pandas.core.window.expanding.Expanding.var#
- Expanding.var(ddof=1, numeric_only=False, engine=None, engine_kwargs=None)[source]#
Calculate the expanding variance.
- Parameters
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements.- numeric_onlybool, default False
Include only float, int, boolean columns.
New in version 1.5.0.
- enginestr, default None
'cython'
: Runs the operation through C-extensions from cython.'numba'
: Runs the operation through JIT compiled code from numba.None
: Defaults to'cython'
or globally settingcompute.use_numba
New in version 1.4.0.
- engine_kwargsdict, default None
For
'cython'
engine, there are no acceptedengine_kwargs
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
New in version 1.4.0.
- Returns
- Series or DataFrame
Return type is the same as the original object with
np.float64
dtype.
See also
numpy.var
Equivalent method for NumPy array.
pandas.Series.expanding
Calling expanding with Series data.
pandas.DataFrame.expanding
Calling expanding with DataFrames.
pandas.Series.var
Aggregating var for Series.
pandas.DataFrame.var
Aggregating var for DataFrame.
Notes
The default
ddof
of 1 used inSeries.var()
is different than the defaultddof
of 0 innumpy.var()
.A minimum of one period is required for the rolling calculation.
Examples
>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5])
>>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64