Options and settings

Overview

pandas has an options API configure and customize global behavior related to DataFrame display, data behavior and more.

Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

The API is composed of 5 relevant functions, available directly from the pandas namespace:

Note

Developers can check out pandas/core/config_init.py for more information.

All of the functions above accept a regexp pattern (re.search style) as an argument, to match an unambiguous substring:

In [5]: pd.get_option("display.chop_threshold")

In [6]: pd.set_option("display.chop_threshold", 2)

In [7]: pd.get_option("display.chop_threshold")
Out[7]: 2

In [8]: pd.set_option("chop", 4)

In [9]: pd.get_option("display.chop_threshold")
Out[9]: 4

The following will not work because it matches multiple option names, e.g. display.max_colwidth, display.max_rows, display.max_columns:

In [10]: pd.get_option("max")
---------------------------------------------------------------------------
OptionError                               Traceback (most recent call last)
Input In [10], in <cell line: 1>()
----> 1 pd.get_option("max")

File /pandas/pandas/_config/config.py:264, in CallableDynamicDoc.__call__(self, *args, **kwds)
    263 def __call__(self, *args, **kwds) -> T:
--> 264     return self.__func__(*args, **kwds)

File /pandas/pandas/_config/config.py:136, in _get_option(pat, silent)
    135 def _get_option(pat: str, silent: bool = False) -> Any:
--> 136     key = _get_single_key(pat, silent)
    138     # walk the nested dict
    139     root, k = _get_root(key)

File /pandas/pandas/_config/config.py:124, in _get_single_key(pat, silent)
    122     raise OptionError(f"No such keys(s): {repr(pat)}")
    123 if len(keys) > 1:
--> 124     raise OptionError("Pattern matched multiple keys")
    125 key = keys[0]
    127 if not silent:

OptionError: 'Pattern matched multiple keys'

Warning

Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

Available options

You can get a list of available options and their descriptions with describe_option(). When called with no argument describe_option() will print out the descriptions for all available options.

In [11]: pd.describe_option()
compute.use_bottleneck : bool
    Use the bottleneck library to accelerate if it is installed,
    the default is True
    Valid values: False,True
    [default: True] [currently: True]
compute.use_numba : bool
    Use the numba engine option for select operations if it is installed,
    the default is False
    Valid values: False,True
    [default: False] [currently: False]
compute.use_numexpr : bool
    Use the numexpr library to accelerate computation if it is installed,
    the default is True
    Valid values: False,True
    [default: True] [currently: True]
display.chop_threshold : float or None
    if set to a float value, all float values smaller than the given threshold
    will be displayed as exactly 0 by repr and friends.
    [default: None] [currently: None]
display.colheader_justify : 'left'/'right'
    Controls the justification of column headers. used by DataFrameFormatter.
    [default: right] [currently: right]
display.column_space No description available.
    [default: 12] [currently: 12]
display.date_dayfirst : boolean
    When True, prints and parses dates with the day first, eg 20/01/2005
    [default: False] [currently: False]
display.date_yearfirst : boolean
    When True, prints and parses dates with the year first, eg 2005/01/20
    [default: False] [currently: False]
display.encoding : str/unicode
    Defaults to the detected encoding of the console.
    Specifies the encoding to be used for strings returned by to_string,
    these are generally strings meant to be displayed on the console.
    [default: utf-8] [currently: utf8]
display.expand_frame_repr : boolean
    Whether to print out the full DataFrame repr for wide DataFrames across
    multiple lines, `max_columns` is still respected, but the output will
    wrap-around across multiple "pages" if its width exceeds `display.width`.
    [default: True] [currently: True]
display.float_format : callable
    The callable should accept a floating point number and return
    a string with the desired format of the number. This is used
    in some places like SeriesFormatter.
    See formats.format.EngFormatter for an example.
    [default: None] [currently: None]
display.html.border : int
    A ``border=value`` attribute is inserted in the ``<table>`` tag
    for the DataFrame HTML repr.
    [default: 1] [currently: 1]
display.html.table_schema : boolean
    Whether to publish a Table Schema representation for frontends
    that support it.
    (default: False)
    [default: False] [currently: False]
display.html.use_mathjax : boolean
    When True, Jupyter notebook will process table contents using MathJax,
    rendering mathematical expressions enclosed by the dollar symbol.
    (default: True)
    [default: True] [currently: True]
display.large_repr : 'truncate'/'info'
    For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can
    show a truncated table (the default from 0.13), or switch to the view from
    df.info() (the behaviour in earlier versions of pandas).
    [default: truncate] [currently: truncate]
display.latex.escape : bool
    This specifies if the to_latex method of a Dataframe uses escapes special
    characters.
    Valid values: False,True
    [default: True] [currently: True]
display.latex.longtable :bool
    This specifies if the to_latex method of a Dataframe uses the longtable
    format.
    Valid values: False,True
    [default: False] [currently: False]
display.latex.multicolumn : bool
    This specifies if the to_latex method of a Dataframe uses multicolumns
    to pretty-print MultiIndex columns.
    Valid values: False,True
    [default: True] [currently: True]
display.latex.multicolumn_format : bool
    This specifies if the to_latex method of a Dataframe uses multicolumns
    to pretty-print MultiIndex columns.
    Valid values: False,True
    [default: l] [currently: l]
display.latex.multirow : bool
    This specifies if the to_latex method of a Dataframe uses multirows
    to pretty-print MultiIndex rows.
    Valid values: False,True
    [default: False] [currently: False]
display.latex.repr : boolean
    Whether to produce a latex DataFrame representation for jupyter
    environments that support it.
    (default: False)
    [default: False] [currently: False]
display.max_categories : int
    This sets the maximum number of categories pandas should output when
    printing out a `Categorical` or a Series of dtype "category".
    [default: 8] [currently: 8]
display.max_columns : int
    If max_cols is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the width of the terminal and print a truncated object which fits
    the screen width. The IPython notebook, IPython qtconsole, or IDLE
    do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 0] [currently: 0]
display.max_colwidth : int or None
    The maximum width in characters of a column in the repr of
    a pandas data structure. When the column overflows, a "..."
    placeholder is embedded in the output. A 'None' value means unlimited.
    [default: 50] [currently: 50]
display.max_dir_items : int
    The number of items that will be added to `dir(...)`. 'None' value means
    unlimited. Because dir is cached, changing this option will not immediately
    affect already existing dataframes until a column is deleted or added.

    This is for instance used to suggest columns from a dataframe to tab
    completion.
    [default: 100] [currently: 100]
display.max_info_columns : int
    max_info_columns is used in DataFrame.info method to decide if
    per column information will be printed.
    [default: 100] [currently: 100]
display.max_info_rows : int or None
    df.info() will usually show null-counts for each column.
    For large frames this can be quite slow. max_info_rows and max_info_cols
    limit this null check only to frames with smaller dimensions than
    specified.
    [default: 1690785] [currently: 1690785]
display.max_rows : int
    If max_rows is exceeded, switch to truncate view. Depending on
    `large_repr`, objects are either centrally truncated or printed as
    a summary view. 'None' value means unlimited.

    In case python/IPython is running in a terminal and `large_repr`
    equals 'truncate' this can be set to 0 and pandas will auto-detect
    the height of the terminal and print a truncated object which fits
    the screen height. The IPython notebook, IPython qtconsole, or
    IDLE do not run in a terminal and hence it is not possible to do
    correct auto-detection.
    [default: 60] [currently: 60]
display.max_seq_items : int or None
    When pretty-printing a long sequence, no more then `max_seq_items`
    will be printed. If items are omitted, they will be denoted by the
    addition of "..." to the resulting string.

    If set to None, the number of items to be printed is unlimited.
    [default: 100] [currently: 100]
display.memory_usage : bool, string or None
    This specifies if the memory usage of a DataFrame should be displayed when
    df.info() is called. Valid values True,False,'deep'
    [default: True] [currently: True]
display.min_rows : int
    The numbers of rows to show in a truncated view (when `max_rows` is
    exceeded). Ignored when `max_rows` is set to None or 0. When set to
    None, follows the value of `max_rows`.
    [default: 10] [currently: 10]
display.multi_sparse : boolean
    "sparsify" MultiIndex display (don't display repeated
    elements in outer levels within groups)
    [default: True] [currently: True]
display.notebook_repr_html : boolean
    When True, IPython notebook will use html representation for
    pandas objects (if it is available).
    [default: True] [currently: True]
display.pprint_nest_depth : int
    Controls the number of nested levels to process when pretty-printing
    [default: 3] [currently: 3]
display.precision : int
    Floating point output precision in terms of number of places after the
    decimal, for regular formatting as well as scientific notation. Similar
    to ``precision`` in :meth:`numpy.set_printoptions`.
    [default: 6] [currently: 6]
display.show_dimensions : boolean or 'truncate'
    Whether to print out dimensions at the end of DataFrame repr.
    If 'truncate' is specified, only print out the dimensions if the
    frame is truncated (e.g. not display all rows and/or columns)
    [default: truncate] [currently: truncate]
display.unicode.ambiguous_as_wide : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]
display.unicode.east_asian_width : boolean
    Whether to use the Unicode East Asian Width to calculate the display text
    width.
    Enabling this may affect to the performance (default: False)
    [default: False] [currently: False]
display.width : int
    Width of the display in characters. In case python/IPython is running in
    a terminal this can be set to None and pandas will correctly auto-detect
    the width.
    Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a
    terminal and hence it is not possible to correctly detect the width.
    [default: 80] [currently: 80]
io.excel.ods.reader : string
    The default Excel reader engine for 'ods' files. Available options:
    auto, odf.
    [default: auto] [currently: auto]
io.excel.ods.writer : string
    The default Excel writer engine for 'ods' files. Available options:
    auto, odf.
    [default: auto] [currently: auto]
io.excel.xls.reader : string
    The default Excel reader engine for 'xls' files. Available options:
    auto, xlrd.
    [default: auto] [currently: auto]
io.excel.xls.writer : string
    The default Excel writer engine for 'xls' files. Available options:
    auto, xlwt.
    [default: auto] [currently: auto]
    (Deprecated, use `` instead.)
io.excel.xlsb.reader : string
    The default Excel reader engine for 'xlsb' files. Available options:
    auto, pyxlsb.
    [default: auto] [currently: auto]
io.excel.xlsm.reader : string
    The default Excel reader engine for 'xlsm' files. Available options:
    auto, xlrd, openpyxl.
    [default: auto] [currently: auto]
io.excel.xlsm.writer : string
    The default Excel writer engine for 'xlsm' files. Available options:
    auto, openpyxl.
    [default: auto] [currently: auto]
io.excel.xlsx.reader : string
    The default Excel reader engine for 'xlsx' files. Available options:
    auto, xlrd, openpyxl.
    [default: auto] [currently: auto]
io.excel.xlsx.writer : string
    The default Excel writer engine for 'xlsx' files. Available options:
    auto, openpyxl, xlsxwriter.
    [default: auto] [currently: auto]
io.hdf.default_format : format
    default format writing format, if None, then
    put will default to 'fixed' and append will default to 'table'
    [default: None] [currently: None]
io.hdf.dropna_table : boolean
    drop ALL nan rows when appending to a table
    [default: False] [currently: False]
io.parquet.engine : string
    The default parquet reader/writer engine. Available options:
    'auto', 'pyarrow', 'fastparquet', the default is 'auto'
    [default: auto] [currently: auto]
io.sql.engine : string
    The default sql reader/writer engine. Available options:
    'auto', 'sqlalchemy', the default is 'auto'
    [default: auto] [currently: auto]
mode.chained_assignment : string
    Raise an exception, warn, or no action if trying to use chained assignment,
    The default is warn
    [default: warn] [currently: warn]
mode.copy_on_write : bool
    Use new copy-view behaviour using Copy-on-Write. Defaults to False,
    unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable
    (if set to "1" for True, needs to be set before pandas is imported).
    [default: False] [currently: False]
mode.data_manager : string
    Internal data manager type; can be "block" or "array". Defaults to "block",
    unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs
    to be set before pandas is imported).
    [default: block] [currently: block]
mode.sim_interactive : boolean
    Whether to simulate interactive mode for purposes of testing
    [default: False] [currently: False]
mode.string_storage : string
    The default storage for StringDtype.
    [default: python] [currently: python]
mode.use_inf_as_na : boolean
    True means treat None, NaN, INF, -INF as NA (old way),
    False means None and NaN are null, but INF, -INF are not NA
    (new way).
    [default: False] [currently: False]
mode.use_inf_as_null : boolean
    use_inf_as_null had been deprecated and will be removed in a future
    version. Use `use_inf_as_na` instead.
    [default: False] [currently: False]
    (Deprecated, use `mode.use_inf_as_na` instead.)
plotting.backend : str
    The plotting backend to use. The default value is "matplotlib", the
    backend provided with pandas. Other backends can be specified by
    providing the name of the module that implements the backend.
    [default: matplotlib] [currently: matplotlib]
plotting.matplotlib.register_converters : bool or 'auto'.
    Whether to register converters with matplotlib's units registry for
    dates, times, datetimes, and Periods. Toggling to False will remove
    the converters, restoring any converters that pandas overwrote.
    [default: auto] [currently: auto]
styler.format.decimal : str
    The character representation for the decimal separator for floats and complex.
    [default: .] [currently: .]
styler.format.escape : str, optional
    Whether to escape certain characters according to the given context; html or latex.
    [default: None] [currently: None]
styler.format.formatter : str, callable, dict, optional
    A formatter object to be used as default within ``Styler.format``.
    [default: None] [currently: None]
styler.format.na_rep : str, optional
    The string representation for values identified as missing.
    [default: None] [currently: None]
styler.format.precision : int
    The precision for floats and complex numbers.
    [default: 6] [currently: 6]
styler.format.thousands : str, optional
    The character representation for thousands separator for floats, int and complex.
    [default: None] [currently: None]
styler.html.mathjax : bool
    If False will render special CSS classes to table attributes that indicate Mathjax
    will not be used in Jupyter Notebook.
    [default: True] [currently: True]
styler.latex.environment : str
    The environment to replace ``\begin{table}``. If "longtable" is used results
    in a specific longtable environment format.
    [default: None] [currently: None]
styler.latex.hrules : bool
    Whether to add horizontal rules on top and bottom and below the headers.
    [default: False] [currently: False]
styler.latex.multicol_align : {"r", "c", "l", "naive-l", "naive-r"}
    The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe
    decorators can also be added to non-naive values to draw vertical
    rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells.
    [default: r] [currently: r]
styler.latex.multirow_align : {"c", "t", "b"}
    The specifier for vertical alignment of sparsified LaTeX multirows.
    [default: c] [currently: c]
styler.render.encoding : str
    The encoding used for output HTML and LaTeX files.
    [default: utf-8] [currently: utf-8]
styler.render.max_columns : int, optional
    The maximum number of columns that will be rendered. May still be reduced to
    satsify ``max_elements``, which takes precedence.
    [default: None] [currently: None]
styler.render.max_elements : int
    The maximum number of data-cell (<td>) elements that will be rendered before
    trimming will occur over columns, rows or both if needed.
    [default: 262144] [currently: 262144]
styler.render.max_rows : int, optional
    The maximum number of rows that will be rendered. May still be reduced to
    satsify ``max_elements``, which takes precedence.
    [default: None] [currently: None]
styler.render.repr : str
    Determine which output to use in Jupyter Notebook in {"html", "latex"}.
    [default: html] [currently: html]
styler.sparse.columns : bool
    Whether to sparsify the display of hierarchical columns. Setting to False will
    display each explicit level element in a hierarchical key for each column.
    [default: True] [currently: True]
styler.sparse.index : bool
    Whether to sparsify the display of a hierarchical index. Setting to False will
    display each explicit level element in a hierarchical key for each row.
    [default: True] [currently: True]

Getting and setting options

As described above, get_option() and set_option() are available from the pandas namespace. To change an option, call set_option('option regex', new_value).

In [12]: pd.get_option("mode.sim_interactive")
Out[12]: False

In [13]: pd.set_option("mode.sim_interactive", True)

In [14]: pd.get_option("mode.sim_interactive")
Out[14]: True

Note

The option 'mode.sim_interactive' is mostly used for debugging purposes.

You can use reset_option() to revert to a setting’s default value

In [15]: pd.get_option("display.max_rows")
Out[15]: 60

In [16]: pd.set_option("display.max_rows", 999)

In [17]: pd.get_option("display.max_rows")
Out[17]: 999

In [18]: pd.reset_option("display.max_rows")

In [19]: pd.get_option("display.max_rows")
Out[19]: 60

It’s also possible to reset multiple options at once (using a regex):

In [20]: pd.reset_option("^display")

option_context() context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the with block:

In [21]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [22]: print(pd.get_option("display.max_rows"))
60

In [23]: print(pd.get_option("display.max_columns"))
0

Setting startup options in Python/IPython environment

Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default IPython profile can be found at:

$IPYTHONDIR/profile_default/startup

More information can be found in the IPython documentation. An example startup script for pandas is displayed below:

import pandas as pd

pd.set_option("display.max_rows", 999)
pd.set_option("display.precision", 5)

Frequently used options

The following is a demonstrates the more frequently used display options.

display.max_rows and display.max_columns sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

In [24]: df = pd.DataFrame(np.random.randn(7, 2))

In [25]: pd.set_option("display.max_rows", 7)

In [26]: df
Out[26]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [27]: pd.set_option("display.max_rows", 5)

In [28]: df
Out[28]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

In [29]: pd.reset_option("display.max_rows")

Once the display.max_rows is exceeded, the display.min_rows options determines how many rows are shown in the truncated repr.

In [30]: pd.set_option("display.max_rows", 8)

In [31]: pd.set_option("display.min_rows", 4)

# below max_rows -> all rows shown
In [32]: df = pd.DataFrame(np.random.randn(7, 2))

In [33]: df
Out[33]: 
          0         1
0 -1.039575  0.271860
1 -0.424972  0.567020
2  0.276232 -1.087401
3 -0.673690  0.113648
4 -1.478427  0.524988
5  0.404705  0.577046
6 -1.715002 -1.039268

# above max_rows -> only min_rows (4) rows shown
In [34]: df = pd.DataFrame(np.random.randn(9, 2))

In [35]: df
Out[35]: 
           0         1
0  -0.370647 -1.157892
1  -1.344312  0.844885
..       ...       ...
7   0.276662 -0.472035
8  -0.013960 -0.362543

[9 rows x 2 columns]

In [36]: pd.reset_option("display.max_rows")

In [37]: pd.reset_option("display.min_rows")

display.expand_frame_repr allows for the representation of a DataFrame to stretch across pages, wrapped over the all the columns.

In [38]: df = pd.DataFrame(np.random.randn(5, 10))

In [39]: pd.set_option("expand_frame_repr", True)

In [40]: df
Out[40]: 
          0         1         2         3         4         5         6         7         8         9
0 -0.006154 -0.923061  0.895717  0.805244 -1.206412  2.565646  1.431256  1.340309 -1.170299 -0.226169
1  0.410835  0.813850  0.132003 -0.827317 -0.076467 -1.187678  1.130127 -1.436737 -1.413681  1.607920
2  1.024180  0.569605  0.875906 -2.211372  0.974466 -2.006747 -0.410001 -0.078638  0.545952 -1.219217
3 -1.226825  0.769804 -1.281247 -0.727707 -0.121306 -0.097883  0.695775  0.341734  0.959726 -1.110336
4 -0.619976  0.149748 -0.732339  0.687738  0.176444  0.403310 -0.154951  0.301624 -2.179861 -1.369849

In [41]: pd.set_option("expand_frame_repr", False)

In [42]: df
Out[42]: 
          0         1         2         3         4         5         6         7         8         9
0 -0.006154 -0.923061  0.895717  0.805244 -1.206412  2.565646  1.431256  1.340309 -1.170299 -0.226169
1  0.410835  0.813850  0.132003 -0.827317 -0.076467 -1.187678  1.130127 -1.436737 -1.413681  1.607920
2  1.024180  0.569605  0.875906 -2.211372  0.974466 -2.006747 -0.410001 -0.078638  0.545952 -1.219217
3 -1.226825  0.769804 -1.281247 -0.727707 -0.121306 -0.097883  0.695775  0.341734  0.959726 -1.110336
4 -0.619976  0.149748 -0.732339  0.687738  0.176444  0.403310 -0.154951  0.301624 -2.179861 -1.369849

In [43]: pd.reset_option("expand_frame_repr")

display.large_repr displays a DataFrame that exceed max_columns or max_rows as a truncated frame or summary.

In [44]: df = pd.DataFrame(np.random.randn(10, 10))

In [45]: pd.set_option("display.max_rows", 5)

In [46]: pd.set_option("large_repr", "truncate")

In [47]: df
Out[47]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

In [48]: pd.set_option("large_repr", "info")

In [49]: df
Out[49]: 
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

In [50]: pd.reset_option("large_repr")

In [51]: pd.reset_option("display.max_rows")

display.max_colwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis.

In [52]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [53]: pd.set_option("max_colwidth", 40)

In [54]: df
Out[54]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [55]: pd.set_option("max_colwidth", 6)

In [56]: df
Out[56]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

In [57]: pd.reset_option("max_colwidth")

display.max_info_columns sets a threshold for the number of columns displayed when calling info().

In [58]: df = pd.DataFrame(np.random.randn(10, 10))

In [59]: pd.set_option("max_info_columns", 11)

In [60]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

In [61]: pd.set_option("max_info_columns", 5)

In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 928.0 bytes

In [63]: pd.reset_option("max_info_columns")

display.max_info_rows: info() will usually show null-counts for each column. For a large DataFrame, this can be quite slow. max_info_rows and max_info_cols limit this null check to the specified rows and columns respectively. The info() keyword argument null_counts=True will override this.

In [64]: df = pd.DataFrame(np.random.choice([0, 1, np.nan], size=(10, 10)))

In [65]: df
Out[65]: 
     0    1    2    3    4    5    6    7    8    9
0  0.0  NaN  1.0  NaN  NaN  0.0  NaN  0.0  NaN  1.0
1  1.0  NaN  1.0  1.0  1.0  1.0  NaN  0.0  0.0  NaN
2  0.0  NaN  1.0  0.0  0.0  NaN  NaN  NaN  NaN  0.0
3  NaN  NaN  NaN  0.0  1.0  1.0  NaN  1.0  NaN  1.0
4  0.0  NaN  NaN  NaN  0.0  NaN  NaN  NaN  1.0  0.0
5  0.0  1.0  1.0  1.0  1.0  0.0  NaN  NaN  1.0  0.0
6  1.0  1.0  1.0  NaN  1.0  NaN  1.0  0.0  NaN  NaN
7  0.0  0.0  1.0  0.0  1.0  0.0  1.0  1.0  0.0  NaN
8  NaN  NaN  NaN  0.0  NaN  NaN  NaN  NaN  1.0  NaN
9  0.0  NaN  0.0  NaN  NaN  0.0  NaN  1.0  1.0  0.0

In [66]: pd.set_option("max_info_rows", 11)

In [67]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       8 non-null      float64
 1   1       3 non-null      float64
 2   2       7 non-null      float64
 3   3       6 non-null      float64
 4   4       7 non-null      float64
 5   5       6 non-null      float64
 6   6       2 non-null      float64
 7   7       6 non-null      float64
 8   8       6 non-null      float64
 9   9       6 non-null      float64
dtypes: float64(10)
memory usage: 928.0 bytes

In [68]: pd.set_option("max_info_rows", 5)

In [69]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Dtype  
---  ------  -----  
 0   0       float64
 1   1       float64
 2   2       float64
 3   3       float64
 4   4       float64
 5   5       float64
 6   6       float64
 7   7       float64
 8   8       float64
 9   9       float64
dtypes: float64(10)
memory usage: 928.0 bytes

In [70]: pd.reset_option("max_info_rows")

display.precision sets the output display precision in terms of decimal places.

In [71]: df = pd.DataFrame(np.random.randn(5, 5))

In [72]: pd.set_option("display.precision", 7)

In [73]: df
Out[73]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

In [74]: pd.set_option("display.precision", 4)

In [75]: df
Out[75]: 
        0       1       2       3       4
0 -1.1506 -0.7983 -0.5577  0.3814  1.3371
1 -1.5311  1.3315 -0.5713 -0.0267 -1.0857
2 -1.1147 -0.0582 -0.4868  1.6851  0.1126
3 -1.4953  0.8984 -0.1482 -1.5961  0.1597
4  0.2621  0.0362  0.1847 -0.2551 -0.2710

display.chop_threshold sets the rounding threshold to zero when displaying a Series or DataFrame. This setting does not change the precision at which the number is stored.

In [76]: df = pd.DataFrame(np.random.randn(6, 6))

In [77]: pd.set_option("chop_threshold", 0)

In [78]: df
Out[78]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [79]: pd.set_option("chop_threshold", 0.5)

In [80]: df
Out[80]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

In [81]: pd.reset_option("chop_threshold")

display.colheader_justify controls the justification of the headers. The options are 'right', and 'left'.

In [82]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [83]: pd.set_option("colheader_justify", "right")

In [84]: df
Out[84]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [85]: pd.set_option("colheader_justify", "left")

In [86]: df
Out[86]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [87]: pd.reset_option("colheader_justify")

Number formatting

pandas also allows you to set how numbers are displayed in the console. This option is not set through the set_options API.

Use the set_eng_float_format function to alter the floating-point formatting of pandas objects to produce a particular format.

In [88]: import numpy as np

In [89]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)

In [90]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

In [91]: s / 1.0e3
Out[91]: 
a    303.638u
b   -721.084u
c   -622.696u
d    648.250u
e     -1.945m
dtype: float64

In [92]: s / 1.0e6
Out[92]: 
a    303.638n
b   -721.084n
c   -622.696n
d    648.250n
e     -1.945u
dtype: float64

Use round() to specifically control rounding of an individual DataFrame

Unicode formatting

Warning

Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters whose width corresponds to two Latin characters. If a DataFrame or Series contains these characters, the default output mode may not align them properly.

In [93]: df = pd.DataFrame({"国籍": ["UK", "日本"], "名前": ["Alice", "しのぶ"]})

In [94]: df
Out[94]: 
   国籍     名前
0  UK  Alice
1  日本    しのぶ

Enabling display.unicode.east_asian_width allows pandas to check each character’s “East Asian Width” property. These characters can be aligned properly by setting this option to True. However, this will result in longer render times than the standard len function.

In [95]: pd.set_option("display.unicode.east_asian_width", True)

In [96]: df
Out[96]: 
   国籍    名前
0    UK   Alice
1  日本  しのぶ

In addition, Unicode characters whose width is “ambiguous” can either be 1 or 2 characters wide depending on the terminal setting or encoding. The option display.unicode.ambiguous_as_wide can be used to handle the ambiguity.

By default, an “ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be 1.

In [97]: df = pd.DataFrame({"a": ["xxx", "¡¡"], "b": ["yyy", "¡¡"]})

In [98]: df
Out[98]: 
     a    b
0  xxx  yyy
1   ¡¡   ¡¡

Enabling display.unicode.ambiguous_as_wide makes pandas interpret these characters’ widths to be 2. (Note that this option will only be effective when display.unicode.east_asian_width is enabled.)

However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:

In [99]: pd.set_option("display.unicode.ambiguous_as_wide", True)

In [100]: df
Out[100]: 
      a     b
0   xxx   yyy
1  ¡¡  ¡¡

Table schema display

DataFrame and Series will publish a Table Schema representation by default. This can be enabled globally with the display.html.table_schema option:

In [101]: pd.set_option("display.html.table_schema", True)

Only 'display.max_rows' are serialized and published.