New in version 0.24.0.
Note
IntegerArray is currently experimental. Its API or implementation may change without warning.
Changed in version 1.0.0: Now uses pandas.NA as the missing value rather than numpy.nan.
pandas.NA
numpy.nan
In Working with missing data, we saw that pandas primarily uses NaN to represent missing data. Because NaN is a float, this forces an array of integers with any missing values to become floating point. In some cases, this may not matter much. But if your integer column is, say, an identifier, casting to float can be problematic. Some integers cannot even be represented as floating point numbers.
NaN
pandas can represent integer data with possibly missing values using arrays.IntegerArray. This is an extension types implemented within pandas.
arrays.IntegerArray
In [1]: arr = pd.array([1, 2, None], dtype=pd.Int64Dtype()) In [2]: arr Out[2]: <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64
Or the string alias "Int64" (note the capital "I", to differentiate from NumPy’s 'int64' dtype:
"Int64"
"I"
'int64'
In [3]: pd.array([1, 2, np.nan], dtype="Int64") Out[3]: <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64
All NA-like values are replaced with pandas.NA.
In [4]: pd.array([1, 2, np.nan, None, pd.NA], dtype="Int64") Out[4]: <IntegerArray> [1, 2, <NA>, <NA>, <NA>] Length: 5, dtype: Int64
This array can be stored in a DataFrame or Series like any NumPy array.
DataFrame
Series
In [5]: pd.Series(arr) Out[5]: 0 1 1 2 2 <NA> dtype: Int64
You can also pass the list-like object to the Series constructor with the dtype.
Warning
Currently pandas.array() and pandas.Series() use different rules for dtype inference. pandas.array() will infer a nullable- integer dtype
pandas.array()
pandas.Series()
In [6]: pd.array([1, None]) Out[6]: <IntegerArray> [1, <NA>] Length: 2, dtype: Int64 In [7]: pd.array([1, 2]) Out[7]: <IntegerArray> [1, 2] Length: 2, dtype: Int64
For backwards-compatibility, Series infers these as either integer or float dtype
In [8]: pd.Series([1, None]) Out[8]: 0 1.0 1 NaN dtype: float64 In [9]: pd.Series([1, 2]) Out[9]: 0 1 1 2 dtype: int64
We recommend explicitly providing the dtype to avoid confusion.
In [10]: pd.array([1, None], dtype="Int64") Out[10]: <IntegerArray> [1, <NA>] Length: 2, dtype: Int64 In [11]: pd.Series([1, None], dtype="Int64") Out[11]: 0 1 1 <NA> dtype: Int64
In the future, we may provide an option for Series to infer a nullable-integer dtype.
Operations involving an integer array will behave similar to NumPy arrays. Missing values will be propagated, and the data will be coerced to another dtype if needed.
In [12]: s = pd.Series([1, 2, None], dtype="Int64") # arithmetic In [13]: s + 1 Out[13]: 0 2 1 3 2 <NA> dtype: Int64 # comparison In [14]: s == 1 Out[14]: 0 True 1 False 2 <NA> dtype: boolean # indexing In [15]: s.iloc[1:3] Out[15]: 1 2 2 <NA> dtype: Int64 # operate with other dtypes In [16]: s + s.iloc[1:3].astype("Int8") Out[16]: 0 <NA> 1 4 2 <NA> dtype: Int64 # coerce when needed In [17]: s + 0.01 Out[17]: 0 1.01 1 2.01 2 <NA> dtype: Float64
These dtypes can operate as part of DataFrame.
In [18]: df = pd.DataFrame({"A": s, "B": [1, 1, 3], "C": list("aab")}) In [19]: df Out[19]: A B C 0 1 1 a 1 2 1 a 2 <NA> 3 b In [20]: df.dtypes Out[20]: A Int64 B int64 C object dtype: object
These dtypes can be merged & reshaped & casted.
In [21]: pd.concat([df[["A"]], df[["B", "C"]]], axis=1).dtypes Out[21]: A Int64 B int64 C object dtype: object In [22]: df["A"].astype(float) Out[22]: 0 1.0 1 2.0 2 NaN Name: A, dtype: float64
Reduction and groupby operations such as ‘sum’ work as well.
In [23]: df.sum() Out[23]: A 3 B 5 C aab dtype: object In [24]: df.groupby("B").A.sum() Out[24]: B 1 3 3 0 Name: A, dtype: Int64
arrays.IntegerArray uses pandas.NA as its scalar missing value. Slicing a single element that’s missing will return pandas.NA
In [25]: a = pd.array([1, None], dtype="Int64") In [26]: a[1] Out[26]: <NA>