In [1]: import pandas as pd
For this tutorial, air quality data about \(NO_2\) is used, made available by openaq and downloaded using the py-openaq package.
The air_quality_no2_long.csv data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London.
air_quality_no2_long.csv
In [2]: air_quality_no2 = pd.read_csv("data/air_quality_no2_long.csv", ...: parse_dates=True) ...: In [3]: air_quality_no2 = air_quality_no2[["date.utc", "location", ...: "parameter", "value"]] ...: In [4]: air_quality_no2.head() Out[4]: date.utc location parameter value 0 2019-06-21 00:00:00+00:00 FR04014 no2 20.0 1 2019-06-20 23:00:00+00:00 FR04014 no2 21.8 2 2019-06-20 22:00:00+00:00 FR04014 no2 26.5 3 2019-06-20 21:00:00+00:00 FR04014 no2 24.9 4 2019-06-20 20:00:00+00:00 FR04014 no2 21.4
For this tutorial, air quality data about Particulate matter less than 2.5 micrometers is used, made available by openaq and downloaded using the py-openaq package.
The air_quality_pm25_long.csv data set provides \(PM_{25}\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London.
air_quality_pm25_long.csv
In [5]: air_quality_pm25 = pd.read_csv("data/air_quality_pm25_long.csv", ...: parse_dates=True) ...: In [6]: air_quality_pm25 = air_quality_pm25[["date.utc", "location", ...: "parameter", "value"]] ...: In [7]: air_quality_pm25.head() Out[7]: date.utc location parameter value 0 2019-06-18 06:00:00+00:00 BETR801 pm25 18.0 1 2019-06-17 08:00:00+00:00 BETR801 pm25 6.5 2 2019-06-17 07:00:00+00:00 BETR801 pm25 18.5 3 2019-06-17 06:00:00+00:00 BETR801 pm25 16.0 4 2019-06-17 05:00:00+00:00 BETR801 pm25 7.5
I want to combine the measurements of \(NO_2\) and \(PM_{25}\), two tables with a similar structure, in a single table
In [8]: air_quality = pd.concat([air_quality_pm25, air_quality_no2], axis=0) In [9]: air_quality.head() Out[9]: date.utc location parameter value 0 2019-06-18 06:00:00+00:00 BETR801 pm25 18.0 1 2019-06-17 08:00:00+00:00 BETR801 pm25 6.5 2 2019-06-17 07:00:00+00:00 BETR801 pm25 18.5 3 2019-06-17 06:00:00+00:00 BETR801 pm25 16.0 4 2019-06-17 05:00:00+00:00 BETR801 pm25 7.5
The concat() function performs concatenation operations of multiple tables along one of the axis (row-wise or column-wise).
concat()
By default concatenation is along axis 0, so the resulting table combines the rows of the input tables. Let’s check the shape of the original and the concatenated tables to verify the operation:
In [10]: print('Shape of the ``air_quality_pm25`` table: ', air_quality_pm25.shape) Shape of the ``air_quality_pm25`` table: (1110, 4) In [11]: print('Shape of the ``air_quality_no2`` table: ', air_quality_no2.shape) Shape of the ``air_quality_no2`` table: (2068, 4) In [12]: print('Shape of the resulting ``air_quality`` table: ', air_quality.shape) Shape of the resulting ``air_quality`` table: (3178, 4)
Hence, the resulting table has 3178 = 1110 + 2068 rows.
Note
The axis argument will return in a number of pandas methods that can be applied along an axis. A DataFrame has two corresponding axes: the first running vertically downwards across rows (axis 0), and the second running horizontally across columns (axis 1). Most operations like concatenation or summary statistics are by default across rows (axis 0), but can be applied across columns as well.
DataFrame
Sorting the table on the datetime information illustrates also the combination of both tables, with the parameter column defining the origin of the table (either no2 from table air_quality_no2 or pm25 from table air_quality_pm25):
parameter
no2
air_quality_no2
pm25
air_quality_pm25
In [13]: air_quality = air_quality.sort_values("date.utc") In [14]: air_quality.head() Out[14]: date.utc location parameter value 2067 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 1003 2019-05-07 01:00:00+00:00 FR04014 no2 25.0 100 2019-05-07 01:00:00+00:00 BETR801 pm25 12.5 1098 2019-05-07 01:00:00+00:00 BETR801 no2 50.5 1109 2019-05-07 01:00:00+00:00 London Westminster pm25 8.0
In this specific example, the parameter column provided by the data ensures that each of the original tables can be identified. This is not always the case. the concat function provides a convenient solution with the keys argument, adding an additional (hierarchical) row index. For example:
concat
keys
In [15]: air_quality_ = pd.concat([air_quality_pm25, air_quality_no2], keys=["PM25", "NO2"])
In [16]: air_quality_.head() Out[16]: date.utc location parameter value PM25 0 2019-06-18 06:00:00+00:00 BETR801 pm25 18.0 1 2019-06-17 08:00:00+00:00 BETR801 pm25 6.5 2 2019-06-17 07:00:00+00:00 BETR801 pm25 18.5 3 2019-06-17 06:00:00+00:00 BETR801 pm25 16.0 4 2019-06-17 05:00:00+00:00 BETR801 pm25 7.5
The existence of multiple row/column indices at the same time has not been mentioned within these tutorials. Hierarchical indexing or MultiIndex is an advanced and powerful pandas feature to analyze higher dimensional data.
Multi-indexing is out of scope for this pandas introduction. For the moment, remember that the function reset_index can be used to convert any level of an index to a column, e.g. air_quality.reset_index(level=0)
reset_index
air_quality.reset_index(level=0)
Feel free to dive into the world of multi-indexing at the user guide section on advanced indexing.
More options on table concatenation (row and column wise) and how concat can be used to define the logic (union or intersection) of the indexes on the other axes is provided at the section on object concatenation.
Add the station coordinates, provided by the stations metadata table, to the corresponding rows in the measurements table.
Warning
The air quality measurement station coordinates are stored in a data file air_quality_stations.csv, downloaded using the py-openaq package.
air_quality_stations.csv
In [17]: stations_coord = pd.read_csv("data/air_quality_stations.csv") In [18]: stations_coord.head() Out[18]: location coordinates.latitude coordinates.longitude 0 BELAL01 51.23619 4.38522 1 BELHB23 51.17030 4.34100 2 BELLD01 51.10998 5.00486 3 BELLD02 51.12038 5.02155 4 BELR833 51.32766 4.36226
The stations used in this example (FR04014, BETR801 and London Westminster) are just three entries enlisted in the metadata table. We only want to add the coordinates of these three to the measurements table, each on the corresponding rows of the air_quality table.
air_quality
In [19]: air_quality.head() Out[19]: date.utc location parameter value 2067 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 1003 2019-05-07 01:00:00+00:00 FR04014 no2 25.0 100 2019-05-07 01:00:00+00:00 BETR801 pm25 12.5 1098 2019-05-07 01:00:00+00:00 BETR801 no2 50.5 1109 2019-05-07 01:00:00+00:00 London Westminster pm25 8.0
In [20]: air_quality = pd.merge(air_quality, stations_coord, how="left", on="location") In [21]: air_quality.head() Out[21]: date.utc location parameter value coordinates.latitude coordinates.longitude 0 2019-05-07 01:00:00+00:00 London Westminster no2 23.0 51.49467 -0.13193 1 2019-05-07 01:00:00+00:00 FR04014 no2 25.0 48.83724 2.39390 2 2019-05-07 01:00:00+00:00 FR04014 no2 25.0 48.83722 2.39390 3 2019-05-07 01:00:00+00:00 BETR801 pm25 12.5 51.20966 4.43182 4 2019-05-07 01:00:00+00:00 BETR801 no2 50.5 51.20966 4.43182
Using the merge() function, for each of the rows in the air_quality table, the corresponding coordinates are added from the air_quality_stations_coord table. Both tables have the column location in common which is used as a key to combine the information. By choosing the left join, only the locations available in the air_quality (left) table, i.e. FR04014, BETR801 and London Westminster, end up in the resulting table. The merge function supports multiple join options similar to database-style operations.
merge()
air_quality_stations_coord
location
left
merge
Add the parameter full description and name, provided by the parameters metadata table, to the measurements table
The air quality parameters metadata are stored in a data file air_quality_parameters.csv, downloaded using the py-openaq package.
air_quality_parameters.csv
In [22]: air_quality_parameters = pd.read_csv("data/air_quality_parameters.csv") In [23]: air_quality_parameters.head() Out[23]: id description name 0 bc Black Carbon BC 1 co Carbon Monoxide CO 2 no2 Nitrogen Dioxide NO2 3 o3 Ozone O3 4 pm10 Particulate matter less than 10 micrometers in... PM10
In [24]: air_quality = pd.merge(air_quality, air_quality_parameters, ....: how='left', left_on='parameter', right_on='id') ....: In [25]: air_quality.head() Out[25]: date.utc location ... description name 0 2019-05-07 01:00:00+00:00 London Westminster ... Nitrogen Dioxide NO2 1 2019-05-07 01:00:00+00:00 FR04014 ... Nitrogen Dioxide NO2 2 2019-05-07 01:00:00+00:00 FR04014 ... Nitrogen Dioxide NO2 3 2019-05-07 01:00:00+00:00 BETR801 ... Particulate matter less than 2.5 micrometers i... PM2.5 4 2019-05-07 01:00:00+00:00 BETR801 ... Nitrogen Dioxide NO2 [5 rows x 9 columns]
Compared to the previous example, there is no common column name. However, the parameter column in the air_quality table and the id column in the air_quality_parameters_name both provide the measured variable in a common format. The left_on and right_on arguments are used here (instead of just on) to make the link between the two tables.
id
air_quality_parameters_name
left_on
right_on
on
pandas supports also inner, outer, and right joins. More information on join/merge of tables is provided in the user guide section on database style merging of tables. Or have a look at the comparison with SQL page.
Multiple tables can be concatenated both column-wise and row-wise using the concat function.
For database-like merging/joining of tables, use the merge function.
See the user guide for a full description of the various facilities to combine data tables.