This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.
Adding interesting links and/or inline examples to this section is a great First Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.
pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.
These are some neat pandas idioms
idioms
if-then/if-then-else on one column, and assignment to another one or more columns:
In [1]: df = pd.DataFrame( ...: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ...: ) ...: In [2]: df Out[2]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50
An if-then on one column
In [3]: df.loc[df.AAA >= 5, "BBB"] = -1 In [4]: df Out[4]: AAA BBB CCC 0 4 10 100 1 5 -1 50 2 6 -1 -30 3 7 -1 -50
An if-then with assignment to 2 columns:
In [5]: df.loc[df.AAA >= 5, ["BBB", "CCC"]] = 555 In [6]: df Out[6]: AAA BBB CCC 0 4 10 100 1 5 555 555 2 6 555 555 3 7 555 555
Add another line with different logic, to do the -else
In [7]: df.loc[df.AAA < 5, ["BBB", "CCC"]] = 2000 In [8]: df Out[8]: AAA BBB CCC 0 4 2000 2000 1 5 555 555 2 6 555 555 3 7 555 555
Or use pandas where after you’ve set up a mask
In [9]: df_mask = pd.DataFrame( ...: {"AAA": [True] * 4, "BBB": [False] * 4, "CCC": [True, False] * 2} ...: ) ...: In [10]: df.where(df_mask, -1000) Out[10]: AAA BBB CCC 0 4 -1000 2000 1 5 -1000 -1000 2 6 -1000 555 3 7 -1000 -1000
if-then-else using NumPy’s where()
In [11]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [12]: df Out[12]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [13]: df["logic"] = np.where(df["AAA"] > 5, "high", "low") In [14]: df Out[14]: AAA BBB CCC logic 0 4 10 100 low 1 5 20 50 low 2 6 30 -30 high 3 7 40 -50 high
Split a frame with a boolean criterion
In [15]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [16]: df Out[16]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [17]: df[df.AAA <= 5] Out[17]: AAA BBB CCC 0 4 10 100 1 5 20 50 In [18]: df[df.AAA > 5] Out[18]: AAA BBB CCC 2 6 30 -30 3 7 40 -50
Select with multi-column criteria
In [19]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [20]: df Out[20]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50
…and (without assignment returns a Series)
In [21]: df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"] Out[21]: 0 4 1 5 Name: AAA, dtype: int64
…or (without assignment returns a Series)
In [22]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"] Out[22]: 0 4 1 5 2 6 3 7 Name: AAA, dtype: int64
…or (with assignment modifies the DataFrame.)
In [23]: df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 0.1 In [24]: df Out[24]: AAA BBB CCC 0 0.1 10 100 1 5.0 20 50 2 0.1 30 -30 3 0.1 40 -50
Select rows with data closest to certain value using argsort
In [25]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [26]: df Out[26]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [27]: aValue = 43.0 In [28]: df.loc[(df.CCC - aValue).abs().argsort()] Out[28]: AAA BBB CCC 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50
Dynamically reduce a list of criteria using a binary operators
In [29]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [30]: df Out[30]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [31]: Crit1 = df.AAA <= 5.5 In [32]: Crit2 = df.BBB == 10.0 In [33]: Crit3 = df.CCC > -40.0
One could hard code:
In [34]: AllCrit = Crit1 & Crit2 & Crit3
…Or it can be done with a list of dynamically built criteria
In [35]: import functools In [36]: CritList = [Crit1, Crit2, Crit3] In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList) In [38]: df[AllCrit] Out[38]: AAA BBB CCC 0 4 10 100
The indexing docs.
Using both row labels and value conditionals
In [39]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [40]: df Out[40]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))] Out[41]: AAA BBB CCC 0 4 10 100 2 6 30 -30
Use loc for label-oriented slicing and iloc positional slicing
In [42]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}, ....: index=["foo", "bar", "boo", "kar"], ....: ) ....:
There are 2 explicit slicing methods, with a third general case
Positional-oriented (Python slicing style : exclusive of end)
Label-oriented (Non-Python slicing style : inclusive of end)
General (Either slicing style : depends on if the slice contains labels or positions)
In [43]: df.loc["bar":"kar"] # Label Out[43]: AAA BBB CCC bar 5 20 50 boo 6 30 -30 kar 7 40 -50 # Generic In [44]: df[0:3] Out[44]: AAA BBB CCC foo 4 10 100 bar 5 20 50 boo 6 30 -30 In [45]: df["bar":"kar"] Out[45]: AAA BBB CCC bar 5 20 50 boo 6 30 -30 kar 7 40 -50
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
In [46]: data = {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1. In [48]: df2.iloc[1:3] # Position-oriented Out[48]: AAA BBB CCC 2 5 20 50 3 6 30 -30 In [49]: df2.loc[1:3] # Label-oriented Out[49]: AAA BBB CCC 1 4 10 100 2 5 20 50 3 6 30 -30
Using inverse operator (~) to take the complement of a mask
In [50]: df = pd.DataFrame( ....: {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]} ....: ) ....: In [51]: df Out[51]: AAA BBB CCC 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))] Out[52]: AAA BBB CCC 1 5 20 50 3 7 40 -50
Efficiently and dynamically creating new columns using applymap
In [53]: df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]}) In [54]: df Out[54]: AAA BBB CCC 0 1 1 2 1 2 1 1 2 1 2 3 3 3 2 1 In [55]: source_cols = df.columns # Or some subset would work too In [56]: new_cols = [str(x) + "_cat" for x in source_cols] In [57]: categories = {1: "Alpha", 2: "Beta", 3: "Charlie"} In [58]: df[new_cols] = df[source_cols].applymap(categories.get) In [59]: df Out[59]: AAA BBB CCC AAA_cat BBB_cat CCC_cat 0 1 1 2 Alpha Alpha Beta 1 2 1 1 Beta Alpha Alpha 2 1 2 3 Alpha Beta Charlie 3 3 2 1 Charlie Beta Alpha
Keep other columns when using min() with groupby
In [60]: df = pd.DataFrame( ....: {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]} ....: ) ....: In [61]: df Out[61]: AAA BBB 0 1 2 1 1 1 2 1 3 3 2 4 4 2 5 5 2 1 6 3 2 7 3 3
Method 1 : idxmin() to get the index of the minimums
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()] Out[62]: AAA BBB 1 1 1 5 2 1 6 3 2
Method 2 : sort then take first of each
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first() Out[63]: AAA BBB 0 1 1 1 2 1 2 3 2
Notice the same results, with the exception of the index.
The multindexing docs.
Creating a MultiIndex from a labeled frame
In [64]: df = pd.DataFrame( ....: { ....: "row": [0, 1, 2], ....: "One_X": [1.1, 1.1, 1.1], ....: "One_Y": [1.2, 1.2, 1.2], ....: "Two_X": [1.11, 1.11, 1.11], ....: "Two_Y": [1.22, 1.22, 1.22], ....: } ....: ) ....: In [65]: df Out[65]: row One_X One_Y Two_X Two_Y 0 0 1.1 1.2 1.11 1.22 1 1 1.1 1.2 1.11 1.22 2 2 1.1 1.2 1.11 1.22 # As Labelled Index In [66]: df = df.set_index("row") In [67]: df Out[67]: One_X One_Y Two_X Two_Y row 0 1.1 1.2 1.11 1.22 1 1.1 1.2 1.11 1.22 2 1.1 1.2 1.11 1.22 # With Hierarchical Columns In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns]) In [69]: df Out[69]: One Two X Y X Y row 0 1.1 1.2 1.11 1.22 1 1.1 1.2 1.11 1.22 2 1.1 1.2 1.11 1.22 # Now stack & Reset In [70]: df = df.stack(0).reset_index(1) In [71]: df Out[71]: level_1 X Y row 0 One 1.10 1.20 0 Two 1.11 1.22 1 One 1.10 1.20 1 Two 1.11 1.22 2 One 1.10 1.20 2 Two 1.11 1.22 # And fix the labels (Notice the label 'level_1' got added automatically) In [72]: df.columns = ["Sample", "All_X", "All_Y"] In [73]: df Out[73]: Sample All_X All_Y row 0 One 1.10 1.20 0 Two 1.11 1.22 1 One 1.10 1.20 1 Two 1.11 1.22 2 One 1.10 1.20 2 Two 1.11 1.22
Performing arithmetic with a MultiIndex that needs broadcasting
In [74]: cols = pd.MultiIndex.from_tuples( ....: [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]] ....: ) ....: In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols) In [76]: df Out[76]: A B C O I O I O I n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215 m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804 In [77]: df = df.div(df["C"], level=1) In [78]: df Out[78]: A B C O I O I O I n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0 m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
Slicing a MultiIndex with xs
In [79]: coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")] In [80]: index = pd.MultiIndex.from_tuples(coords) In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"]) In [82]: df Out[82]: MyData AA one 11 six 22 BB one 33 two 44 six 55
To take the cross section of the 1st level and 1st axis the index:
# Note : level and axis are optional, and default to zero In [83]: df.xs("BB", level=0, axis=0) Out[83]: MyData one 33 two 44 six 55
…and now the 2nd level of the 1st axis.
In [84]: df.xs("six", level=1, axis=0) Out[84]: MyData AA 22 BB 55
Slicing a MultiIndex with xs, method #2
In [85]: import itertools In [86]: index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"])) In [87]: headr = list(itertools.product(["Exams", "Labs"], ["I", "II"])) In [88]: indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"]) In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)] In [91]: df = pd.DataFrame(data, indx, cols) In [92]: df Out[92]: Exams Labs I II I II Student Course Ada Comp 70 71 72 73 Math 71 73 75 74 Sci 72 75 75 75 Quinn Comp 73 74 75 76 Math 74 76 78 77 Sci 75 78 78 78 Violet Comp 76 77 78 79 Math 77 79 81 80 Sci 78 81 81 81 In [93]: All = slice(None) In [94]: df.loc["Violet"] Out[94]: Exams Labs I II I II Course Comp 76 77 78 79 Math 77 79 81 80 Sci 78 81 81 81 In [95]: df.loc[(All, "Math"), All] Out[95]: Exams Labs I II I II Student Course Ada Math 71 73 75 74 Quinn Math 74 76 78 77 Violet Math 77 79 81 80 In [96]: df.loc[(slice("Ada", "Quinn"), "Math"), All] Out[96]: Exams Labs I II I II Student Course Ada Math 71 73 75 74 Quinn Math 74 76 78 77 In [97]: df.loc[(All, "Math"), ("Exams")] Out[97]: I II Student Course Ada Math 71 73 Quinn Math 74 76 Violet Math 77 79 In [98]: df.loc[(All, "Math"), (All, "II")] Out[98]: Exams Labs II II Student Course Ada Math 73 74 Quinn Math 76 77 Violet Math 79 80
Setting portions of a MultiIndex with xs
Sort by specific column or an ordered list of columns, with a MultiIndex
In [99]: df.sort_values(by=("Labs", "II"), ascending=False) Out[99]: Exams Labs I II I II Student Course Violet Sci 78 81 81 81 Math 77 79 81 80 Comp 76 77 78 79 Quinn Sci 75 78 78 78 Math 74 76 78 77 Comp 73 74 75 76 Ada Sci 72 75 75 75 Math 71 73 75 74 Comp 70 71 72 73
Partial selection, the need for sortedness;
Prepending a level to a multiindex
Flatten Hierarchical columns
The missing data docs.
Fill forward a reversed timeseries
In [100]: df = pd.DataFrame( .....: np.random.randn(6, 1), .....: index=pd.date_range("2013-08-01", periods=6, freq="B"), .....: columns=list("A"), .....: ) .....: In [101]: df.loc[df.index[3], "A"] = np.nan In [102]: df Out[102]: A 2013-08-01 0.721555 2013-08-02 -0.706771 2013-08-05 -1.039575 2013-08-06 NaN 2013-08-07 -0.424972 2013-08-08 0.567020 In [103]: df.reindex(df.index[::-1]).ffill() Out[103]: A 2013-08-08 0.567020 2013-08-07 -0.424972 2013-08-06 -0.424972 2013-08-05 -1.039575 2013-08-02 -0.706771 2013-08-01 0.721555
cumsum reset at NaN values
Using replace with backrefs
The grouping docs.
Basic grouping with apply
Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns
In [104]: df = pd.DataFrame( .....: { .....: "animal": "cat dog cat fish dog cat cat".split(), .....: "size": list("SSMMMLL"), .....: "weight": [8, 10, 11, 1, 20, 12, 12], .....: "adult": [False] * 5 + [True] * 2, .....: } .....: ) .....: In [105]: df Out[105]: animal size weight adult 0 cat S 8 False 1 dog S 10 False 2 cat M 11 False 3 fish M 1 False 4 dog M 20 False 5 cat L 12 True 6 cat L 12 True # List the size of the animals with the highest weight. In [106]: df.groupby("animal").apply(lambda subf: subf["size"][subf["weight"].idxmax()]) Out[106]: animal cat L dog M fish M dtype: object
Using get_group
In [107]: gb = df.groupby(["animal"]) In [108]: gb.get_group("cat") Out[108]: animal size weight adult 0 cat S 8 False 2 cat M 11 False 5 cat L 12 True 6 cat L 12 True
Apply to different items in a group
In [109]: def GrowUp(x): .....: avg_weight = sum(x[x["size"] == "S"].weight * 1.5) .....: avg_weight += sum(x[x["size"] == "M"].weight * 1.25) .....: avg_weight += sum(x[x["size"] == "L"].weight) .....: avg_weight /= len(x) .....: return pd.Series(["L", avg_weight, True], index=["size", "weight", "adult"]) .....: In [110]: expected_df = gb.apply(GrowUp) In [111]: expected_df Out[111]: size weight adult animal cat L 12.4375 True dog L 20.0000 True fish L 1.2500 True
Expanding apply
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)]) In [113]: def cum_ret(x, y): .....: return x * (1 + y) .....: In [114]: def red(x): .....: return functools.reduce(cum_ret, x, 1.0) .....: In [115]: S.expanding().apply(red, raw=True) Out[115]: 0 1.010000 1 1.030200 2 1.061106 3 1.103550 4 1.158728 5 1.228251 6 1.314229 7 1.419367 8 1.547110 9 1.701821 dtype: float64
Replacing some values with mean of the rest of a group
In [116]: df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, -1, 1, 2]}) In [117]: gb = df.groupby("A") In [118]: def replace(g): .....: mask = g < 0 .....: return g.where(mask, g[~mask].mean()) .....: In [119]: gb.transform(replace) Out[119]: B 0 1.0 1 -1.0 2 1.5 3 1.5
Sort groups by aggregated data
In [120]: df = pd.DataFrame( .....: { .....: "code": ["foo", "bar", "baz"] * 2, .....: "data": [0.16, -0.21, 0.33, 0.45, -0.59, 0.62], .....: "flag": [False, True] * 3, .....: } .....: ) .....: In [121]: code_groups = df.groupby("code") In [122]: agg_n_sort_order = code_groups[["data"]].transform(sum).sort_values(by="data") In [123]: sorted_df = df.loc[agg_n_sort_order.index] In [124]: sorted_df Out[124]: code data flag 1 bar -0.21 True 4 bar -0.59 False 0 foo 0.16 False 3 foo 0.45 True 2 baz 0.33 False 5 baz 0.62 True
Create multiple aggregated columns
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq="2min") In [126]: ts = pd.Series(data=list(range(10)), index=rng) In [127]: def MyCust(x): .....: if len(x) > 2: .....: return x[1] * 1.234 .....: return pd.NaT .....: In [128]: mhc = {"Mean": np.mean, "Max": np.max, "Custom": MyCust} In [129]: ts.resample("5min").apply(mhc) Out[129]: Mean 2014-10-07 00:00:00 1.0 2014-10-07 00:05:00 3.5 2014-10-07 00:10:00 6.0 2014-10-07 00:15:00 8.5 Max 2014-10-07 00:00:00 2 2014-10-07 00:05:00 4 2014-10-07 00:10:00 7 2014-10-07 00:15:00 9 Custom 2014-10-07 00:00:00 1.234 2014-10-07 00:05:00 NaT 2014-10-07 00:10:00 7.404 2014-10-07 00:15:00 NaT dtype: object In [130]: ts Out[130]: 2014-10-07 00:00:00 0 2014-10-07 00:02:00 1 2014-10-07 00:04:00 2 2014-10-07 00:06:00 3 2014-10-07 00:08:00 4 2014-10-07 00:10:00 5 2014-10-07 00:12:00 6 2014-10-07 00:14:00 7 2014-10-07 00:16:00 8 2014-10-07 00:18:00 9 Freq: 2T, dtype: int64
Create a value counts column and reassign back to the DataFrame
In [131]: df = pd.DataFrame( .....: {"Color": "Red Red Red Blue".split(), "Value": [100, 150, 50, 50]} .....: ) .....: In [132]: df Out[132]: Color Value 0 Red 100 1 Red 150 2 Red 50 3 Blue 50 In [133]: df["Counts"] = df.groupby(["Color"]).transform(len) In [134]: df Out[134]: Color Value Counts 0 Red 100 3 1 Red 150 3 2 Red 50 3 3 Blue 50 1
Shift groups of the values in a column based on the index
In [135]: df = pd.DataFrame( .....: {"line_race": [10, 10, 8, 10, 10, 8], "beyer": [99, 102, 103, 103, 88, 100]}, .....: index=[ .....: "Last Gunfighter", .....: "Last Gunfighter", .....: "Last Gunfighter", .....: "Paynter", .....: "Paynter", .....: "Paynter", .....: ], .....: ) .....: In [136]: df Out[136]: line_race beyer Last Gunfighter 10 99 Last Gunfighter 10 102 Last Gunfighter 8 103 Paynter 10 103 Paynter 10 88 Paynter 8 100 In [137]: df["beyer_shifted"] = df.groupby(level=0)["beyer"].shift(1) In [138]: df Out[138]: line_race beyer beyer_shifted Last Gunfighter 10 99 NaN Last Gunfighter 10 102 99.0 Last Gunfighter 8 103 102.0 Paynter 10 103 NaN Paynter 10 88 103.0 Paynter 8 100 88.0
Select row with maximum value from each group
In [139]: df = pd.DataFrame( .....: { .....: "host": ["other", "other", "that", "this", "this"], .....: "service": ["mail", "web", "mail", "mail", "web"], .....: "no": [1, 2, 1, 2, 1], .....: } .....: ).set_index(["host", "service"]) .....: In [140]: mask = df.groupby(level=0).agg("idxmax") In [141]: df_count = df.loc[mask["no"]].reset_index() In [142]: df_count Out[142]: host service no 0 other web 2 1 that mail 1 2 this mail 2
Grouping like Python’s itertools.groupby
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=["A"]) In [144]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).groups Out[144]: {1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]} In [145]: df["A"].groupby((df["A"] != df["A"].shift()).cumsum()).cumsum() Out[145]: 0 0 1 1 2 0 3 1 4 2 5 3 6 0 7 1 8 2 Name: A, dtype: int64
Alignment and to-date
Rolling Computation window based on values instead of counts
Rolling Mean by Time Interval
Splitting a frame
Create a list of dataframes, split using a delineation based on logic included in rows.
In [146]: df = pd.DataFrame( .....: data={ .....: "Case": ["A", "A", "A", "B", "A", "A", "B", "A", "A"], .....: "Data": np.random.randn(9), .....: } .....: ) .....: In [147]: dfs = list( .....: zip( .....: *df.groupby( .....: (1 * (df["Case"] == "B")) .....: .cumsum() .....: .rolling(window=3, min_periods=1) .....: .median() .....: ) .....: ) .....: )[-1] .....: In [148]: dfs[0] Out[148]: Case Data 0 A 0.276232 1 A -1.087401 2 A -0.673690 3 B 0.113648 In [149]: dfs[1] Out[149]: Case Data 4 A -1.478427 5 A 0.524988 6 B 0.404705 In [150]: dfs[2] Out[150]: Case Data 7 A 0.577046 8 A -1.715002
The Pivot docs.
Partial sums and subtotals
In [151]: df = pd.DataFrame( .....: data={ .....: "Province": ["ON", "QC", "BC", "AL", "AL", "MN", "ON"], .....: "City": [ .....: "Toronto", .....: "Montreal", .....: "Vancouver", .....: "Calgary", .....: "Edmonton", .....: "Winnipeg", .....: "Windsor", .....: ], .....: "Sales": [13, 6, 16, 8, 4, 3, 1], .....: } .....: ) .....: In [152]: table = pd.pivot_table( .....: df, .....: values=["Sales"], .....: index=["Province"], .....: columns=["City"], .....: aggfunc=np.sum, .....: margins=True, .....: ) .....: In [153]: table.stack("City") Out[153]: Sales Province City AL All 12.0 Calgary 8.0 Edmonton 4.0 BC All 16.0 Vancouver 16.0 ... ... All Montreal 6.0 Toronto 13.0 Vancouver 16.0 Windsor 1.0 Winnipeg 3.0 [20 rows x 1 columns]
Frequency table like plyr in R
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78] In [155]: df = pd.DataFrame( .....: { .....: "ID": ["x%d" % r for r in range(10)], .....: "Gender": ["F", "M", "F", "M", "F", "M", "F", "M", "M", "M"], .....: "ExamYear": [ .....: "2007", .....: "2007", .....: "2007", .....: "2008", .....: "2008", .....: "2008", .....: "2008", .....: "2009", .....: "2009", .....: "2009", .....: ], .....: "Class": [ .....: "algebra", .....: "stats", .....: "bio", .....: "algebra", .....: "algebra", .....: "stats", .....: "stats", .....: "algebra", .....: "bio", .....: "bio", .....: ], .....: "Participated": [ .....: "yes", .....: "yes", .....: "yes", .....: "yes", .....: "no", .....: "yes", .....: "yes", .....: "yes", .....: "yes", .....: "yes", .....: ], .....: "Passed": ["yes" if x > 50 else "no" for x in grades], .....: "Employed": [ .....: True, .....: True, .....: True, .....: False, .....: False, .....: False, .....: False, .....: True, .....: True, .....: False, .....: ], .....: "Grade": grades, .....: } .....: ) .....: In [156]: df.groupby("ExamYear").agg( .....: { .....: "Participated": lambda x: x.value_counts()["yes"], .....: "Passed": lambda x: sum(x == "yes"), .....: "Employed": lambda x: sum(x), .....: "Grade": lambda x: sum(x) / len(x), .....: } .....: ) .....: Out[156]: Participated Passed Employed Grade ExamYear 2007 3 2 3 74.000000 2008 3 3 0 68.500000 2009 3 2 2 60.666667
Plot pandas DataFrame with year over year data
To create year and month cross tabulation:
In [157]: df = pd.DataFrame( .....: {"value": np.random.randn(36)}, .....: index=pd.date_range("2011-01-01", freq="M", periods=36), .....: ) .....: In [158]: pd.pivot_table( .....: df, index=df.index.month, columns=df.index.year, values="value", aggfunc="sum" .....: ) .....: Out[158]: 2011 2012 2013 1 -1.039268 -0.968914 2.565646 2 -0.370647 -1.294524 1.431256 3 -1.157892 0.413738 1.340309 4 -1.344312 0.276662 -1.170299 5 0.844885 -0.472035 -0.226169 6 1.075770 -0.013960 0.410835 7 -0.109050 -0.362543 0.813850 8 1.643563 -0.006154 0.132003 9 -1.469388 -0.923061 -0.827317 10 0.357021 0.895717 -0.076467 11 -0.674600 0.805244 -1.187678 12 -1.776904 -1.206412 1.130127
Rolling apply to organize - Turning embedded lists into a MultiIndex frame
In [159]: df = pd.DataFrame( .....: data={ .....: "A": [[2, 4, 8, 16], [100, 200], [10, 20, 30]], .....: "B": [["a", "b", "c"], ["jj", "kk"], ["ccc"]], .....: }, .....: index=["I", "II", "III"], .....: ) .....: In [160]: def SeriesFromSubList(aList): .....: return pd.Series(aList) .....: In [161]: df_orgz = pd.concat( .....: {ind: row.apply(SeriesFromSubList) for ind, row in df.iterrows()} .....: ) .....: In [162]: df_orgz Out[162]: 0 1 2 3 I A 2 4 8 16.0 B a b c NaN II A 100 200 NaN NaN B jj kk NaN NaN III A 10 20.0 30.0 NaN B ccc NaN NaN NaN
Rolling apply with a DataFrame returning a Series
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned
In [163]: df = pd.DataFrame( .....: data=np.random.randn(2000, 2) / 10000, .....: index=pd.date_range("2001-01-01", periods=2000), .....: columns=["A", "B"], .....: ) .....: In [164]: df Out[164]: A B 2001-01-01 -0.000144 -0.000141 2001-01-02 0.000161 0.000102 2001-01-03 0.000057 0.000088 2001-01-04 -0.000221 0.000097 2001-01-05 -0.000201 -0.000041 ... ... ... 2006-06-19 0.000040 -0.000235 2006-06-20 -0.000123 -0.000021 2006-06-21 -0.000113 0.000114 2006-06-22 0.000136 0.000109 2006-06-23 0.000027 0.000030 [2000 rows x 2 columns] In [165]: def gm(df, const): .....: v = ((((df["A"] + df["B"]) + 1).cumprod()) - 1) * const .....: return v.iloc[-1] .....: In [166]: s = pd.Series( .....: { .....: df.index[i]: gm(df.iloc[i: min(i + 51, len(df) - 1)], 5) .....: for i in range(len(df) - 50) .....: } .....: ) .....: In [167]: s Out[167]: 2001-01-01 0.000930 2001-01-02 0.002615 2001-01-03 0.001281 2001-01-04 0.001117 2001-01-05 0.002772 ... 2006-04-30 0.003296 2006-05-01 0.002629 2006-05-02 0.002081 2006-05-03 0.004247 2006-05-04 0.003928 Length: 1950, dtype: float64
Rolling apply with a DataFrame returning a Scalar
Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
In [168]: rng = pd.date_range(start="2014-01-01", periods=100) In [169]: df = pd.DataFrame( .....: { .....: "Open": np.random.randn(len(rng)), .....: "Close": np.random.randn(len(rng)), .....: "Volume": np.random.randint(100, 2000, len(rng)), .....: }, .....: index=rng, .....: ) .....: In [170]: df Out[170]: Open Close Volume 2014-01-01 -1.611353 -0.492885 1219 2014-01-02 -3.000951 0.445794 1054 2014-01-03 -0.138359 -0.076081 1381 2014-01-04 0.301568 1.198259 1253 2014-01-05 0.276381 -0.669831 1728 ... ... ... ... 2014-04-06 -0.040338 0.937843 1188 2014-04-07 0.359661 -0.285908 1864 2014-04-08 0.060978 1.714814 941 2014-04-09 1.759055 -0.455942 1065 2014-04-10 0.138185 -1.147008 1453 [100 rows x 3 columns] In [171]: def vwap(bars): .....: return (bars.Close * bars.Volume).sum() / bars.Volume.sum() .....: In [172]: window = 5 In [173]: s = pd.concat( .....: [ .....: (pd.Series(vwap(df.iloc[i: i + window]), index=[df.index[i + window]])) .....: for i in range(len(df) - window) .....: ] .....: ) .....: In [174]: s.round(2) Out[174]: 2014-01-06 0.02 2014-01-07 0.11 2014-01-08 0.10 2014-01-09 0.07 2014-01-10 -0.29 ... 2014-04-06 -0.63 2014-04-07 -0.02 2014-04-08 -0.03 2014-04-09 0.34 2014-04-10 0.29 Length: 95, dtype: float64
Between times
Using indexer between time
Constructing a datetime range that excludes weekends and includes only certain times
Vectorized Lookup
Aggregation and plotting time series
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series. How to rearrange a Python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex
In [175]: dates = pd.date_range("2000-01-01", periods=5) In [176]: dates.to_period(freq="M").to_timestamp() Out[176]: DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01'], dtype='datetime64[ns]', freq=None)
The Resample docs.
Using Grouper instead of TimeGrouper for time grouping of values
Time grouping with some missing values
Valid frequency arguments to Grouper Timeseries
Grouping using a MultiIndex
Using TimeGrouper and another grouping to create subgroups, then apply a custom function
Resampling with custom periods
Resample intraday frame without adding new days
Resample minute data
Resample with groupby
The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind)
In [177]: rng = pd.date_range("2000-01-01", periods=6) In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=["A", "B", "C"]) In [179]: df2 = df1.copy()
Depending on df construction, ignore_index may be needed
ignore_index
In [180]: df = df1.append(df2, ignore_index=True) In [181]: df Out[181]: A B C 0 -0.870117 -0.479265 -0.790855 1 0.144817 1.726395 -0.464535 2 -0.821906 1.597605 0.187307 3 -0.128342 -1.511638 -0.289858 4 0.399194 -1.430030 -0.639760 5 1.115116 -2.012600 1.810662 6 -0.870117 -0.479265 -0.790855 7 0.144817 1.726395 -0.464535 8 -0.821906 1.597605 0.187307 9 -0.128342 -1.511638 -0.289858 10 0.399194 -1.430030 -0.639760 11 1.115116 -2.012600 1.810662
Self Join of a DataFrame
In [182]: df = pd.DataFrame( .....: data={ .....: "Area": ["A"] * 5 + ["C"] * 2, .....: "Bins": [110] * 2 + [160] * 3 + [40] * 2, .....: "Test_0": [0, 1, 0, 1, 2, 0, 1], .....: "Data": np.random.randn(7), .....: } .....: ) .....: In [183]: df Out[183]: Area Bins Test_0 Data 0 A 110 0 -0.433937 1 A 110 1 -0.160552 2 A 160 0 0.744434 3 A 160 1 1.754213 4 A 160 2 0.000850 5 C 40 0 0.342243 6 C 40 1 1.070599 In [184]: df["Test_1"] = df["Test_0"] - 1 In [185]: pd.merge( .....: df, .....: df, .....: left_on=["Bins", "Area", "Test_0"], .....: right_on=["Bins", "Area", "Test_1"], .....: suffixes=("_L", "_R"), .....: ) .....: Out[185]: Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R 0 A 110 0 -0.433937 -1 1 -0.160552 0 1 A 160 0 0.744434 -1 1 1.754213 0 2 A 160 1 1.754213 0 2 0.000850 1 3 C 40 0 0.342243 -1 1 1.070599 0
How to set the index and join
KDB like asof join
Join with a criteria based on the values
Using searchsorted to merge based on values inside a range
The Plotting docs.
Make Matplotlib look like R
Setting x-axis major and minor labels
Plotting multiple charts in an IPython Jupyter notebook
Creating a multi-line plot
Plotting a heatmap
Annotate a time-series plot
Annotate a time-series plot #2
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter
Boxplot for each quartile of a stratifying variable
In [186]: df = pd.DataFrame( .....: { .....: "stratifying_var": np.random.uniform(0, 100, 20), .....: "price": np.random.normal(100, 5, 20), .....: } .....: ) .....: In [187]: df["quartiles"] = pd.qcut( .....: df["stratifying_var"], 4, labels=["0-25%", "25-50%", "50-75%", "75-100%"] .....: ) .....: In [188]: df.boxplot(column="price", by="quartiles") Out[188]: <AxesSubplot:title={'center':'price'}, xlabel='quartiles'>
Performance comparison of SQL vs HDF5
The CSV docs
read_csv in action
appending to a csv
Reading a csv chunk-by-chunk
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame
Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context manager and using that handle to read. See here
gzip/bz2
read_csv
WinZipped
Inferring dtypes from a file
Dealing with bad lines
Dealing with bad lines II
Reading CSV with Unix timestamps and converting to local timezone
Write a multi-row index CSV without writing duplicates
The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put all of the individual frames into a list, and then combine the frames in the list using pd.concat():
pd.concat()
In [189]: for i in range(3): .....: data = pd.DataFrame(np.random.randn(10, 4)) .....: data.to_csv("file_{}.csv".format(i)) .....: In [190]: files = ["file_0.csv", "file_1.csv", "file_2.csv"] In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
You can use the same approach to read all files matching a pattern. Here is an example using glob:
glob
In [192]: import glob In [193]: import os In [194]: files = glob.glob("file_*.csv") In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
Finally, this strategy will work with the other pd.read_*(...) functions described in the io docs.
pd.read_*(...)
Parsing date components in multi-columns is faster with a format
In [196]: i = pd.date_range("20000101", periods=10000) In [197]: df = pd.DataFrame({"year": i.year, "month": i.month, "day": i.day}) In [198]: df.head() Out[198]: year month day 0 2000 1 1 1 2000 1 2 2 2000 1 3 3 2000 1 4 4 2000 1 5 In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d') .....: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1) .....: ds.head() .....: %timeit pd.to_datetime(ds) .....: 3.77 ms +- 14.1 us per loop (mean +- std. dev. of 7 runs, 100 loops each) 1.12 ms +- 4.05 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
In [200]: data = """;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: date;Param1;Param2;Param4;Param5 .....: ;m²;°C;m²;m .....: ;;;; .....: 01.01.1990 00:00;1;1;2;3 .....: 01.01.1990 01:00;5;3;4;5 .....: 01.01.1990 02:00;9;5;6;7 .....: 01.01.1990 03:00;13;7;8;9 .....: 01.01.1990 04:00;17;9;10;11 .....: 01.01.1990 05:00;21;11;12;13 .....: """ .....:
In [201]: from io import StringIO In [202]: pd.read_csv( .....: StringIO(data), .....: sep=";", .....: skiprows=[11, 12], .....: index_col=0, .....: parse_dates=True, .....: header=10, .....: ) .....: Out[202]: Param1 Param2 Param4 Param5 date 1990-01-01 00:00:00 1 1 2 3 1990-01-01 01:00:00 5 3 4 5 1990-01-01 02:00:00 9 5 6 7 1990-01-01 03:00:00 13 7 8 9 1990-01-01 04:00:00 17 9 10 11 1990-01-01 05:00:00 21 11 12 13
In [203]: pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object') In [204]: columns = pd.read_csv(StringIO(data), sep=";", header=10, nrows=10).columns In [205]: pd.read_csv( .....: StringIO(data), sep=";", index_col=0, header=12, parse_dates=True, names=columns .....: ) .....: Out[205]: Param1 Param2 Param4 Param5 date 1990-01-01 00:00:00 1 1 2 3 1990-01-01 01:00:00 5 3 4 5 1990-01-01 02:00:00 9 5 6 7 1990-01-01 03:00:00 13 7 8 9 1990-01-01 04:00:00 17 9 10 11 1990-01-01 05:00:00 21 11 12 13
The SQL docs
Reading from databases with SQL
The Excel docs
Reading from a filelike handle
Modifying formatting in XlsxWriter output
Reading HTML tables from a server that cannot handle the default request header
The HDFStores docs
Simple queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
Avoiding inconsistencies when writing to a store from multiple processes/threads
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Large Data work flows
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Counting with a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node
In [206]: df = pd.DataFrame(np.random.randn(8, 3)) In [207]: store = pd.HDFStore("test.h5") In [208]: store.put("df", df) # you can store an arbitrary Python object via pickle In [209]: store.get_storer("df").attrs.my_attribute = {"A": 10} In [210]: store.get_storer("df").attrs.my_attribute Out[210]: {'A': 10}
You can create or load a HDFStore in-memory by passing the driver parameter to PyTables. Changes are only written to disk when the HDFStore is closed.
driver
In [211]: store = pd.HDFStore("test.h5", "w", diver="H5FD_CORE") In [212]: df = pd.DataFrame(np.random.randn(8, 3)) In [213]: store["test"] = df # only after closing the store, data is written to disk: In [214]: store.close()
pandas readily accepts NumPy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called main.c compiled with gcc main.c -std=gnu99 on a 64-bit machine,
main.c
gcc main.c -std=gnu99
#include <stdio.h> #include <stdint.h> typedef struct _Data { int32_t count; double avg; float scale; } Data; int main(int argc, const char *argv[]) { size_t n = 10; Data d[n]; for (int i = 0; i < n; ++i) { d[i].count = i; d[i].avg = i + 1.0; d[i].scale = (float) i + 2.0f; } FILE *file = fopen("binary.dat", "wb"); fwrite(&d, sizeof(Data), n, file); fclose(file); return 0; }
the following Python code will read the binary file 'binary.dat' into a pandas DataFrame, where each element of the struct corresponds to a column in the frame:
'binary.dat'
DataFrame
names = "count", "avg", "scale" # note that the offsets are larger than the size of the type because of # struct padding offsets = 0, 8, 16 formats = "i4", "f8", "f4" dt = np.dtype({"names": names, "offsets": offsets, "formats": formats}, align=True) df = pd.DataFrame(np.fromfile("binary.dat", dt))
Note
The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or parquet, both of which are supported by pandas’ IO facilities.
Numerical integration (sample-based) of a time series
Often it’s useful to obtain the lower (or upper) triangular form of a correlation matrix calculated from DataFrame.corr(). This can be achieved by passing a boolean mask to where as follows:
DataFrame.corr()
where
In [215]: df = pd.DataFrame(np.random.random(size=(100, 5))) In [216]: corr_mat = df.corr() In [217]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool_), k=-1) In [218]: corr_mat.where(mask) Out[218]: 0 1 2 3 4 0 NaN NaN NaN NaN NaN 1 -0.079861 NaN NaN NaN NaN 2 -0.236573 0.183801 NaN NaN NaN 3 -0.013795 -0.051975 0.037235 NaN NaN 4 -0.031974 0.118342 -0.073499 -0.02063 NaN
The method argument within DataFrame.corr can accept a callable in addition to the named correlation types. Here we compute the distance correlation <https://en.wikipedia.org/wiki/Distance_correlation>``__ matrix for a ``DataFrame object.
method
DataFrame.corr
distance correlation <https://en.wikipedia.org/wiki/Distance_correlation>``__ matrix for a ``DataFrame
In [219]: def distcorr(x, y): .....: n = len(x) .....: a = np.zeros(shape=(n, n)) .....: b = np.zeros(shape=(n, n)) .....: for i in range(n): .....: for j in range(i + 1, n): .....: a[i, j] = abs(x[i] - x[j]) .....: b[i, j] = abs(y[i] - y[j]) .....: a += a.T .....: b += b.T .....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n) .....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n) .....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean()) .....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean()) .....: cov_ab = np.sqrt(np.nansum(A * B)) / n .....: std_a = np.sqrt(np.sqrt(np.nansum(A ** 2)) / n) .....: std_b = np.sqrt(np.sqrt(np.nansum(B ** 2)) / n) .....: return cov_ab / std_a / std_b .....: In [220]: df = pd.DataFrame(np.random.normal(size=(100, 3))) In [221]: df.corr(method=distcorr) Out[221]: 0 1 2 0 1.000000 0.197613 0.216328 1 0.197613 1.000000 0.208749 2 0.216328 0.208749 1.000000
The Timedeltas docs.
Using timedeltas
In [222]: import datetime In [223]: s = pd.Series(pd.date_range("2012-1-1", periods=3, freq="D")) In [224]: s - s.max() Out[224]: 0 -2 days 1 -1 days 2 0 days dtype: timedelta64[ns] In [225]: s.max() - s Out[225]: 0 2 days 1 1 days 2 0 days dtype: timedelta64[ns] In [226]: s - datetime.datetime(2011, 1, 1, 3, 5) Out[226]: 0 364 days 20:55:00 1 365 days 20:55:00 2 366 days 20:55:00 dtype: timedelta64[ns] In [227]: s + datetime.timedelta(minutes=5) Out[227]: 0 2012-01-01 00:05:00 1 2012-01-02 00:05:00 2 2012-01-03 00:05:00 dtype: datetime64[ns] In [228]: datetime.datetime(2011, 1, 1, 3, 5) - s Out[228]: 0 -365 days +03:05:00 1 -366 days +03:05:00 2 -367 days +03:05:00 dtype: timedelta64[ns] In [229]: datetime.timedelta(minutes=5) + s Out[229]: 0 2012-01-01 00:05:00 1 2012-01-02 00:05:00 2 2012-01-03 00:05:00 dtype: datetime64[ns]
Adding and subtracting deltas and dates
In [230]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)]) In [231]: df = pd.DataFrame({"A": s, "B": deltas}) In [232]: df Out[232]: A B 0 2012-01-01 0 days 1 2012-01-02 1 days 2 2012-01-03 2 days In [233]: df["New Dates"] = df["A"] + df["B"] In [234]: df["Delta"] = df["A"] - df["New Dates"] In [235]: df Out[235]: A B New Dates Delta 0 2012-01-01 0 days 2012-01-01 0 days 1 2012-01-02 1 days 2012-01-03 -1 days 2 2012-01-03 2 days 2012-01-05 -2 days In [236]: df.dtypes Out[236]: A datetime64[ns] B timedelta64[ns] New Dates datetime64[ns] Delta timedelta64[ns] dtype: object
Another example
Values can be set to NaT using np.nan, similar to datetime
In [237]: y = s - s.shift() In [238]: y Out[238]: 0 NaT 1 1 days 2 1 days dtype: timedelta64[ns] In [239]: y[1] = np.nan In [240]: y Out[240]: 0 NaT 1 NaT 2 1 days dtype: timedelta64[ns]
To create a dataframe from every combination of some given values, like R’s expand.grid() function, we can create a dict where the keys are column names and the values are lists of the data values:
expand.grid()
In [241]: def expand_grid(data_dict): .....: rows = itertools.product(*data_dict.values()) .....: return pd.DataFrame.from_records(rows, columns=data_dict.keys()) .....: In [242]: df = expand_grid( .....: {"height": [60, 70], "weight": [100, 140, 180], "sex": ["Male", "Female"]} .....: ) .....: In [243]: df Out[243]: height weight sex 0 60 100 Male 1 60 100 Female 2 60 140 Male 3 60 140 Female 4 60 180 Male 5 60 180 Female 6 70 100 Male 7 70 100 Female 8 70 140 Male 9 70 140 Female 10 70 180 Male 11 70 180 Female