pandas.Series.cumsum¶
- Series.cumsum(axis=None, skipna=True, *args, **kwargs)[source]¶
 Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative sum.
- Parameters
 - axis{0 or ‘index’, 1 or ‘columns’}, default 0
 The index or the name of the axis. 0 is equivalent to None or ‘index’.
- skipnabool, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- *args, **kwargs
 Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns
 - scalar or Series
 Return cumulative sum of scalar or Series.
See also
core.window.Expanding.sumSimilar functionality but ignores
NaNvalues.Series.sumReturn the sum over Series axis.
Series.cummaxReturn cumulative maximum over Series axis.
Series.cumminReturn cumulative minimum over Series axis.
Series.cumsumReturn cumulative sum over Series axis.
Series.cumprodReturn cumulative product over Series axis.
Examples
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64
To include NA values in the operation, use
skipna=False>>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0
By default, iterates over rows and finds the sum in each column. This is equivalent to
axis=Noneoraxis='index'.>>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0
To iterate over columns and find the sum in each row, use
axis=1>>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0