Series.
dropna
Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
There is only one axis to drop values from.
If True, do operation inplace and return None.
Not in use. Kept for compatibility.
Series with NA entries dropped from it.
See also
Series.isna
Indicate missing values.
Series.notna
Indicate existing (non-missing) values.
Series.fillna
Replace missing values.
DataFrame.dropna
Drop rows or columns which contain NA values.
Index.dropna
Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values. None is considered an NA value.
None
>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object