Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. ExponentialMovingWindow objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc.
.rolling
pandas.DataFrame.rolling()
pandas.Series.rolling()
.expanding
pandas.DataFrame.expanding()
pandas.Series.expanding()
.ewm
pandas.DataFrame.ewm()
pandas.Series.ewm()
Rolling.count()
Rolling.count
The rolling count of any non-NaN observations inside the window.
Rolling.sum(*args, **kwargs)
Rolling.sum
Calculate rolling sum of given DataFrame or Series.
Rolling.mean(*args, **kwargs)
Rolling.mean
Calculate the rolling mean of the values.
Rolling.median(**kwargs)
Rolling.median
Calculate the rolling median.
Rolling.var([ddof])
Rolling.var
Calculate unbiased rolling variance.
Rolling.std([ddof])
Rolling.std
Calculate rolling standard deviation.
Rolling.min(*args, **kwargs)
Rolling.min
Calculate the rolling minimum.
Rolling.max(*args, **kwargs)
Rolling.max
Calculate the rolling maximum.
Rolling.corr([other, pairwise])
Rolling.corr
Calculate rolling correlation.
Rolling.cov([other, pairwise, ddof])
Rolling.cov
Calculate the rolling sample covariance.
Rolling.skew(**kwargs)
Rolling.skew
Unbiased rolling skewness.
Rolling.kurt(**kwargs)
Rolling.kurt
Calculate unbiased rolling kurtosis.
Rolling.apply(func[, raw, engine, …])
Rolling.apply
Apply an arbitrary function to each rolling window.
Rolling.aggregate(func, *args, **kwargs)
Rolling.aggregate
Aggregate using one or more operations over the specified axis.
Rolling.quantile(quantile[, interpolation])
Rolling.quantile
Calculate the rolling quantile.
Rolling.sem([ddof])
Rolling.sem
Compute rolling standard error of mean.
Window.mean(*args, **kwargs)
Window.mean
Calculate the window mean of the values.
Window.sum(*args, **kwargs)
Window.sum
Calculate window sum of given DataFrame or Series.
Window.var([ddof])
Window.var
Calculate unbiased window variance.
Window.std([ddof])
Window.std
Calculate window standard deviation.
Expanding.count()
Expanding.count
The expanding count of any non-NaN observations inside the window.
Expanding.sum(*args, **kwargs)
Expanding.sum
Calculate expanding sum of given DataFrame or Series.
Expanding.mean(*args, **kwargs)
Expanding.mean
Calculate the expanding mean of the values.
Expanding.median(**kwargs)
Expanding.median
Calculate the expanding median.
Expanding.var([ddof])
Expanding.var
Calculate unbiased expanding variance.
Expanding.std([ddof])
Expanding.std
Calculate expanding standard deviation.
Expanding.min(*args, **kwargs)
Expanding.min
Calculate the expanding minimum.
Expanding.max(*args, **kwargs)
Expanding.max
Calculate the expanding maximum.
Expanding.corr([other, pairwise])
Expanding.corr
Calculate expanding correlation.
Expanding.cov([other, pairwise, ddof])
Expanding.cov
Calculate the expanding sample covariance.
Expanding.skew(**kwargs)
Expanding.skew
Unbiased expanding skewness.
Expanding.kurt(**kwargs)
Expanding.kurt
Calculate unbiased expanding kurtosis.
Expanding.apply(func[, raw, engine, …])
Expanding.apply
Apply an arbitrary function to each expanding window.
Expanding.aggregate(func, *args, **kwargs)
Expanding.aggregate
Expanding.quantile(quantile[, interpolation])
Expanding.quantile
Calculate the expanding quantile.
Expanding.sem([ddof])
Expanding.sem
Compute expanding standard error of mean.
ExponentialMovingWindow.mean(*args, **kwargs)
ExponentialMovingWindow.mean
Exponential weighted moving average.
ExponentialMovingWindow.std([bias])
ExponentialMovingWindow.std
Exponential weighted moving stddev.
ExponentialMovingWindow.var([bias])
ExponentialMovingWindow.var
Exponential weighted moving variance.
ExponentialMovingWindow.corr([other, pairwise])
ExponentialMovingWindow.corr
Exponential weighted sample correlation.
ExponentialMovingWindow.cov([other, …])
ExponentialMovingWindow.cov
Exponential weighted sample covariance.
Base class for defining custom window boundaries.
api.indexers.BaseIndexer([index_array, …])
api.indexers.BaseIndexer
Base class for window bounds calculations.
api.indexers.FixedForwardWindowIndexer([…])
api.indexers.FixedForwardWindowIndexer
Creates window boundaries for fixed-length windows that include the current row.
api.indexers.VariableOffsetWindowIndexer([…])
api.indexers.VariableOffsetWindowIndexer
Calculate window boundaries based on a non-fixed offset such as a BusinessDay