pandas.core.groupby.GroupBy.rank#
- final GroupBy.rank(method='average', ascending=True, na_option='keep', pct=False, axis=0)[source]#
- Provide the rank of values within each group. - Parameters
- method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’
- average: average rank of group. 
- min: lowest rank in group. 
- max: highest rank in group. 
- first: ranks assigned in order they appear in the array. 
- dense: like ‘min’, but rank always increases by 1 between groups. 
 
- ascendingbool, default True
- False for ranks by high (1) to low (N). 
- na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’
- keep: leave NA values where they are. 
- top: smallest rank if ascending. 
- bottom: smallest rank if descending. 
 
- pctbool, default False
- Compute percentage rank of data within each group. 
- axisint, default 0
- The axis of the object over which to compute the rank. 
 
- Returns
- DataFrame with ranking of values within each group
 
 - See also - Series.groupby
- Apply a function groupby to a Series. 
- DataFrame.groupby
- Apply a function groupby to each row or column of a DataFrame. 
 - Examples - >>> df = pd.DataFrame( ... { ... "group": ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"], ... "value": [2, 4, 2, 3, 5, 1, 2, 4, 1, 5], ... } ... ) >>> df group value 0 a 2 1 a 4 2 a 2 3 a 3 4 a 5 5 b 1 6 b 2 7 b 4 8 b 1 9 b 5 >>> for method in ['average', 'min', 'max', 'dense', 'first']: ... df[f'{method}_rank'] = df.groupby('group')['value'].rank(method) >>> df group value average_rank min_rank max_rank dense_rank first_rank 0 a 2 1.5 1.0 2.0 1.0 1.0 1 a 4 4.0 4.0 4.0 3.0 4.0 2 a 2 1.5 1.0 2.0 1.0 2.0 3 a 3 3.0 3.0 3.0 2.0 3.0 4 a 5 5.0 5.0 5.0 4.0 5.0 5 b 1 1.5 1.0 2.0 1.0 1.0 6 b 2 3.0 3.0 3.0 2.0 3.0 7 b 4 4.0 4.0 4.0 3.0 4.0 8 b 1 1.5 1.0 2.0 1.0 2.0 9 b 5 5.0 5.0 5.0 4.0 5.0