pandas.core.resample.Resampler.mean#
- Resampler.mean(numeric_only=_NoDefault.no_default, *args, **kwargs)[source]#
- Compute mean of groups, excluding missing values. - Parameters
- numeric_onlybool, default True
- Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. 
- enginestr, default None
- 'cython': Runs the operation through C-extensions from cython.
- 'numba': Runs the operation through JIT compiled code from numba.
- None: Defaults to- 'cython'or globally setting- compute.use_numba
 - New in version 1.4.0. 
- engine_kwargsdict, default None
- For - 'cython'engine, there are no accepted- engine_kwargs
- For - 'numba'engine, the engine can accept- nopython,- nogiland- paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {{'nopython': True, 'nogil': False, 'parallel': False}}
 - New in version 1.4.0. 
 
- Returns
- pandas.Series or pandas.DataFrame
 
 - See also - Series.groupby
- Apply a function groupby to a Series. 
- DataFrame.groupby
- Apply a function groupby to each row or column of a DataFrame. 
 - Examples - >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) - Groupby one column and return the mean of the remaining columns in each group. - >>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.500000 - Groupby two columns and return the mean of the remaining column. - >>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2.0 4.0 1.0 2 3.0 1.0 5.0 2.0 - Groupby one column and return the mean of only particular column in the group. - >>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: float64