pandas.json_normalize#
- pandas.json_normalize(data, record_path=None, meta=None, meta_prefix=None, record_prefix=None, errors='raise', sep='.', max_level=None)[source]#
Normalize semi-structured JSON data into a flat table.
- Parameters
- datadict or list of dicts
Unserialized JSON objects.
- record_pathstr or list of str, default None
Path in each object to list of records. If not passed, data will be assumed to be an array of records.
- metalist of paths (str or list of str), default None
Fields to use as metadata for each record in resulting table.
- meta_prefixstr, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if meta is [‘foo’, ‘bar’].
- record_prefixstr, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is [‘foo’, ‘bar’].
- errors{‘raise’, ‘ignore’}, default ‘raise’
Configures error handling.
‘ignore’ : will ignore KeyError if keys listed in meta are not always present.
‘raise’ : will raise KeyError if keys listed in meta are not always present.
- sepstr, default ‘.’
Nested records will generate names separated by sep. e.g., for sep=’.’, {‘foo’: {‘bar’: 0}} -> foo.bar.
- max_levelint, default None
Max number of levels(depth of dict) to normalize. if None, normalizes all levels.
New in version 0.25.0.
- Returns
- frameDataFrame
- Normalize semi-structured JSON data into a flat table.
Examples
>>> data = [ ... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}}, ... {"name": {"given": "Mark", "family": "Regner"}}, ... {"id": 2, "name": "Faye Raker"}, ... ] >>> pd.json_normalize(data) id name.first name.last name.given name.family name 0 1.0 Coleen Volk NaN NaN NaN 1 NaN NaN NaN Mark Regner NaN 2 2.0 NaN NaN NaN NaN Faye Raker
>>> data = [ ... { ... "id": 1, ... "name": "Cole Volk", ... "fitness": {"height": 130, "weight": 60}, ... }, ... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}}, ... { ... "id": 2, ... "name": "Faye Raker", ... "fitness": {"height": 130, "weight": 60}, ... }, ... ] >>> pd.json_normalize(data, max_level=0) id name fitness 0 1.0 Cole Volk {'height': 130, 'weight': 60} 1 NaN Mark Reg {'height': 130, 'weight': 60} 2 2.0 Faye Raker {'height': 130, 'weight': 60}
Normalizes nested data up to level 1.
>>> data = [ ... { ... "id": 1, ... "name": "Cole Volk", ... "fitness": {"height": 130, "weight": 60}, ... }, ... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}}, ... { ... "id": 2, ... "name": "Faye Raker", ... "fitness": {"height": 130, "weight": 60}, ... }, ... ] >>> pd.json_normalize(data, max_level=1) id name fitness.height fitness.weight 0 1.0 Cole Volk 130 60 1 NaN Mark Reg 130 60 2 2.0 Faye Raker 130 60
>>> data = [ ... { ... "state": "Florida", ... "shortname": "FL", ... "info": {"governor": "Rick Scott"}, ... "counties": [ ... {"name": "Dade", "population": 12345}, ... {"name": "Broward", "population": 40000}, ... {"name": "Palm Beach", "population": 60000}, ... ], ... }, ... { ... "state": "Ohio", ... "shortname": "OH", ... "info": {"governor": "John Kasich"}, ... "counties": [ ... {"name": "Summit", "population": 1234}, ... {"name": "Cuyahoga", "population": 1337}, ... ], ... }, ... ] >>> result = pd.json_normalize( ... data, "counties", ["state", "shortname", ["info", "governor"]] ... ) >>> result name population state shortname info.governor 0 Dade 12345 Florida FL Rick Scott 1 Broward 40000 Florida FL Rick Scott 2 Palm Beach 60000 Florida FL Rick Scott 3 Summit 1234 Ohio OH John Kasich 4 Cuyahoga 1337 Ohio OH John Kasich
>>> data = {"A": [1, 2]} >>> pd.json_normalize(data, "A", record_prefix="Prefix.") Prefix.0 0 1 1 2
Returns normalized data with columns prefixed with the given string.