pandas.arrays.IntegerArray#
- class pandas.arrays.IntegerArray(values, mask, copy=False)[source]#
- Array of integer (optional missing) values. - Changed in version 1.0.0: Now uses - pandas.NAas the missing value rather than- numpy.nan.- Warning - IntegerArray is currently experimental, and its API or internal implementation may change without warning. - We represent an IntegerArray with 2 numpy arrays: - data: contains a numpy integer array of the appropriate dtype 
- mask: a boolean array holding a mask on the data, True is missing 
 - To construct an IntegerArray from generic array-like input, use - pandas.array()with one of the integer dtypes (see examples).- See Nullable integer data type for more. - Parameters
- valuesnumpy.ndarray
- A 1-d integer-dtype array. 
- masknumpy.ndarray
- A 1-d boolean-dtype array indicating missing values. 
- copybool, default False
- Whether to copy the values and mask. 
 
- Returns
- IntegerArray
 
 - Examples - Create an IntegerArray with - pandas.array().- >>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 - String aliases for the dtypes are also available. They are capitalized. - >>> pd.array([1, None, 3], dtype='Int32') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 - >>> pd.array([1, None, 3], dtype='UInt16') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16 - Attributes - None - Methods - None