count (level=None)
Return number of non-NA/null observations in the Series
Parameters level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns nobs : int or Series (if level specified)

pandas.Series.cov
Series.cov (other)
Compute covariance with Series, excluding missing values
Parameters other : Series
Returns covariance : float

Normalized by N-1 (unbiased estimator). :
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pandas.Series.cummax
Series.cummax (axis=0, dtype=None, out=None, skipna=True)
Cumulative max of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns cummax : Series

pandas.Series.cummin
Series.cummin (axis=0, dtype=None, out=None, skipna=True)
Cumulative min of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns cummin : Series

pandas.Series.cumprod
Series.cumprod (axis=0, dtype=None, out=None, skipna=True)
Cumulative product of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns cumprod : Series

pandas.Series.cumsum
Series.cumsum (axis=0, dtype=None, out=None, skipna=True)
Cumulative sum of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns cumsum : Series

pandas.Series.describe

Series.describe (percentile_width=50)

Generate various summary statistics of Series, excluding NaN values. These include: count, mean, std, min,

max, and lower%/50%/upper% percentiles

Parameters percentile_width : float, optional
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width of the desired uncertainty interval, default is 50, which corresponds to lower=25,
upper=75

Returns desc : Series

pandas.Series.diff
Series.diff (periods=1)
Ist discrete difference of object
Parameters periods : int, default 1
Periods to shift for forming difference

Returns diffed : Series

pandas.Series.kurt
Series.kurt (skipna=True, level=None)
Return unbiased kurtosis of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns kurt : float (or Series if level specified)

pandas.Series.mad
Series.mad (skipna=True, level=None)
Return mean absolute deviation of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns mad : float (or Series if level specified)

pandas.Series.max
Series.max (axis=None, out=None, skipna=True, level=None)
Return maximum of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values

level : int, default None
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If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns max : float (or Series if level specified)

pandas.Series.mean
Series.mean (axis=0, dtype=None, out=None, skipna=True, level=None)
Return mean of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Extra parameters are to preserve ndarrayinterface. :

Returns mean : float (or Series if level specified)

pandas.Series.median
Series.median (axis=0, dtype=None, out=None, skipna=True, level=None)
Return median of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns median : float (or Series if level specified)

pandas.Series.min
Series.min (axis=None, out=None, skipna=True, level=None)
Return minimum of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns min : float (or Series if level specified)
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pandas.Series.nunique
Series.nunique ()
Return count of unique elements in the Series

Returns nunique : int

pandas.Series.pct_change
Series.pct_change (periods=1, fill_method="pad’, limit=None, freq=None, **kwds)
Percent change over given number of periods
Parameters periods : int, default 1
Periods to shift for forming percent change
fill_method : str, default ‘pad’
How to handle NAs before computing percent changes
limit : int, default None
The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg : Series or DataFrame

pandas.Series.prod
Series.prod (axis=0, dtype=None, out=None, skipna=True, level=None)
Return product of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns prod : float (or Series if level specified)

pandas.Series.quantile
Series.quantile (¢=0.5)
Return value at the given quantile, a la scoreatpercentile in scipy.stats
Parameters q : quantile
O<=q<=1

Returns quantile : float
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pandas.Series.rank

Series.rank (method="average’, na_option="keep’, ascending=True)
Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those
values

Parameters method : {‘average’, ‘min’, ‘max’, ‘first’}

average: average rank of group min: lowest rank in group max: highest rank in group
first: ranks assigned in order they appear in the array

na_option : {‘keep’}

keep: leave NA values where they are
ascending : boolean, default True

False for ranks by high (1) to low (N)

Returns ranks : Series

pandas.Series.skew
Series.skew (skipna=True, level=None)
Return unbiased skewness of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns skew : float (or Series if level specified)

pandas.Series.std
Series.std (axis=None, dtype=None, out=None, ddof=1, skipna=True, level=None)
Return standard deviation of values NA/null values are excluded
Parameters skipna : boolean, default True
Exclude NA/null values
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a smaller Series

Returns stdev : float (or Series if level specified)

Normalized by N-1 (unbiased estimator).

pandas.Series.sum

Series.sum (axis=0, dtype=None, out=None, skipna=True, level=None)
Return sum of values NA/null values are excluded

Parameters skipna : boolean, default True
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Exclude NA/null values

level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into

a smaller Series

Extra parameters are to preserve ndarrayinterface. :

pandas.Series.unique

Series.unique ()
Return array of unique values in the Series. Significantly faster than numpy.unique

Returns uniques : ndarray

pandas.Series.var

Returns sum : float (or Series if level specified)

Series.var (axis=None, dtype=None, out=None, ddof=1, skipna=True, level=None)
Return variance of values NA/null values are excluded

Parameters skipna : boolean, default True

Exclude NA/null values

level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into

a smaller Series

Returns var : float (or Series if level specified)

Normalized by N-1 (unbiased estimator).

pandas.Series.value_counts

Series.value_counts ()
Returns Series containing counts of unique values. The resulting Series will be in descending order so that the
first element is the most frequently-occurring element. Excludes NA values

Returns counts : Series

21.2.7 Reindexing / Selection / Label manipulation

Series.

align(other[, join, level, copy, ...])

Align two Series object with the specified join method

Series.

drop(labels[, axis, level])

Return new object with labels in requested axis removed

Series. first(offset) Convenience method for subsetting initial periods of time series data
Series.head([n]) Returns first n rows of Series
Series.idxmax([axis, out, skipna]) Index of first occurrence of maximum of values.

Series.

idxmin([axis, out, skipna])

Index of first occurrence of minimum of values.

Series.

isin(values)

Return boolean vector showing whether each element in the Series is

Series.

last(offset)

Convenience method for subsetting final periods of time series data

Series.

reindex([index, method, level, ...])

Conform Series to new index with optional filling logic, placing

Continued on next page |
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Table 21.15 - continued from previous page

Series.reindex_11ike(other[, method, limit]) Reindex Series to match index of another Series, optionally with
Series.rename(mapper[, inplace]) Alter Series index using dict or function
Series.reset_index([level, drop, name, inplace]) Analogous to the DataFrame.reset_index function, see docstring there.
Series.select(crit], axis]) Return data corresponding to axis labels matching criteria
Series.take(indices|, axis]) Analogous to ndarray.take, return Series corresponding to requested
Series.tail([n]) Returns last n rows of Series

Series.truncate([before, after, copy]) Function truncate a sorted DataFrame / Series before and/or after

pandas.Series.align

Series.align (other, join='outer’, level=None, copy=True, fill_value=None, method=None,
place=False, limit=None)
Align two Series object with the specified join method

Parameters other : Series
join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’
level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level
copy : boolean, default True

Always return new objects. If copy=False and no reindexing is required, the same object
will be returned (for better performance)

fill_value : object, default None
method : str, default ‘pad’
limit : int, default None
fill_value, method, inplace, limit are passed to fillna
Returns (left, right) : (Series, Series)
Aligned Series

pandas.Series.drop
Series.drop (labels, axis=0, level=None)
Return new object with labels in requested axis removed
Parameters labels : array-like
axis : int
level : int or name, default None
For Multilndex
Returns dropped : type of caller

pandas.Series.first

Series. first (offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters offset : string, DateOffset, dateutil.relativedelta
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Returns subset : type of caller

Examples

ts.last(‘10D’) -> First 10 days

pandas.Series.head

Series.head (n=>5)
Returns first n rows of Series

pandas.Series.idxmax
Series.idxmax (axis=None, out=None, skipna=True)
Index of first occurrence of maximum of values.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns idxmax : Index of minimum of values

pandas.Series.idxmin
Series.idxmin (axis=None, out=None, skipna=True)
Index of first occurrence of minimum of values.
Parameters skipna : boolean, default True
Exclude NA/null values

Returns idxmin : Index of minimum of values

pandas.Series.isin

Series.isin (values)
Return boolean vector showing whether each element in the Series is exactly contained in the passed sequence
of values

Parameters values : sequence

Returns isin : Series (boolean dtype)

pandas.Series.last
Series.last (offset)
Convenience method for subsetting final periods of time series data based on a date offset
Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller
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Examples

ts.last(‘5SM”) -> Last 5 months

pandas.Series.reindex

Series.reindex (index=None, method=None, level=None, fill_value=nan, limit=None, copy=True)
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the
previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters index : array-like or Index
New labels / index to conform to. Preferably an Index object to avoid duplicating data
method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}

Method to use for filling holes in reindexed Series pad / ffill: propagate LAST valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same
level : int or name

Broadcast across a level, matching Index values on the passed Multilndex level
fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value
limit : int, default None

Maximum size gap to forward or backward fill

Returns reindexed : Series

pandas.Series.reindex_like
Series.reindex_1like (other, method=None, limit=None)
Reindex Series to match index of another Series, optionally with filling logic
Parameters other : Series
method : string or None
See Series.reindex docstring
limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : Series

Notes

Like calling s.reindex(other.index, method=...)
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pandas.Series.rename

Series.rename (mapper, inplace=False)
Alter Series index using dict or function

Parameters mapper : dict-like or function
Transformation to apply to each index

Returns renamed : Series (new object)

Notes

Function / dict values must be unique (1-to-1)

Examples

>>>
foo
bar
baz

>>>
FOO
BAR
BAZ

w N =X

X .rename (str.upper)
1
2
3

X.rename ({’ foo’ : ’"a’, ’'"bar’ : 'b’, "baz’ : 'c’})

pandas.Series.reset_index

Series.reset_index (level=None, drop=False, name=None, inplace=False)

Analogous to the DataFrame.reset_index function, see docstring there.

Parameters level : int, str, tuple, or list, default None

Only remove the given levels from the index. Removes all levels by default

drop : boolean, default False

Do not try to insert index into dataframe columns
name : object, default None

The name of the column corresponding to the Series values
inplace : boolean, default False

Modify the Series in place (do not create a new object)

Returns resetted : DataFrame, or Series if drop == True
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pandas.Series.select
Series.select (crit, axis=0)
Return data corresponding to axis labels matching criteria
Parameters crit : function
To be called on each index (label). Should return True or False
axis : int

Returns selection : type of caller

pandas.Series.take
Series.take (indices, axis=0)
Analogous to ndarray.take, return Series corresponding to requested indices
Parameters indices : list / array of ints

Returns taken : Series

pandas.Series.tail

Series.tail (n=5)
Returns last n rows of Series

pandas.Series.truncate
Series.truncate (before=None, after=None, copy=True)
Function truncate a sorted DataFrame / Series before and/or after some particular dates.
Parameters before : date
Truncate before date
after : date
Truncate after date

Returns truncated : type of caller

21.2.8 Missing data handling

Series.dropna() Return Series without null values

Series. fillna([value, method, inplace, limit]) Fill NA/NaN values using the specified method

Series.interpolate([method]) Interpolate missing values (after the first valid value)

pandas.Series.dropna

Series.dropna ()
Return Series without null values

Returns valid : Series
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pandas.Series.fillna
Series.fillna (value=None, method="pad’, inplace=False, limit=None)
Fill NA/NaN values using the specified method
Parameters value : any kind (should be same type as array)
Value to use to fill holes (e.g. 0)
method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default ‘pad’

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

inplace : boolean, default False

If True, fill the Series in place. Note: this will modify any other views on this Series,
for example a column in a DataFrame. Returns a reference to the filled object, which is
self if inplace=True

limit : int, default None
Maximum size gap to forward or backward fill
Returns filled : Series
See Also:

reindex, asfreq

pandas.Series.interpolate
Series.interpolate (method="linear’)
Interpolate missing values (after the first valid value)
Parameters method : {‘linear’, ‘time’, ‘values’}

Interpolation method. ‘time’ interpolation works on daily and higher resolution data to
interpolate given length of interval ‘values’ using the actual index numeric values

Returns interpolated : Series

21.2.9 Reshaping, sorting

Series.argsort([axis, kind, order]) Overrides ndarray.argsort.

Series.order([na_last, ascending, kind])  Sorts Series object, by value, maintaining index-value link
Series.reorder_levels(order) Rearrange index levels using input order.
Series.sort([axis, kind, order]) Sort values and index labels by value, in place.
Series.sort_index([ascending]) Sort object by labels (along an axis)
Series.sortlevel([level, ascending]) Sort Series with Multilndex by chosen level. Data will be
Series.swaplevel(i, ][, copyl) Swap levels i and j in a Multilndex
Series.unstack([level]) Unstack, a.k.a.

pandas.Series.argsort

Series.argsort (axis=0, kind="quicksort’, order=None)
Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same loca-
tions as the non-NA values
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Parameters axis : int (can only be zero)
kind : { ‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only
stable algorithm

order : ignored

Returns argsorted : Series

pandas.Series.order
Series.order (na_last=True, ascending=True, kind="mergesort’)
Sorts Series object, by value, maintaining index-value link
Parameters na_last : boolean (optional, default=True)
Put NaN’s at beginning or end
ascending : boolean, default True
Sort ascending. Passing False sorts descending
kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘mergesort’

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only
stable algorithm

Returns Yy : Series

pandas.Series.reorder_levels
Series.reorder levels (order)
Rearrange index levels using input order. May not drop or duplicate levels
Parameters order: list of int representing new level order. :
(reference level by number not by key)
axis: where to reorder levels :

Returns type of caller (new object) :

pandas.Series.sort
Series.sort (axis=0, kind="quicksort’, order=None)
Sort values and index labels by value, in place. For compatibility with ndarray API. No return value
Parameters axis : int (can only be zero)
kind : { ‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only
stable algorithm

order : ignored
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pandas.Series.sort_index
Series.sort_index (ascending=True)
Sort object by labels (along an axis)
Parameters ascending : boolean, default True
Sort ascending vs. descending

Returns sorted_obj : Series

pandas.Series.sortlevel

Series.sortlevel (level=0, ascending=True)
Sort Series with Multilndex by chosen level. Data will be lexicographically sorted by the chosen level followed
by the other levels (in order)

Parameters level : int
ascending : bool, default True

Returns sorted : Series

pandas.Series.swaplevel
Series.swaplevel (i,j, copy=True)
Swap levels i and j in a Multilndex

Returns swapped : Series

pandas.Series.unstack
Series.unstack (level=-1)
Unstack, a.k.a. pivot, Series with Multilndex to produce DataFrame
Parameters level : int, string, or list of these, default last level
Level(s) to unstack, can pass level name

Returns unstacked : DataFrame

Examples
>>> g

one a 1
one b 2
two a 3
two Db 4

>>> s.unstack (level=-1)

a b
one 1. 2.
two 3. 4.
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>>> s.unstack (level=0)
one two

a 1. 2.

b 3. 4.

21.2.10 Combining / joining / merging

Series.append(to_append[, verify_integrity])
Series.replace(to_replace[, value, method, ...])
Series.update(other)

Concatenate two or more Series. The indexes must not overlap
Replace arbitrary values in a Series

Modify Series in place using non-NA values from passed

pandas.Series.append
Series.append (to_append, verify_integrity=False)
Concatenate two or more Series. The indexes must not overlap
Parameters to_append : Series or list/tuple of Series
verify_integrity : boolean, default False

If True, raise Exception on creating index with duplicates

Returns appended : Series

pandas.Series.replace
Series.replace (to_replace, value=None, method="pad’, inplace=False, limit=None)
Replace arbitrary values in a Series
Parameters to_replace : list or dict
list of values to be replaced or dict of replacement values
value : anything
if to_replace is a list then value is the replacement value

method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default ‘pad’

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

inplace : boolean, default False

If True, fill the Series in place. Note: this will modify any other views on this Series,

for example a column in a DataFrame. Returns a reference to the filled object, which is
self if inplace=True

limit : int, default None
Maximum size gap to forward or backward fill
Returns replaced : Series

See Also:

fillna, reindex, asfreq
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Notes

replace does not distinguish between NaN and None

pandas.Series.update

Series.update (other)
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters other : Series

21.2.11 Time series-related

Series.asfreqg(freq[, method, how]) Convert all TimeSeries inside to specified frequency using DateOffset
Series.asof(where) Return last good (non-NaN) value in TimeSeries if value is NaN for
Series.shift([periods, freq, copy]) Shift the index of the Series by desired number of periods with an
Series.first_valid_index() Return label for first non-NA/null value
Series.last_valid_index() Return label for last non-NA/null value

Series.weekday

Series.resample(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of regular time-series da
Series.tz_convert(tz[, copy]) Convert TimeSeries to target time zone

Series.tz_localize(tz[, copy]) Localize tz-naive TimeSeries to target time zone

pandas.Series.asfreq

Series.asfredq (freq, method=None, how=None)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method
to pad/backfill missing values.

Parameters freq : DateOffset object, or string
method : {‘backfill’, ‘bfill’, ‘pad’, “ffill’, None}

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill methdo

how : {‘start’, ‘end’}, default end
For PeriodIndex only, see PeriodIndex.asfreq

Returns converted : type of caller

pandas.Series.asof
Series.asof (where)
Return last good (non-NalN) value in TimeSeries if value is NaN for requested date.
If there is no good value, NaN is returned.
Parameters where : date or array of dates

Returns value or NaN :
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Notes

Dates are assumed to be sorted

pandas.Series.shift
Series.shift (periods=1, freq=None, copy=True, **kwds)
Shift the index of the Series by desired number of periods with an optional time offset
Parameters periods : int
Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from datetools module or time rule (e.g. ‘EOM’)

Returns shifted : Series

pandas.Series.first_valid_index

Series.first_wvalid_ index ()
Return label for first non-NA/null value

pandas.Series.last_valid_index

Series.last_valid_index ()
Return label for last non-NA/null value

pandas.Series.weekday

Series.weekday

pandas.Series.resample

Series.resample (rule, how=None, axis=0, fill_method=None, closed='right’, label="right’, conven-
tion=None, kind=None, loffset=None, limit=None, base=0)
Convenience method for frequency conversion and resampling of regular time-series data.

Parameters rule : the offset string or object representing target conversion

how : string, method for down- or re-sampling, default to ‘mean’ for
downsampling

fill_method : string, fill_method for upsampling, default None

axis : int, optional, default O

closed : {‘right’, ‘left’}, default ‘right’
Which side of bin interval is closed

label : {‘right’, ‘left’}, default ‘right’
Which bin edge label to label bucket with
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convention : {‘start’, ‘end’, ‘s’, ‘e’ }
loffset : timedelta
Adjust the resampled time labels

base : int, default O

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals.
For example, for ‘Smin’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Series.tz_convert
Series.tz_convert (tz, copy=True)
Convert TimeSeries to target time zone
Parameters tz : string or pytz.timezone object
copy : boolean, default True
Also make a copy of the underlying data

Returns converted : TimeSeries

pandas.Series.tz_localize
Series.tz_localize (tz, copy=True)
Localize tz-naive TimeSeries to target time zone
Parameters tz : string or pytz.timezone object
copy : boolean, default True
Also make a copy of the underlying data

Returns localized : TimeSeries

21.2.12 Plotting

Series.hist([ax, grid, xlabelsize, xrot, ...]) Draw histogram of the input series using matplotlib

Series.plot(series[, label, kind, ...]) Plot the input series with the index on the x-axis using matplotlib

pandas.Series.hist
Series.hist (ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, **kwds)
Draw histogram of the input series using matplotlib
Parameters ax : matplotlib axis object
If not passed, uses gca()
grid : boolean, default True
Whether to show axis grid lines
xlabelsize : int, default None
If specified changes the x-axis label size

xrot : float, default None
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rotation of x axis labels
ylabelsize : int, default None

If specified changes the y-axis label size
yrot : float, default None

rotation of y axis labels
kwds : keywords

To be passed to the actual plotting function

Notes

See matplotlib documentation online for more on this

pandas.Series.plot

Series.plot (series, label=None, kind="line’, use_index=True, rot=None, xticks=None, yticks=None,
xlim=None, ylim=None, ax=None, style=None, grid=None, logy=False, secondary_y=False,

*¥kwds)
Plot the input series with the index on the x-axis using matplotlib

Parameters label : label argument to provide to plot
kind : {‘line’, ‘bar’}
rot : int, default 30
Rotation for tick labels
use_index : boolean, default True
Plot index as axis tick labels
ax : matplotlib axis object
If not passed, uses gca()
style : string, default matplotlib default
matplotlib line style to use
ax : matplotlib axis object
If not passed, uses gca()
kind : {‘line’, ‘bar’, ‘barh’}
bar : vertical bar plot barh : horizontal bar plot
logy : boolean, default False
For line plots, use log scaling on y axis
xticks : sequence
Values to use for the xticks
yticks : sequence

Values to use for the yticks
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xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None
Rotation for ticks

kwds : keywords

Options to pass to matplotlib plotting method

Notes

See matplotlib documentation online for more on this subject

21.2.13 Serialization / 10 / Conversion

Series. from_csv(path[, sep, parse_dates, ...]) Read delimited file into Series
Series.load(path)

Series.save(path)

Series.to_csv(path[, index, sep, na_rep, ...]) = Write Series to a comma-separated values (csv) file

Series.to_dict() Convert Series to {label -> value} dict
Series.to_sparse([kind, fill_value]) Convert Series to SparseSeries
Series.to_string([buf, na_rep, ...]) Render a string representation of the Series

pandas.Series.from_csv

classmethod Series.from_csv (path, sep=’, ‘, parse_dates=True, header=None, index_col=0, encod-
ing=None)
Read delimited file into Series

Parameters path : string file path or file handle / StringlO
sep : string, default *;
Field delimiter
parse_dates : boolean, default True
Parse dates. Different default from read_table
header : int, default O
Row to use at header (skip prior rows)
index_col : int or sequence, default O

Column to use for index. If a sequence is given, a Multilndex is used. Different default
from read_table

encoding : string, optional

a string representing the encoding to use if the contents are non-ascii, for python ver-
sions prior to 3

Returns y : Series
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pandas.Series.load

classmethod Series.load (path)

pandas.Series.save

Series.save (path)

pandas.Series.to_csv

i3

Series.to_ecsv (path, index=True, sep=’, °‘, na_rep="‘, float format=None, header=False, in-
dex_label=None, mode="w’, nanRep=None, encoding=None)
Write Series to a comma-separated values (csv) file

Parameters path : string file path or file handle / StringlO
na_rep : string, default
Missing data representation
float_format : string, default None
Format string for floating point numbers
header : boolean, default False
Write out series name
index : boolean, default True
Write row names (index)
index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and index are
True, then the index names are used. A sequence should be given if the DataFrame uses
Multilndex.

mode : Python write mode, default ‘w’
sep : character, default ”,”

Field delimiter for the output file.
encoding : string, optional

a string representing the encoding to use if the contents are non-ascii, for python ver-
sions prior to 3

pandas.Series.to_dict

Series.to_dict ()
Convert Series to {label -> value} dict

Returns value_dict : dict
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pandas.Series.to_sparse

Series.to_sparse (kind="block’, fill_value=None)
Convert Series to SparseSeries

Parameters Kkind : {‘block’, ‘integer’}

fill_value : float, defaults to NaN (missing)

Returns sp : SparseSeries

pandas.Series.to_string

Series.to_string (buf=None,

name=False)

na_rep="NaN’, float_format=None, nanRep=None, length=False,

Render a string representation of the Series

Parameters buf : StringlO-like, optional

buffer to write to

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats default None

length : boolean, default False

Add the Series length

name : boolean, default False

Add the Series name (which may be None)

Returns formatted : string (if not buffer passed)

21.3 DataFrame

21.3.1 Attributes and underlying data

Axes

¢ index: row labels

¢ columns:

column labels

DataFrame.

as_mat rix([columns])

Convert the frame to its Numpy-array matrix representation. Columns

DataFrame.

dtypes

DataFrame.

get_dtype_counts()

DataFrame.values Convert the frame to its Numpy-array matrix representation. Columns
DataFrame.axes
DataFrame.ndim
DataFrame.shape
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pandas.DataFrame.as_matrix
DataFrame.as_matrix (columns=None)

Convert the frame to its Numpy-array matrix representation. Columns are presented in sorted order unless a
specific list of columns is provided.

Parameters columns : array-like
Specific column order
Returns values : ndarray

If the DataFrame is heterogeneous and contains booleans or objects, the result will be
of dtype=object

pandas.DataFrame.dtypes

DataFrame.dtypes

pandas.DataFrame.get_dtype counts

DataFrame.get_dtype_ counts ()

pandas.DataFrame.values
DataFrame.values

Convert the frame to its Numpy-array matrix representation. Columns are presented in sorted order unless a
specific list of columns is provided.

Parameters columns : array-like
Specific column order
Returns values : ndarray

If the DataFrame is heterogeneous and contains booleans or objects, the result will be
of dtype=object

pandas.DataFrame.axes

DataFrame.axes

pandas.DataFrame.ndim

DataFrame.ndim

pandas.DataFrame.shape

DataFrame.shape

21.3.2 Conversion / Constructors
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DataFrame.__init__ ([data, index, columns, ...]) Two-dimensional size-mutable, potentially heterogeneous tabular data structu
DataFrame.astype(dtype) Cast object to input numpy.dtype

DataFrame.convert_objects() Attempt to infer better dtype for object columns
DataFrame.copy([deep]) Make a copy of this object

pandas.DataFrame.__init__

DataFrame.__init__ (data=None, index=None, columns=None, dtype=None, copy=~False)
Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and
columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container

for Series objects. The primary pandas data structure

Parameters data : numpy ndarray (structured or homogeneous), dict, or DataFrame

Dict can contain Series, arrays, constants, or list-like objects

index : Index or array-like

Index to use for resulting frame. Will default to np.arange(n) if no indexing information

part of input data and no index provided
columns : Index or array-like

Will default to np.arange(n) if not column labels provided
dtype : dtype, default None

Data type to force, otherwise infer

copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See Also:

DataFrame. from records constructor from tuples, also record arrays

DataFrame. from dict from dicts of Series, arrays, or dicts
DataFrame. from_csv from CSV files

DataFrame.from items from sequence of (key, value) pairs

read_csv

Examples

>>> d = {’coll’: tsl, 'col2’: ts2}

>>> df = DataFrame (data=d, index=index)
>>> df2 = DataFrame (np.random.randn (10, 5))
>>> df3 = DataFrame (np.random.randn (10, 5),

columns=["a’, 'b’", ’'c’,

pandas.DataFrame.astype

DataFrame.astype (dtype)
Cast object to input numpy.dtype
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Parameters dtype : numpy.dtype or Python type

Returns casted : type of caller

pandas.DataFrame.convert_objects

DataFrame.convert_objects ()
Attempt to infer better dtype for object columns

Returns converted : DataFrame

pandas.DataFrame.copy

DataFrame.copy (deep=True)
Make a copy of this object

Parameters deep : boolean, default True

Make a deep copy, i.e. also copy data

Returns copy : type of caller

21.3.3 Indexing, iteration

DataFrame.head([n]) Returns first n rows of DataFrame

DataFrame.ix

DataFrame.insert(loc, column, value) Insert column into DataFrame at specified location. Raises Exception if
DataFrame.__ _iter_ () Iterate over columns of the frame.

DataFrame.iteritems() Iterator over (column, series) pairs

DataFrame.iterrows() Iterate over rows of DataFrame as (index, Series) pairs
DataFrame.itertuples([index]) Iterate over rows of DataFrame as tuples, with index value
DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame. Given equal-length
DataFrame.pop(item) Return column and drop from frame.

DataFrame.tail([n]) Returns last n rows of DataFrame

DataFrame . xs(key[, axis, level, copy]) Returns a cross-section (row(s) or column(s)) from the DataFrame.

pandas.DataFrame.head

DataFrame.head (n=5)
Returns first n rows of DataFrame

pandas.DataFrame.ix

DataFrame.ix

pandas.DataFrame.insert

DataFrame.insert (loc, column, value)
Insert column into DataFrame at specified location. Raises Exception if column is already contained in the
DataFrame

Parameters loc : int

21.3. DataFrame
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Must have 0 <= loc <= len(columns)
column : object
value : int, Series, or array-like

pandas.DataFrame.__iter

DataFrame.__iter__ ()
Iterate over columns of the frame.

pandas.DataFrame.iteritems

DataFrame.iteritems ()
Iterator over (column, series) pairs

pandas.DataFrame.iterrows

DataFrame.iterrows ()
Iterate over rows of DataFrame as (index, Series) pairs

pandas.DataFrame.itertuples

DataFrame.itertuples (index=True)

Iterate over rows of DataFrame as tuples, with index value as first element of the tuple

pandas.DataFrame.lookup

DataFrame.lookup (row_labels, col_labels)

Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels,

return an array of the values corresponding to each (row, col) pair.
Parameters row_labels : sequence

col_labels : sequence

Notes

Akin to
result = [] for row, col in zip(row_labels, col_labels):
result.append(df.get_value(row, col))

pandas.DataFrame.pop

DataFrame.pop (item)

Return column and drop from frame. Raise KeyError if not found.

Returns column : Series
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pandas.DataFrame.tail

DataFrame.tail (n=5)
Returns last n rows of DataFrame

pandas.DataFrame.xs

DataFrame.xs (key, axis=0, level=None, copy=True)
Returns a cross-section (row(s) or column(s)) from the DataFrame. Defaults to cross-section on the rows
(axis=0).

Parameters key : object
Some label contained in the index, or partially in a Multilndex
axis : int, default 0
AXis to retrieve cross-section on
level : object, defaults to first n levels (n=1 or len(key))

In case of a key partially contained in a Multilndex, indicate which levels are used.
Levels can be referred by label or position.

copy : boolean, default True
Whether to make a copy of the data

Returns xs : Series or DataFrame

Examples

Name: a

>>> df.xs('C’, axis=1)

a 2

b 9

c 3

Name: C

>>> s = df.xs("a’, copy=False)

>>> g[’A’] = 100

>>> df
A

a 100

b 4

c 9

< o o
w o NN

>>> df

first second third
bar one 1 4 1 8 9
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two 1 7 5 5 0
baz one 1 6 6 8 0
three 2 5 3 5 3

)

>>> df .xs(('baz’, ’'three’)
A B C D

third

2 5 3 5 3

>>> df .xs ("one’, level=1)

A B C D

first third

bar 1 4 1 8 9

baz 1 6 6 8 0

>>> df.xs (('baz’, 2), level=[0, ’"third’])

A B C D
second
three 5 3 5 3

21.3.4 Binary operator functions

DataFrame .add(other[, axis, level, fill_value])

Binary operator add with support to substitute a fill_value for missing data in

DataFrame.div(other[, axis, level, fill_value])

Binary operator divide with support to substitute a fill_value for missing data in

DataFrame .mul(other[, axis, level, fill_value])

Binary operator multiply with support to substitute a fill_value for missing data

DataFrame. sub(other[, axis, level, fill_value])

Binary operator subtract with support to substitute a fill_value for missing data -

DataFrame . radd(other[, axis, level, fill_value])

Binary operator radd with support to substitute a fill_value for missing data in

DataFrame . rdiv(other|, axis, level, fill_value])

Binary operator rdivide with support to substitute a fill_value for missing data i

DataFrame . rmul(other[, axis, level, fill_value])

Binary operator rmultiply with support to substitute a fill_value for missing dat:

DataFrame . rsub(other|, axis, level, fill_value])

Binary operator rsubtract with support to substitute a fill_value for missing data

DataFrame.combine(other, func[, fill_value])

Add two DataFrame objects and do not propagate NaN values, so if for a

DataFrame.combineAdd(other)

Add two DataFrame objects and do not propagate

DataFrame.combine_first(other)

Combine two DataFrame objects and default to non-null values in frame

DataFrame.combineMult(other)

Multiply two DataFrame objects and do not propagate NaN values, so if

pandas.DataFrame.add

DataFrame.add (other, axis="columns’, level=None, fill_value=None)
Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the

result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame
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Notes

Mismatched indices will be unioned together

pandas.DataFrame.div
DataFrame.div (other, axis="columns’, level=None, fill_value=None)
Binary operator divide with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.mul
DataFrame .mul (other, axis="columns’, level=None, fill_value=None)
Binary operator multiply with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

21.3. DataFrame 331



pandas: powerful Python data analysis toolkit, Release 0.9.0

pandas.DataFrame.sub
DataFrame.sub (other, axis="columns’, level=None, fill_value=None)
Binary operator subtract with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.radd
DataFrame.radd (other, axis="columns’, level=None, fill_value=None)
Binary operator radd with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rdiv
DataFrame.rdiv (other, axis="columns’, level=None, fill_value=None)
Binary operator rdivide with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
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For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmul
DataFrame.rmul (other, axis=’columns’, level=None, fill_value=None)
Binary operator rmultiply with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rsub
DataFrame.rsub (other, axis="columns’, level=None, fill_value=None)
Binary operator rsubtract with support to substitute a fill_value for missing data in one of the inputs
Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the
result will be missing

level : int or name
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Broadcast across a level, matching Index values on the passed Multilndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.combine

DataFrame.combine (other, func, fill_value=None)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a
value, it will default to the other frame’s value (which might be NaN as well)

Parameters other : DataFrame
func : function
fill_value : scalar value

Returns result : DataFrame

pandas.DataFrame.combineAdd

DataFrame.combineAdd (other)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a
value, it will default to the other frame’s value (which might be NaN as well)

Parameters other : DataFrame

Returns DataFrame :

pandas.DataFrame.combine_first

DataFrame.combine first (other)
Combine two DataFrame objects and default to non-null values in frame calling the method. Result index will
be the union of the two indexes

Parameters other : DataFrame

Returns combined : DataFrame

Examples

>>> a.combine_first (b)
a’s values prioritized, use values from b to fill holes

pandas.DataFrame.combineMult

DataFrame.combineMult (other)
Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is
missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters other : DataFrame
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Returns DataFrame :

21.3.5 Function application, GroupBy

DataFrame.apply(func[, axis, broadcast, ...])  Applies function along input axis of DataFrame. Objects passed to

DataFrame.applymap(func) Apply a function to a DataFrame that is intended to operate

DataFrame.groupby([by, axis, level, ...]) Group series using mapper (dict or key function, apply given function

pandas.DataFrame.apply

DataFrame.apply (func, axis=0, broadcast=False, raw=False, args=(), **kwds)
Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index
either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function
aggregates

Parameters func : function
Function to apply to each column
axis : {0, 1}
0 : apply function to each column 1 : apply function to each row
broadcast : bool, default False
For aggregation functions, return object of same size with values propagated
raw : boolean, default False

If False, convert each row or column into a Series. If raw=True the passed function will
receive ndarray objects instead. If you are just applying a NumPy reduction function
this will achieve much better performance

args : tuple
Positional arguments to pass to function in addition to the array/series
Additional keyword arguments will be passed as keywords to the function :

Returns applied : Series or DataFrame

Notes

To apply a function elementwise, use applymap

Examples

>>> df.apply (numpy.sqrt) # returns DataFrame
>>> df.apply (numpy.sum, axis=0) # equiv to df.sum(0)
>>> df.apply (numpy.sum, axis=1) # equiv to df.sum(1)
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pandas.DataFrame.applymap

DataFrame.applymap (func)
Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for

each series in the DataFrame
Parameters func : function
Python function, returns a single value from a single value

Returns applied : DataFrame

pandas.DataFrame.groupby

DataFrame.groupby (by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a
series of columns

Parameters by : mapping function / list of functions, dict, Series, or tuple /

list of column names. Called on each element of the object index to determine the
groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine
the groups

axis : int, default O
level : int, level name, or sequence of such, default None

If the axis is a Multilndex (hierarchical), group by a particular level or levels
as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for
DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True
Sort group keys. Get better performance by turning this off
group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
Returns GroupBy object :

Examples

# DataFrame result >>> data.groupby(func, axis=0).mean()
# DataFrame result >>> data.groupby([’coll’, ‘col2’])[’col3’].mean()

# DataFrame with hierarchical index >>> data.groupby([’coll’, ‘col2’]).mean()

21.3.6 Computations / Descriptive Stats

DataFrame.abs() Return an object with absolute value taken.
DataFrame.any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis.
DataFrame.clip([upper, lower]) Trim values at input threshold(s)

Continued on next page
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Table 21.27 — continued from previous page

DataFrame.clip_lower(threshold)

Trim values below threshold

DataFrame.clip_upper(threshold)

Trim values above threshold

DataFrame.corr([method])

Compute pairwise correlation of columns, excluding NA/null values

DataFrame.corrwith(other[, axis, drop])

Compute pairwise correlation between rows or columns of two DataFrame

DataFrame.count([axis, level, numeric_only])

Return Series with number of non-NA/null observations over requested

DataFrame.cov()

Compute pairwise covariance of columns, excluding NA/null values

DataFrame.cummax([axis, skipna])

Return DataFrame of cumulative max over requested axis.

DataFrame.cummin([axis, skipna])

Return DataFrame of cumulative min over requested axis.

DataFrame.cumprod([axis, skipna])

Return cumulative product over requested axis as DataFrame

DataFrame.cumsum([axis, skipna])

Return DataFrame of cumulative sums over requested axis.

DataFrame.describe([percentile_width])

Generate various summary statistics of each column, excluding

DataFrame.dif f([periods])

1st discrete difference of object

DataFrame.kurt([axis, skipna, level])

Return unbiased kurtosis over requested axis.

DataFrame .mad([axis, skipna, level])

Return mean absolute deviation over requested axis.

DataFrame .max([axis, skipna, level])

Return maximum over requested axis.

DataFrame .mean([axis, skipna, level])

Return mean over requested axis.

DataFrame.median([axis, skipna, level])

Return median over requested axis.

DataFrame .min([axis, skipna, level])

Return minimum over requested axis.

DataFrame.pct_change([periods, fill_method, ...])

Percent change over given number of periods

DataFrame.prod([axis, skipna, level])

Return product over requested axis.

DataFrame.quantile([q, axis])

Return values at the given quantile over requested axis, a la

DataFrame . rank([axis, numeric_only, method, ...])

Compute numerical data ranks (1 through n) along axis.

DataFrame. skew([axis, skipna, level])

Return unbiased skewness over requested axis.

DataFrame . sum([axis, numeric_only, skipna, ...])

Return sum over requested axis.

DataFrame. std([axis, skipna, level, ddof])

Return standard deviation over requested axis.

DataFrame.var([axis, skipna, level, ddof])

Return variance over requested axis.

pandas.DataFrame.abs

DataFrame.abs ()

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns abs: type of caller :

pandas.DataFrame.any

DataFrame.any (axis=0, bool_only=None, skipna=True, level=None)
Return whether any element is True over requested axis. %(na_action)s

Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into

a DataFrame
bool_only : boolean, default None

Only include boolean data.
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Returns any : Series (or DataFrame if level specified)

pandas.DataFrame.clip
DataFrame.clip (upper=None, lower=None)
Trim values at input threshold(s)
Parameters lower : float, default None
upper : float, default None
Returns clipped : DataFrame

pandas.DataFrame.clip_lower
DataFrame.clip_lower (threshold)
Trim values below threshold

Returns clipped : DataFrame

pandas.DataFrame.clip_upper
DataFrame.clip_upper (threshold)
Trim values above threshold

Returns clipped : DataFrame

pandas.DataFrame.corr
DataFrame.corr (method="pearson’)
Compute pairwise correlation of columns, excluding NA/null values
Parameters method : { ‘pearson’, ‘kendall’, ‘spearman’ }

pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient
spearman : Spearman rank correlation

Returns y : DataFrame

pandas.DataFrame.corrwith
DataFrame.corrwith (other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.
Parameters other : DataFrame
axis : {0, 1}
0 to compute column-wise, 1 for row-wise
drop : boolean, default False
Drop missing indices from result, default returns union of all

Returns correls : Series
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pandas.DataFrame.count

DataFrame.count (axis=0, level=None, numeric_only=False)
Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data
as well (detects NaN and None)

Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

numeric_only : boolean, default False
Include only float, int, boolean data

Returns count : Series (or DataFrame if level specified)

pandas.DataFrame.cov
DataFrame.cov ()
Compute pairwise covariance of columns, excluding NA/null values
Returns y : DataFrame
y contains the covariance matrix of the DataFrame’s time series. :

The covariance is normalized by N-1 (unbiased estimator). :

pandas.DataFrame.cummax
DataFrame.cummax (axis=None, skipna=True)
Return DataFrame of cumulative max over requested axis.
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns y : DataFrame

pandas.DataFrame.cummin
DataFrame.cummin (axis=None, skipna=True)
Return DataFrame of cumulative min over requested axis.
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns y : DataFrame
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pandas.DataFrame.cumprod
DataFrame.cumprod (axis=None, skipna=True)
Return cumulative product over requested axis as DataFrame
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns y : DataFrame

pandas.DataFrame.cumsum
DataFrame.cumsum (axis=None, skipna=True)
Return DataFrame of cumulative sums over requested axis.
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns y : DataFrame

pandas.DataFrame.describe

DataFrame .describe (percentile_width=50)
Generate various summary statistics of each column, excluding NaN values. These include: count, mean, std,
min, max, and lower%/50%/upper% percentiles

Parameters percentile_width : float, optional

width of the desired uncertainty interval, default is 50, which corresponds to lower=25,
upper=75

Returns DataFrame of summary statistics :

pandas.DataFrame.diff
DataFrame.diff (periods=1)
Ist discrete difference of object
Parameters periods : int, default 1
Periods to shift for forming difference

Returns diffed : DataFrame

pandas.DataFrame.kurt

DataFrame.kurt (axis=0, skipna=True, level=None)
Return unbiased kurtosis over requested axis. NA/null values are excluded

Parameters axis: {0, 1}
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0 for row-wise, 1 for column-wise
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns Kkurt : Series (or DataFrame if level specified)

pandas.DataFrame.mad
DataFrame .mad (axis=0, skipna=True, level=None)
Return mean absolute deviation over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns mad : Series (or DataFrame if level specified)

pandas.DataFrame.max
DataFrame .max (axis=0, skipna=True, level=None)
Return maximum over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns max : Series (or DataFrame if level specified)

pandas.DataFrame.mean
DataFrame .mean (axis=0, skipna=True, level=None)
Return mean over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise

skipna : boolean, default True
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Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns mean : Series (or DataFrame if level specified)

pandas.DataFrame.median
DataFrame.median (axis=0, skipna=True, level=None)
Return median over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns median : Series (or DataFrame if level specified)

pandas.DataFrame.min
DataFrame .min (axis=0, skipna=True, level=None)
Return minimum over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns min : Series (or DataFrame if level specified)

pandas.DataFrame.pct_change
DataFrame.pct_change (periods=1, fill_method="pad’, limit=None, freg=None, **kwds)
Percent change over given number of periods
Parameters periods : int, default 1
Periods to shift for forming percent change
fill_method : str, default ‘pad’
How to handle NAs before computing percent changes

limit : int, default None
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The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg : Series or DataFrame

pandas.DataFrame.prod
DataFrame.prod (axis=0, skipna=True, level=None)
Return product over requested axis. NA/null values are treated as 1
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns product : Series (or DataFrame if level specified)

pandas.DataFrame.quantile
DataFrame.quantile (¢=0.5, axis=0)
Return values at the given quantile over requested axis, a la scoreatpercentile in scipy.stats
Parameters q : quantile, default 0.5 (50% quantile)
O<=q<=1
axis : {0, 1}
0 for row-wise, 1 for column-wise

Returns quantiles : Series

pandas.DataFrame.rank

DataFrame.rank (axis=0, numeric_only=None, method="average’, na_option="keep’, ascending=True)
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of
the ranks of those values

Parameters axis : {0, 1}, default 0
Ranks over columns (0) or rows (1)
numeric_only : boolean, default None
Include only float, int, boolean data
method : {‘average’, ‘min’, ‘max’, ‘first’}

average: average rank of group min: lowest rank in group max: highest rank in group
first: ranks assigned in order they appear in the array

na_option : {‘keep’}
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keep: leave NA values where they are
ascending : boolean, default True
False for ranks by high (1) to low (N)

Returns ranks : DataFrame

pandas.DataFrame.skew
DataFrame.skew (axis=0, skipna=True, level=None)
Return unbiased skewness over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns skew : Series (or DataFrame if level specified)

pandas.DataFrame.sum
DataFrame.sum (axis=0, numeric_only=None, skipna=True, level=None)
Return sum over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use
only numeric data

Returns sum : Series (or DataFrame if level specified)

pandas.DataFrame.std
DataFrame.std (axis=0, skipna=True, level=None, ddof=1)
Return standard deviation over requested axis. NA/null values are excluded
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise

skipna : boolean, default True
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Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into
a DataFrame

Returns std : Series (or DataFrame if level specified)
Normalized by N-1 (unbiased estimator).

pandas.DataFrame.var

DataFrame.var (axis=0, skipna=True, level=None, ddof=1)

Return variance over requested axis. NA/null values are excluded

Parameters axis: {0, 1}

0 for row-wise, 1 for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int, default None

If the axis is a Multilndex (hierarchical), count along a particular level, collapsing into

a DataFrame

Returns var : Series (or DataFrame if level specified)

Normalized by N-1 (unbiased estimator).

21.3.7 Reindexing / Selection / Label manipulation

DataFrame.add_prefix(prefix) Concatenate prefix string with panel items names.
DataFrame.add_suffix(suffix) Concatenate suffix string with panel items names
DataFrame.align(other[, join, axis, level, ...]) Align two DataFrame object on their index and columns with the
DataFrame.drop(labels[, axis, level]) Return new object with labels in requested axis removed
DataFrame.drop_duplicates([cols, take_last, ...]) Return DataFrame with duplicate rows removed, optionally only
DataFrame.duplicated([cols, take_last]) Return boolean Series denoting duplicate rows, optionally only
DataFrame. filter([items, like, regex]) Restrict frame’s columns to set of items or wildcard

DataFrame. first(offset) Convenience method for subsetting initial periods of time series data
DataFrame.head([n]) Returns first n rows of DataFrame

DataFrame.idxmax([axis, skipna]) Return index of first occurrence of maximum over requested axis.
DataFrame. idxmin([axis, skipna]) Return index of first occurrence of minimum over requested axis.
DataFrame. last(offset) Convenience method for subsetting final periods of time series data
DataFrame.reindex([index, columns, method, ...]) Conform DataFrame to new index with optional filling logic, placing
DataFrame.reindex_axis(labels[, axis, ...]) Conform DataFrame to new index with optional filling logic, placing
DataFrame.reindex_1ike(other[, method, ...]) Reindex DataFrame to match indices of another DataFrame, optionally
DataFrame.rename([index, columns, copy, inplace])  Alter index and / or columns using input function or functions.
DataFrame.reset_index([level, drop, ...]) For DataFrame with multi-level index, return new DataFrame with
DataFrame.select(crit], axis]) Return data corresponding to axis labels matching criteria
DataFrame.set_index(keys[, drop, append, ...]) Set the DataFrame index (row labels) using one or more existing
DataFrame.tail([n]) Returns last n rows of DataFrame

DataFrame.take(indices[, axis]) Analogous to ndarray.take, return DataFrame corresponding to requested

Continued on next page
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Table 21.28 — continued from previous page

DataFrame.truncate([before, after, copy]) Function truncate a sorted DataFrame / Series before and/or after

pandas.DataFrame.add_prefix
DataFrame.add_prefix (prefix)
Concatenate prefix string with panel items names.
Parameters prefix : string

Returns with_prefix : type of caller

pandas.DataFrame.add_suffix
DataFrame.add_suffix (suffix)
Concatenate suffix string with panel items names
Parameters suffix : string

Returns with_suffix : type of caller

pandas.DataFrame.align

DataFrame.align (other, join='outer’, axis=None, level=None, copy=True, fill_value=nan,

method=None, limit=None, fill_axis=0)
Align two DataFrame object on their index and columns with the specified join method for each axis Index

Parameters other : DataFrame or Series
join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’
axis : {0, 1, None}, default None
Align on index (0), columns (1), or both (None)
level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level
copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then original
objects are returned.

fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value
method : str, default None
limit : int, default None
fill_axis : {0, 1}, default O
Filling axis, method and limit
Returns (left, right) : (DataFrame, type of other)
Aligned objects
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pandas.DataFrame.drop
DataFrame.drop (labels, axis=0, level=None)
Return new object with labels in requested axis removed
Parameters labels : array-like
axis : int
level : int or name, default None
For Multilndex
Returns dropped : type of caller

pandas.DataFrame.drop_duplicates
DataFrame.drop_duplicates (cols=None, take_last=False, inplace=False)
Return DataFrame with duplicate rows removed, optionally only considering certain columns
Parameters cols : column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the
columns

take_last : boolean, default False

Take the last observed row in a row. Defaults to the first row
inplace : boolean, default False

Whether to drop duplicates in place or to return a copy

Returns deduplicated : DataFrame

pandas.DataFrame.duplicated
DataFrame.duplicated (cols=None, take_last=False)
Return boolean Series denoting duplicate rows, optionally only considering certain columns
Parameters cols : column label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the
columns

take_last : boolean, default False
Take the last observed row in a row. Defaults to the first row

Returns duplicated : Series

pandas.DataFrame. filter
DataFrame.filter (items=None, like=None, regex=None)
Restrict frame’s columns to set of items or wildcard
Parameters items : list-like
List of columns to restrict to (must not all be present)

like : string
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Keep columns where “arg in col == True”
regex : string (regular expression)
Keep columns with re.search(regex, col) == True

Returns DataFrame with filtered columns :

Notes

Arguments are mutually exclusive, but this is not checked for

pandas.DataFrame.first
DataFrame. first (offset)
Convenience method for subsetting initial periods of time series data based on a date offset
Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last(‘10D’) -> First 10 days

pandas.DataFrame.head

DataFrame.head (n=5)
Returns first n rows of DataFrame

pandas.DataFrame.idxmax
DataFrame.idxmax (axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns idxmax : Series

pandas.DataFrame.idxmin
DataFrame.idxmin (axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.
Parameters axis: {0, 1}
0 for row-wise, 1 for column-wise

skipna : boolean, default True
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Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns idxmin : Series

pandas.DataFrame.last
DataFrame.last (offset)
Convenience method for subsetting final periods of time series data based on a date offset
Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last(‘SM’) -> Last 5 months

pandas.DataFrame.reindex

DataFrame.reindex (index=None, columns=None, method=None, level=None, fill_value=nan,
limit=None, copy=True)
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value
in the previous index. A new object is produced unless the new index is equivalent to the current one and

copy=False
Parameters index : array-like, optional
New labels / index to conform to. Preferably an Index object to avoid duplicating data
columns : array-like, optional
Same usage as index argument
method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same
level : int or name

Broadcast across a level, matching Index values on the passed Multilndex level
fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value
limit : int, default None

Maximum size gap to forward or backward fill

Returns reindexed : same type as calling instance

Examples

>>> df.reindex (index=[datel, date2, date3], columns=['A’, 'B’, 'C’])
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pandas.DataFrame.reindex_axis

DataFrame.reindex_axis (labels, axis=0, method=None, level=None, copy=True, limit=None,

fill_value=nan)
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value

in the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False

Parameters index : array-like, optional
New labels / index to conform to. Preferably an Index object to avoid duplicating data
axis : {0, 1}
0 -> index (rows) 1 -> columns
method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True
Return a new object, even if the passed indexes are the same

level : int or name
Broadcast across a level, matching Index values on the passed Multilndex level

limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : same type as calling instance
See Also:

DataFrame.reindex, DataFrame.reindex_like

Examples

>>> df.reindex_axis([’'A’, 'B’, 'C’'], axis=1)

pandas.DataFrame.reindex_like
DataFrame.reindex_1like (other, method=None, copy=True, limit=None)
Reindex DataFrame to match indices of another DataFrame, optionally with filling logic
Parameters other : DataFrame
method : string or None
copy : boolean, default True
limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : DataFrame
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Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename (index=None, columns=None, copy=True, inplace=False)
Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1).
Labels not contained in a dict / Series will be left as-is.

Parameters index : dict-like or function, optional
Transformation to apply to index values
columns : dict-like or function, optional
Transformation to apply to column values
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new DataFrame. If True then value of copy is ignored.
Returns renamed : DataFrame (new object)
See Also:

Series.rename

pandas.DataFrame.reset_index

DataFrame.reset_index (level=None, drop=False, inplace=False, col_level=0, col_fill="")
For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under
the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name
will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters level : int, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default
drop : boolean, default False

Do not try to insert index into dataframe columns. This resets the index to the default
integer index.

inplace : boolean, default False
Modify the DataFrame in place (do not create a new object)
col_level : int or str, default O

If the columns have multiple levels, determines which level the labels are inserted into.
By default it is inserted into the first level.

col_fill : object, default

If the columns have multiple levels, determines how the other levels are named. If None
then the index name is repeated.

Returns resetted : DataFrame
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pandas.DataFrame.select
DataFrame.select (crit, axis=0)
Return data corresponding to axis labels matching criteria
Parameters crit : function
To be called on each index (label). Should return True or False
axis : int

Returns selection : type of caller

pandas.DataFrame.set_index
DataFrame.set_index (keys, drop=True, append=False, inplace=False, verify_integrity=False)
Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.
Parameters Kkeys : column label or list of column labels / arrays
drop : boolean, default True
Delete columns to be used as the new index
append : boolean, default False
Whether to append columns to existing index
inplace : boolean, default False
Modify the DataFrame in place (do not create a new object)
verify_integrity : boolean, default False

Check the new index for duplicates. Otherwise defer the check until necessary. Setting
to False will improve the performance of this method

Returns dataframe : DataFrame

Examples

indexed_df = df.set_index([’A’, ‘B’]) indexed_df2 = df.set_index([’A’, [0, 1, 2, 0, 1, 2]]) indexed_df3 =
df.set_index([[0, 1, 2,0, 1, 21])

pandas.DataFrame.tail

DataFrame.tail (n=5)
Returns last n rows of DataFrame

pandas.DataFrame.take
DataFrame.take (indices, axis=0)
Analogous to ndarray.take, return DataFrame corresponding to requested indices along an axis
Parameters indices : list/ array of ints
axis : {0, 1}

Returns taken : DataFrame
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pandas.DataFrame.truncate
DataFrame.truncate (before=None, after=None, copy=True)
Function truncate a sorted DataFrame / Series before and/or after some particular dates.
Parameters before : date
Truncate before date
after : date
Truncate after date

Returns truncated : type of caller

21.3.8 Missing data handling

DataFrame.dropna([axis, how, thresh, subset]) Return object with labels on given axis omitted where alternately any

DataFrame. fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method

pandas.DataFrame.dropna
DataFrame.dropna (axis=0, how="any’, thresh=None, subset=None)
Return object with labels on given axis omitted where alternately any or all of the data are missing
Parameters axis: {0, 1}, or tuple/list thereof
Pass tuple or list to drop on multiple axes
how : {‘any’, ‘all’}

any : if any NA values are present, drop that label all : if all values are NA, drop that
label

thresh : int, default None
int value : require that many non-NA values
subset : array-like

Labels along other axis to consider, e.g. if you are dropping rows these would be a list
of columns to include

Returns dropped : DataFrame

pandas.DataFrame.fillna
DataFrame.fillna (value=None, method="pad’, axis=0, inplace=False, limit=None)
Fill NA/NaN values using the specified method
Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default ‘pad’

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar or dict

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to
use for each column (columns not in the dict will not be filled)
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Returns

See Also:

axis : {0, 1}, default 0

0: fill column-by-column 1: fill row-by-row

inplace : boolean, default False

If True, fill the DataFrame in place. Note: this will modify any other views on this
DataFrame, like if you took a no-copy slice of an existing DataFrame, for example
a column in a DataFrame. Returns a reference to the filled object, which is self if

inplace=True

limit : int, default None

Maximum size gap to forward or backward fill

filled : DataFrame

reindex, asfreq

21.3.9 Reshaping, sorting, transposing

DataFrame.delevel(*args, ¥*kwargs)

DataFrame.pivot([index, columns, values]) Reshape data (produce a “pivot” table) based on column values.
DataFrame.reorder_levels(order[, axis]) Rearrange index levels using input order.
DataFrame.sort([columns, column, axis, ...]) Sort DataFrame either by labels (along either axis) or by the values in
DataFrame.sort_index([axis, by, ascending, ...])  Sort DataFrame either by labels (along either axis) or by the values in

DataFrame.

sortlevel([level, axis, ascending])

Sort multilevel index by chosen axis and primary level.

DataFrame.

swaplevel(i, ][, axis])

Swap levels i and j in a Multilndex on a particular axis

DataFrame.

stack([level, dropna])

Pivot a level of the (possibly hierarchical) column labels, returning a

DataFrame.unstack([level]) Pivot a level of the (necessarily hierarchical) index labels, returning
DataFrame.T Returns a DataFrame with the rows/columns switched. If the DataFrame is
DataFrame.to_panel() Transform long (stacked) format (DataFrame) into wide (3D, Panel)
DataFrame.transpose() Returns a DataFrame with the rows/columns switched. If the DataFrame is

pandas.DataFrame.delevel

DataFrame.delevel (*args, **kwargs)

pandas.DataFrame.pivot

DataFrame.pivot (index=None, columns=None, values=None)
Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns
to form axes and return either DataFrame or Panel, depending on whether you request a single value column
(DataFrame) or all columns (Panel)

Parameters index : string or object

Column name to use to make new frame’s index

columns : string or object

Column name to use to make new frame’s columns

values : string or object, optional
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Column name to use for populating new frame’s values
Returns pivoted : DataFrame

If no values column specified, will have hierarchically indexed columns

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods

Examples
>>> df
foo bar Dbaz

0 one A 1

1 one B 2

2 one C 3

3 two A 4

4 two B 5

5 two C 6

>>> df.pivot (' foo’, ’'bar’, ’'baz’)
A B C

one 1 2 3

two 4 5 6

>>> df.pivot (' foo’, ’'bar’)['baz’]
A B C

one 1 2 3

two 4 5 6

pandas.DataFrame.reorder_levels
DataFrame.reorder levels (order, axis=0)
Rearrange index levels using input order. May not drop or duplicate levels
Parameters order: list of int representing new level order. :
(reference level by number not by key)
axis: where to reorder levels :

Returns type of caller (new object) :

pandas.DataFrame.sort
DataFrame.sort (columns=None, column=None, axis=0, ascending=True, inplace=False)
Sort DataFrame either by labels (along either axis) or by the values in column(s)
Parameters columns : object
Column name(s) in frame. Accepts a column name or a list or tuple for a nested sort.
ascending : boolean, default True

Sort ascending vs. descending
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axis : {0, 1}
Sort index/rows versus columns
inplace : boolean, default False
Sort the DataFrame without creating a new instance

Returns sorted : DataFrame

pandas.DataFrame.sort_index
DataFrame.sort_index (axis=0, by=None, ascending=True, inplace=False)
Sort DataFrame either by labels (along either axis) or by the values in a column
Parameters axis: {0, 1}
Sort index/rows versus columns
by : object
Column name(s) in frame. Accepts a column name or a list or tuple for a nested sort.
ascending : boolean, default True
Sort ascending vs. descending
inplace : boolean, default False
Sort the DataFrame without creating a new instance

Returns sorted : DataFrame

pandas.DataFrame.sortlevel

DataFrame.sortlevel (level=0, axis=0, ascending=True)
Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level
followed by the other levels (in order)

Parameters level : int
axis : {0, 1}
ascending : bool, default True

Returns sorted : DataFrame

pandas.DataFrame.swaplevel
DataFrame.swaplevel (i, ], axis=0)
Swap levels i and j in a Multilndex on a particular axis

Returns swapped : type of caller (new object)

pandas.DataFrame.stack

DataFrame.stack (level=-1, dropna=True)
Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an
object with a single level of column labels) having a hierarchical index with a new inner-most level of row
labels.
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Parameters level : int, string, or list of these, default last level
Level(s) to stack, can pass level name
dropna : boolean, default True
Whether to drop rows in the resulting Frame/Series with no valid values

Returns stacked : DataFrame or Series

Examples
>>> 3
a

one 1. 2.
two 3. 4.
>>> s.stack ()
one a 1

b 2
two a 3

b 4

pandas.DataFrame.unstack

DataFrame.unstack (level=-1)
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column
labels whose inner-most level consists of the pivoted index labels. If the index is not a Multilndex, the output
will be a Series (the analogue of stack when the columns are not a Multilndex)

Parameters level : int, string, or list of these, default last level
Level(s) of index to unstack, can pass level name

Returns unstacked : DataFrame or Series

Examples

>>> s

one
two
two

oo O w
Bw N

>>> s.unstack (level=-1)

a b

one 1. 2.
two 3. 4.
>>> df = s.unstack (level=0)
>>> df

one two
a 1. 2.
b 3. 4.,
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>>> df.unstack ()
one a 1.

b 3.
two a 2.
b 4

pandas.DataFrame.T

DataFrame.T
Returns a DataFrame with the rows/columns switched. If the DataFrame is homogeneously-typed, the data is
not copied

pandas.DataFrame.to_panel

DataFrame.to_panel ()
Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

Currently the index of the DataFrame must be a 2-level Multilndex. This may be generalized later

Returns panel : Panel

pandas.DataFrame.transpose
DataFrame.transpose ()

Returns a DataFrame with the rows/columns switched. If the DataFrame is homogeneously-typed, the data is
not copied

21.3.10 Combining / joining / merging

DataFrame.append(other[, ignore_index, ...]) Append columns of other to end of this frame’s columns and index, returning a

DataFrame. join(other[, on, how, Isuffix, ...]) Join columns with other DataFrame either on index or on a key
DataFrame.merge(right[, how, on, left on,...]) Merge DataFrame objects by performing a database-style join operation by
DataFrame.replace(to_replace[, value, ...]) Replace values given in ‘to_replace’ with ‘value’ or using ‘method’

DataFrame.update(other[, join, overwrite, ...]) Modify DataFrame in place using non-NA values from passed

pandas.DataFrame.append

DataFrame.append (other, ignore_index=False, verify_integrity=False)
Append columns of other to end of this frame’s columns and index, returning a new object. Columns not in this
frame are added as new columns.

Parameters other : DataFrame or list of Series/dict-like objects
ignore_index : boolean, default False
If True do not use the index labels. Useful for gluing together record arrays
verify_integrity : boolean, default False
If True, raise Exception on creating index with duplicates

Returns appended : DataFrame
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Notes

If a list of dict is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the
resulting DataFrame will be unchanged

pandas.DataFrame.join

DataFrame. join (other, on=None, how="left’, Isuffix="", rsuffix="", sort=False)
Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame
objects by index at once by passing a list.

Parameters other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name
attribute must be set, and that will be used as the column name in the resulting joined
DataFrame

on : column name, tuple/list of column names, or array-like

Column(s) to use for joining, otherwise join on index. If multiples columns given, the
passed DataFrame must have a Multilndex. Can pass an array as the join key if not
already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’ }

How to handle indexes of the two objects. Default: ‘left’ for joining on index, None
otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form
union of indexes * inner: use intersection of indexes

Isuffix : string

Suffix to use from left frame’s overlapping columns
rsuffix : string

Suffix to use from right frame’s overlapping columns
sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index
order of the calling (left) DataFrame

Returns joined : DataFrame

Notes

on, Isuffix, and rsuffix options are not supported when passing a list of DataFrame objects

pandas.DataFrame.merge

DataFrame .merge (right, how='inner’, on=None, left_on=None, right_on=None, left_index=False,
right_index=False, sort=True, suffixes=(‘_x’, ‘_y’), copy=True)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes
or indexes on a column or columns, the index will be passed on.

Parameters right : DataFrame

how : {‘left’, ‘right’, ‘outer’, ‘inner’ }, default ‘inner’
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* left: use only keys from left frame (SQL: left outer join)

* right: use only keys from right frame (SQL: right outer join)

* outer: use union of keys from both frames (SQL: full outer join)

* inner: use intersection of keys from both frames (SQL: inner join)
on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not
merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length
of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like
Field names to join on in right DataFrame or vector/list of vectors per left_on docs
left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a Multilndex, the
number of keys in the other DataFrame (either the index or a number of columns) must
match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index
sort : boolean, default True

Sort the join keys lexicographically in the result DataFrame
suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively
copy : boolean, default True

If False, do not copy data unnecessarily

Returns merged : DataFrame

Examples
>>> A >>> B
lkey value rkey value
0 foo 1 0 foo 5
1 bar 2 1 bar 6
2 baz 3 2 qux 7
3 foo 4 3 bar 8

>>> merge (A, B, left_on=’'lkey’, right_on=’rkey’, how='outer’)
lkey wvalue_x rkey value_y

0 Dbar 2 bar 6
1 bar 2 bar 8
2 Dbaz 3 NaN NaN
3 foo 1 foo 5
4 foo 4 foo 5
5 NaN NaN qux 7
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pandas.DataFrame.replace
DataFrame.replace (to_replace, value=None, method="pad’, axis=0, inplace=False, limit=None)
Replace values given in ‘to_replace’ with ‘value’ or using ‘method’
Parameters value : scalar or dict, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to
use for each column (columns not in the dict will not be filled)

method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default ‘pad’

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

axis : {0, 1}, default O
0: fill column-by-column 1: fill row-by-row
inplace : boolean, default False

If True, fill the DataFrame in place. Note: this will modify any other views on this
DataFrame, like if you took a no-copy slice of an existing DataFrame, for example
a column in a DataFrame. Returns a reference to the filled object, which is self if
inplace=True

limit : int, default None
Maximum size gap to forward or backward fill
Returns filled : DataFrame
See Also:

reindex, asfreq

pandas.DataFrame.update
DataFrame .update (other, join="left’, overwrite=True, filter_func=None, raise_conflict=False)
Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices
Parameters other : DataFrame, or object coercible into a DataFrame
join : {‘left’, ‘right’, ‘outer’, ‘inner’ }, default ‘left’
overwrite : boolean, default True
If True then overwrite values for common keys in the calling frame
filter_func : callable(1d-array) -> 1d-array<boolean>, default None

Can choose to replace values other than NA. Return True for values that should be
updated

raise_conflict : bool

If True, will raise an error if the DataFrame and other both contain data in the same
place.

21.3.11 Time series-related
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DataFrame.asfreqg(freq[, method, how]) Convert all TimeSeries inside to specified frequency using DateOffset
DataFrame.shift([periods, freq]) Shift the index of the DataFrame by desired number of periods with an
DataFrame.first_valid_index() Return label for first non-NA/null value
DataFrame.last_valid_index() Return label for last non-NA/null value

DataFrame.resample(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of regular 1
DataFrame.to_period([freq, axis, copy]) Convert DataFrame from Datetimelndex to PeriodIndex with desired
DataFrame.to_timestamp([freq, how, axis, copy]) Cast to Datetimelndex of timestamps, at beginning of period
DataFrame.tz_convert(tz[, axis, copy]) Convert TimeSeries to target time zone. If it is time zone naive, it
DataFrame.tz_localize(tz[, axis, copy]) Localize tz-naive TimeSeries to target time zone

pandas.DataFrame.asfreq

DataFrame.asfreq (freq, method=None, how=None)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method
to pad/backfill missing values.

Parameters freq : DateOffset object, or string
method : { ‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid obser-
vation forward to next valid backfill / bfill: use NEXT valid observation to fill methdo

how : {‘start’, ‘end’}, default end
For PeriodIndex only, see PeriodIndex.asfreq

Returns converted : type of caller

pandas.DataFrame.shift
DataFrame.shift (periods=1, freq=None, **kwds)
Shift the index of the DataFrame by desired number of periods with an optional time freq
Parameters periods : int
Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or time rule string, optional
Increment to use from datetools module or time rule (e.g. ‘EOM’)

Returns shifted : DataFrame

Notes

If freq is specified then the index values are shifted but the data if not realigned

pandas.DataFrame.first_valid_index

DataFrame.first_wvalid index ()
Return label for first non-NA/null value
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pandas.DataFrame.last_valid_index

DataFrame.last_valid_index ()
Return label for last non-NA/null value

pandas.DataFrame.resample

DataFrame.resample (rule, how=None, axis=0, fill_method=None, closed="right’, label="right’, conven-
tion=None, kind=None, loffset=None, limit=None, base=0)
Convenience method for frequency conversion and resampling of regular time-series data.

Parameters rule : the offset string or object representing target conversion
how : string, method for down- or re-sampling, default to ‘mean’ for
downsampling
fill_method : string, fill_method for upsampling, default None
axis : int, optional, default O
closed : {‘right’, ‘left’}, default ‘right’
Which side of bin interval is closed
label : {‘right’, ‘left’}, default ‘right’
Which bin edge label to label bucket with
convention : {‘start’, ‘end’, ‘s’, ‘e’}
loffset : timedelta
Adjust the resampled time labels
base : int, default O

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals.
For example, for ‘Smin’ frequency, base could range from 0 through 4. Defaults to 0

pandas.DataFrame.to_period

DataFrame.to_period (freqg=None, axis=0, copy=True)
Convert DataFrame from Datetimelndex to PeriodIndex with desired frequency (inferred from index if not
passed)

Parameters freq : string, default
axis : {0, 1}, default 0
The axis to convert (the index by default)
copy : boolean, default True
If False then underlying input data is not copied

Returns ts: TimeSeries with PeriodIndex
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pandas.DataFrame.to_timestamp
DataFrame.to_timestamp (freg=None, how="start’, axis=0, copy=True)
Cast to Datetimelndex of timestamps, at beginning of period
Parameters freq : string, default frequency of PeriodIndex
Desired frequency
how : {‘s’, ‘e’, ‘start’, ‘end’ }
Convention for converting period to timestamp; start of period vs. end
axis : {0, 1} default 0
The axis to convert (the index by default)
copy : boolean, default True
If false then underlying input data is not copied

Returns df : DataFrame with Datetimelndex

pandas.DataFrame.tz_convert
DataFrame.tz_convert (tz, axis=0, copy=True)
Convert TimeSeries to target time zone. If it is time zone naive, it will be localized to the passed time zone.
Parameters tz : string or pytz.timezone object
copy : boolean, default True

Also make a copy of the underlying data

pandas.DataFrame.tz_localize
DataFrame.tz_localize (tz, axis=0, copy=True)
Localize tz-naive TimeSeries to target time zone
Parameters tz: string or pytz.timezone object
copy : boolean, default True

Also make a copy of the underlying data

21.3.12 Plotting

DataFrame.boxplot([column, by, ax, ...]) Make a box plot from DataFrame column/columns optionally grouped

DataFrame.hist(data[, grid, xlabelsize, ...]) Draw Histogram the DataFrame’s series using matplotlib / pylab.

DataFrame.plot([frame, X, y, subplots, ...]) Make line or bar plot of DataFrame’s series with the index on the x-axis

pandas.DataFrame.boxplot
DataFrame.boxplot (column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, **kwds)
Make a box plot from DataFrame column/columns optionally grouped (stratified) by one or more columns
Parameters data : DataFrame

column : column names or list of names, or vector
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Can be any valid input to groupby
by : string or sequence

Column in the DataFrame to group by
fontsize : int or string

Returns ax : matplotlib.axes.AxesSubplot

pandas.DataFrame.hist

DataFrame.hist (data, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None,

sharex=False, sharey=False, **kwds)
Draw Histogram the DataFrame’s series using matplotlib / pylab.

Parameters grid : boolean, default True
Whether to show axis grid lines
xlabelsize : int, default None
If specified changes the x-axis label size
xrot : float, default None
rotation of x axis labels
ylabelsize : int, default None
If specified changes the y-axis label size
yrot : float, default None
rotation of y axis labels
ax : matplotlib axes object, default None
sharex : bool, if True, the X axis will be shared amongst all subplots.
sharey : bool, if True, the Y axis will be shared amongst all subplots.
kwds : other plotting keyword arguments

To be passed to hist function

pandas.DataFrame.plot

DataFrame.plot (frame=None, x=None, y=None, subplots=False, sharex=True, sharey=False,
use_index=True, figsize=None, grid=False, legend=True, rot=None, ax=None,
style=None, title=None, xlim=None, ylim=None, logy=False, xticks=None, yt-
icks=None, kind="'line’, sort_columns=False, fontsize=None, secondary_y=False,

*¥kwds)
Make line or bar plot of DataFrame’s series with the index on the x-axis using matplotlib / pylab.

Parameters x : label or position, default None
y : label or position, default None
Allows plotting of one column versus another
subplots : boolean, default False

Make separate subplots for each time series
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sharex : boolean, default True

In case subplots=True, share x axis
sharey : boolean, default False

In case subplots=True, share y axis
use_index : boolean, default True

Use index as ticks for x axis

stacked : boolean, default False

If True, create stacked bar plot. Only valid for DataFrame input

sort_columns: boolean, default False :
Sort column names to determine plot ordering
title : string
Title to use for the plot
grid : boolean, default True
Axis grid lines
legend : boolean, default True
Place legend on axis subplots
ax : matplotlib axis object, default None
style : list or dict
matplotlib line style per column
kind : {‘line’, ‘bar’, ‘barh’}
bar : vertical bar plot barh : horizontal bar plot
logy : boolean, default False
For line plots, use log scaling on y axis
xticks : sequence
Values to use for the xticks
yticks : sequence
Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
rot : int, default None
Rotation for ticks

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If dict then can select which columns to plot

on secondary y-axis
kwds : keywords

Options to pass to matplotlib plotting method
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Returns ax_or_axes : matplotlib. AxesSubplot or list of them

21.3.13 Serialization / 10 / Conversion

DataFrame. from_csv(path[, header, sep, ...]) Read delimited file into DataFrame

DataFrame. from_dict(data[, orient, dtype]) Construct DataFrame from dict of array-like or dicts

DataFrame. from_items(items[, columns, orient])  Convert (key, value) pairs to DataFrame. The keys will be the axis
DataFrame.from_records(data[, index, ...]) Convert structured or record ndarray to DataFrame

DataFrame . info([verbose, buf]) Concise summary of a DataFrame, used in __repr__ when very large.

DataFrame.load(path)

DataFrame.save(path)

DataFrame.to_csv(path_or_buff, sep, na_rep, ...]) = Write DataFrame to a comma-separated values (csv) file

DataFrame.to_dict([outtype]) Convert DataFrame to dictionary.
DataFrame.to_excel(excel_writer|, ...]) Write DataFrame to a excel sheet
DataFrame.to_html([buf, columns, col_space, ...]) to_html-specific options
DataFrame.to_records([index]) Convert DataFrame to record array. Index will be put in the
DataFrame.to_sparse([fill_value, kind]) Convert to SparseDataFrame
DataFrame.to_string([buf, columns, ...]) Render a DataFrame to a console-friendly tabular output.

pandas.DataFrame.from_csv

classmethod DataFrame . from_csv (path, header=0, sep=’, *, index_col=0, parse_dates=True, encod-
ing=None)
Read delimited file into DataFrame

Parameters path : string file path or file handle / StringlO
header : int, default O
Row to use at header (skip prior rows)
sep : string, default *;
Field delimiter
index_col : int or sequence, default O

Column to use for index. If a sequence is given, a Multilndex is used. Different default
from read_table

parse_dates : boolean, default True
Parse dates. Different default from read_table

Returns y : DataFrame

Notes

Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from
file, especially with a DataFrame of time series data

pandas.DataFrame.from_dict

classmethod DataFrame . from_dict (data, orient="columns’, dtype=None)
Construct DataFrame from dict of array-like or dicts
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Parameters data : dict
{field : array-like} or {field : dict}
orient : {‘columns’, ‘index’}, default ‘columns’

The “orientation” of the data. If the keys of the passed dict should be the columns of the
resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows,
pass ‘index’.

Returns DataFrame :

pandas.DataFrame.from_items

classmethod DataFrame. from_items (items, columns=None, orient="columns’)
Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on
the specified orientation). The values should be arrays or Series

Parameters items : sequence of (key, value) pairs
Values should be arrays or Series
columns : sequence, optional
Must be passed in the
orient : {‘columns’, ‘index’}, default ‘items’

The “orientation” of the data. If the keys of the passed dict should be the items of
the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the
passed DataFrame objects should be the items (which in the case of mixed-dtype data
you should do), instead pass ‘minor’

Returns frame : DataFrame

pandas.DataFrame.from_records

classmethod DataFrame. from records (data, index=None, exclude=None, columns=None,

names=None, coerce_float=False)
Convert structured or record ndarray to DataFrame

Parameters data : ndarray (structured dtype), list of tuples, or DataFrame
index : string, list of fields, array-like
Field of array to use as the index, alternately a specific set of input labels to use
exclude: sequence, default None :
Columns or fields to exclude
columns : sequence, default None
Column names to use, replacing any found in passed data
coerce_float : boolean, default False

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to
floating point, useful for SQL result sets

Returns df : DataFrame
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pandas.DataFrame.info

DataFrame.info (verbose=True, buf=None)
Concise summary of a DataFrame, used in __repr__ when very large.

Parameters verbose : boolean, default True
If False, don’t print column count summary
buf : writable buffer, defaults to sys.stdout

pandas.DataFrame.load

classmethod DataFrame . load (path)

pandas.DataFrame.save

DataFrame.save (path)

pandas.DataFrame.to_csv

DataFrame.to_csv (path_or_buf, sep=", ‘, na_rep="", float_format=None, cols=None, header=True,
index=True, index_label=None, mode="w’, nanRep=None, encoding=None, quot-
ing=None)

Write DataFrame to a comma-separated values (csv) file
Parameters path_or_buf : string or file handle / StringlO

File path

na_rep : string, default
Missing data representation

float_format : string, default None
Format string for floating point numbers

cols : sequence, optional
Columns to write

header : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for the
column names

index : boolean, default True
Write row names (index)
index_label : string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and index
are True, then the index names are used. A sequence should be given if the DataFrame
uses Multilndex. If False do not print fields for index names. Use index_label=False
for easier importing in R

mode : Python write mode, default ‘w’

93 93

sep : character, default ”,
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Field delimiter for the output file.
encoding : string, optional

a string representing the encoding to use if the contents are non-ascii, for python ver-
sions prior to 3

pandas.DataFrame.to_dict
DataFrame.to_dict (outtype='dict’)
Convert DataFrame to dictionary.
Parameters outtype : str { ‘dict’, ‘list’, ‘series’ }

Determines the type of the values of the dictionary. The default dict is a nested dictio-
nary {column -> {index -> value}}. list returns {column -> list(values)}. series returns
{column -> Series(values)}. Abbreviations are allowed.

Returns result : dict like {column -> {index -> value}}

pandas.DataFrame.to_excel

DataFrame.to_excel (excel_writer, sheet_name="’sheetl’, na_rep="", float_format=None, cols=None,

header=True, index=True, index_label=None)
Write DataFrame to a excel sheet

Parameters excel_writer : string or ExcelWriter object
File path or existing ExcelWriter
sheet_name : string, default ‘sheet1’
Name of sheet which will contain DataFrame
na_rep : string, default
Missing data representation
float_format : string, default None
Format string for floating point numbers
cols : sequence, optional
Columns to write
header : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for the
column names

index : boolean, default True
Write row names (index)
index_label : string or sequence, default None

Column label for index column(s) if desired. If None is given, and header and index are
True, then the index names are used. A sequence should be given if the DataFrame uses
Multilndex.
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Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This
can be used to save different DataFrames to one workbook >>> writer = ExcelWriter(‘output.xlsx’) >>>
df1.to_excel(writer, sheetl’) >>> df2.to_excel(writer, sheet2’) >>> writer.save()

pandas.DataFrame.to_html

DataFrame.to_html (buf=None, columns=None, col_space=None, colSpace=None, header=True,
index=True, na_rep="NaN’, formatters=None, float_format=None, sparsify=None,
index_names=True,  justify=None,  force_unicode=False,  bold_rows=True,

classes=None)
to_html-specific options bold_rows : boolean, default True

Make the row labels bold in the output
Render a DataFrame to an html table.
Parameters frame : DataFrame
object to render
buf : StringlO-like, optional
buffer to write to
columns : sequence, optional
the subset of columns to write; default None writes all columns
col_space : int, optional
the width of each columns
header : bool, optional
whether to print column labels, default True
index : bool, optional
whether to print index (row) labels, default True
na_rep : string, optional
string representation of NAN to use, default ‘NaN’
formatters : list or dict of one-parameter functions, optional
formatter functions to apply to columns’ elements by position or name, default None
float_format : one-parameter function, optional
formatter function to apply to columns’ elements if they are floats default None
sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at
each row, default True

justify : {‘left’, ‘right’}, default None

Left or right-justify the column labels. If None uses the option from the print configu-
ration (controlled by set_printoptions), ‘right’ out of the box.

index_names : bool, optional

21.3. DataFrame 371



pandas: powerful Python data analysis toolkit, Release 0.9.0

Prints the names of the indexes, default True
force_unicode : bool, default False
Always return a unicode result

Returns formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_records
DataFrame.to_records (index=True)
Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested
Parameters index : boolean, default True
Include index in resulting record array, stored in ‘index’ field

Returns y : recarray

pandas.DataFrame.to_sparse
DataFrame.to_sparse (fill_value=None, kind="block’)
Convert to SparseDataFrame
Parameters fill _value : float, default NaN
kind : {‘block’, ‘integer’}

Returns y : SparseDataFrame

pandas.DataFrame.to_string

DataFrame.to_string (buf=None, columns=None, col_space=None, colSpace=None, header=True,
index=True, na_rep="NaN’, formatters=None, float_format=None,
sparsify=None, nanRep=None, index_names=True, Jjustify=None,

force_unicode=False)
Render a DataFrame to a console-friendly tabular output.

Parameters frame : DataFrame
object to render
buf : StringlO-like, optional
buffer to write to
columns : sequence, optional
the subset of columns to write; default None writes all columns
col_space : int, optional
the width of each columns
header : bool, optional
whether to print column labels, default True
index : bool, optional
whether to print index (row) labels, default True

na_rep : string, optional

372 Chapter 21. API Reference



pandas: powerful Python data analysis toolkit, Release 0.9.0

string representation of NAN to use, default ‘NaN’
formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None
float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats default None
sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at
each row, default True

justify : {‘left’, ‘right’}, default None

Left or right-justify the column labels. If None uses the option from the print configu-
ration (controlled by set_printoptions), ‘right’” out of the box.

index_names : bool, optional
Prints the names of the indexes, default True
force_unicode : bool, default False

Always return a unicode result

Returns formatted : string (or unicode, depending on data and options)

21.4 Panel

21.4.1 Computations / Descriptive Stats

21.4. Panel
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