This is a major release from 0.20.3 and includes a number of API changes, deprecations, new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
Integration with Apache Parquet, including a new top-level read_parquet() function and DataFrame.to_parquet() method, see here.
read_parquet()
DataFrame.to_parquet()
New user-facing pandas.api.types.CategoricalDtype for specifying categoricals independent of the data, see here.
pandas.api.types.CategoricalDtype
The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on whether bottleneck is installed, and sum and prod on empty Series now return NaN instead of 0, see here.
sum
prod
Compatibility fixes for pypy, see here.
Additions to the drop, reindex and rename API to make them more consistent, see here.
drop
reindex
rename
Addition of the new methods DataFrame.infer_objects (see here) and GroupBy.pipe (see here).
DataFrame.infer_objects
GroupBy.pipe
Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError in a future version, see here.
Check the API Changes and deprecations before updating.
What’s new in v0.21.0
New features
Integration with Apache Parquet file format
Method infer_objects type conversion
infer_objects
Improved warnings when attempting to create columns
Method drop now also accepts index/columns keywords
Methods rename, reindex now also accept axis keyword
CategoricalDtype for specifying categoricals
CategoricalDtype
GroupBy objects now have a pipe method
GroupBy
pipe
Categorical.rename_categories accepts a dict-like
Categorical.rename_categories
Other enhancements
Backwards incompatible API changes
Dependencies have increased minimum versions
Sum/prod of all-NaN or empty Series/DataFrames is now consistently NaN
Indexing with a list with missing labels is deprecated
NA naming changes
Iteration of Series/Index will now return Python scalars
Indexing with a Boolean Index
PeriodIndex resampling
PeriodIndex
Improved error handling during item assignment in pd.eval
Dtype conversions
MultiIndex constructor with a single level
UTC localization with Series
Consistency of range functions
No automatic Matplotlib converters
Other API changes
Deprecations
Series.select and DataFrame.select
Series.argmax and Series.argmin
Removal of prior version deprecations/changes
Performance improvements
Documentation changes
Bug fixes
Conversion
Indexing
IO
Plotting
GroupBy/resample/rolling
Sparse
Reshaping
Numeric
Categorical
PyPy
Other
Contributors
Integration with Apache Parquet, including a new top-level read_parquet() and DataFrame.to_parquet() method, see here (GH15838, GH17438).
Apache Parquet provides a cross-language, binary file format for reading and writing data frames efficiently. Parquet is designed to faithfully serialize and de-serialize DataFrame s, supporting all of the pandas dtypes, including extension dtypes such as datetime with timezones.
DataFrame
This functionality depends on either the pyarrow or fastparquet library. For more details, see see the IO docs on Parquet.
The DataFrame.infer_objects() and Series.infer_objects() methods have been added to perform dtype inference on object columns, replacing some of the functionality of the deprecated convert_objects method. See the documentation here for more details. (GH11221)
DataFrame.infer_objects()
Series.infer_objects()
convert_objects
This method only performs soft conversions on object columns, converting Python objects to native types, but not any coercive conversions. For example:
In [1]: df = pd.DataFrame({'A': [1, 2, 3], ...: 'B': np.array([1, 2, 3], dtype='object'), ...: 'C': ['1', '2', '3']}) ...: In [2]: df.dtypes Out[2]: A int64 B object C object Length: 3, dtype: object In [3]: df.infer_objects().dtypes Out[3]: A int64 B int64 C object Length: 3, dtype: object
Note that column 'C' was not converted - only scalar numeric types will be converted to a new type. Other types of conversion should be accomplished using the to_numeric() function (or to_datetime(), to_timedelta()).
'C'
to_numeric()
to_datetime()
to_timedelta()
In [4]: df = df.infer_objects() In [5]: df['C'] = pd.to_numeric(df['C'], errors='coerce') In [6]: df.dtypes Out[6]: A int64 B int64 C int64 Length: 3, dtype: object
New users are often puzzled by the relationship between column operations and attribute access on DataFrame instances (GH7175). One specific instance of this confusion is attempting to create a new column by setting an attribute on the DataFrame:
In [1]: df = pd.DataFrame({'one': [1., 2., 3.]}) In [2]: df.two = [4, 5, 6]
This does not raise any obvious exceptions, but also does not create a new column:
In [3]: df Out[3]: one 0 1.0 1 2.0 2 3.0
Setting a list-like data structure into a new attribute now raises a UserWarning about the potential for unexpected behavior. See Attribute Access.
UserWarning
The drop() method has gained index/columns keywords as an alternative to specifying the axis. This is similar to the behavior of reindex (GH12392).
drop()
index
columns
axis
For example:
In [7]: df = pd.DataFrame(np.arange(8).reshape(2, 4), ...: columns=['A', 'B', 'C', 'D']) ...: In [8]: df Out[8]: A B C D 0 0 1 2 3 1 4 5 6 7 [2 rows x 4 columns] In [9]: df.drop(['B', 'C'], axis=1) Out[9]: A D 0 0 3 1 4 7 [2 rows x 2 columns] # the following is now equivalent In [10]: df.drop(columns=['B', 'C']) Out[10]: A D 0 0 3 1 4 7 [2 rows x 2 columns]
The DataFrame.rename() and DataFrame.reindex() methods have gained the axis keyword to specify the axis to target with the operation (GH12392).
DataFrame.rename()
DataFrame.reindex()
Here’s rename:
In [11]: df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) In [12]: df.rename(str.lower, axis='columns') Out[12]: a b 0 1 4 1 2 5 2 3 6 [3 rows x 2 columns] In [13]: df.rename(id, axis='index') Out[13]: A B 93930968476896 1 4 93930968476928 2 5 93930968476960 3 6 [3 rows x 2 columns]
And reindex:
In [14]: df.reindex(['A', 'B', 'C'], axis='columns') Out[14]: A B C 0 1 4 NaN 1 2 5 NaN 2 3 6 NaN [3 rows x 3 columns] In [15]: df.reindex([0, 1, 3], axis='index') Out[15]: A B 0 1.0 4.0 1 2.0 5.0 3 NaN NaN [3 rows x 2 columns]
The “index, columns” style continues to work as before.
In [16]: df.rename(index=id, columns=str.lower) Out[16]: a b 93930968476896 1 4 93930968476928 2 5 93930968476960 3 6 [3 rows x 2 columns] In [17]: df.reindex(index=[0, 1, 3], columns=['A', 'B', 'C']) Out[17]: A B C 0 1.0 4.0 NaN 1 2.0 5.0 NaN 3 NaN NaN NaN [3 rows x 3 columns]
We highly encourage using named arguments to avoid confusion when using either style.
pandas.api.types.CategoricalDtype has been added to the public API and expanded to include the categories and ordered attributes. A CategoricalDtype can be used to specify the set of categories and orderedness of an array, independent of the data. This can be useful for example, when converting string data to a Categorical (GH14711, GH15078, GH16015, GH17643):
categories
ordered
In [18]: from pandas.api.types import CategoricalDtype In [19]: s = pd.Series(['a', 'b', 'c', 'a']) # strings In [20]: dtype = CategoricalDtype(categories=['a', 'b', 'c', 'd'], ordered=True) In [21]: s.astype(dtype) Out[21]: 0 a 1 b 2 c 3 a Length: 4, dtype: category Categories (4, object): ['a' < 'b' < 'c' < 'd']
One place that deserves special mention is in read_csv(). Previously, with dtype={'col': 'category'}, the returned values and categories would always be strings.
read_csv()
dtype={'col': 'category'}
In [22]: data = 'A,B\na,1\nb,2\nc,3' In [23]: pd.read_csv(StringIO(data), dtype={'B': 'category'}).B.cat.categories Out[23]: Index(['1', '2', '3'], dtype='object')
Notice the “object” dtype.
With a CategoricalDtype of all numerics, datetimes, or timedeltas, we can automatically convert to the correct type
In [24]: dtype = {'B': CategoricalDtype([1, 2, 3])} In [25]: pd.read_csv(StringIO(data), dtype=dtype).B.cat.categories Out[25]: Int64Index([1, 2, 3], dtype='int64')
The values have been correctly interpreted as integers.
The .dtype property of a Categorical, CategoricalIndex or a Series with categorical type will now return an instance of CategoricalDtype. While the repr has changed, str(CategoricalDtype()) is still the string 'category'. We’ll take this moment to remind users that the preferred way to detect categorical data is to use pandas.api.types.is_categorical_dtype(), and not str(dtype) == 'category'.
.dtype
CategoricalIndex
Series
str(CategoricalDtype())
'category'
pandas.api.types.is_categorical_dtype()
str(dtype) == 'category'
See the CategoricalDtype docs for more.
GroupBy objects now have a pipe method, similar to the one on DataFrame and Series, that allow for functions that take a GroupBy to be composed in a clean, readable syntax. (GH17871)
For a concrete example on combining .groupby and .pipe , imagine having a DataFrame with columns for stores, products, revenue and sold quantity. We’d like to do a groupwise calculation of prices (i.e. revenue/quantity) per store and per product. We could do this in a multi-step operation, but expressing it in terms of piping can make the code more readable.
.groupby
.pipe
First we set the data:
In [26]: import numpy as np In [27]: n = 1000 In [28]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n), ....: 'Product': np.random.choice(['Product_1', ....: 'Product_2', ....: 'Product_3' ....: ], n), ....: 'Revenue': (np.random.random(n) * 50 + 10).round(2), ....: 'Quantity': np.random.randint(1, 10, size=n)}) ....: In [29]: df.head(2) Out[29]: Store Product Revenue Quantity 0 Store_2 Product_2 32.09 7 1 Store_1 Product_3 14.20 1 [2 rows x 4 columns]
Now, to find prices per store/product, we can simply do:
In [30]: (df.groupby(['Store', 'Product']) ....: .pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum()) ....: .unstack().round(2)) ....: Out[30]: Product Product_1 Product_2 Product_3 Store Store_1 6.73 6.72 7.14 Store_2 7.59 6.98 7.23 [2 rows x 3 columns]
See the documentation for more.
rename_categories() now accepts a dict-like argument for new_categories. The previous categories are looked up in the dictionary’s keys and replaced if found. The behavior of missing and extra keys is the same as in DataFrame.rename().
rename_categories()
new_categories
In [31]: c = pd.Categorical(['a', 'a', 'b']) In [32]: c.rename_categories({"a": "eh", "b": "bee"}) Out[32]: ['eh', 'eh', 'bee'] Categories (2, object): ['eh', 'bee']
Warning
To assist with upgrading pandas, rename_categories treats Series as list-like. Typically, Series are considered to be dict-like (e.g. in .rename, .map). In a future version of pandas rename_categories will change to treat them as dict-like. Follow the warning message’s recommendations for writing future-proof code.
rename_categories
.rename
.map
In [33]: c.rename_categories(pd.Series([0, 1], index=['a', 'c'])) FutureWarning: Treating Series 'new_categories' as a list-like and using the values. In a future version, 'rename_categories' will treat Series like a dictionary. For dict-like, use 'new_categories.to_dict()' For list-like, use 'new_categories.values'. Out[33]: [0, 0, 1] Categories (2, int64): [0, 1]
nearest() is added to support nearest-neighbor upsampling (GH17496).
nearest()
Index has added support for a to_frame method (GH15230).
Index
to_frame
Added a skipna parameter to infer_dtype() to support type inference in the presence of missing values (GH17059).
skipna
infer_dtype()
Series.to_dict() and DataFrame.to_dict() now support an into keyword which allows you to specify the collections.Mapping subclass that you would like returned. The default is dict, which is backwards compatible. (GH16122)
Series.to_dict()
DataFrame.to_dict()
into
collections.Mapping
dict
Series.set_axis() and DataFrame.set_axis() now support the inplace parameter. (GH14636)
Series.set_axis()
DataFrame.set_axis()
inplace
Series.to_pickle() and DataFrame.to_pickle() have gained a protocol parameter (GH16252). By default, this parameter is set to HIGHEST_PROTOCOL
Series.to_pickle()
DataFrame.to_pickle()
protocol
read_feather() has gained the nthreads parameter for multi-threaded operations (GH16359)
read_feather()
nthreads
DataFrame.clip() and Series.clip() have gained an inplace argument. (GH15388)
DataFrame.clip()
Series.clip()
crosstab() has gained a margins_name parameter to define the name of the row / column that will contain the totals when margins=True. (GH15972)
crosstab()
margins_name
margins=True
read_json() now accepts a chunksize parameter that can be used when lines=True. If chunksize is passed, read_json now returns an iterator which reads in chunksize lines with each iteration. (GH17048)
read_json()
chunksize
lines=True
read_json() and to_json() now accept a compression argument which allows them to transparently handle compressed files. (GH17798)
to_json()
compression
Improved the import time of pandas by about 2.25x. (GH16764)
Support for PEP 519 – Adding a file system path protocol on most readers (e.g. read_csv()) and writers (e.g. DataFrame.to_csv()) (GH13823).
DataFrame.to_csv()
Added a __fspath__ method to pd.HDFStore, pd.ExcelFile, and pd.ExcelWriter to work properly with the file system path protocol (GH13823).
__fspath__
pd.HDFStore
pd.ExcelFile
pd.ExcelWriter
The validate argument for merge() now checks whether a merge is one-to-one, one-to-many, many-to-one, or many-to-many. If a merge is found to not be an example of specified merge type, an exception of type MergeError will be raised. For more, see here (GH16270)
validate
merge()
MergeError
Added support for PEP 518 (pyproject.toml) to the build system (GH16745)
pyproject.toml
RangeIndex.append() now returns a RangeIndex object when possible (GH16212)
RangeIndex.append()
RangeIndex
Series.rename_axis() and DataFrame.rename_axis() with inplace=True now return None while renaming the axis inplace. (GH15704)
Series.rename_axis()
DataFrame.rename_axis()
inplace=True
None
api.types.infer_dtype() now infers decimals. (GH15690)
api.types.infer_dtype()
DataFrame.select_dtypes() now accepts scalar values for include/exclude as well as list-like. (GH16855)
DataFrame.select_dtypes()
date_range() now accepts ‘YS’ in addition to ‘AS’ as an alias for start of year. (GH9313)
date_range()
date_range() now accepts ‘Y’ in addition to ‘A’ as an alias for end of year. (GH9313)
DataFrame.add_prefix() and DataFrame.add_suffix() now accept strings containing the ‘%’ character. (GH17151)
DataFrame.add_prefix()
DataFrame.add_suffix()
Read/write methods that infer compression (read_csv(), read_table(), read_pickle(), and to_pickle()) can now infer from path-like objects, such as pathlib.Path. (GH17206)
read_table()
read_pickle()
to_pickle()
pathlib.Path
read_sas() now recognizes much more of the most frequently used date (datetime) formats in SAS7BDAT files. (GH15871)
read_sas()
DataFrame.items() and Series.items() are now present in both Python 2 and 3 and is lazy in all cases. (GH13918, GH17213)
DataFrame.items()
Series.items()
pandas.io.formats.style.Styler.where() has been implemented as a convenience for pandas.io.formats.style.Styler.applymap(). (GH17474)
pandas.io.formats.style.Styler.where()
pandas.io.formats.style.Styler.applymap()
MultiIndex.is_monotonic_decreasing() has been implemented. Previously returned False in all cases. (GH16554)
MultiIndex.is_monotonic_decreasing()
False
read_excel() raises ImportError with a better message if xlrd is not installed. (GH17613)
read_excel()
ImportError
xlrd
DataFrame.assign() will preserve the original order of **kwargs for Python 3.6+ users instead of sorting the column names. (GH14207)
DataFrame.assign()
**kwargs
Series.reindex(), DataFrame.reindex(), Index.get_indexer() now support list-like argument for tolerance. (GH17367)
Series.reindex()
Index.get_indexer()
tolerance
We have updated our minimum supported versions of dependencies (GH15206, GH15543, GH15214). If installed, we now require:
Package Minimum Version Required Numpy 1.9.0 X Matplotlib 1.4.3 Scipy 0.14.0 Bottleneck 1.0.0
Package
Minimum Version
Required
Numpy
1.9.0
X
Matplotlib
1.4.3
Scipy
0.14.0
Bottleneck
1.0.0
Additionally, support has been dropped for Python 3.4 (GH15251).
Note
The changes described here have been partially reverted. See the v0.22.0 Whatsnew for more.
The behavior of sum and prod on all-NaN Series/DataFrames no longer depends on whether bottleneck is installed, and return value of sum and prod on an empty Series has changed (GH9422, GH15507).
Calling sum or prod on an empty or all-NaN Series, or columns of a DataFrame, will result in NaN. See the docs.
NaN
In [33]: s = pd.Series([np.nan])
Previously WITHOUT bottleneck installed:
bottleneck
In [2]: s.sum() Out[2]: np.nan
Previously WITH bottleneck:
In [2]: s.sum() Out[2]: 0.0
New behavior, without regard to the bottleneck installation:
In [34]: s.sum() Out[34]: 0.0
Note that this also changes the sum of an empty Series. Previously this always returned 0 regardless of a bottleneck installation:
In [1]: pd.Series([]).sum() Out[1]: 0
but for consistency with the all-NaN case, this was changed to return NaN as well:
In [35]: pd.Series([]).sum() Out[35]: 0.0
Previously, selecting with a list of labels, where one or more labels were missing would always succeed, returning NaN for missing labels. This will now show a FutureWarning. In the future this will raise a KeyError (GH15747). This warning will trigger on a DataFrame or a Series for using .loc[] or [[]] when passing a list-of-labels with at least 1 missing label. See the deprecation docs.
FutureWarning
KeyError
.loc[]
[[]]
In [36]: s = pd.Series([1, 2, 3]) In [37]: s Out[37]: 0 1 1 2 2 3 Length: 3, dtype: int64
Previous behavior
In [4]: s.loc[[1, 2, 3]] Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64
Current behavior
In [4]: s.loc[[1, 2, 3]] Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64
The idiomatic way to achieve selecting potentially not-found elements is via .reindex()
.reindex()
In [38]: s.reindex([1, 2, 3]) Out[38]: 1 2.0 2 3.0 3 NaN Length: 3, dtype: float64
Selection with all keys found is unchanged.
In [39]: s.loc[[1, 2]] Out[39]: 1 2 2 3 Length: 2, dtype: int64
In order to promote more consistency among the pandas API, we have added additional top-level functions isna() and notna() that are aliases for isnull() and notnull(). The naming scheme is now more consistent with methods like .dropna() and .fillna(). Furthermore in all cases where .isnull() and .notnull() methods are defined, these have additional methods named .isna() and .notna(), these are included for classes Categorical, Index, Series, and DataFrame. (GH15001).
isna()
notna()
isnull()
notnull()
.dropna()
.fillna()
.isnull()
.notnull()
.isna()
.notna()
The configuration option pd.options.mode.use_inf_as_null is deprecated, and pd.options.mode.use_inf_as_na is added as a replacement.
pd.options.mode.use_inf_as_null
pd.options.mode.use_inf_as_na
Previously, when using certain iteration methods for a Series with dtype int or float, you would receive a numpy scalar, e.g. a np.int64, rather than a Python int. Issue (GH10904) corrected this for Series.tolist() and list(Series). This change makes all iteration methods consistent, in particular, for __iter__() and .map(); note that this only affects int/float dtypes. (GH13236, GH13258, GH14216).
int
float
numpy
np.int64
Series.tolist()
list(Series)
__iter__()
.map()
In [40]: s = pd.Series([1, 2, 3]) In [41]: s Out[41]: 0 1 1 2 2 3 Length: 3, dtype: int64
Previously:
In [2]: type(list(s)[0]) Out[2]: numpy.int64
New behavior:
In [42]: type(list(s)[0]) Out[42]: int
Furthermore this will now correctly box the results of iteration for DataFrame.to_dict() as well.
In [43]: d = {'a': [1], 'b': ['b']} In [44]: df = pd.DataFrame(d)
In [8]: type(df.to_dict()['a'][0]) Out[8]: numpy.int64
In [45]: type(df.to_dict()['a'][0]) Out[45]: int
Previously when passing a boolean Index to .loc, if the index of the Series/DataFrame had boolean labels, you would get a label based selection, potentially duplicating result labels, rather than a boolean indexing selection (where True selects elements), this was inconsistent how a boolean numpy array indexed. The new behavior is to act like a boolean numpy array indexer. (GH17738)
.loc
Series/DataFrame
boolean
True
Previous behavior:
In [46]: s = pd.Series([1, 2, 3], index=[False, True, False]) In [47]: s Out[47]: False 1 True 2 False 3 Length: 3, dtype: int64
In [59]: s.loc[pd.Index([True, False, True])] Out[59]: True 2 False 1 False 3 True 2 dtype: int64
In [48]: s.loc[pd.Index([True, False, True])] Out[48]: False 1 False 3 Length: 2, dtype: int64
Furthermore, previously if you had an index that was non-numeric (e.g. strings), then a boolean Index would raise a KeyError. This will now be treated as a boolean indexer.
Previously behavior:
In [49]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c']) In [50]: s Out[50]: a 1 b 2 c 3 Length: 3, dtype: int64
In [39]: s.loc[pd.Index([True, False, True])] KeyError: "None of [Index([True, False, True], dtype='object')] are in the [index]"
In [51]: s.loc[pd.Index([True, False, True])] Out[51]: a 1 c 3 Length: 2, dtype: int64
In previous versions of pandas, resampling a Series/DataFrame indexed by a PeriodIndex returned a DatetimeIndex in some cases (GH12884). Resampling to a multiplied frequency now returns a PeriodIndex (GH15944). As a minor enhancement, resampling a PeriodIndex can now handle NaT values (GH13224)
DatetimeIndex
NaT
In [1]: pi = pd.period_range('2017-01', periods=12, freq='M') In [2]: s = pd.Series(np.arange(12), index=pi) In [3]: resampled = s.resample('2Q').mean() In [4]: resampled Out[4]: 2017-03-31 1.0 2017-09-30 5.5 2018-03-31 10.0 Freq: 2Q-DEC, dtype: float64 In [5]: resampled.index Out[5]: DatetimeIndex(['2017-03-31', '2017-09-30', '2018-03-31'], dtype='datetime64[ns]', freq='2Q-DEC')
In [52]: pi = pd.period_range('2017-01', periods=12, freq='M') In [53]: s = pd.Series(np.arange(12), index=pi) In [54]: resampled = s.resample('2Q').mean() In [55]: resampled Out[55]: 2017Q1 2.5 2017Q3 8.5 Freq: 2Q-DEC, Length: 2, dtype: float64 In [56]: resampled.index Out[56]: PeriodIndex(['2017Q1', '2017Q3'], dtype='period[2Q-DEC]', freq='2Q-DEC')
Upsampling and calling .ohlc() previously returned a Series, basically identical to calling .asfreq(). OHLC upsampling now returns a DataFrame with columns open, high, low and close (GH13083). This is consistent with downsampling and DatetimeIndex behavior.
.ohlc()
.asfreq()
open
high
low
close
In [1]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10) In [2]: s = pd.Series(np.arange(10), index=pi) In [3]: s.resample('H').ohlc() Out[3]: 2000-01-01 00:00 0.0 ... 2000-01-10 23:00 NaN Freq: H, Length: 240, dtype: float64 In [4]: s.resample('M').ohlc() Out[4]: open high low close 2000-01 0 9 0 9
In [57]: pi = pd.period_range(start='2000-01-01', freq='D', periods=10) In [58]: s = pd.Series(np.arange(10), index=pi) In [59]: s.resample('H').ohlc() Out[59]: open high low close 2000-01-01 00:00 0.0 0.0 0.0 0.0 2000-01-01 01:00 NaN NaN NaN NaN 2000-01-01 02:00 NaN NaN NaN NaN 2000-01-01 03:00 NaN NaN NaN NaN 2000-01-01 04:00 NaN NaN NaN NaN ... ... ... ... ... 2000-01-10 19:00 NaN NaN NaN NaN 2000-01-10 20:00 NaN NaN NaN NaN 2000-01-10 21:00 NaN NaN NaN NaN 2000-01-10 22:00 NaN NaN NaN NaN 2000-01-10 23:00 NaN NaN NaN NaN [240 rows x 4 columns] In [60]: s.resample('M').ohlc() Out[60]: open high low close 2000-01 0 9 0 9 [1 rows x 4 columns]
eval() will now raise a ValueError when item assignment malfunctions, or inplace operations are specified, but there is no item assignment in the expression (GH16732)
eval()
ValueError
In [61]: arr = np.array([1, 2, 3])
Previously, if you attempted the following expression, you would get a not very helpful error message:
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True) ... IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
This is a very long way of saying numpy arrays don’t support string-item indexing. With this change, the error message is now this:
In [3]: pd.eval("a = 1 + 2", target=arr, inplace=True) ... ValueError: Cannot assign expression output to target
It also used to be possible to evaluate expressions inplace, even if there was no item assignment:
In [4]: pd.eval("1 + 2", target=arr, inplace=True) Out[4]: 3
However, this input does not make much sense because the output is not being assigned to the target. Now, a ValueError will be raised when such an input is passed in:
In [4]: pd.eval("1 + 2", target=arr, inplace=True) ... ValueError: Cannot operate inplace if there is no assignment
Previously assignments, .where() and .fillna() with a bool assignment, would coerce to same the type (e.g. int / float), or raise for datetimelikes. These will now preserve the bools with object dtypes. (GH16821).
.where()
bool
object
In [62]: s = pd.Series([1, 2, 3])
In [5]: s[1] = True In [6]: s Out[6]: 0 1 1 1 2 3 dtype: int64
New behavior
In [63]: s[1] = True In [64]: s Out[64]: 0 1 1 True 2 3 Length: 3, dtype: object
Previously, as assignment to a datetimelike with a non-datetimelike would coerce the non-datetime-like item being assigned (GH14145).
In [65]: s = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01')])
In [1]: s[1] = 1 In [2]: s Out[2]: 0 2011-01-01 00:00:00.000000000 1 1970-01-01 00:00:00.000000001 dtype: datetime64[ns]
These now coerce to object dtype.
In [66]: s[1] = 1 In [67]: s Out[67]: 0 2011-01-01 00:00:00 1 1 Length: 2, dtype: object
Inconsistent behavior in .where() with datetimelikes which would raise rather than coerce to object (GH16402)
Bug in assignment against int64 data with np.ndarray with float64 dtype may keep int64 dtype (GH14001)
int64
np.ndarray
float64
The MultiIndex constructors no longer squeezes a MultiIndex with all length-one levels down to a regular Index. This affects all the MultiIndex constructors. (GH17178)
MultiIndex
In [2]: pd.MultiIndex.from_tuples([('a',), ('b',)]) Out[2]: Index(['a', 'b'], dtype='object')
Length 1 levels are no longer special-cased. They behave exactly as if you had length 2+ levels, so a MultiIndex is always returned from all of the MultiIndex constructors:
In [68]: pd.MultiIndex.from_tuples([('a',), ('b',)]) Out[68]: MultiIndex([('a',), ('b',)], )
Previously, to_datetime() did not localize datetime Series data when utc=True was passed. Now, to_datetime() will correctly localize Series with a datetime64[ns, UTC] dtype to be consistent with how list-like and Index data are handled. (GH6415).
utc=True
datetime64[ns, UTC]
In [69]: s = pd.Series(['20130101 00:00:00'] * 3)
In [12]: pd.to_datetime(s, utc=True) Out[12]: 0 2013-01-01 1 2013-01-01 2 2013-01-01 dtype: datetime64[ns]
In [70]: pd.to_datetime(s, utc=True) Out[70]: 0 2013-01-01 00:00:00+00:00 1 2013-01-01 00:00:00+00:00 2 2013-01-01 00:00:00+00:00 Length: 3, dtype: datetime64[ns, UTC]
Additionally, DataFrames with datetime columns that were parsed by read_sql_table() and read_sql_query() will also be localized to UTC only if the original SQL columns were timezone aware datetime columns.
read_sql_table()
read_sql_query()
In previous versions, there were some inconsistencies between the various range functions: date_range(), bdate_range(), period_range(), timedelta_range(), and interval_range(). (GH17471).
bdate_range()
period_range()
timedelta_range()
interval_range()
One of the inconsistent behaviors occurred when the start, end and period parameters were all specified, potentially leading to ambiguous ranges. When all three parameters were passed, interval_range ignored the period parameter, period_range ignored the end parameter, and the other range functions raised. To promote consistency among the range functions, and avoid potentially ambiguous ranges, interval_range and period_range will now raise when all three parameters are passed.
start
end
period
interval_range
period_range
In [2]: pd.interval_range(start=0, end=4, periods=6) Out[2]: IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q') Out[3]: PeriodIndex(['2017Q1', '2017Q2', '2017Q3', '2017Q4', '2018Q1', '2018Q2'], dtype='period[Q-DEC]', freq='Q-DEC')
In [2]: pd.interval_range(start=0, end=4, periods=6) --------------------------------------------------------------------------- ValueError: Of the three parameters: start, end, and periods, exactly two must be specified In [3]: pd.period_range(start='2017Q1', end='2017Q4', periods=6, freq='Q') --------------------------------------------------------------------------- ValueError: Of the three parameters: start, end, and periods, exactly two must be specified
Additionally, the endpoint parameter end was not included in the intervals produced by interval_range. However, all other range functions include end in their output. To promote consistency among the range functions, interval_range will now include end as the right endpoint of the final interval, except if freq is specified in a way which skips end.
freq
In [4]: pd.interval_range(start=0, end=4) Out[4]: IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]')
In [71]: pd.interval_range(start=0, end=4) Out[71]: IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4]], closed='right', dtype='interval[int64]')
Pandas no longer registers our date, time, datetime, datetime64, and Period converters with matplotlib when pandas is imported. Matplotlib plot methods (plt.plot, ax.plot, …), will not nicely format the x-axis for DatetimeIndex or PeriodIndex values. You must explicitly register these methods:
date
time
datetime
datetime64
Period
plt.plot
ax.plot
Pandas built-in Series.plot and DataFrame.plot will register these converters on first-use (GH17710).
Series.plot
DataFrame.plot
This change has been temporarily reverted in pandas 0.21.1, for more details see here.
The Categorical constructor no longer accepts a scalar for the categories keyword. (GH16022)
Accessing a non-existent attribute on a closed HDFStore will now raise an AttributeError rather than a ClosedFileError (GH16301)
HDFStore
AttributeError
ClosedFileError
read_csv() now issues a UserWarning if the names parameter contains duplicates (GH17095)
names
read_csv() now treats 'null' and 'n/a' strings as missing values by default (GH16471, GH16078)
'null'
'n/a'
pandas.HDFStore’s string representation is now faster and less detailed. For the previous behavior, use pandas.HDFStore.info(). (GH16503).
pandas.HDFStore
pandas.HDFStore.info()
Compression defaults in HDF stores now follow pytables standards. Default is no compression and if complib is missing and complevel > 0 zlib is used (GH15943)
complib
complevel
zlib
Index.get_indexer_non_unique() now returns a ndarray indexer rather than an Index; this is consistent with Index.get_indexer() (GH16819)
Index.get_indexer_non_unique()
Removed the @slow decorator from pandas._testing, which caused issues for some downstream packages’ test suites. Use @pytest.mark.slow instead, which achieves the same thing (GH16850)
@slow
pandas._testing
@pytest.mark.slow
Moved definition of MergeError to the pandas.errors module.
pandas.errors
The signature of Series.set_axis() and DataFrame.set_axis() has been changed from set_axis(axis, labels) to set_axis(labels, axis=0), for consistency with the rest of the API. The old signature is deprecated and will show a FutureWarning (GH14636)
set_axis(axis, labels)
set_axis(labels, axis=0)
Series.argmin() and Series.argmax() will now raise a TypeError when used with object dtypes, instead of a ValueError (GH13595)
Series.argmin()
Series.argmax()
TypeError
Period is now immutable, and will now raise an AttributeError when a user tries to assign a new value to the ordinal or freq attributes (GH17116).
ordinal
to_datetime() when passed a tz-aware origin= kwarg will now raise a more informative ValueError rather than a TypeError (GH16842)
origin=
to_datetime() now raises a ValueError when format includes %W or %U without also including day of the week and calendar year (GH16774)
%W
%U
Renamed non-functional index to index_col in read_stata() to improve API consistency (GH16342)
index_col
read_stata()
Bug in DataFrame.drop() caused boolean labels False and True to be treated as labels 0 and 1 respectively when dropping indices from a numeric index. This will now raise a ValueError (GH16877)
DataFrame.drop()
Restricted DateOffset keyword arguments. Previously, DateOffset subclasses allowed arbitrary keyword arguments which could lead to unexpected behavior. Now, only valid arguments will be accepted. (GH17176).
DateOffset
DataFrame.from_csv() and Series.from_csv() have been deprecated in favor of read_csv() (GH4191)
DataFrame.from_csv()
Series.from_csv()
read_excel() has deprecated sheetname in favor of sheet_name for consistency with .to_excel() (GH10559).
sheetname
sheet_name
.to_excel()
read_excel() has deprecated parse_cols in favor of usecols for consistency with read_csv() (GH4988)
parse_cols
usecols
read_csv() has deprecated the tupleize_cols argument. Column tuples will always be converted to a MultiIndex (GH17060)
tupleize_cols
DataFrame.to_csv() has deprecated the tupleize_cols argument. MultiIndex columns will be always written as rows in the CSV file (GH17060)
The convert parameter has been deprecated in the .take() method, as it was not being respected (GH16948)
convert
.take()
pd.options.html.border has been deprecated in favor of pd.options.display.html.border (GH15793).
pd.options.html.border
pd.options.display.html.border
SeriesGroupBy.nth() has deprecated True in favor of 'all' for its kwarg dropna (GH11038).
SeriesGroupBy.nth()
'all'
dropna
DataFrame.as_blocks() is deprecated, as this is exposing the internal implementation (GH17302)
DataFrame.as_blocks()
pd.TimeGrouper is deprecated in favor of pandas.Grouper (GH16747)
pd.TimeGrouper
pandas.Grouper
cdate_range has been deprecated in favor of bdate_range(), which has gained weekmask and holidays parameters for building custom frequency date ranges. See the documentation for more details (GH17596)
cdate_range
weekmask
holidays
passing categories or ordered kwargs to Series.astype() is deprecated, in favor of passing a CategoricalDtype (GH17636)
Series.astype()
.get_value and .set_value on Series, DataFrame, Panel, SparseSeries, and SparseDataFrame are deprecated in favor of using .iat[] or .at[] accessors (GH15269)
.get_value
.set_value
Panel
SparseSeries
SparseDataFrame
.iat[]
.at[]
Passing a non-existent column in .to_excel(..., columns=) is deprecated and will raise a KeyError in the future (GH17295)
.to_excel(..., columns=)
raise_on_error parameter to Series.where(), Series.mask(), DataFrame.where(), DataFrame.mask() is deprecated, in favor of errors= (GH14968)
raise_on_error
Series.where()
Series.mask()
DataFrame.where()
DataFrame.mask()
errors=
Using DataFrame.rename_axis() and Series.rename_axis() to alter index or column labels is now deprecated in favor of using .rename. rename_axis may still be used to alter the name of the index or columns (GH17833).
rename_axis
reindex_axis() has been deprecated in favor of reindex(). See here for more (GH17833).
reindex_axis()
reindex()
The Series.select() and DataFrame.select() methods are deprecated in favor of using df.loc[labels.map(crit)] (GH12401)
Series.select()
DataFrame.select()
df.loc[labels.map(crit)]
In [72]: df = pd.DataFrame({'A': [1, 2, 3]}, index=['foo', 'bar', 'baz'])
In [3]: df.select(lambda x: x in ['bar', 'baz']) FutureWarning: select is deprecated and will be removed in a future release. You can use .loc[crit] as a replacement Out[3]: A bar 2 baz 3
In [73]: df.loc[df.index.map(lambda x: x in ['bar', 'baz'])] Out[73]: A bar 2 baz 3 [2 rows x 1 columns]
The behavior of Series.argmax() and Series.argmin() have been deprecated in favor of Series.idxmax() and Series.idxmin(), respectively (GH16830).
Series.idxmax()
Series.idxmin()
For compatibility with NumPy arrays, pd.Series implements argmax and argmin. Since pandas 0.13.0, argmax has been an alias for pandas.Series.idxmax(), and argmin has been an alias for pandas.Series.idxmin(). They return the label of the maximum or minimum, rather than the position.
pd.Series
argmax
argmin
pandas.Series.idxmax()
pandas.Series.idxmin()
We’ve deprecated the current behavior of Series.argmax and Series.argmin. Using either of these will emit a FutureWarning. Use Series.idxmax() if you want the label of the maximum. Use Series.values.argmax() if you want the position of the maximum. Likewise for the minimum. In a future release Series.argmax and Series.argmin will return the position of the maximum or minimum.
Series.argmax
Series.argmin
Series.values.argmax()
read_excel() has dropped the has_index_names parameter (GH10967)
has_index_names
The pd.options.display.height configuration has been dropped (GH3663)
pd.options.display.height
The pd.options.display.line_width configuration has been dropped (GH2881)
pd.options.display.line_width
The pd.options.display.mpl_style configuration has been dropped (GH12190)
pd.options.display.mpl_style
Index has dropped the .sym_diff() method in favor of .symmetric_difference() (GH12591)
.sym_diff()
.symmetric_difference()
Categorical has dropped the .order() and .sort() methods in favor of .sort_values() (GH12882)
.order()
.sort()
.sort_values()
eval() and DataFrame.eval() have changed the default of inplace from None to False (GH11149)
DataFrame.eval()
The function get_offset_name has been dropped in favor of the .freqstr attribute for an offset (GH11834)
get_offset_name
.freqstr
pandas no longer tests for compatibility with hdf5-files created with pandas < 0.11 (GH17404).
Improved performance of instantiating SparseDataFrame (GH16773)
Series.dt no longer performs frequency inference, yielding a large speedup when accessing the attribute (GH17210)
Series.dt
Improved performance of set_categories() by not materializing the values (GH17508)
set_categories()
Timestamp.microsecond no longer re-computes on attribute access (GH17331)
Timestamp.microsecond
Improved performance of the CategoricalIndex for data that is already categorical dtype (GH17513)
Improved performance of RangeIndex.min() and RangeIndex.max() by using RangeIndex properties to perform the computations (GH17607)
RangeIndex.min()
RangeIndex.max()
Several NaT method docstrings (e.g. NaT.ctime()) were incorrect (GH17327)
NaT.ctime()
The documentation has had references to versions < v0.17 removed and cleaned up (GH17442, GH17442, GH17404 & GH17504)
Bug in assignment against datetime-like data with int may incorrectly convert to datetime-like (GH14145)
Fixed the return type of IntervalIndex.is_non_overlapping_monotonic to be a Python bool for consistency with similar attributes/methods. Previously returned a numpy.bool_. (GH17237)
IntervalIndex.is_non_overlapping_monotonic
numpy.bool_
Bug in IntervalIndex.is_non_overlapping_monotonic when intervals are closed on both sides and overlap at a point (GH16560)
Bug in Series.fillna() returns frame when inplace=True and value is dict (GH16156)
Series.fillna()
value
Bug in Timestamp.weekday_name returning a UTC-based weekday name when localized to a timezone (GH17354)
Timestamp.weekday_name
Bug in Timestamp.replace when replacing tzinfo around DST changes (GH15683)
Timestamp.replace
tzinfo
Bug in Timedelta construction and arithmetic that would not propagate the Overflow exception (GH17367)
Timedelta
Overflow
Bug in astype() converting to object dtype when passed extension type classes (DatetimeTZDtype, CategoricalDtype) rather than instances. Now a TypeError is raised when a class is passed (GH17780).
astype()
DatetimeTZDtype
Bug in to_numeric() in which elements were not always being coerced to numeric when errors='coerce' (GH17007, GH17125)
errors='coerce'
Bug in DataFrame and Series constructors where range objects are converted to int32 dtype on Windows instead of int64 (GH16804)
range
int32
When called with a null slice (e.g. df.iloc[:]), the .iloc and .loc indexers return a shallow copy of the original object. Previously they returned the original object. (GH13873).
df.iloc[:]
.iloc
When called on an unsorted MultiIndex, the loc indexer now will raise UnsortedIndexError only if proper slicing is used on non-sorted levels (GH16734).
loc
UnsortedIndexError
Fixes regression in 0.20.3 when indexing with a string on a TimedeltaIndex (GH16896).
TimedeltaIndex
Fixed TimedeltaIndex.get_loc() handling of np.timedelta64 inputs (GH16909).
TimedeltaIndex.get_loc()
np.timedelta64
Fix MultiIndex.sort_index() ordering when ascending argument is a list, but not all levels are specified, or are in a different order (GH16934).
MultiIndex.sort_index()
ascending
Fixes bug where indexing with np.inf caused an OverflowError to be raised (GH16957)
np.inf
OverflowError
Bug in reindexing on an empty CategoricalIndex (GH16770)
Fixes DataFrame.loc for setting with alignment and tz-aware DatetimeIndex (GH16889)
DataFrame.loc
Avoids IndexError when passing an Index or Series to .iloc with older numpy (GH17193)
IndexError
Allow unicode empty strings as placeholders in multilevel columns in Python 2 (GH17099)
Bug in .iloc when used with inplace addition or assignment and an int indexer on a MultiIndex causing the wrong indexes to be read from and written to (GH17148)
Bug in .isin() in which checking membership in empty Series objects raised an error (GH16991)
.isin()
Bug in CategoricalIndex reindexing in which specified indices containing duplicates were not being respected (GH17323)
Bug in intersection of RangeIndex with negative step (GH17296)
Bug in IntervalIndex where performing a scalar lookup fails for included right endpoints of non-overlapping monotonic decreasing indexes (GH16417, GH17271)
IntervalIndex
Bug in DataFrame.first_valid_index() and DataFrame.last_valid_index() when no valid entry (GH17400)
DataFrame.first_valid_index()
DataFrame.last_valid_index()
Bug in Series.rename() when called with a callable, incorrectly alters the name of the Series, rather than the name of the Index. (GH17407)
Series.rename()
Bug in String.str_get() raises IndexError instead of inserting NaNs when using a negative index. (GH17704)
String.str_get()
Bug in read_hdf() when reading a timezone aware index from fixed format HDFStore (GH17618)
read_hdf()
fixed
Bug in read_csv() in which columns were not being thoroughly de-duplicated (GH17060)
Bug in read_csv() in which specified column names were not being thoroughly de-duplicated (GH17095)
Bug in read_csv() in which non integer values for the header argument generated an unhelpful / unrelated error message (GH16338)
Bug in read_csv() in which memory management issues in exception handling, under certain conditions, would cause the interpreter to segfault (GH14696, GH16798).
Bug in read_csv() when called with low_memory=False in which a CSV with at least one column > 2GB in size would incorrectly raise a MemoryError (GH16798).
low_memory=False
MemoryError
Bug in read_csv() when called with a single-element list header would return a DataFrame of all NaN values (GH7757)
header
Bug in DataFrame.to_csv() defaulting to ‘ascii’ encoding in Python 3, instead of ‘utf-8’ (GH17097)
Bug in read_stata() where value labels could not be read when using an iterator (GH16923)
Bug in read_stata() where the index was not set (GH16342)
Bug in read_html() where import check fails when run in multiple threads (GH16928)
read_html()
Bug in read_csv() where automatic delimiter detection caused a TypeError to be thrown when a bad line was encountered rather than the correct error message (GH13374)
Bug in DataFrame.to_html() with notebook=True where DataFrames with named indices or non-MultiIndex indices had undesired horizontal or vertical alignment for column or row labels, respectively (GH16792)
DataFrame.to_html()
notebook=True
Bug in DataFrame.to_html() in which there was no validation of the justify parameter (GH17527)
justify
Bug in HDFStore.select() when reading a contiguous mixed-data table featuring VLArray (GH17021)
HDFStore.select()
Bug in to_json() where several conditions (including objects with unprintable symbols, objects with deep recursion, overlong labels) caused segfaults instead of raising the appropriate exception (GH14256)
Bug in plotting methods using secondary_y and fontsize not setting secondary axis font size (GH12565)
secondary_y
fontsize
Bug when plotting timedelta and datetime dtypes on y-axis (GH16953)
timedelta
Line plots no longer assume monotonic x data when calculating xlims, they show the entire lines now even for unsorted x data. (GH11310, GH11471)
With matplotlib 2.0.0 and above, calculation of x limits for line plots is left to matplotlib, so that its new default settings are applied. (GH15495)
Bug in Series.plot.bar or DataFrame.plot.bar with y not respecting user-passed color (GH16822)
Series.plot.bar
DataFrame.plot.bar
y
color
Bug causing plotting.parallel_coordinates to reset the random seed when using random colors (GH17525)
plotting.parallel_coordinates
Bug in DataFrame.resample(...).size() where an empty DataFrame did not return a Series (GH14962)
DataFrame.resample(...).size()
Bug in infer_freq() causing indices with 2-day gaps during the working week to be wrongly inferred as business daily (GH16624)
infer_freq()
Bug in .rolling(...).quantile() which incorrectly used different defaults than Series.quantile() and DataFrame.quantile() (GH9413, GH16211)
.rolling(...).quantile()
Series.quantile()
DataFrame.quantile()
Bug in groupby.transform() that would coerce boolean dtypes back to float (GH16875)
groupby.transform()
Bug in Series.resample(...).apply() where an empty Series modified the source index and did not return the name of a Series (GH14313)
Series.resample(...).apply()
Bug in .rolling(...).apply(...) with a DataFrame with a DatetimeIndex, a window of a timedelta-convertible and min_periods >= 1 (GH15305)
.rolling(...).apply(...)
window
min_periods >= 1
Bug in DataFrame.groupby where index and column keys were not recognized correctly when the number of keys equaled the number of elements on the groupby axis (GH16859)
DataFrame.groupby
Bug in groupby.nunique() with TimeGrouper which cannot handle NaT correctly (GH17575)
groupby.nunique()
TimeGrouper
Bug in DataFrame.groupby where a single level selection from a MultiIndex unexpectedly sorts (GH17537)
Bug in DataFrame.groupby where spurious warning is raised when Grouper object is used to override ambiguous column name (GH17383)
Grouper
Bug in TimeGrouper differs when passes as a list and as a scalar (GH17530)
Bug in SparseSeries raises AttributeError when a dictionary is passed in as data (GH16905)
Bug in SparseDataFrame.fillna() not filling all NaNs when frame was instantiated from SciPy sparse matrix (GH16112)
SparseDataFrame.fillna()
Bug in SparseSeries.unstack() and SparseDataFrame.stack() (GH16614, GH15045)
SparseSeries.unstack()
SparseDataFrame.stack()
Bug in make_sparse() treating two numeric/boolean data, which have same bits, as same when array dtype is object (GH17574)
make_sparse()
dtype
SparseArray.all() and SparseArray.any() are now implemented to handle SparseArray, these were used but not implemented (GH17570)
SparseArray.all()
SparseArray.any()
SparseArray
Joining/Merging with a non unique PeriodIndex raised a TypeError (GH16871)
Bug in crosstab() where non-aligned series of integers were casted to float (GH17005)
Bug in merging with categorical dtypes with datetimelikes incorrectly raised a TypeError (GH16900)
Bug when using isin() on a large object series and large comparison array (GH16012)
isin()
Fixes regression from 0.20, Series.aggregate() and DataFrame.aggregate() allow dictionaries as return values again (GH16741)
Series.aggregate()
DataFrame.aggregate()
Fixes dtype of result with integer dtype input, from pivot_table() when called with margins=True (GH17013)
pivot_table()
Bug in crosstab() where passing two Series with the same name raised a KeyError (GH13279)
Series.argmin(), Series.argmax(), and their counterparts on DataFrame and groupby objects work correctly with floating point data that contains infinite values (GH13595).
Bug in unique() where checking a tuple of strings raised a TypeError (GH17108)
unique()
Bug in concat() where order of result index was unpredictable if it contained non-comparable elements (GH17344)
concat()
Fixes regression when sorting by multiple columns on a datetime64 dtype Series with NaT values (GH16836)
Bug in pivot_table() where the result’s columns did not preserve the categorical dtype of columns when dropna was False (GH17842)
Bug in DataFrame.drop_duplicates where dropping with non-unique column names raised a ValueError (GH17836)
DataFrame.drop_duplicates
Bug in unstack() which, when called on a list of levels, would discard the fillna argument (GH13971)
unstack()
fillna
Bug in the alignment of range objects and other list-likes with DataFrame leading to operations being performed row-wise instead of column-wise (GH17901)
Bug in .clip() with axis=1 and a list-like for threshold is passed; previously this raised ValueError (GH15390)
.clip()
axis=1
threshold
Series.clip() and DataFrame.clip() now treat NA values for upper and lower arguments as None instead of raising ValueError (GH17276).
Bug in Series.isin() when called with a categorical (GH16639)
Series.isin()
Bug in the categorical constructor with empty values and categories causing the .categories to be an empty Float64Index rather than an empty Index with object dtype (GH17248)
.categories
Float64Index
Bug in categorical operations with Series.cat not preserving the original Series’ name (GH17509)
Bug in DataFrame.merge() failing for categorical columns with boolean/int data types (GH17187)
DataFrame.merge()
Bug in constructing a Categorical/CategoricalDtype when the specified categories are of categorical type (GH17884).
Compatibility with PyPy in read_csv() with usecols=[<unsorted ints>] and read_json() (GH17351)
usecols=[<unsorted ints>]
Split tests into cases for CPython and PyPy where needed, which highlights the fragility of index matching with float('nan'), np.nan and NAT (GH17351)
float('nan')
np.nan
NAT
Fix DataFrame.memory_usage() to support PyPy. Objects on PyPy do not have a fixed size, so an approximation is used instead (GH17228)
DataFrame.memory_usage()
Bug where some inplace operators were not being wrapped and produced a copy when invoked (GH12962)
Bug in eval() where the inplace parameter was being incorrectly handled (GH16732)
A total of 206 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
3553x +
Aaron Barber
Adam Gleave +
Adam Smith +
AdamShamlian +
Adrian Liaw +
Alan Velasco +
Alan Yee +
Alex B +
Alex Lubbock +
Alex Marchenko +
Alex Rychyk +
Amol K +
Andreas Winkler
Andrew +
Andrew 亮
André Jonasson +
Becky Sweger
Berkay +
Bob Haffner +
Bran Yang
Brian Tu +
Brock Mendel +
Carol Willing +
Carter Green +
Chankey Pathak +
Chris
Chris Billington
Chris Filo Gorgolewski +
Chris Kerr
Chris M +
Chris Mazzullo +
Christian Prinoth
Christian Stade-Schuldt
Christoph Moehl +
DSM
Daniel Chen +
Daniel Grady
Daniel Himmelstein
Dave Willmer
David Cook
David Gwynne
David Read +
Dillon Niederhut +
Douglas Rudd
Eric Stein +
Eric Wieser +
Erik Fredriksen
Florian Wilhelm +
Floris Kint +
Forbidden Donut
Gabe F +
Giftlin +
Giftlin Rajaiah +
Giulio Pepe +
Guilherme Beltramini
Guillem Borrell +
Hanmin Qin +
Hendrik Makait +
Hugues Valois
Hussain Tamboli +
Iva Miholic +
Jan Novotný +
Jan Rudolph
Jean Helie +
Jean-Baptiste Schiratti +
Jean-Mathieu Deschenes
Jeff Knupp +
Jeff Reback
Jeff Tratner
JennaVergeynst
JimStearns206
Joel Nothman
John W. O’Brien
Jon Crall +
Jon Mease
Jonathan J. Helmus +
Joris Van den Bossche
JosephWagner
Juarez Bochi
Julian Kuhlmann +
Karel De Brabandere
Kassandra Keeton +
Keiron Pizzey +
Keith Webber
Kernc
Kevin Sheppard
Kirk Hansen +
Licht Takeuchi +
Lucas Kushner +
Mahdi Ben Jelloul +
Makarov Andrey +
Malgorzata Turzanska +
Marc Garcia +
Margaret Sy +
MarsGuy +
Matt Bark +
Matthew Roeschke
Matti Picus
Mehmet Ali “Mali” Akmanalp
Michael Gasvoda +
Michael Penkov +
Milo +
Morgan Stuart +
Morgan243 +
Nathan Ford +
Nick Eubank
Nick Garvey +
Oleg Shteynbuk +
P-Tillmann +
Pankaj Pandey
Patrick Luo
Patrick O’Melveny
Paul Reidy +
Paula +
Peter Quackenbush
Peter Yanovich +
Phillip Cloud
Pierre Haessig
Pietro Battiston
Pradyumna Reddy Chinthala
Prasanjit Prakash
RobinFiveWords
Ryan Hendrickson
Sam Foo
Sangwoong Yoon +
Simon Gibbons +
SimonBaron
Steven Cutting +
Sudeep +
Sylvia +
T N +
Telt
Thomas A Caswell
Tim Swast +
Tom Augspurger
Tong SHEN
Tuan +
Utkarsh Upadhyay +
Vincent La +
Vivek +
WANG Aiyong
WBare
Wes McKinney
XF +
Yi Liu +
Yosuke Nakabayashi +
aaron315 +
abarber4gh +
aernlund +
agustín méndez +
andymaheshw +
ante328 +
aviolov +
bpraggastis
cbertinato +
cclauss +
chernrick
chris-b1
dkamm +
dwkenefick
economy
faic +
fding253 +
gfyoung
guygoldberg +
hhuuggoo +
huashuai +
ian
iulia +
jaredsnyder
jbrockmendel +
jdeschenes
jebob +
jschendel +
keitakurita
kernc +
kiwirob +
kjford
linebp
lloydkirk
louispotok +
majiang +
manikbhandari +
matthiashuschle +
mattip
maxwasserman +
mjlove12 +
nmartensen +
pandas-docs-bot +
parchd-1 +
philipphanemann +
rdk1024 +
reidy-p +
ri938
ruiann +
rvernica +
s-weigand +
scotthavard92 +
skwbc +
step4me +
tobycheese +
topper-123 +
tsdlovell
ysau +
zzgao +