pandas.Index.drop_duplicates#
- Index.drop_duplicates(*, keep='first')[source]#
- Return Index with duplicate values removed. - Parameters
- keep{‘first’, ‘last’, False}, default ‘first’
- ‘first’ : Drop duplicates except for the first occurrence. 
- ‘last’ : Drop duplicates except for the last occurrence. 
- False: Drop all duplicates.
 
 
- keep{‘first’, ‘last’, 
- Returns
- Index
 
 - See also - Series.drop_duplicates
- Equivalent method on Series. 
- DataFrame.drop_duplicates
- Equivalent method on DataFrame. 
- Index.duplicated
- Related method on Index, indicating duplicate Index values. 
 - Examples - Generate an pandas.Index with duplicate values. - >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) - The keep parameter controls which duplicate values are removed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’. - >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') - The value ‘last’ keeps the last occurrence for each set of duplicated entries. - >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') - The value - Falsediscards all sets of duplicated entries.- >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object')