This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
Officially support Python 3.4
SQL interfaces updated to use sqlalchemy, See Here.
sqlalchemy
Display interface changes, See Here
MultiIndexing Using Slicers, See Here.
Ability to join a singly-indexed DataFrame with a MultiIndexed DataFrame, see Here
More consistency in groupby results and more flexible groupby specifications, See Here
Holiday calendars are now supported in CustomBusinessDay, see Here
CustomBusinessDay
Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.
Performance doc section on I/O operations, See Here
Other Enhancements
API Changes
Text Parsing API Changes
Groupby API Changes
Performance Improvements
Prior Deprecations
Deprecations
Known Issues
Bug Fixes
Warning
In 0.14.0 all NDFrame based containers have undergone significant internal refactoring. Before that each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the parent container’s labels. This should not have any visible user/API behavior changes (GH6745)
NDFrame
read_excel uses 0 as the default sheet (GH6573)
read_excel
iloc will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raise IndexError (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)
iloc
IndexError
In [1]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB')) In [2]: dfl Out[2]: A B 0 0.469112 -0.282863 1 -1.509059 -1.135632 2 1.212112 -0.173215 3 0.119209 -1.044236 4 -0.861849 -2.104569 [5 rows x 2 columns] In [3]: dfl.iloc[:, 2:3] Out[3]: Empty DataFrame Columns: [] Index: [0, 1, 2, 3, 4] [5 rows x 0 columns] In [4]: dfl.iloc[:, 1:3] Out[4]: B 0 -0.282863 1 -1.135632 2 -0.173215 3 -1.044236 4 -2.104569 [5 rows x 1 columns] In [5]: dfl.iloc[4:6] Out[5]: A B 4 -0.861849 -2.104569 [1 rows x 2 columns]
These are out-of-bounds selections
>>> dfl.iloc[[4, 5, 6]] IndexError: positional indexers are out-of-bounds >>> dfl.iloc[:, 4] IndexError: single positional indexer is out-of-bounds
Slicing with negative start, stop & step values handles corner cases better (GH6531):
df.iloc[:-len(df)] is now empty
df.iloc[:-len(df)]
df.iloc[len(df)::-1] now enumerates all elements in reverse
df.iloc[len(df)::-1]
The DataFrame.interpolate() keyword downcast default has been changed from infer to None. This is to preserve the original dtype unless explicitly requested otherwise (GH6290).
DataFrame.interpolate()
downcast
infer
None
When converting a dataframe to HTML it used to return Empty DataFrame. This special case has been removed, instead a header with the column names is returned (GH6062).
Series and Index now internally share more common operations, e.g. factorize(),nunique(),value_counts() are now supported on Index types as well. The Series.weekday property from is removed from Series for API consistency. Using a DatetimeIndex/PeriodIndex method on a Series will now raise a TypeError. (GH4551, GH4056, GH5519, GH6380, GH7206).
Series
Index
factorize(),nunique(),value_counts()
Series.weekday
DatetimeIndex/PeriodIndex
TypeError
Add is_month_start, is_month_end, is_quarter_start, is_quarter_end, is_year_start, is_year_end accessors for DateTimeIndex / Timestamp which return a boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of the DateTimeIndex / Timestamp (GH4565, GH6998)
is_month_start
is_month_end
is_quarter_start
is_quarter_end
is_year_start
is_year_end
DateTimeIndex
Timestamp
Local variable usage has changed in pandas.eval()/DataFrame.eval()/DataFrame.query() (GH5987). For the DataFrame methods, two things have changed
pandas.eval()
DataFrame.eval()
DataFrame.query()
DataFrame
Column names are now given precedence over locals
Local variables must be referred to explicitly. This means that even if you have a local variable that is not a column you must still refer to it with the '@' prefix.
'@'
You can have an expression like df.query('@a < a') with no complaints from pandas about ambiguity of the name a.
df.query('@a < a')
pandas
a
The top-level pandas.eval() function does not allow you use the '@' prefix and provides you with an error message telling you so.
NameResolutionError was removed because it isn’t necessary anymore.
NameResolutionError
Define and document the order of column vs index names in query/eval (GH6676)
concat will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docs
concat
Slicing and advanced/boolean indexing operations on Index classes as well as Index.delete() and Index.drop() methods will no longer change the type of the resulting index (GH6440, GH7040)
Index.delete()
Index.drop()
In [6]: i = pd.Index([1, 2, 3, 'a', 'b', 'c']) In [7]: i[[0, 1, 2]] Out[7]: Index([1, 2, 3], dtype='object') In [8]: i.drop(['a', 'b', 'c']) Out[8]: Index([1, 2, 3], dtype='object')
Previously, the above operation would return Int64Index. If you’d like to do this manually, use Index.astype()
Int64Index
Index.astype()
In [9]: i[[0, 1, 2]].astype(np.int_) Out[9]: Int64Index([1, 2, 3], dtype='int64')
set_index no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):
set_index
# Old behavior, casted MultiIndex to an Index In [10]: tuple_ind Out[10]: Index([('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')], dtype='object') In [11]: df_multi.set_index(tuple_ind) Out[11]: 0 1 (a, c) 0.471435 -1.190976 (a, d) 1.432707 -0.312652 (b, c) -0.720589 0.887163 (b, d) 0.859588 -0.636524 [4 rows x 2 columns] # New behavior In [12]: mi Out[12]: MultiIndex([('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd')], ) In [13]: df_multi.set_index(mi) Out[13]: 0 1 a c 0.471435 -1.190976 d 1.432707 -0.312652 b c -0.720589 0.887163 d 0.859588 -0.636524 [4 rows x 2 columns]
This also applies when passing multiple indices to set_index:
# Old output, 2-level MultiIndex of tuples In [14]: df_multi.set_index([df_multi.index, df_multi.index]) Out[14]: 0 1 (a, c) (a, c) 0.471435 -1.190976 (a, d) (a, d) 1.432707 -0.312652 (b, c) (b, c) -0.720589 0.887163 (b, d) (b, d) 0.859588 -0.636524 [4 rows x 2 columns] # New output, 4-level MultiIndex In [15]: df_multi.set_index([df_multi.index, df_multi.index]) Out[15]: 0 1 a c a c 0.471435 -1.190976 d a d 1.432707 -0.312652 b c b c -0.720589 0.887163 d b d 0.859588 -0.636524 [4 rows x 2 columns]
pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr, ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.
pairwise
rolling_cov
rolling_corr
ewmcov
ewmcorr
expanding_cov
expanding_corr
In [1]: df = pd.DataFrame(np.random.randn(10, 4), columns=list('ABCD')) In [4]: covs = pd.rolling_cov(df[['A', 'B', 'C']], ....: df[['B', 'C', 'D']], ....: 5, ....: pairwise=True) In [5]: covs[df.index[-1]] Out[5]: B C D A 0.035310 0.326593 -0.505430 B 0.137748 -0.006888 -0.005383 C -0.006888 0.861040 0.020762
Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior prior to 0.14. (GH6760)
Series.iteritems()
Added nunique and value_counts functions to Index for counting unique elements. (GH6734)
nunique
value_counts
stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the Index (previously raised a KeyError). (GH6738)
stack
unstack
ValueError
level
KeyError
drop unused order argument from Series.sort; args now are in the same order as Series.order; add na_position arg to conform to Series.order (GH6847)
Series.sort
Series.order
na_position
default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and numpy defaults)
quicksort
add inplace keyword to Series.order/sort to make them inverses (GH6859)
inplace
Series.order/sort
DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position parameter. (GH3917)
DataFrame.sort
accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1
TextFileReader
Added factorize functions to Index and Series to get indexer and unique values (GH7090)
factorize
describe on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088). Previously the index was unintentionally sorted.
describe
Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)
bool
+
-
*
>>> x = pd.Series(np.random.rand(10) > 0.5) >>> y = True >>> x + y # warning generated: should do x | y instead UserWarning: evaluating in Python space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead >>> x / y # this raises because it doesn't make sense NotImplementedError: operator '/' not implemented for bool dtypes
In HDFStore, select_as_multiple will always raise a KeyError, when a key or the selector is not found (GH6177)
HDFStore
select_as_multiple
df['col'] = value and df.loc[:,'col'] = value are now completely equivalent; previously the .loc would not necessarily coerce the dtype of the resultant series (GH6149)
df['col'] = value
df.loc[:,'col'] = value
.loc
dtypes and ftypes now return a series with dtype=object on empty containers (GH5740)
dtypes
ftypes
dtype=object
df.to_csv will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)
df.to_csv
pd.infer_freq() will now raise a TypeError if given an invalid Series/Index type (GH6407, GH6463)
pd.infer_freq()
Series/Index
A tuple passed to DataFame.sort_index will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)
DataFame.sort_index
all offset operations now return Timestamp types (rather than datetime), Business/Week frequencies were incorrect (GH4069)
to_excel now converts np.inf into a string representation, customizable by the inf_rep keyword argument (Excel has no native inf representation) (GH6782)
to_excel
np.inf
inf_rep
Replace pandas.compat.scipy.scoreatpercentile with numpy.percentile (GH6810)
pandas.compat.scipy.scoreatpercentile
numpy.percentile
.quantile on a datetime[ns] series now returns Timestamp instead of np.datetime64 objects (GH6810)
.quantile
datetime[ns]
np.datetime64
change AssertionError to TypeError for invalid types passed to concat (GH6583)
AssertionError
Raise a TypeError when DataFrame is passed an iterator as the data argument (GH5357)
data
The default way of printing large DataFrames has changed. DataFrames exceeding max_rows and/or max_columns are now displayed in a centrally truncated view, consistent with the printing of a pandas.Series (GH5603).
max_rows
max_columns
pandas.Series
In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (…) signaled that part of the data was cut off.
In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.
allow option 'truncate' for display.show_dimensions to only show the dimensions if the frame is truncated (GH6547).
'truncate'
display.show_dimensions
The default for display.show_dimensions will now be truncate. This is consistent with how Series display length.
truncate
In [16]: dfd = pd.DataFrame(np.arange(25).reshape(-1, 5), ....: index=[0, 1, 2, 3, 4], ....: columns=[0, 1, 2, 3, 4]) ....: # show dimensions since this is truncated In [17]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2, ....: 'display.show_dimensions', 'truncate'): ....: print(dfd) ....: 0 ... 4 0 0 ... 4 .. .. ... .. 4 20 ... 24 [5 rows x 5 columns] # will not show dimensions since it is not truncated In [18]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40, ....: 'display.show_dimensions', 'truncate'): ....: print(dfd) ....: 0 1 2 3 4 0 0 1 2 3 4 1 5 6 7 8 9 2 10 11 12 13 14 3 15 16 17 18 19 4 20 21 22 23 24
Regression in the display of a MultiIndexed Series with display.max_rows is less than the length of the series (GH7101)
display.max_rows
Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to ‘info’ (GH7105)
The verbose keyword in DataFrame.info(), which controls whether to shorten the info representation, is now None by default. This will follow the global setting in display.max_info_columns. The global setting can be overridden with verbose=True or verbose=False.
DataFrame.info()
info
display.max_info_columns
verbose=True
verbose=False
Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
Offset/freq info now in Timestamp __repr__ (GH4553)
read_csv()/read_table() will now be noisier w.r.t invalid options rather than falling back to the PythonParser.
read_csv()
read_table()
PythonParser
Raise ValueError when sep specified with delim_whitespace=True in read_csv()/read_table() (GH6607)
sep
delim_whitespace=True
Raise ValueError when engine='c' specified with unsupported options in read_csv()/read_table() (GH6607)
engine='c'
Raise ValueError when fallback to python parser causes options to be ignored (GH6607)
Produce ParserWarning on fallback to python parser when no options are ignored (GH6607)
ParserWarning
Translate sep='\s+' to delim_whitespace=True in read_csv()/read_table() if no other C-unsupported options specified (GH6607)
sep='\s+'
More consistent behavior for some groupby methods:
groupby head and tail now act more like filter rather than an aggregation:
head
tail
filter
In [19]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) In [20]: g = df.groupby('A') In [21]: g.head(1) # filters DataFrame Out[21]: A B 0 1 2 2 5 6 [2 rows x 2 columns] In [22]: g.apply(lambda x: x.head(1)) # used to simply fall-through Out[22]: A B A 1 0 1 2 5 2 5 6 [2 rows x 2 columns]
groupby head and tail respect column selection:
In [23]: g[['B']].head(1) Out[23]: B 0 2 2 6 [2 rows x 1 columns]
groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an optional dropna argument to ignore NaN. See the docs.
nth
as_index=False
dropna
Reducing
In [24]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) In [25]: g = df.groupby('A') In [26]: g.nth(0) Out[26]: B A 1 NaN 5 6.0 [2 rows x 1 columns] # this is equivalent to g.first() In [27]: g.nth(0, dropna='any') Out[27]: B A 1 4.0 5 6.0 [2 rows x 1 columns] # this is equivalent to g.last() In [28]: g.nth(-1, dropna='any') Out[28]: B A 1 4.0 5 6.0 [2 rows x 1 columns]
Filtering
In [29]: gf = df.groupby('A', as_index=False) In [30]: gf.nth(0) Out[30]: A B 0 1 NaN 2 5 6.0 [2 rows x 2 columns] In [31]: gf.nth(0, dropna='any') Out[31]: A B A 1 1 4.0 5 5 6.0 [2 rows x 2 columns]
groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index
In [32]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B']) In [33]: g = df.groupby('A') In [34]: g.count() Out[34]: B A 1 1 5 2 [2 rows x 1 columns] In [35]: g.describe() Out[35]: B count mean std min 25% 50% 75% max A 1 1.0 4.0 NaN 4.0 4.0 4.0 4.0 4.0 5 2.0 7.0 1.414214 6.0 6.5 7.0 7.5 8.0 [2 rows x 8 columns]
passing as_index will leave the grouped column in-place (this is not change in 0.14.0)
as_index
In [36]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B']) In [37]: g = df.groupby('A', as_index=False) In [38]: g.count() Out[38]: A B 0 1 1 1 5 2 [2 rows x 2 columns] In [39]: g.describe() Out[39]: A B count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max 0 2.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 NaN 4.0 4.0 4.0 4.0 4.0 1 2.0 5.0 0.0 5.0 5.0 5.0 5.0 5.0 2.0 7.0 1.414214 6.0 6.5 7.0 7.5 8.0 [2 rows x 16 columns]
Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string field simultaneously. See the docs. (GH3794)
pd.Grouper
Better propagation/preservation of Series names when performing groupby operations:
SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the result (GH6265).
SeriesGroupBy.agg
If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates DataFrame.stack operations where the name of the column index is used as the name of the inserted column containing the pivoted data.
GroupBy.apply
DataFrame.stack
The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).
The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The 'mysql' flavor is deprecated.
'mysql'
The new functions read_sql_query() and read_sql_table() are introduced. The function read_sql() is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query).
read_sql_query()
read_sql_table()
read_sql()
In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database:
engine
create_engine()
In [40]: from sqlalchemy import create_engine # Create your connection. In [41]: engine = create_engine('sqlite:///:memory:')
This engine can then be used to write or read data to/from this database:
In [42]: df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']}) In [43]: df.to_sql('db_table', engine, index=False)
You can read data from a database by specifying the table name:
In [44]: pd.read_sql_table('db_table', engine) Out[44]: A B 0 1 a 1 2 b 2 3 c [3 rows x 2 columns]
or by specifying a sql query:
In [45]: pd.read_sql_query('SELECT * FROM db_table', engine) Out[45]: A B 0 1 a 1 2 b 2 3 c [3 rows x 2 columns]
Some other enhancements to the sql functions include:
support for writing the index. This can be controlled with the index keyword (default is True).
index
specify the column label to use when writing the index with index_label.
index_label
specify string columns to parse as datetimes with the parse_dates keyword in read_sql_query() and read_sql_table().
parse_dates
Some of the existing functions or function aliases have been deprecated and will be removed in future versions. This includes: tquery, uquery, read_frame, frame_query, write_frame.
tquery
uquery
read_frame
frame_query
write_frame
The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).
In 0.14.0 we added a new way to slice MultiIndexed objects. You can slice a MultiIndex by providing multiple indexers.
You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.
You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None).
slice(None)
As usual, both sides of the slicers are included as this is label indexing.
See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)
You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MuliIndex for the rows. You should do this:
You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MuliIndex for the rows.
You should do this:
>>> df.loc[(slice('A1', 'A3'), ...), :] # noqa: E901 rather than this:
>>> df.loc[(slice('A1', 'A3'), ...)] # noqa: E901
You will need to make sure that the selection axes are fully lexsorted!
In [46]: def mklbl(prefix, n): ....: return ["%s%s" % (prefix, i) for i in range(n)] ....: In [47]: index = pd.MultiIndex.from_product([mklbl('A', 4), ....: mklbl('B', 2), ....: mklbl('C', 4), ....: mklbl('D', 2)]) ....: In [48]: columns = pd.MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), ....: ('b', 'foo'), ('b', 'bah')], ....: names=['lvl0', 'lvl1']) ....: In [49]: df = pd.DataFrame(np.arange(len(index) * len(columns)).reshape((len(index), ....: len(columns))), ....: index=index, ....: columns=columns).sort_index().sort_index(axis=1) ....: In [50]: df Out[50]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9 8 11 10 D1 13 12 15 14 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237 236 239 238 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249 248 251 250 D1 253 252 255 254 [64 rows x 4 columns]
Basic MultiIndex slicing using slices, lists, and labels.
In [51]: df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] Out[51]: lvl0 a b lvl1 bar foo bah foo A1 B0 C1 D0 73 72 75 74 D1 77 76 79 78 C3 D0 89 88 91 90 D1 93 92 95 94 B1 C1 D0 105 104 107 106 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [24 rows x 4 columns]
You can use a pd.IndexSlice to shortcut the creation of these slices
pd.IndexSlice
In [52]: idx = pd.IndexSlice In [53]: df.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']] Out[53]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns]
It is possible to perform quite complicated selections using this method on multiple axes at the same time.
In [54]: df.loc['A1', (slice(None), 'foo')] Out[54]: lvl0 a b lvl1 foo foo B0 C0 D0 64 66 D1 68 70 C1 D0 72 74 D1 76 78 C2 D0 80 82 ... ... ... B1 C1 D1 108 110 C2 D0 112 114 D1 116 118 C3 D0 120 122 D1 124 126 [16 rows x 2 columns] In [55]: df.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']] Out[55]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns]
Using a boolean indexer you can provide selection related to the values.
In [56]: mask = df[('a', 'foo')] > 200 In [57]: df.loc[idx[mask, :, ['C1', 'C3']], idx[:, 'foo']] Out[57]: lvl0 a b lvl1 foo foo A3 B0 C1 D1 204 206 C3 D0 216 218 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [7 rows x 2 columns]
You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.
axis
In [58]: df.loc(axis=0)[:, :, ['C1', 'C3']] Out[58]: lvl0 a b lvl1 bar foo bah foo A0 B0 C1 D0 9 8 11 10 D1 13 12 15 14 C3 D0 25 24 27 26 D1 29 28 31 30 B1 C1 D0 41 40 43 42 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [32 rows x 4 columns]
Furthermore you can set the values using these methods
In [59]: df2 = df.copy() In [60]: df2.loc(axis=0)[:, :, ['C1', 'C3']] = -10 In [61]: df2 Out[61]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 -10 -10 -10 -10 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 [64 rows x 4 columns]
You can use a right-hand-side of an alignable object as well.
In [62]: df2 = df.copy() In [63]: df2.loc[idx[:, :, ['C1', 'C3']], :] = df2 * 1000 In [64]: df2 Out[64]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9000 8000 11000 10000 D1 13000 12000 15000 14000 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237000 236000 239000 238000 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249000 248000 251000 250000 D1 253000 252000 255000 254000 [64 rows x 4 columns]
Hexagonal bin plots from DataFrame.plot with kind='hexbin' (GH5478), See the docs.
DataFrame.plot
kind='hexbin'
DataFrame.plot and Series.plot now supports area plot with specifying kind='area' (GH6656), See the docs
Series.plot
kind='area'
Pie plots from Series.plot and DataFrame.plot with kind='pie' (GH6976), See the docs.
kind='pie'
Plotting with Error Bars is now supported in the .plot method of DataFrame and Series objects (GH3796, GH6834), See the docs.
.plot
DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table, See the docs. The table keyword can receive the following values.
table
matplotlib.Table
False: Do nothing (default).
False
True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to meet matplotlib’s default layout.
True
plot
DataFrame or Series: Draw matplotlib.table using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper function pandas.tools.plotting.table is added to create a table from DataFrame and Series, and add it to an matplotlib.Axes.
pandas.tools.plotting.table
matplotlib.Axes
plot(legend='reverse') will now reverse the order of legend labels for most plot kinds. (GH6014)
plot(legend='reverse')
Line plot and area plot can be stacked by stacked=True (GH6656)
stacked=True
Following keywords are now acceptable for DataFrame.plot() with kind='bar' and kind='barh':
DataFrame.plot()
kind='bar'
kind='barh'
width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot be overwritten. (GH6604)
align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions, pandas passes align=’edge’ to matplotlib and adjust the location to center by itself, and it results align keyword is not applied as expected. (GH4525)
position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end). Default is 0.5 (center). (GH6604)
Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 …). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim, set_ylim, etc. In this cases, please modify your script to meet with new coordinates.
The parallel_coordinates() function now takes argument color instead of colors. A FutureWarning is raised to alert that the old colors argument will not be supported in a future release. (GH6956)
parallel_coordinates()
color
colors
FutureWarning
The parallel_coordinates() and andrews_curves() functions now take positional argument frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)
andrews_curves()
frame
DataFrame.boxplot() now supports layout keyword (GH6769)
DataFrame.boxplot()
layout
DataFrame.boxplot() has a new keyword argument, return_type. It accepts 'dict', 'axes', or 'both', in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.
'dict'
'axes'
'both'
There are prior version deprecations that are taking effect as of 0.14.0.
Remove DateRange in favor of DatetimeIndex (GH6816)
DateRange
DatetimeIndex
Remove column keyword from DataFrame.sort (GH4370)
column
Remove precision keyword from set_eng_float_format() (GH395)
precision
set_eng_float_format()
Remove force_unicode keyword from DataFrame.to_string(), DataFrame.to_latex(), and DataFrame.to_html(); these function encode in unicode by default (GH2224, GH2225)
force_unicode
DataFrame.to_string()
DataFrame.to_latex()
DataFrame.to_html()
Remove nanRep keyword from DataFrame.to_csv() and DataFrame.to_string() (GH275)
nanRep
DataFrame.to_csv()
Remove unique keyword from HDFStore.select_column() (GH3256)
unique
HDFStore.select_column()
Remove inferTimeRule keyword from Timestamp.offset() (GH391)
inferTimeRule
Timestamp.offset()
Remove name keyword from get_data_yahoo() and get_data_google() ( commit b921d1a )
name
get_data_yahoo()
get_data_google()
Remove offset keyword from DatetimeIndex constructor ( commit 3136390 )
offset
Remove time_rule from several rolling-moment statistical functions, such as rolling_sum() (GH1042)
time_rule
rolling_sum()
Removed neg - boolean operations on numpy arrays in favor of inv ~, as this is going to be deprecated in numpy 1.9 (GH6960)
~
The pivot_table()/DataFrame.pivot_table() and crosstab() functions now take arguments index and columns instead of rows and cols. A FutureWarning is raised to alert that the old rows and cols arguments will not be supported in a future release (GH5505)
pivot_table()
DataFrame.pivot_table()
crosstab()
columns
rows
cols
The DataFrame.drop_duplicates() and DataFrame.duplicated() methods now take argument subset instead of cols to better align with DataFrame.dropna(). A FutureWarning is raised to alert that the old cols arguments will not be supported in a future release (GH6680)
DataFrame.drop_duplicates()
DataFrame.duplicated()
subset
DataFrame.dropna()
The DataFrame.to_csv() and DataFrame.to_excel() functions now takes argument columns instead of cols. A FutureWarning is raised to alert that the old cols arguments will not be supported in a future release (GH6645)
DataFrame.to_excel()
Indexers will warn FutureWarning when used with a scalar indexer and a non-floating point Index (GH4892, GH6960)
# non-floating point indexes can only be indexed by integers / labels In [1]: pd.Series(1, np.arange(5))[3.0] pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point Out[1]: 1 In [2]: pd.Series(1, np.arange(5)).iloc[3.0] pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point Out[2]: 1 In [3]: pd.Series(1, np.arange(5)).iloc[3.0:4] pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers and not floating point Out[3]: 3 1 dtype: int64 # these are Float64Indexes, so integer or floating point is acceptable In [4]: pd.Series(1, np.arange(5.))[3] Out[4]: 1 In [5]: pd.Series(1, np.arange(5.))[3.0] Out[6]: 1
Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)
Panel.shift() now has a function signature that matches DataFrame.shift(). The old positional argument lags has been changed to a keyword argument periods with a default value of 1. A FutureWarning is raised if the old argument lags is used by name. (GH6910)
Panel.shift()
DataFrame.shift()
lags
periods
The order keyword argument of factorize() will be removed. (GH6926).
order
factorize()
Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A view will be returned if possible, otherwise a copy will be made. Previously the user could think that copy=False would ALWAYS return a view. (GH6894)
copy
DataFrame.xs()
Panel.major_xs()
Panel.minor_xs()
copy=False
The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query, write_frame.
io.sql
The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword instead, which takes a list of percentiles to display. The default output is unchanged.
describe()
The default return type of boxplot() will change from a dict to a matplotlib Axes in a future release. You can use the future behavior now by passing return_type='axes' to boxplot.
boxplot()
return_type='axes'
OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)
DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)
In [65]: pd.Series({('a', 'b'): 1, ('a', 'a'): 0, ....: ('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4}) ....: Out[65]: a b 1 a 0 c 2 b a 3 b 4 Length: 5, dtype: int64 In [66]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2}, ....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4}, ....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6}, ....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8}, ....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}}) ....: Out[66]: a b b a c a b A B 1.0 4.0 5.0 8.0 10.0 C 2.0 3.0 6.0 7.0 NaN D NaN NaN NaN NaN 9.0 [3 rows x 5 columns]
Added the sym_diff method to Index (GH5543)
sym_diff
DataFrame.to_latex now takes a longtable keyword, which if True will return a table in a longtable environment. (GH6617)
DataFrame.to_latex
Add option to turn off escaping in DataFrame.to_latex (GH6472)
pd.read_clipboard will, if the keyword sep is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)
pd.read_clipboard
Joining a singly-indexed DataFrame with a MultiIndexed DataFrame (GH3662)
See the docs. Joining MultiIndex DataFrames on both the left and right is not yet supported ATM.
In [67]: household = pd.DataFrame({'household_id': [1, 2, 3], ....: 'male': [0, 1, 0], ....: 'wealth': [196087.3, 316478.7, 294750] ....: }, ....: columns=['household_id', 'male', 'wealth'] ....: ).set_index('household_id') ....: In [68]: household Out[68]: male wealth household_id 1 0 196087.3 2 1 316478.7 3 0 294750.0 [3 rows x 2 columns] In [69]: portfolio = pd.DataFrame({'household_id': [1, 2, 2, 3, 3, 3, 4], ....: 'asset_id': ["nl0000301109", ....: "nl0000289783", ....: "gb00b03mlx29", ....: "gb00b03mlx29", ....: "lu0197800237", ....: "nl0000289965", ....: np.nan], ....: 'name': ["ABN Amro", ....: "Robeco", ....: "Royal Dutch Shell", ....: "Royal Dutch Shell", ....: "AAB Eastern Europe Equity Fund", ....: "Postbank BioTech Fonds", ....: np.nan], ....: 'share': [1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0] ....: }, ....: columns=['household_id', 'asset_id', 'name', 'share'] ....: ).set_index(['household_id', 'asset_id']) ....: In [70]: portfolio Out[70]: name share household_id asset_id 1 nl0000301109 ABN Amro 1.00 2 nl0000289783 Robeco 0.40 gb00b03mlx29 Royal Dutch Shell 0.60 3 gb00b03mlx29 Royal Dutch Shell 0.15 lu0197800237 AAB Eastern Europe Equity Fund 0.60 nl0000289965 Postbank BioTech Fonds 0.25 4 NaN NaN 1.00 [7 rows x 2 columns] In [71]: household.join(portfolio, how='inner') Out[71]: male wealth name share household_id asset_id 1 nl0000301109 0 196087.3 ABN Amro 1.00 2 nl0000289783 1 316478.7 Robeco 0.40 gb00b03mlx29 1 316478.7 Royal Dutch Shell 0.60 3 gb00b03mlx29 0 294750.0 Royal Dutch Shell 0.15 lu0197800237 0 294750.0 AAB Eastern Europe Equity Fund 0.60 nl0000289965 0 294750.0 Postbank BioTech Fonds 0.25 [6 rows x 4 columns]
quotechar, doublequote, and escapechar can now be specified when using DataFrame.to_csv (GH5414, GH4528)
quotechar
doublequote
escapechar
DataFrame.to_csv
Partially sort by only the specified levels of a MultiIndex with the sort_remaining boolean kwarg. (GH3984)
sort_remaining
Added to_julian_date to TimeStamp and DatetimeIndex. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)
to_julian_date
TimeStamp
DataFrame.to_stata will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)
DataFrame.to_stata
DataFrame.to_stata and StataWriter will accept keyword arguments time_stamp and data_label which allow the time stamp and dataset label to be set when creating a file. (GH6545)
StataWriter
pandas.io.gbq now handles reading unicode strings properly. (GH5940)
pandas.io.gbq
Holidays Calendars are now available and can be used with the CustomBusinessDay offset (GH6719)
Float64Index is now backed by a float64 dtype ndarray instead of an object dtype array (GH6471).
Float64Index
float64
object
Implemented Panel.pct_change (GH6904)
Panel.pct_change
Added how option to rolling-moment functions to dictate how to handle resampling; rolling_max() defaults to max, rolling_min() defaults to min, and all others default to mean (GH6297)
how
rolling_max()
rolling_min()
CustomBusinessMonthBegin and CustomBusinessMonthEnd are now available (GH6866)
CustomBusinessMonthBegin
CustomBusinessMonthEnd
Series.quantile() and DataFrame.quantile() now accept an array of quantiles.
Series.quantile()
DataFrame.quantile()
describe() now accepts an array of percentiles to include in the summary statistics (GH4196)
pivot_table can now accept Grouper by index and columns keywords (GH6913)
pivot_table
Grouper
In [72]: import datetime In [73]: df = pd.DataFrame({ ....: 'Branch': 'A A A A A B'.split(), ....: 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(), ....: 'Quantity': [1, 3, 5, 1, 8, 1], ....: 'Date': [datetime.datetime(2013, 11, 1, 13, 0), ....: datetime.datetime(2013, 9, 1, 13, 5), ....: datetime.datetime(2013, 10, 1, 20, 0), ....: datetime.datetime(2013, 10, 2, 10, 0), ....: datetime.datetime(2013, 11, 1, 20, 0), ....: datetime.datetime(2013, 10, 2, 10, 0)], ....: 'PayDay': [datetime.datetime(2013, 10, 4, 0, 0), ....: datetime.datetime(2013, 10, 15, 13, 5), ....: datetime.datetime(2013, 9, 5, 20, 0), ....: datetime.datetime(2013, 11, 2, 10, 0), ....: datetime.datetime(2013, 10, 7, 20, 0), ....: datetime.datetime(2013, 9, 5, 10, 0)]}) ....: In [74]: df Out[74]: Branch Buyer Quantity Date PayDay 0 A Carl 1 2013-11-01 13:00:00 2013-10-04 00:00:00 1 A Mark 3 2013-09-01 13:05:00 2013-10-15 13:05:00 2 A Carl 5 2013-10-01 20:00:00 2013-09-05 20:00:00 3 A Carl 1 2013-10-02 10:00:00 2013-11-02 10:00:00 4 A Joe 8 2013-11-01 20:00:00 2013-10-07 20:00:00 5 B Joe 1 2013-10-02 10:00:00 2013-09-05 10:00:00 [6 rows x 5 columns] In [75]: df.pivot_table(values='Quantity', ....: index=pd.Grouper(freq='M', key='Date'), ....: columns=pd.Grouper(freq='M', key='PayDay'), ....: aggfunc=np.sum) ....: Out[75]: PayDay 2013-09-30 2013-10-31 2013-11-30 Date 2013-09-30 NaN 3.0 NaN 2013-10-31 6.0 NaN 1.0 2013-11-30 NaN 9.0 NaN [3 rows x 3 columns]
Arrays of strings can be wrapped to a specified width (str.wrap) (GH6999)
str.wrap
Add nsmallest() and Series.nlargest() methods to Series, See the docs (GH3960)
nsmallest()
Series.nlargest()
PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)
In [76]: prng = pd.period_range('2013-01-01 09:00', periods=100, freq='H') In [77]: ps = pd.Series(np.random.randn(len(prng)), index=prng) In [78]: ps Out[78]: 2013-01-01 09:00 0.015696 2013-01-01 10:00 -2.242685 2013-01-01 11:00 1.150036 2013-01-01 12:00 0.991946 2013-01-01 13:00 0.953324 ... 2013-01-05 08:00 0.285296 2013-01-05 09:00 0.484288 2013-01-05 10:00 1.363482 2013-01-05 11:00 -0.781105 2013-01-05 12:00 -0.468018 Freq: H, Length: 100, dtype: float64 In [79]: ps['2013-01-02'] Out[79]: 2013-01-02 00:00 0.553439 2013-01-02 01:00 1.318152 2013-01-02 02:00 -0.469305 2013-01-02 03:00 0.675554 2013-01-02 04:00 -1.817027 ... 2013-01-02 19:00 0.036142 2013-01-02 20:00 -2.074978 2013-01-02 21:00 0.247792 2013-01-02 22:00 -0.897157 2013-01-02 23:00 -0.136795 Freq: H, Length: 24, dtype: float64
read_excel can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)
pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability (GH6817)
pd.stats.moments.rolling_var
pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)
DataFrame.rank() now has a percentage rank option (GH5971)
DataFrame.rank()
Series.rank() now has a percentage rank option (GH5971)
Series.rank()
Series.rank() and DataFrame.rank() now accept method='dense' for ranks without gaps (GH6514)
method='dense'
Support passing encoding with xlwt (GH3710)
encoding
Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745, GH6988).
Testing statements updated to use specialized asserts (GH6175)
Performance improvement when converting DatetimeIndex to floating ordinals using DatetimeConverter (GH6636)
DatetimeConverter
Performance improvement for DataFrame.shift (GH5609)
DataFrame.shift
Performance improvement in indexing into a MultiIndexed Series (GH5567)
Performance improvements in single-dtyped indexing (GH6484)
Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
Improve performance of CustomBusinessDay (GH6584)
improve performance of slice indexing on Series with string keys (GH6341, GH6372)
Performance improvement for DataFrame.from_records when reading a specified number of rows from an iterable (GH6700)
DataFrame.from_records
Performance improvements in timedelta conversions for integer dtypes (GH6754)
Improved performance of compatible pickles (GH6899)
Improve performance in certain reindexing operations by optimizing take_2d (GH6749)
take_2d
GroupBy.count() is now implemented in Cython and is much faster for large numbers of groups (GH7016).
GroupBy.count()
There are no experimental changes in 0.14.0
Bug in Series ValueError when index doesn’t match data (GH6532)
Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
Bug in pd.DataFrame.sort_index where mergesort wasn’t stable when ascending=False (GH6399)
pd.DataFrame.sort_index
ascending=False
Bug in pd.tseries.frequencies.to_offset when argument has leading zeros (GH6391)
pd.tseries.frequencies.to_offset
Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
Inconsistent tz parsing Timestamp / to_datetime for current year (GH5958)
to_datetime
Indexing bugs with reordered indexes (GH6252, GH6254)
Bug in .xs with a Series multiindex (GH6258, GH5684)
.xs
Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
Bug in eval where type-promotion failed for large expressions (GH6205)
eval
Bug in interpolate with inplace=True (GH6281)
inplace=True
HDFStore.remove now handles start and stop (GH6177)
HDFStore.remove
HDFStore.select_as_multiple handles start and stop the same way as select (GH6177)
HDFStore.select_as_multiple
select
HDFStore.select_as_coordinates and select_column works with a where clause that results in filters (GH6177)
HDFStore.select_as_coordinates
select_column
where
Regression in join of non_unique_indexes (GH6329)
Issue with groupby agg with a single function and a a mixed-type frame (GH6337)
agg
Bug in DataFrame.replace() when passing a non- bool to_replace argument (GH6332)
DataFrame.replace()
to_replace
Raise when trying to align on different levels of a MultiIndex assignment (GH3738)
Bug in setting complex dtypes via boolean indexing (GH6345)
Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid results. (GH4161)
Bug in index name propagation in TimeGrouper/resample (GH4161)
TimeGrouper has a more compatible API to the rest of the groupers (e.g. groups was missing) (GH3881)
groups
Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
Bug in pd.eval when parsing strings with possible tokens like '&' (GH6351)
pd.eval
'&'
Bug correctly handle placements of -inf in Panels when dividing by integer 0 (GH6178)
-inf
DataFrame.shift with axis=1 was raising (GH6371)
axis=1
Disabled clipboard tests until release time (run locally with nosetests -A disabled) (GH6048).
nosetests -A disabled
Bug in DataFrame.replace() when passing a nested dict that contained keys not in the values to be replaced (GH6342)
dict
str.match ignored the na flag (GH6609).
str.match
Bug in take with duplicate columns that were not consolidated (GH6240)
Bug in interpolate changing dtypes (GH6290)
Bug in Series.get, was using a buggy access method (GH6383)
Series.get
Bug in hdfstore queries of the form where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))] (GH6313)
where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))]
Bug in DataFrame.dropna with duplicate indices (GH6355)
DataFrame.dropna
Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
Float64Index with nans not comparing correctly (GH6401)
eval/query expressions with strings containing the @ character will now work (GH6366).
query
@
Bug in Series.reindex when specifying a method with some nan values was inconsistent (noted on a resample) (GH6418)
Series.reindex
method
Bug in DataFrame.replace() where nested dicts were erroneously depending on the order of dictionary keys and values (GH5338).
Performance issue in concatenating with empty objects (GH3259)
Clarify sorting of sym_diff on Index objects with NaN values (GH6444)
NaN
Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439)
MultiIndex.from_product
Bug in str.extract when passed a non-default index (GH6348)
str.extract
Bug in str.split when passed pat=None and n=1 (GH6466)
str.split
pat=None
n=1
Bug in io.data.DataReader when passed "F-F_Momentum_Factor" and data_source="famafrench" (GH6460)
io.data.DataReader
"F-F_Momentum_Factor"
data_source="famafrench"
Bug in sum of a timedelta64[ns] series (GH6462)
sum
timedelta64[ns]
Bug in resample with a timezone and certain offsets (GH6397)
resample
Bug in iat/iloc with duplicate indices on a Series (GH6493)
iat/iloc
Bug in read_html where nan’s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129).
read_html
Bug in read_html tests where redirected invalid URLs would make one test fail (GH6445).
Bug in multi-axis indexing using .loc on non-unique indices (GH6504)
Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)
Regression from 0.13 in the treatment of numpy datetime64 non-ns dtypes in Series creation (GH6529)
datetime64
.names attribute of MultiIndexes passed to set_index are now preserved (GH6459).
.names
Bug in setitem with a duplicate index and an alignable rhs (GH6541)
Bug in setitem with .loc on mixed integer Indexes (GH6546)
Bug in pd.read_stata which would use the wrong data types and missing values (GH6327)
pd.read_stata
Bug in DataFrame.to_stata that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335)
StataWriter replaces missing values in string columns by empty string (GH6802)
Inconsistent types in Timestamp addition/subtraction (GH6543)
Bug in preserving frequency across Timestamp addition/subtraction (GH4547)
Bug in empty list lookup caused IndexError exceptions (GH6536, GH6551)
Series.quantile raising on an object dtype (GH6555)
Series.quantile
Bug in .xs with a nan in level when dropped (GH6574)
nan
Bug in fillna with method='bfill/ffill' and datetime64[ns] dtype (GH6587)
method='bfill/ffill'
datetime64[ns]
Bug in sql writing with mixed dtypes possibly leading to data loss (GH6509)
Bug in Series.pop (GH6600)
Series.pop
Bug in iloc indexing when positional indexer matched Int64Index of the corresponding axis and no reordering happened (GH6612)
Bug in fillna with limit and value specified
fillna
limit
value
Bug in DataFrame.to_stata when columns have non-string names (GH4558)
Bug in compat with np.compress, surfaced in (GH6658)
np.compress
Bug in binary operations with a rhs of a Series not aligning (GH6681)
Bug in DataFrame.to_stata which incorrectly handles nan values and ignores with_index keyword argument (GH6685)
with_index
Bug in resample with extra bins when using an evenly divisible frequency (GH4076)
Bug in consistency of groupby aggregation when passing a custom function (GH6715)
Bug in resample when how=None resample freq is the same as the axis frequency (GH5955)
how=None
Bug in downcasting inference with empty arrays (GH6733)
Bug in obj.blocks on sparse containers dropping all but the last items of same for dtype (GH6748)
obj.blocks
Bug in unpickling NaT (NaTType) (GH4606)
NaT (NaTType)
Bug in DataFrame.replace() where regex meta characters were being treated as regex even when regex=False (GH6777).
regex=False
Bug in timedelta ops on 32-bit platforms (GH6808)
Bug in setting a tz-aware index directly via .index (GH6785)
.index
Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
Bug in Makefile where it didn’t remove Cython generated C files with make clean (GH6768)
make clean
Bug with numpy < 1.7.2 when reading long strings from HDFStore (GH6166)
Bug in DataFrame._reduce where non bool-like (0/1) integers were being converted into bools. (GH6806)
DataFrame._reduce
Regression from 0.13 with fillna and a Series on datetime-like (GH6344)
Bug in adding np.timedelta64 to DatetimeIndex with timezone outputs incorrect results (GH6818)
np.timedelta64
Bug in DataFrame.replace() where changing a dtype through replacement would only replace the first occurrence of a value (GH6689)
Better error message when passing a frequency of ‘MS’ in Period construction (GH5332)
Period
Bug in Series.__unicode__ when max_rows=None and the Series has more than 1000 rows. (GH6863)
Series.__unicode__
max_rows=None
Bug in groupby.get_group where a datelike wasn’t always accepted (GH5267)
groupby.get_group
Bug in groupBy.get_group created by TimeGrouper raises AttributeError (GH6914)
groupBy.get_group
TimeGrouper
AttributeError
Bug in DatetimeIndex.tz_localize and DatetimeIndex.tz_convert converting NaT incorrectly (GH5546)
DatetimeIndex.tz_localize
DatetimeIndex.tz_convert
NaT
Bug in arithmetic operations affecting NaT (GH6873)
Bug in Series.str.extract where the resulting Series from a single group match wasn’t renamed to the group name
Series.str.extract
Bug in DataFrame.to_csv where setting index=False ignored the header kwarg (GH6186)
index=False
header
Bug in DataFrame.plot and Series.plot, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6678)
Internal tests for patching __finalize__ / bug in merge not finalizing (GH6923, GH6927)
__finalize__
accept TextFileReader in concat, which was affecting a common user idiom (GH6583)
Bug in C parser with leading white space (GH3374)
Bug in C parser with delim_whitespace=True and \r-delimited lines
\r
Bug in python parser with explicit MultiIndex in row following column header (GH6893)
Bug in Series.rank and DataFrame.rank that caused small floats (<1e-13) to all receive the same rank (GH6886)
Series.rank
DataFrame.rank
Bug in DataFrame.apply with functions that used *args or **kwargs and returned an empty result (GH6952)
DataFrame.apply
*args
**kwargs
Bug in sum/mean on 32-bit platforms on overflows (GH6915)
Moved Panel.shift to NDFrame.slice_shift and fixed to respect multiple dtypes. (GH6959)
Panel.shift
NDFrame.slice_shift
Bug in enabling subplots=True in DataFrame.plot only has single column raises TypeError, and Series.plot raises AttributeError (GH6951)
subplots=True
Bug in DataFrame.plot draws unnecessary axes when enabling subplots and kind=scatter (GH6951)
subplots
kind=scatter
Bug in read_csv from a filesystem with non-utf-8 encoding (GH6807)
read_csv
Bug in iloc when setting / aligning (GH6766)
Bug causing UnicodeEncodeError when get_dummies called with unicode values and a prefix (GH6885)
Bug in timeseries-with-frequency plot cursor display (GH5453)
Bug surfaced in groupby.plot when using a Float64Index (GH7025)
groupby.plot
Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
Bug in parallel_coordinates and radviz where reordering of class column caused possible color/class mismatch (GH6956)
parallel_coordinates
radviz
Bug in radviz and andrews_curves where multiple values of ‘color’ were being passed to plotting method (GH6956)
andrews_curves
Bug in Float64Index.isin() where containing nan s would make indices claim that they contained all the things (GH7066).
Float64Index.isin()
Bug in DataFrame.boxplot where it failed to use the axis passed as the ax argument (GH3578)
DataFrame.boxplot
ax
Bug in the XlsxWriter and XlwtWriter implementations that resulted in datetime columns being formatted without the time (GH7075) were being passed to plotting method
XlsxWriter
XlwtWriter
read_fwf() treats None in colspec like regular python slices. It now reads from the beginning or until the end of the line when colspec contains a None (previously raised a TypeError)
read_fwf()
colspec
Bug in cache coherence with chained indexing and slicing; add _is_view property to NDFrame to correctly predict views; mark is_copy on xs only if its an actual copy (and not a view) (GH7084)
_is_view
is_copy
xs
Bug in DatetimeIndex creation from string ndarray with dayfirst=True (GH5917)
dayfirst=True
Bug in MultiIndex.from_arrays created from DatetimeIndex doesn’t preserve freq and tz (GH7090)
MultiIndex.from_arrays
freq
tz
Bug in unstack raises ValueError when MultiIndex contains PeriodIndex (GH4342)
MultiIndex
PeriodIndex
Bug in boxplot and hist draws unnecessary axes (GH6769)
boxplot
hist
Regression in groupby.nth() for out-of-bounds indexers (GH6621)
groupby.nth()
Bug in quantile with datetime values (GH6965)
quantile
Bug in Dataframe.set_index, reindex and pivot don’t preserve DatetimeIndex and PeriodIndex attributes (GH3950, GH5878, GH6631)
Dataframe.set_index
reindex
pivot
Bug in MultiIndex.get_level_values doesn’t preserve DatetimeIndex and PeriodIndex attributes (GH7092)
MultiIndex.get_level_values
Bug in Groupby doesn’t preserve tz (GH3950)
Groupby
Bug in PeriodIndex partial string slicing (GH6716)
Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to ‘info’ (GH7105)
Bug in DatetimeIndex specifying freq raises ValueError when passed value is too short (GH7098)
Bug PeriodIndex string slicing with out of bounds values (GH5407)
Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
Bug in isnull when applied to 0-dimensional object arrays (GH7176)
isnull
Bug in query/eval where global constants were not looked up correctly (GH7178)
Bug in recognizing out-of-bounds positional list indexers with iloc and a multi-axis tuple indexer (GH7189)
Bug in setitem with a single value, MultiIndex and integer indices (GH7190, GH7218)
Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
Bug in multi-axis indexing with > 2 ndim and a MultiIndex (GH7199)
Fix a bug where invalid eval/query operations would blow the stack (GH5198)
A total of 94 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Acanthostega +
Adam Marcus +
Alex Gaudio
Alex Rothberg
AllenDowney +
Andrew Rosenfeld +
Andy Hayden
Antoine Mazières +
Benedikt Sauer
Brad Buran
Christopher Whelan
Clark Fitzgerald
DSM
Dale Jung
Dan Allan
Dan Birken
Daniel Waeber
David Jung +
David Stephens +
Douglas McNeil
Garrett Drapala
Gouthaman Balaraman +
Guillaume Poulin +
Jacob Howard +
Jacob Schaer
Jason Sexauer +
Jeff Reback
Jeff Tratner
Jeffrey Starr +
John David Reaver +
John McNamara
John W. O’Brien
Jonathan Chambers
Joris Van den Bossche
Julia Evans
Júlio +
K.-Michael Aye
Katie Atkinson +
Kelsey Jordahl
Kevin Sheppard +
Matt Wittmann +
Matthias Kuhn +
Max Grender-Jones +
Michael E. Gruen +
Mike Kelly
Nipun Batra +
Noah Spies +
PKEuS
Patrick O’Keeffe
Phillip Cloud
Pietro Battiston +
Randy Carnevale +
Robert Gibboni +
Skipper Seabold
SplashDance +
Stephan Hoyer +
Tim Cera +
Tobias Brandt
Todd Jennings +
Tom Augspurger
TomAugspurger
Yaroslav Halchenko
agijsberts +
akittredge
ankostis +
anomrake
anton-d +
bashtage +
benjamin +
bwignall
cgohlke +
chebee7i +
clham +
danielballan
hshimizu77 +
hugo +
immerrr
ischwabacher +
jaimefrio +
jreback
jsexauer +
kdiether +
michaelws +
mikebailey +
ojdo +
onesandzeroes +
phaebz +
ribonoous +
rockg
sinhrks +
unutbu
westurner
y-p
zach powers