melt(frame[, id_vars, value_vars, var_name, …])
melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
pivot(data[, index, columns, values])
pivot
Return reshaped DataFrame organized by given index / column values.
pivot_table(data[, values, index, columns, …])
pivot_table
Create a spreadsheet-style pivot table as a DataFrame.
crosstab(index, columns[, values, rownames, …])
crosstab
Compute a simple cross tabulation of two (or more) factors.
cut(x, bins[, right, labels, retbins, …])
cut
Bin values into discrete intervals.
qcut(x, q[, labels, retbins, precision, …])
qcut
Quantile-based discretization function.
merge(left, right[, how, on, left_on, …])
merge
Merge DataFrame or named Series objects with a database-style join.
merge_ordered(left, right[, on, left_on, …])
merge_ordered
Perform merge with optional filling/interpolation.
merge_asof(left, right[, on, left_on, …])
merge_asof
Perform an asof merge.
concat()
concat
Concatenate pandas objects along a particular axis with optional set logic along the other axes.
get_dummies(data[, prefix, prefix_sep, …])
get_dummies
Convert categorical variable into dummy/indicator variables.
factorize(values[, sort, na_sentinel, size_hint])
factorize
Encode the object as an enumerated type or categorical variable.
unique(values)
unique
Hash table-based unique.
wide_to_long(df, stubnames, i, j[, sep, suffix])
wide_to_long
Wide panel to long format.
isna(obj)
isna
Detect missing values for an array-like object.
isnull(obj)
isnull
notna(obj)
notna
Detect non-missing values for an array-like object.
notnull(obj)
notnull
to_numeric(arg[, errors, downcast])
to_numeric
Convert argument to a numeric type.
to_datetime()
to_datetime
Convert argument to datetime.
to_timedelta(arg[, unit, errors])
to_timedelta
Convert argument to timedelta.
date_range([start, end, periods, freq, tz, …])
date_range
Return a fixed frequency DatetimeIndex.
bdate_range([start, end, periods, freq, tz, …])
bdate_range
Return a fixed frequency DatetimeIndex, with business day as the default frequency.
period_range([start, end, periods, freq, name])
period_range
Return a fixed frequency PeriodIndex.
timedelta_range([start, end, periods, freq, …])
timedelta_range
Return a fixed frequency TimedeltaIndex, with day as the default frequency.
infer_freq(index[, warn])
infer_freq
Infer the most likely frequency given the input index.
interval_range([start, end, periods, freq, …])
interval_range
Return a fixed frequency IntervalIndex.
eval(expr[, parser, engine, truediv, …])
eval
Evaluate a Python expression as a string using various backends.
util.hash_array(vals[, encoding, hash_key, …])
util.hash_array
Given a 1d array, return an array of deterministic integers.
util.hash_pandas_object(obj[, index, …])
util.hash_pandas_object
Return a data hash of the Index/Series/DataFrame.
test([extra_args])
test