pandas.DataFrame.to_json¶
- DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]¶
Convert the object to a JSON string.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.
- Parameters
- path_or_bufstr or file handle, optional
File path or object. If not specified, the result is returned as a string.
- orientstr
Indication of expected JSON string format.
Series:
default is ‘index’
allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}.
DataFrame:
default is ‘columns’
allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.
The format of the JSON string:
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
‘columns’ : dict like {column -> {index -> value}}
‘values’ : just the values array
‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}}
Describing the data, where data component is like
orient='records'
.
- date_format{None, ‘epoch’, ‘iso’}
Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For
orient='table'
, the default is ‘iso’. For all other orients, the default is ‘epoch’.- double_precisionint, default 10
The number of decimal places to use when encoding floating point values.
- force_asciibool, default True
Force encoded string to be ASCII.
- date_unitstr, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
- default_handlercallable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.
- linesbool, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.
- compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}
A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.
Changed in version 0.24.0: ‘infer’ option added and set to default
- indexbool, default True
Whether to include the index values in the JSON string. Not including the index (
index=False
) is only supported when orient is ‘split’ or ‘table’.- indentint, optional
Length of whitespace used to indent each record.
New in version 1.0.0.
- storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by
fsspec
, e.g., starting “s3://”, “gcs://”. An error will be raised if providing this argument with a non-fsspec URL. See the fsspec and backend storage implementation docs for the set of allowed keys and values.New in version 1.2.0.
- Returns
- None or str
If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.
See also
read_json
Convert a JSON string to pandas object.
Notes
The behavior of
indent=0
varies from the stdlib, which does not indent the output but does insert newlines. Currently,indent=0
and the defaultindent=None
are equivalent in pandas, though this may change in a future release.orient='table'
contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema.Examples
>>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... )
>>> result = df.to_json(orient="split") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] }
Encoding/decoding a Dataframe using
'records'
formatted JSON. Note that index labels are not preserved with this encoding.>>> result = df.to_json(orient="records") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ]
Encoding/decoding a Dataframe using
'index'
formatted JSON:>>> result = df.to_json(orient="index") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } }
Encoding/decoding a Dataframe using
'columns'
formatted JSON:>>> result = df.to_json(orient="columns") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } }
Encoding/decoding a Dataframe using
'values'
formatted JSON:>>> result = df.to_json(orient="values") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ [ "a", "b" ], [ "c", "d" ] ]
Encoding with Table Schema:
>>> result = df.to_json(orient="table") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "0.20.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] }