pandas.Index.notna#
- final Index.notna()[source]#
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings''ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True). NA values, such as None ornumpy.NaN, get mapped toFalsevalues.- Returns
- numpy.ndarray[bool]
Boolean array to indicate which entries are not NA.
See also
Index.notnullAlias of notna.
Index.isnaInverse of notna.
notnaTop-level notna.
Examples
Show which entries in an Index are not NA. The result is an array.
>>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False])
Empty strings are not considered NA values. None is considered a NA value.
>>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False])