pandas.Series.dropna#
- Series.dropna(*, axis=0, inplace=False, how=None)[source]#
 Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters
 - axis{0 or ‘index’}
 Unused. Parameter needed for compatibility with DataFrame.
- inplacebool, default False
 If True, do operation inplace and return None.
- howstr, optional
 Not in use. Kept for compatibility.
- Returns
 - Series or None
 Series with NA entries dropped from it or None if
inplace=True.
See also
Series.isnaIndicate missing values.
Series.notnaIndicate existing (non-missing) values.
Series.fillnaReplace missing values.
DataFrame.dropnaDrop rows or columns which contain NA values.
Index.dropnaDrop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
Noneis considered an NA value.>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object