pandas.
Grouper
A Grouper allows the user to specify a groupby instruction for an object.
This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.
If axis and/or level are passed as keywords to both Grouper and groupby, the values passed to Grouper take precedence.
Groupby key, which selects the grouping column of the target.
The level for the target index.
This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see here.
Number/name of the axis.
Whether to sort the resulting labels.
Closed end of interval. Only when freq parameter is passed.
Interval boundary to use for labeling. Only when freq parameter is passed.
If grouper is PeriodIndex and freq parameter is passed.
Only when freq parameter is passed. For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0.
Deprecated since version 1.1.0: The new arguments that you should use are ‘offset’ or ‘origin’.
Only when freq parameter is passed.
Deprecated since version 1.1.0: loffset is only working for .resample(...) and not for Grouper (GH28302). However, loffset is also deprecated for .resample(...) See: DataFrame.resample
.resample(...)
DataFrame.resample
The timestamp on which to adjust the grouping. The timezone of origin must match the timezone of the index. If a timestamp is not used, these values are also supported:
‘epoch’: origin is 1970-01-01
‘start’: origin is the first value of the timeseries
‘start_day’: origin is the first day at midnight of the timeseries
New in version 1.1.0.
An offset timedelta added to the origin.
Examples
Syntactic sugar for df.groupby('A')
df.groupby('A')
>>> df = pd.DataFrame( ... { ... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"], ... "Speed": [100, 5, 200, 300, 15], ... } ... ) >>> df Animal Speed 0 Falcon 100 1 Parrot 5 2 Falcon 200 3 Falcon 300 4 Parrot 15 >>> df.groupby(pd.Grouper(key="Animal")).mean() Speed Animal Falcon 200 Parrot 10
Specify a resample operation on the column ‘Publish date’
>>> df = pd.DataFrame( ... { ... "Publish date": [ ... pd.Timestamp("2000-01-02"), ... pd.Timestamp("2000-01-02"), ... pd.Timestamp("2000-01-09"), ... pd.Timestamp("2000-01-16") ... ], ... "ID": [0, 1, 2, 3], ... "Price": [10, 20, 30, 40] ... } ... ) >>> df Publish date ID Price 0 2000-01-02 0 10 1 2000-01-02 1 20 2 2000-01-09 2 30 3 2000-01-16 3 40 >>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean() ID Price Publish date 2000-01-02 0.5 15.0 2000-01-09 2.0 30.0 2000-01-16 3.0 40.0
If you want to adjust the start of the bins based on a fixed timestamp:
>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00' >>> rng = pd.date_range(start, end, freq='7min') >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng) >>> ts 2000-10-01 23:30:00 0 2000-10-01 23:37:00 3 2000-10-01 23:44:00 6 2000-10-01 23:51:00 9 2000-10-01 23:58:00 12 2000-10-02 00:05:00 15 2000-10-02 00:12:00 18 2000-10-02 00:19:00 21 2000-10-02 00:26:00 24 Freq: 7T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min')).sum() 2000-10-01 23:14:00 0 2000-10-01 23:31:00 9 2000-10-01 23:48:00 21 2000-10-02 00:05:00 54 2000-10-02 00:22:00 24 Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum() 2000-10-01 23:18:00 0 2000-10-01 23:35:00 18 2000-10-01 23:52:00 27 2000-10-02 00:09:00 39 2000-10-02 00:26:00 24 Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum() 2000-10-01 23:24:00 3 2000-10-01 23:41:00 15 2000-10-01 23:58:00 45 2000-10-02 00:15:00 45 Freq: 17T, dtype: int64
If you want to adjust the start of the bins with an offset Timedelta, the two following lines are equivalent:
>>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64
>>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum() 2000-10-01 23:30:00 9 2000-10-01 23:47:00 21 2000-10-02 00:04:00 54 2000-10-02 00:21:00 24 Freq: 17T, dtype: int64
To replace the use of the deprecated base argument, you can now use offset, in this example it is equivalent to have base=2:
>>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum() 2000-10-01 23:16:00 0 2000-10-01 23:33:00 9 2000-10-01 23:50:00 36 2000-10-02 00:07:00 39 2000-10-02 00:24:00 24 Freq: 17T, dtype: int64
Attributes
ax
groups