Extending pandas#
While pandas provides a rich set of methods, containers, and data types, your needs may not be fully satisfied. pandas offers a few options for extending pandas.
Registering custom accessors#
Libraries can use the decorators
pandas.api.extensions.register_dataframe_accessor()
,
pandas.api.extensions.register_series_accessor()
, and
pandas.api.extensions.register_index_accessor()
, to add additional
“namespaces” to pandas objects. All of these follow a similar convention: you
decorate a class, providing the name of attribute to add. The class’s
__init__
method gets the object being decorated. For example:
@pd.api.extensions.register_dataframe_accessor("geo")
class GeoAccessor:
def __init__(self, pandas_obj):
self._validate(pandas_obj)
self._obj = pandas_obj
@staticmethod
def _validate(obj):
# verify there is a column latitude and a column longitude
if "latitude" not in obj.columns or "longitude" not in obj.columns:
raise AttributeError("Must have 'latitude' and 'longitude'.")
@property
def center(self):
# return the geographic center point of this DataFrame
lat = self._obj.latitude
lon = self._obj.longitude
return (float(lon.mean()), float(lat.mean()))
def plot(self):
# plot this array's data on a map, e.g., using Cartopy
pass
Now users can access your methods using the geo
namespace:
>>> ds = pd.DataFrame(
... {"longitude": np.linspace(0, 10), "latitude": np.linspace(0, 20)}
... )
>>> ds.geo.center
(5.0, 10.0)
>>> ds.geo.plot()
# plots data on a map
This can be a convenient way to extend pandas objects without subclassing them. If you write a custom accessor, make a pull request adding it to our pandas ecosystem page.
We highly recommend validating the data in your accessor’s __init__
.
In our GeoAccessor
, we validate that the data contains the expected columns,
raising an AttributeError
when the validation fails.
For a Series
accessor, you should validate the dtype
if the accessor
applies only to certain dtypes.
Extension types#
Note
The pandas.api.extensions.ExtensionDtype
and pandas.api.extensions.ExtensionArray
APIs were
experimental prior to pandas 1.5. Starting with version 1.5, future changes will follow
the pandas deprecation policy.
pandas defines an interface for implementing data types and arrays that extend NumPy’s type system. pandas itself uses the extension system for some types that aren’t built into NumPy (categorical, period, interval, datetime with timezone).
Libraries can define a custom array and data type. When pandas encounters these
objects, they will be handled properly (i.e. not converted to an ndarray of
objects). Many methods like pandas.isna()
will dispatch to the extension
type’s implementation.
If you’re building a library that implements the interface, please publicize it on Extension data types.
The interface consists of two classes.
ExtensionDtype
#
A pandas.api.extensions.ExtensionDtype
is similar to a numpy.dtype
object. It describes the
data type. Implementors are responsible for a few unique items like the name.
One particularly important item is the type
property. This should be the
class that is the scalar type for your data. For example, if you were writing an
extension array for IP Address data, this might be ipaddress.IPv4Address
.
See the extension dtype source for interface definition.
pandas.api.extensions.ExtensionDtype
can be registered to pandas to allow creation via a string dtype name.
This allows one to instantiate Series
and .astype()
with a registered string name, for
example 'category'
is a registered string accessor for the CategoricalDtype
.
See the extension dtype dtypes for more on how to register dtypes.
ExtensionArray
#
This class provides all the array-like functionality. ExtensionArrays are
limited to 1 dimension. An ExtensionArray is linked to an ExtensionDtype via the
dtype
attribute.
pandas makes no restrictions on how an extension array is created via its
__new__
or __init__
, and puts no restrictions on how you store your
data. We do require that your array be convertible to a NumPy array, even if
this is relatively expensive (as it is for Categorical
).
They may be backed by none, one, or many NumPy arrays. For example,
pandas.Categorical
is an extension array backed by two arrays,
one for codes and one for categories. An array of IPv6 addresses may
be backed by a NumPy structured array with two fields, one for the
lower 64 bits and one for the upper 64 bits. Or they may be backed
by some other storage type, like Python lists.
See the extension array source for the interface definition. The docstrings and comments contain guidance for properly implementing the interface.
ExtensionArray
operator support#
By default, there are no operators defined for the class ExtensionArray
.
There are two approaches for providing operator support for your ExtensionArray:
Define each of the operators on your
ExtensionArray
subclass.Use an operator implementation from pandas that depends on operators that are already defined on the underlying elements (scalars) of the ExtensionArray.
Note
Regardless of the approach, you may want to set __array_priority__
if you want your implementation to be called when involved in binary operations
with NumPy arrays.
For the first approach, you define selected operators, e.g., __add__
, __le__
, etc. that
you want your ExtensionArray
subclass to support.
The second approach assumes that the underlying elements (i.e., scalar type) of the ExtensionArray
have the individual operators already defined. In other words, if your ExtensionArray
named MyExtensionArray
is implemented so that each element is an instance
of the class MyExtensionElement
, then if the operators are defined
for MyExtensionElement
, the second approach will automatically
define the operators for MyExtensionArray
.
A mixin class, ExtensionScalarOpsMixin
supports this second
approach. If developing an ExtensionArray
subclass, for example MyExtensionArray
,
can simply include ExtensionScalarOpsMixin
as a parent class of MyExtensionArray
,
and then call the methods _add_arithmetic_ops()
and/or
_add_comparison_ops()
to hook the operators into
your MyExtensionArray
class, as follows:
from pandas.api.extensions import ExtensionArray, ExtensionScalarOpsMixin
class MyExtensionArray(ExtensionArray, ExtensionScalarOpsMixin):
pass
MyExtensionArray._add_arithmetic_ops()
MyExtensionArray._add_comparison_ops()
Note
Since pandas
automatically calls the underlying operator on each
element one-by-one, this might not be as performant as implementing your own
version of the associated operators directly on the ExtensionArray
.
For arithmetic operations, this implementation will try to reconstruct a new
ExtensionArray
with the result of the element-wise operation. Whether
or not that succeeds depends on whether the operation returns a result
that’s valid for the ExtensionArray
. If an ExtensionArray
cannot
be reconstructed, an ndarray containing the scalars returned instead.
For ease of implementation and consistency with operations between pandas
and NumPy ndarrays, we recommend not handling Series and Indexes in your binary ops.
Instead, you should detect these cases and return NotImplemented
.
When pandas encounters an operation like op(Series, ExtensionArray)
, pandas
will
unbox the array from the
Series
(Series.array
)call
result = op(values, ExtensionArray)
re-box the result in a
Series
NumPy universal functions#
Series
implements __array_ufunc__
. As part of the implementation,
pandas unboxes the ExtensionArray
from the Series
, applies the ufunc,
and re-boxes it if necessary.
If applicable, we highly recommend that you implement __array_ufunc__
in your
extension array to avoid coercion to an ndarray. See
the NumPy documentation
for an example.
As part of your implementation, we require that you defer to pandas when a pandas
container (Series
, DataFrame
, Index
) is detected in inputs
.
If any of those is present, you should return NotImplemented
. pandas will take care of
unboxing the array from the container and re-calling the ufunc with the unwrapped input.
Testing extension arrays#
We provide a test suite for ensuring that your extension arrays satisfy the expected behavior. To use the test suite, you must provide several pytest fixtures and inherit from the base test class. The required fixtures are found in https://github.com/pandas-dev/pandas/blob/main/pandas/tests/extension/conftest.py.
To use a test, subclass it:
from pandas.tests.extension import base
class TestConstructors(base.BaseConstructorsTests):
pass
See https://github.com/pandas-dev/pandas/blob/main/pandas/tests/extension/base/__init__.py for a list of all the tests available.
Compatibility with Apache Arrow#
An ExtensionArray
can support conversion to / from pyarrow
arrays
(and thus support for example serialization to the Parquet file format)
by implementing two methods: ExtensionArray.__arrow_array__
and
ExtensionDtype.__from_arrow__
.
The ExtensionArray.__arrow_array__
ensures that pyarrow
knowns how
to convert the specific extension array into a pyarrow.Array
(also when
included as a column in a pandas DataFrame):
class MyExtensionArray(ExtensionArray):
...
def __arrow_array__(self, type=None):
# convert the underlying array values to a pyarrow Array
import pyarrow
return pyarrow.array(..., type=type)
The ExtensionDtype.__from_arrow__
method then controls the conversion
back from pyarrow to a pandas ExtensionArray. This method receives a pyarrow
Array
or ChunkedArray
as only argument and is expected to return the
appropriate pandas ExtensionArray
for this dtype and the passed values:
class ExtensionDtype:
...
def __from_arrow__(self, array: pyarrow.Array/ChunkedArray) -> ExtensionArray:
...
See more in the Arrow documentation.
Those methods have been implemented for the nullable integer and string extension dtypes included in pandas, and ensure roundtrip to pyarrow and the Parquet file format.
Subclassing pandas data structures#
Warning
There are some easier alternatives before considering subclassing pandas
data structures.
Extensible method chains with pipe
Use composition. See here.
Extending by registering an accessor
Extending by extension type
This section describes how to subclass pandas
data structures to meet more specific needs. There are two points that need attention:
Override constructor properties.
Define original properties
Note
You can find a nice example in geopandas project.
Override constructor properties#
Each data structure has several constructor properties for returning a new
data structure as the result of an operation. By overriding these properties,
you can retain subclasses through pandas
data manipulations.
There are 3 possible constructor properties to be defined on a subclass:
DataFrame/Series._constructor
: Used when a manipulation result has the same dimension as the original.DataFrame._constructor_sliced
: Used when aDataFrame
(sub-)class manipulation result should be aSeries
(sub-)class.Series._constructor_expanddim
: Used when aSeries
(sub-)class manipulation result should be aDataFrame
(sub-)class, e.g.Series.to_frame()
.
Below example shows how to define SubclassedSeries
and SubclassedDataFrame
overriding constructor properties.
class SubclassedSeries(pd.Series):
@property
def _constructor(self):
return SubclassedSeries
@property
def _constructor_expanddim(self):
return SubclassedDataFrame
class SubclassedDataFrame(pd.DataFrame):
@property
def _constructor(self):
return SubclassedDataFrame
@property
def _constructor_sliced(self):
return SubclassedSeries
>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>
>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>
>>> df = SubclassedDataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> type(df)
<class '__main__.SubclassedDataFrame'>
>>> sliced1 = df[["A", "B"]]
>>> sliced1
A B
0 1 4
1 2 5
2 3 6
>>> type(sliced1)
<class '__main__.SubclassedDataFrame'>
>>> sliced2 = df["A"]
>>> sliced2
0 1
1 2
2 3
Name: A, dtype: int64
>>> type(sliced2)
<class '__main__.SubclassedSeries'>
Define original properties#
To let original data structures have additional properties, you should let pandas
know what properties are added. pandas
maps unknown properties to data names overriding __getattribute__
. Defining original properties can be done in one of 2 ways:
Define
_internal_names
and_internal_names_set
for temporary properties which WILL NOT be passed to manipulation results.Define
_metadata
for normal properties which will be passed to manipulation results.
Below is an example to define two original properties, “internal_cache” as a temporary property and “added_property” as a normal property
class SubclassedDataFrame2(pd.DataFrame):
# temporary properties
_internal_names = pd.DataFrame._internal_names + ["internal_cache"]
_internal_names_set = set(_internal_names)
# normal properties
_metadata = ["added_property"]
@property
def _constructor(self):
return SubclassedDataFrame2
>>> df = SubclassedDataFrame2({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
>>> df
A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> df.internal_cache = "cached"
>>> df.added_property = "property"
>>> df.internal_cache
cached
>>> df.added_property
property
# properties defined in _internal_names is reset after manipulation
>>> df[["A", "B"]].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'
# properties defined in _metadata are retained
>>> df[["A", "B"]].added_property
property
Plotting backends#
Starting in 0.25 pandas can be extended with third-party plotting backends. The main idea is letting users select a plotting backend different than the provided one based on Matplotlib. For example:
>>> pd.set_option("plotting.backend", "backend.module")
>>> pd.Series([1, 2, 3]).plot()
This would be more or less equivalent to:
>>> import backend.module
>>> backend.module.plot(pd.Series([1, 2, 3]))
The backend module can then use other visualization tools (Bokeh, Altair,…) to generate the plots.
Libraries implementing the plotting backend should use entry points
to make their backend discoverable to pandas. The key is "pandas_plotting_backends"
. For example, pandas
registers the default “matplotlib” backend as follows.
# in setup.py
setup( # noqa: F821
...,
entry_points={
"pandas_plotting_backends": [
"matplotlib = pandas:plotting._matplotlib",
],
},
)
More information on how to implement a third-party plotting backend can be found at https://github.com/pandas-dev/pandas/blob/main/pandas/plotting/__init__.py#L1.