pandas.core.window.rolling.Rolling.kurt¶
- Rolling.kurt(**kwargs)[source]¶
Calculate unbiased rolling kurtosis.
This function uses Fisher’s definition of kurtosis without bias.
- Parameters
- **kwargs
Under Review.
- Returns
- Series or DataFrame
Returned object type is determined by the caller of the rolling calculation.
See also
pandas.Series.rollingCalling object with Series data.
pandas.DataFrame.rollingCalling object with DataFrames.
pandas.Series.kurtEquivalent method for Series.
pandas.DataFrame.kurtEquivalent method for DataFrame.
scipy.stats.skewThird moment of a probability density.
scipy.stats.kurtosisReference SciPy method.
Notes
A minimum of 4 periods is required for the rolling calculation.
Examples
The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats.
>>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64