This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.
Highlights include:
DataFrame.assign method, see here
DataFrame.assign
Series.to_coo/from_coo methods to interact with scipy.sparse, see here
Series.to_coo/from_coo
scipy.sparse
Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta, see here
Timedelta
.seconds
datetime.timedelta
Changes to the .loc slicing API to conform with the behavior of .ix see here
.loc
.ix
Changes to the default for ordering in the Categorical constructor, see here
Categorical
Enhancement to the .str accessor to make string operations easier, see here
.str
The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here
pandas.tools.rplot
pandas.sandbox.qtpandas
pandas.rpy
Check the API Changes and deprecations before updating.
What’s new in v0.16.0
New features
DataFrame assign
Interaction with scipy.sparse
String methods enhancements
Other enhancements
Backwards incompatible API changes
Changes in timedelta
Indexing changes
Categorical changes
Other API changes
Deprecations
Removal of prior version deprecations/changes
Performance improvements
Bug fixes
Contributors
Inspired by dplyr’s mutate verb, DataFrame has a new assign() method. The function signature for assign is simply **kwargs. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a Series or NumPy array), or a function of one argument to be called on the DataFrame. The new values are inserted, and the entire DataFrame (with all original and new columns) is returned.
mutate
assign()
assign
**kwargs
Series
DataFrame
In [1]: iris = pd.read_csv('data/iris.data') In [2]: iris.head() Out[2]: SepalLength SepalWidth PetalLength PetalWidth Name 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa [5 rows x 5 columns] In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength']).head() Out[3]: SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio 0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275 1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245 2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851 3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913 4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000 [5 rows x 6 columns]
Above was an example of inserting a precomputed value. We can also pass in a function to be evaluated.
In [4]: iris.assign(sepal_ratio=lambda x: (x['SepalWidth'] ...: / x['SepalLength'])).head() ...: Out[4]: SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio 0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275 1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245 2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851 3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913 4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000 [5 rows x 6 columns]
The power of assign comes when used in chains of operations. For example, we can limit the DataFrame to just those with a Sepal Length greater than 5, calculate the ratio, and plot
In [5]: iris = pd.read_csv('data/iris.data') In [6]: (iris.query('SepalLength > 5') ...: .assign(SepalRatio=lambda x: x.SepalWidth / x.SepalLength, ...: PetalRatio=lambda x: x.PetalWidth / x.PetalLength) ...: .plot(kind='scatter', x='SepalRatio', y='PetalRatio')) ...: Out[6]: <AxesSubplot:xlabel='SepalRatio', ylabel='PetalRatio'>
See the documentation for more. (GH9229)
Added SparseSeries.to_coo() and SparseSeries.from_coo() methods (GH8048) for converting to and from scipy.sparse.coo_matrix instances (see here). For example, given a SparseSeries with MultiIndex we can convert to a scipy.sparse.coo_matrix by specifying the row and column labels as index levels:
SparseSeries.to_coo()
SparseSeries.from_coo()
scipy.sparse.coo_matrix
s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) s # SparseSeries ss = s.to_sparse() ss A, rows, columns = ss.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=False) A A.todense() rows columns
The from_coo method is a convenience method for creating a SparseSeries from a scipy.sparse.coo_matrix:
SparseSeries
from scipy import sparse A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) A A.todense() ss = pd.SparseSeries.from_coo(A) ss
Following new methods are accessible via .str accessor to apply the function to each values. This is intended to make it more consistent with standard methods on strings. (GH9282, GH9352, GH9386, GH9387, GH9439)
Methods
isalnum()
isalpha()
isdigit()
isspace()
islower()
isupper()
istitle()
isnumeric()
isdecimal()
find()
rfind()
ljust()
rjust()
zfill()
In [7]: s = pd.Series(['abcd', '3456', 'EFGH']) In [8]: s.str.isalpha() Out[8]: 0 True 1 False 2 True Length: 3, dtype: bool In [9]: s.str.find('ab') Out[9]: 0 0 1 -1 2 -1 Length: 3, dtype: int64
Series.str.pad() and Series.str.center() now accept fillchar option to specify filling character (GH9352)
Series.str.pad()
Series.str.center()
fillchar
In [10]: s = pd.Series(['12', '300', '25']) In [11]: s.str.pad(5, fillchar='_') Out[11]: 0 ___12 1 __300 2 ___25 Length: 3, dtype: object
Added Series.str.slice_replace(), which previously raised NotImplementedError (GH8888)
Series.str.slice_replace()
NotImplementedError
In [12]: s = pd.Series(['ABCD', 'EFGH', 'IJK']) In [13]: s.str.slice_replace(1, 3, 'X') Out[13]: 0 AXD 1 EXH 2 IX Length: 3, dtype: object # replaced with empty char In [14]: s.str.slice_replace(0, 1) Out[14]: 0 BCD 1 FGH 2 JK Length: 3, dtype: object
Reindex now supports method='nearest' for frames or series with a monotonic increasing or decreasing index (GH9258):
method='nearest'
In [15]: df = pd.DataFrame({'x': range(5)}) In [16]: df.reindex([0.2, 1.8, 3.5], method='nearest') Out[16]: x 0.2 0 1.8 2 3.5 4 [3 rows x 1 columns]
This method is also exposed by the lower level Index.get_indexer and Index.get_loc methods.
Index.get_indexer
Index.get_loc
The read_excel() function’s sheetname argument now accepts a list and None, to get multiple or all sheets respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)
read_excel()
None
# Returns the 1st and 4th sheet, as a dictionary of DataFrames. pd.read_excel('path_to_file.xls', sheetname=['Sheet1', 3])
Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs here (GH9493:).
Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)
Added time interval selection in get_data_yahoo (GH9071)
get_data_yahoo
Added Timestamp.to_datetime64() to complement Timedelta.to_timedelta64() (GH9255)
Timestamp.to_datetime64()
Timedelta.to_timedelta64()
tseries.frequencies.to_offset() now accepts Timedelta as input (GH9064)
tseries.frequencies.to_offset()
Lag parameter was added to the autocorrelation method of Series, defaults to lag-1 autocorrelation (GH9192)
Timedelta will now accept nanoseconds keyword in constructor (GH9273)
nanoseconds
SQL code now safely escapes table and column names (GH8986)
Added auto-complete for Series.str.<tab>, Series.dt.<tab> and Series.cat.<tab> (GH9322)
Series.str.<tab>
Series.dt.<tab>
Series.cat.<tab>
Index.get_indexer now supports method='pad' and method='backfill' even for any target array, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic increasing indexes (GH9258).
method='pad'
method='backfill'
Index.asof now works on all index types (GH9258).
Index.asof
A verbose argument has been augmented in io.read_excel(), defaults to False. Set to True to print sheet names as they are parsed. (GH9450)
verbose
io.read_excel()
Added days_in_month (compatibility alias daysinmonth) property to Timestamp, DatetimeIndex, Period, PeriodIndex, and Series.dt (GH9572)
days_in_month
daysinmonth
Timestamp
DatetimeIndex
Period
PeriodIndex
Series.dt
Added decimal option in to_csv to provide formatting for non-‘.’ decimal separators (GH781)
decimal
to_csv
Added normalize option for Timestamp to normalized to midnight (GH8794)
normalize
Added example for DataFrame import to R using HDF5 file and rhdf5 library. See the documentation for more (GH9636).
rhdf5
In v0.15.0 a new scalar type Timedelta was introduced, that is a sub-class of datetime.timedelta. Mentioned here was a notice of an API change w.r.t. the .seconds accessor. The intent was to provide a user-friendly set of accessors that give the ‘natural’ value for that unit, e.g. if you had a Timedelta('1 day, 10:11:12'), then .seconds would return 12. However, this is at odds with the definition of datetime.timedelta, which defines .seconds as 10 * 3600 + 11 * 60 + 12 == 36672.
Timedelta('1 day, 10:11:12')
10 * 3600 + 11 * 60 + 12 == 36672
So in v0.16.0, we are restoring the API to match that of datetime.timedelta. Further, the component values are still available through the .components accessor. This affects the .seconds and .microseconds accessors, and removes the .hours, .minutes, .milliseconds accessors. These changes affect TimedeltaIndex and the Series .dt accessor as well. (GH9185, GH9139)
.components
.microseconds
.hours
.minutes
.milliseconds
TimedeltaIndex
.dt
Previous behavior
In [2]: t = pd.Timedelta('1 day, 10:11:12.100123') In [3]: t.days Out[3]: 1 In [4]: t.seconds Out[4]: 12 In [5]: t.microseconds Out[5]: 123
New behavior
In [17]: t = pd.Timedelta('1 day, 10:11:12.100123') In [18]: t.days Out[18]: 1 In [19]: t.seconds Out[19]: 36672 In [20]: t.microseconds Out[20]: 100123
Using .components allows the full component access
In [21]: t.components Out[21]: Components(days=1, hours=10, minutes=11, seconds=12, milliseconds=100, microseconds=123, nanoseconds=0) In [22]: t.components.seconds Out[22]: 12
The behavior of a small sub-set of edge cases for using .loc have changed (GH8613). Furthermore we have improved the content of the error messages that are raised:
Slicing with .loc where the start and/or stop bound is not found in the index is now allowed; this previously would raise a KeyError. This makes the behavior the same as .ix in this case. This change is only for slicing, not when indexing with a single label.
KeyError
In [23]: df = pd.DataFrame(np.random.randn(5, 4), ....: columns=list('ABCD'), ....: index=pd.date_range('20130101', periods=5)) ....: In [24]: df Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 [5 rows x 4 columns] In [25]: s = pd.Series(range(5), [-2, -1, 1, 2, 3]) In [26]: s Out[26]: -2 0 -1 1 1 2 2 3 3 4 Length: 5, dtype: int64
In [4]: df.loc['2013-01-02':'2013-01-10'] KeyError: 'stop bound [2013-01-10] is not in the [index]' In [6]: s.loc[-10:3] KeyError: 'start bound [-10] is not the [index]'
In [27]: df.loc['2013-01-02':'2013-01-10'] Out[27]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 [4 rows x 4 columns] In [28]: s.loc[-10:3] Out[28]: -2 0 -1 1 1 2 2 3 3 4 Length: 5, dtype: int64
Allow slicing with float-like values on an integer index for .ix. Previously this was only enabled for .loc:
In [8]: s.ix[-1.0:2] TypeError: the slice start value [-1.0] is not a proper indexer for this index type (Int64Index)
In [2]: s.ix[-1.0:2] Out[2]: -1 1 1 2 2 3 dtype: int64
Provide a useful exception for indexing with an invalid type for that index when using .loc. For example trying to use .loc on an index of type DatetimeIndex or PeriodIndex or TimedeltaIndex, with an integer (or a float).
In [4]: df.loc[2:3] KeyError: 'start bound [2] is not the [index]'
In [4]: df.loc[2:3] TypeError: Cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with <type 'int'> keys
In prior versions, Categoricals that had an unspecified ordering (meaning no ordered keyword was passed) were defaulted as ordered Categoricals. Going forward, the ordered keyword in the Categorical constructor will default to False. Ordering must now be explicit.
Categoricals
ordered
False
Furthermore, previously you could change the ordered attribute of a Categorical by just setting the attribute, e.g. cat.ordered=True; This is now deprecated and you should use cat.as_ordered() or cat.as_unordered(). These will by default return a new object and not modify the existing object. (GH9347, GH9190)
cat.ordered=True
cat.as_ordered()
cat.as_unordered()
In [3]: s = pd.Series([0, 1, 2], dtype='category') In [4]: s Out[4]: 0 0 1 1 2 2 dtype: category Categories (3, int64): [0 < 1 < 2] In [5]: s.cat.ordered Out[5]: True In [6]: s.cat.ordered = False In [7]: s Out[7]: 0 0 1 1 2 2 dtype: category Categories (3, int64): [0, 1, 2]
In [29]: s = pd.Series([0, 1, 2], dtype='category') In [30]: s Out[30]: 0 0 1 1 2 2 Length: 3, dtype: category Categories (3, int64): [0, 1, 2] In [31]: s.cat.ordered Out[31]: False In [32]: s = s.cat.as_ordered() In [33]: s Out[33]: 0 0 1 1 2 2 Length: 3, dtype: category Categories (3, int64): [0 < 1 < 2] In [34]: s.cat.ordered Out[34]: True # you can set in the constructor of the Categorical In [35]: s = pd.Series(pd.Categorical([0, 1, 2], ordered=True)) In [36]: s Out[36]: 0 0 1 1 2 2 Length: 3, dtype: category Categories (3, int64): [0 < 1 < 2] In [37]: s.cat.ordered Out[37]: True
For ease of creation of series of categorical data, we have added the ability to pass keywords when calling .astype(). These are passed directly to the constructor.
.astype()
In [54]: s = pd.Series(["a", "b", "c", "a"]).astype('category', ordered=True) In [55]: s Out[55]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a < b < c] In [56]: s = (pd.Series(["a", "b", "c", "a"]) ....: .astype('category', categories=list('abcdef'), ordered=False)) In [57]: s Out[57]: 0 a 1 b 2 c 3 a dtype: category Categories (6, object): [a, b, c, d, e, f]
Index.duplicated now returns np.array(dtype=bool) rather than Index(dtype=object) containing bool values. (GH8875)
Index.duplicated
np.array(dtype=bool)
Index(dtype=object)
bool
DataFrame.to_json now returns accurate type serialisation for each column for frames of mixed dtype (GH9037)
DataFrame.to_json
Previously data was coerced to a common dtype before serialisation, which for example resulted in integers being serialised to floats:
In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json() Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1.0,"1":2.0}}'
Now each column is serialised using its correct dtype:
In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json() Out[2]: '{"f":{"0":3.0,"1":4.2},"i":{"0":1,"1":2}}'
DatetimeIndex, PeriodIndex and TimedeltaIndex.summary now output the same format. (GH9116)
TimedeltaIndex.summary
TimedeltaIndex.freqstr now output the same string format as DatetimeIndex. (GH9116)
TimedeltaIndex.freqstr
Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved with matplotlib’s axhline or axvline methods (GH9088).
axhline
axvline
Series accessors .dt, .cat and .str now raise AttributeError instead of TypeError if the series does not contain the appropriate type of data (GH9617). This follows Python’s built-in exception hierarchy more closely and ensures that tests like hasattr(s, 'cat') are consistent on both Python 2 and 3.
.cat
AttributeError
TypeError
hasattr(s, 'cat')
Series now supports bitwise operation for integral types (GH9016). Previously even if the input dtypes were integral, the output dtype was coerced to bool.
In [2]: pd.Series([0, 1, 2, 3], list('abcd')) | pd.Series([4, 4, 4, 4], list('abcd')) Out[2]: a True b True c True d True dtype: bool
New behavior. If the input dtypes are integral, the output dtype is also integral and the output values are the result of the bitwise operation.
In [2]: pd.Series([0, 1, 2, 3], list('abcd')) | pd.Series([4, 4, 4, 4], list('abcd')) Out[2]: a 4 b 5 c 6 d 7 dtype: int64
During division involving a Series or DataFrame, 0/0 and 0//0 now give np.nan instead of np.inf. (GH9144, GH8445)
0/0
0//0
np.nan
np.inf
In [2]: p = pd.Series([0, 1]) In [3]: p / 0 Out[3]: 0 inf 1 inf dtype: float64 In [4]: p // 0 Out[4]: 0 inf 1 inf dtype: float64
In [38]: p = pd.Series([0, 1]) In [39]: p / 0 Out[39]: 0 NaN 1 inf Length: 2, dtype: float64 In [40]: p // 0 Out[40]: 0 NaN 1 inf Length: 2, dtype: float64
Series.values_counts and Series.describe for categorical data will now put NaN entries at the end. (GH9443)
Series.values_counts
Series.describe
NaN
Series.describe for categorical data will now give counts and frequencies of 0, not NaN, for unused categories (GH9443)
Due to a bug fix, looking up a partial string label with DatetimeIndex.asof now includes values that match the string, even if they are after the start of the partial string label (GH9258).
DatetimeIndex.asof
Old behavior:
In [4]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02') Out[4]: Timestamp('2000-01-31 00:00:00')
Fixed behavior:
In [41]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02') Out[41]: Timestamp('2000-02-28 00:00:00')
To reproduce the old behavior, simply add more precision to the label (e.g., use 2000-02-01 instead of 2000-02).
2000-02-01
2000-02
The rplot trellis plotting interface is deprecated and will be removed in a future version. We refer to external packages like seaborn for similar but more refined functionality (GH3445). The documentation includes some examples how to convert your existing code from rplot to seaborn here.
rplot
The pandas.sandbox.qtpandas interface is deprecated and will be removed in a future version. We refer users to the external package pandas-qt. (GH9615)
The pandas.rpy interface is deprecated and will be removed in a future version. Similar functionality can be accessed through the rpy2 project (GH9602)
Adding DatetimeIndex/PeriodIndex to another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to a TypeError in a future version. .union() should be used for the union set operation. (GH9094)
DatetimeIndex/PeriodIndex
.union()
Subtracting DatetimeIndex/PeriodIndex from another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding a TimeDeltaIndex in a future version. .difference() should be used for the differencing set operation. (GH9094)
TimeDeltaIndex
.difference()
DataFrame.pivot_table and crosstab’s rows and cols keyword arguments were removed in favor of index and columns (GH6581)
DataFrame.pivot_table
crosstab
rows
cols
index
columns
DataFrame.to_excel and DataFrame.to_csv cols keyword argument was removed in favor of columns (GH6581)
DataFrame.to_excel
DataFrame.to_csv
Removed convert_dummies in favor of get_dummies (GH6581)
convert_dummies
get_dummies
Removed value_range in favor of describe (GH6581)
value_range
describe
Fixed a performance regression for .loc indexing with an array or list-like (GH9126:).
DataFrame.to_json 30x performance improvement for mixed dtype frames. (GH9037)
Performance improvements in MultiIndex.duplicated by working with labels instead of values (GH9125)
MultiIndex.duplicated
Improved the speed of nunique by calling unique instead of value_counts (GH9129, GH7771)
nunique
unique
value_counts
Performance improvement of up to 10x in DataFrame.count and DataFrame.dropna by taking advantage of homogeneous/heterogeneous dtypes appropriately (GH9136)
DataFrame.count
DataFrame.dropna
Performance improvement of up to 20x in DataFrame.count when using a MultiIndex and the level keyword argument (GH9163)
MultiIndex
level
Performance and memory usage improvements in merge when key space exceeds int64 bounds (GH9151)
merge
int64
Performance improvements in multi-key groupby (GH9429)
groupby
Performance improvements in MultiIndex.sortlevel (GH9445)
MultiIndex.sortlevel
Performance and memory usage improvements in DataFrame.duplicated (GH9398)
DataFrame.duplicated
Cythonized Period (GH9440)
Decreased memory usage on to_hdf (GH9648)
to_hdf
Changed .to_html to remove leading/trailing spaces in table body (GH4987)
.to_html
Fixed issue using read_csv on s3 with Python 3 (GH9452)
read_csv
Fixed compatibility issue in DatetimeIndex affecting architectures where numpy.int_ defaults to numpy.int32 (GH8943)
numpy.int_
numpy.int32
Bug in Panel indexing with an object-like (GH9140)
Bug in the returned Series.dt.components index was reset to the default index (GH9247)
Series.dt.components
Bug in Categorical.__getitem__/__setitem__ with listlike input getting incorrect results from indexer coercion (GH9469)
Categorical.__getitem__/__setitem__
Bug in partial setting with a DatetimeIndex (GH9478)
Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be changed when the number was sufficiently large (GH9311, GH6620)
Fixed bug in to_sql when mapping a Timestamp object column (datetime column with timezone info) to the appropriate sqlalchemy type (GH9085).
to_sql
Fixed bug in to_sql dtype argument not accepting an instantiated SQLAlchemy type (GH9083).
dtype
Bug in .loc partial setting with a np.datetime64 (GH9516)
np.datetime64
Incorrect dtypes inferred on datetimelike looking Series & on .xs slices (GH9477)
.xs
Items in Categorical.unique() (and s.unique() if s is of dtype category) now appear in the order in which they are originally found, not in sorted order (GH9331). This is now consistent with the behavior for other dtypes in pandas.
Categorical.unique()
s.unique()
s
category
Fixed bug on big endian platforms which produced incorrect results in StataReader (GH8688).
StataReader
Bug in MultiIndex.has_duplicates when having many levels causes an indexer overflow (GH9075, GH5873)
MultiIndex.has_duplicates
Bug in pivot and unstack where nan values would break index alignment (GH4862, GH7401, GH7403, GH7405, GH7466, GH9497)
pivot
unstack
nan
Bug in left join on MultiIndex with sort=True or null values (GH9210).
join
sort=True
Bug in MultiIndex where inserting new keys would fail (GH9250).
Bug in groupby when key space exceeds int64 bounds (GH9096).
Bug in unstack with TimedeltaIndex or DatetimeIndex and nulls (GH9491).
Bug in rank where comparing floats with tolerance will cause inconsistent behaviour (GH8365).
rank
Fixed character encoding bug in read_stata and StataReader when loading data from a URL (GH9231).
read_stata
Bug in adding offsets.Nano to other offsets raises TypeError (GH9284)
offsets.Nano
Bug in DatetimeIndex iteration, related to (GH8890), fixed in (GH9100)
Bugs in resample around DST transitions. This required fixing offset classes so they behave correctly on DST transitions. (GH5172, GH8744, GH8653, GH9173, GH9468).
resample
Bug in binary operator method (eg .mul()) alignment with integer levels (GH9463).
.mul()
Bug in boxplot, scatter and hexbin plot may show an unnecessary warning (GH8877)
Bug in subplot with layout kw may show unnecessary warning (GH9464)
layout
Bug in using grouper functions that need passed through arguments (e.g. axis), when using wrapped function (e.g. fillna), (GH9221)
fillna
DataFrame now properly supports simultaneous copy and dtype arguments in constructor (GH9099)
copy
Bug in read_csv when using skiprows on a file with CR line endings with the c engine. (GH9079)
isnull now detects NaT in PeriodIndex (GH9129)
isnull
NaT
Bug in groupby .nth() with a multiple column groupby (GH8979)
.nth()
Bug in DataFrame.where and Series.where coerce numerics to string incorrectly (GH9280)
DataFrame.where
Series.where
Bug in DataFrame.where and Series.where raise ValueError when string list-like is passed. (GH9280)
ValueError
Accessing Series.str methods on with non-string values now raises TypeError instead of producing incorrect results (GH9184)
Series.str
Bug in DatetimeIndex.__contains__ when index has duplicates and is not monotonic increasing (GH9512)
DatetimeIndex.__contains__
Fixed division by zero error for Series.kurt() when all values are equal (GH9197)
Series.kurt()
Fixed issue in the xlsxwriter engine where it added a default ‘General’ format to cells if no other format was applied. This prevented other row or column formatting being applied. (GH9167)
xlsxwriter
Fixes issue with index_col=False when usecols is also specified in read_csv. (GH9082)
index_col=False
usecols
Bug where wide_to_long would modify the input stub names list (GH9204)
wide_to_long
Bug in to_sql not storing float64 values using double precision. (GH9009)
SparseSeries and SparsePanel now accept zero argument constructors (same as their non-sparse counterparts) (GH9272).
SparsePanel
Regression in merging Categorical and object dtypes (GH9426)
object
Bug in read_csv with buffer overflows with certain malformed input files (GH9205)
Bug in groupby MultiIndex with missing pair (GH9049, GH9344)
Fixed bug in Series.groupby where grouping on MultiIndex levels would ignore the sort argument (GH9444)
Series.groupby
Fix bug in DataFrame.Groupby where sort=False is ignored in the case of Categorical columns. (GH8868)
DataFrame.Groupby
sort=False
Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError (GH9452)
Bug in the Google BigQuery reader where the ‘jobComplete’ key may be present but False in the query results (GH8728)
Bug in Series.values_counts with excluding NaN for categorical type Series with dropna=True (GH9443)
dropna=True
Fixed missing numeric_only option for DataFrame.std/var/sem (GH9201)
DataFrame.std/var/sem
Support constructing Panel or Panel4D with scalar data (GH8285)
Panel
Panel4D
Series text representation disconnected from max_rows/max_columns (GH7508).
max_rows
max_columns
Series number formatting inconsistent when truncated (GH8532).
In [2]: pd.options.display.max_rows = 10 In [3]: s = pd.Series([1,1,1,1,1,1,1,1,1,1,0.9999,1,1]*10) In [4]: s Out[4]: 0 1 1 1 2 1 ... 127 0.9999 128 1.0000 129 1.0000 Length: 130, dtype: float64
0 1.0000 1 1.0000 2 1.0000 3 1.0000 4 1.0000 ... 125 1.0000 126 1.0000 127 0.9999 128 1.0000 129 1.0000 dtype: float64
A Spurious SettingWithCopy Warning was generated when setting a new item in a frame in some cases (GH8730)
SettingWithCopy
The following would previously report a SettingWithCopy Warning.
In [42]: df1 = pd.DataFrame({'x': pd.Series(['a', 'b', 'c']), ....: 'y': pd.Series(['d', 'e', 'f'])}) ....: In [43]: df2 = df1[['x']] In [44]: df2['y'] = ['g', 'h', 'i']
A total of 60 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
Aaron Toth +
Alan Du +
Alessandro Amici +
Artemy Kolchinsky
Ashwini Chaudhary +
Ben Schiller
Bill Letson
Brandon Bradley +
Chau Hoang +
Chris Reynolds
Chris Whelan +
Christer van der Meeren +
David Cottrell +
David Stephens
Ehsan Azarnasab +
Garrett-R +
Guillaume Gay
Jake Torcasso +
Jason Sexauer
Jeff Reback
John McNamara
Joris Van den Bossche
Joschka zur Jacobsmühlen +
Juarez Bochi +
Junya Hayashi +
K.-Michael Aye
Kerby Shedden +
Kevin Sheppard
Kieran O’Mahony
Kodi Arfer +
Matti Airas +
Min RK +
Mortada Mehyar
Robert +
Scott E Lasley
Scott Lasley +
Sergio Pascual +
Skipper Seabold
Stephan Hoyer
Thomas Grainger
Tom Augspurger
TomAugspurger
Vladimir Filimonov +
Vyomkesh Tripathi +
Will Holmgren
Yulong Yang +
behzad nouri
bertrandhaut +
bjonen
cel4 +
clham
hsperr +
ischwabacher
jnmclarty
josham +
jreback
omtinez +
roch +
sinhrks
unutbu