pandas.DataFrame.to_json

DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
path_or_bufstr or file handle, optional

File path or object. If not specified, the result is returned as a string.

orientstr

Indication of expected JSON string format.

  • Series:

    • default is ‘index’

    • allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}.

  • DataFrame:

    • default is ‘columns’

    • allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}.

  • The format of the JSON string:

    • ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}

    • ‘records’ : list like [{column -> value}, … , {column -> value}]

    • ‘index’ : dict like {index -> {column -> value}}

    • ‘columns’ : dict like {column -> {index -> value}}

    • ‘values’ : just the values array

    • ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}}

    Describing the data, where data component is like orient='records'.

date_format{None, ‘epoch’, ‘iso’}

Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For orient='table', the default is ‘iso’. For all other orients, the default is ‘epoch’.

double_precisionint, default 10

The number of decimal places to use when encoding floating point values.

force_asciibool, default True

Force encoded string to be ASCII.

date_unitstr, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handlercallable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

linesbool, default False

If ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like.

compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}

A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.

indexbool, default True

Whether to include the index values in the JSON string. Not including the index (index=False) is only supported when orient is ‘split’ or ‘table’.

indentint, optional

Length of whitespace used to indent each record.

New in version 1.0.0.

storage_optionsdict, optional

Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec. Please see fsspec and urllib for more details.

New in version 1.2.0.

Returns
None or str

If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.

See also

read_json

Convert a JSON string to pandas object.

Notes

The behavior of indent=0 varies from the stdlib, which does not indent the output but does insert newlines. Currently, indent=0 and the default indent=None are equivalent in pandas, though this may change in a future release.

orient='table' contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema.

Examples

>>> import json
>>> df = pd.DataFrame(
...     [["a", "b"], ["c", "d"]],
...     index=["row 1", "row 2"],
...     columns=["col 1", "col 2"],
... )
>>> result = df.to_json(orient="split")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "columns": [
        "col 1",
        "col 2"
    ],
    "index": [
        "row 1",
        "row 2"
    ],
    "data": [
        [
            "a",
            "b"
        ],
        [
            "c",
            "d"
        ]
    ]
}

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding.

>>> result = df.to_json(orient="records")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
[
    {
        "col 1": "a",
        "col 2": "b"
    },
    {
        "col 1": "c",
        "col 2": "d"
    }
]

Encoding/decoding a Dataframe using 'index' formatted JSON:

>>> result = df.to_json(orient="index")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "row 1": {
        "col 1": "a",
        "col 2": "b"
    },
    "row 2": {
        "col 1": "c",
        "col 2": "d"
    }
}

Encoding/decoding a Dataframe using 'columns' formatted JSON:

>>> result = df.to_json(orient="columns")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "col 1": {
        "row 1": "a",
        "row 2": "c"
    },
    "col 2": {
        "row 1": "b",
        "row 2": "d"
    }
}

Encoding/decoding a Dataframe using 'values' formatted JSON:

>>> result = df.to_json(orient="values")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
[
    [
        "a",
        "b"
    ],
    [
        "c",
        "d"
    ]
]

Encoding with Table Schema:

>>> result = df.to_json(orient="table")
>>> parsed = json.loads(result)
>>> json.dumps(parsed, indent=4)  
{
    "schema": {
        "fields": [
            {
                "name": "index",
                "type": "string"
            },
            {
                "name": "col 1",
                "type": "string"
            },
            {
                "name": "col 2",
                "type": "string"
            }
        ],
        "primaryKey": [
            "index"
        ],
        "pandas_version": "0.20.0"
    },
    "data": [
        {
            "index": "row 1",
            "col 1": "a",
            "col 2": "b"
        },
        {
            "index": "row 2",
            "col 1": "c",
            "col 2": "d"
        }
    ]
}