pandas.Index.isnull¶
- Index.isnull()[source]¶
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as
None
,numpy.NaN
orpd.NaT
, get mapped toTrue
values. Everything else get mapped toFalse
values. Characters such as empty strings ‘’ ornumpy.inf
are not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True
).- Returns
- numpy.ndarray[bool]
A boolean array of whether my values are NA.
See also
Index.notna
Boolean inverse of isna.
Index.dropna
Omit entries with missing values.
isna
Top-level isna.
Series.isna
Detect missing values in Series object.
Examples
Show which entries in a pandas.Index are NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True])
Empty strings are not considered NA values. None is considered an NA value.
>>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True])
For datetimes, NaT (Not a Time) is considered as an NA value.
>>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True])