pandas.Series.product¶
- Series.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)[source]¶
Return the product of the values over the requested axis.
- Parameters
- axis{index (0)}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- min_countint, default 0
The required number of valid values to perform the operation. If fewer than
min_countnon-NA values are present the result will be NA.- **kwargs
Additional keyword arguments to be passed to the function.
- Returns
- scalar or Series (if level specified)
See also
Series.sumReturn the sum.
Series.minReturn the minimum.
Series.maxReturn the maximum.
Series.idxminReturn the index of the minimum.
Series.idxmaxReturn the index of the maximum.
DataFrame.sumReturn the sum over the requested axis.
DataFrame.minReturn the minimum over the requested axis.
DataFrame.maxReturn the maximum over the requested axis.
DataFrame.idxminReturn the index of the minimum over the requested axis.
DataFrame.idxmaxReturn the index of the maximum over the requested axis.
Examples
By default, the product of an empty or all-NA Series is
1>>> pd.Series([], dtype="float64").prod() 1.0
This can be controlled with the
min_countparameter>>> pd.Series([], dtype="float64").prod(min_count=1) nan
Thanks to the
skipnaparameter,min_counthandles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).prod(min_count=1) nan