pandas.Series.rename_axis

Series.rename_axis(**kwargs)[source]

Set the name of the axis for the index or columns.

Parameters
mapperscalar, list-like, optional

Value to set the axis name attribute.

index, columnsscalar, list-like, dict-like or function, optional

A scalar, list-like, dict-like or functions transformations to apply to that axis’ values. Note that the columns parameter is not allowed if the object is a Series. This parameter only apply for DataFrame type objects.

Use either mapper and axis to specify the axis to target with mapper, or index and/or columns.

Changed in version 0.24.0.

axis{0 or ‘index’, 1 or ‘columns’}, default 0

The axis to rename.

copybool, default True

Also copy underlying data.

inplacebool, default False

Modifies the object directly, instead of creating a new Series or DataFrame.

Returns
Series, DataFrame, or None

The same type as the caller or None if inplace is True.

See also

Series.rename

Alter Series index labels or name.

DataFrame.rename

Alter DataFrame index labels or name.

Index.rename

Set new names on index.

Notes

DataFrame.rename_axis supports two calling conventions

  • (index=index_mapper, columns=columns_mapper, ...)

  • (mapper, axis={'index', 'columns'}, ...)

The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter copy is ignored.

The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis labels.

We highly recommend using keyword arguments to clarify your intent.

Examples

Series

>>> s = pd.Series(["dog", "cat", "monkey"])
>>> s
0       dog
1       cat
2    monkey
dtype: object
>>> s.rename_axis("animal")
animal
0    dog
1    cat
2    monkey
dtype: object

DataFrame

>>> df = pd.DataFrame({"num_legs": [4, 4, 2],
...                    "num_arms": [0, 0, 2]},
...                   ["dog", "cat", "monkey"])
>>> df
        num_legs  num_arms
dog            4         0
cat            4         0
monkey         2         2
>>> df = df.rename_axis("animal")
>>> df
        num_legs  num_arms
animal
dog            4         0
cat            4         0
monkey         2         2
>>> df = df.rename_axis("limbs", axis="columns")
>>> df
limbs   num_legs  num_arms
animal
dog            4         0
cat            4         0
monkey         2         2

MultiIndex

>>> df.index = pd.MultiIndex.from_product([['mammal'],
...                                        ['dog', 'cat', 'monkey']],
...                                       names=['type', 'name'])
>>> df
limbs          num_legs  num_arms
type   name
mammal dog            4         0
       cat            4         0
       monkey         2         2
>>> df.rename_axis(index={'type': 'class'})
limbs          num_legs  num_arms
class  name
mammal dog            4         0
       cat            4         0
       monkey         2         2
>>> df.rename_axis(columns=str.upper)
LIMBS          num_legs  num_arms
type   name
mammal dog            4         0
       cat            4         0
       monkey         2         2