pandas.read_csv#
- pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=_NoDefault.no_default, keep_date_col=False, date_parser=_NoDefault.no_default, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=_NoDefault.no_default)[source]#
Read a comma-separated values (csv) file into DataFrame.
Also supports optionally iterating or breaking of the file into chunks.
Additional help can be found in the online docs for IO Tools.
- Parameters:
- filepath_or_bufferstr, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any
os.PathLike
.By file-like object, we refer to objects with a
read()
method, such as a file handle (e.g. via builtinopen
function) orStringIO
.- sepstr, default ‘,’
Character or regex pattern to treat as the delimiter. If
sep=None
, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator from only the first valid row of the file by Python’s builtin sniffer tool,csv.Sniffer
. In addition, separators longer than 1 character and different from'\s+'
will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example:'\r\t'
.- delimiterstr, optional
Alias for
sep
.- headerint, Sequence of int, ‘infer’ or None, default ‘infer’
Row number(s) containing column labels and marking the start of the data (zero-indexed). Default behavior is to infer the column names: if no
names
are passed the behavior is identical toheader=0
and column names are inferred from the first line of the file, if column names are passed explicitly tonames
then the behavior is identical toheader=None
. Explicitly passheader=0
to be able to replace existing names. The header can be a list of integers that specify row locations for aMultiIndex
on the columns e.g.[0, 1, 3]
. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines ifskip_blank_lines=True
, soheader=0
denotes the first line of data rather than the first line of the file.- namesSequence of Hashable, optional
Sequence of column labels to apply. If the file contains a header row, then you should explicitly pass
header=0
to override the column names. Duplicates in this list are not allowed.- index_colHashable, Sequence of Hashable or False, optional
Column(s) to use as row label(s), denoted either by column labels or column indices. If a sequence of labels or indices is given,
MultiIndex
will be formed for the row labels.Note:
index_col=False
can be used to force pandas to not use the first column as the index, e.g., when you have a malformed file with delimiters at the end of each line.- usecolslist of Hashable or Callable, optional
Subset of columns to select, denoted either by column labels or column indices. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in
names
or inferred from the document header row(s). Ifnames
are given, the document header row(s) are not taken into account. For example, a valid list-likeusecols
parameter would be[0, 1, 2]
or['foo', 'bar', 'baz']
. Element order is ignored, sousecols=[0, 1]
is the same as[1, 0]
. To instantiate aDataFrame
fromdata
with element order preserved usepd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]
for columns in['foo', 'bar']
order orpd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]
for['bar', 'foo']
order.If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to
True
. An example of a valid callable argument would belambda x: x.upper() in ['AAA', 'BBB', 'DDD']
. Using this parameter results in much faster parsing time and lower memory usage.- dtypedtype or dict of {Hashabledtype}, optional
Data type(s) to apply to either the whole dataset or individual columns. E.g.,
{'a': np.float64, 'b': np.int32, 'c': 'Int64'}
Usestr
orobject
together with suitablena_values
settings to preserve and not interpretdtype
. Ifconverters
are specified, they will be applied INSTEAD ofdtype
conversion.New in version 1.5.0: Support for
defaultdict
was added. Specify adefaultdict
as input where the default determines thedtype
of the columns which are not explicitly listed.- engine{‘c’, ‘python’, ‘pyarrow’}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine.
New in version 1.4.0: The ‘pyarrow’ engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine.
- convertersdict of {HashableCallable}, optional
Functions for converting values in specified columns. Keys can either be column labels or column indices.
- true_valueslist, optional
Values to consider as
True
in addition to case-insensitive variants of ‘True’.- false_valueslist, optional
Values to consider as
False
in addition to case-insensitive variants of ‘False’.- skipinitialspacebool, default False
Skip spaces after delimiter.
- skiprowsint, list of int or Callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (
int
) at the start of the file.If callable, the callable function will be evaluated against the row indices, returning
True
if the row should be skipped andFalse
otherwise. An example of a valid callable argument would belambda x: x in [0, 2]
.- skipfooterint, default 0
Number of lines at bottom of file to skip (Unsupported with
engine='c'
).- nrowsint, optional
Number of rows of file to read. Useful for reading pieces of large files.
- na_valuesHashable, Iterable of Hashable or dict of {HashableIterable}, optional
Additional strings to recognize as
NA
/NaN
. Ifdict
passed, specific per-columnNA
values. By default the following values are interpreted asNaN
: “ “, “#N/A”, “#N/A N/A”, “#NA”, “-1.#IND”, “-1.#QNAN”, “-NaN”, “-nan”, “1.#IND”, “1.#QNAN”, “<NA>”, “N/A”, “NA”, “NULL”, “NaN”, “None”, “n/a”, “nan”, “null “.- keep_default_nabool, default True
Whether or not to include the default
NaN
values when parsing the data. Depending on whetherna_values
is passed in, the behavior is as follows:If
keep_default_na
isTrue
, andna_values
are specified,na_values
is appended to the defaultNaN
values used for parsing.If
keep_default_na
isTrue
, andna_values
are not specified, only the defaultNaN
values are used for parsing.If
keep_default_na
isFalse
, andna_values
are specified, only theNaN
values specifiedna_values
are used for parsing.If
keep_default_na
isFalse
, andna_values
are not specified, no strings will be parsed asNaN
.
Note that if
na_filter
is passed in asFalse
, thekeep_default_na
andna_values
parameters will be ignored.- na_filterbool, default True
Detect missing value markers (empty strings and the value of
na_values
). In data without anyNA
values, passingna_filter=False
can improve the performance of reading a large file.- verbosebool, default False
Indicate number of
NA
values placed in non-numeric columns.- skip_blank_linesbool, default True
If
True
, skip over blank lines rather than interpreting asNaN
values.- parse_datesbool, list of Hashable, list of lists or dict of {Hashablelist}, default False
The behavior is as follows:
bool
. IfTrue
-> try parsing the index.list
ofint
or names. e.g. If[1, 2, 3]
-> try parsing columns 1, 2, 3 each as a separate date column.list
oflist
. e.g. If[[1, 3]]
-> combine columns 1 and 3 and parse as a single date column.dict
, e.g.{'foo' : [1, 3]}
-> parse columns 1, 3 as date and call result ‘foo’
If a column or index cannot be represented as an array of
datetime
, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as anobject
data type. For non-standarddatetime
parsing, useto_datetime()
afterread_csv()
.Note: A fast-path exists for iso8601-formatted dates.
- infer_datetime_formatbool, default False
If
True
andparse_dates
is enabled, pandas will attempt to infer the format of thedatetime
strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.Deprecated since version 2.0.0: A strict version of this argument is now the default, passing it has no effect.
- keep_date_colbool, default False
If
True
andparse_dates
specifies combining multiple columns then keep the original columns.- date_parserCallable, optional
Function to use for converting a sequence of string columns to an array of
datetime
instances. The default usesdateutil.parser.parser
to do the conversion. pandas will try to calldate_parser
in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined byparse_dates
) as arguments; 2) concatenate (row-wise) the string values from the columns defined byparse_dates
into a single array and pass that; and 3) calldate_parser
once for each row using one or more strings (corresponding to the columns defined byparse_dates
) as arguments.Deprecated since version 2.0.0: Use
date_format
instead, or read in asobject
and then applyto_datetime()
as-needed.- date_formatstr or dict of column -> format, optional
Format to use for parsing dates when used in conjunction with
parse_dates
. For anything more complex, please read in asobject
and then applyto_datetime()
as-needed.New in version 2.0.0.
- dayfirstbool, default False
DD/MM format dates, international and European format.
- cache_datesbool, default True
If
True
, use a cache of unique, converted dates to apply thedatetime
conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets.- iteratorbool, default False
Return
TextFileReader
object for iteration or getting chunks withget_chunk()
.Changed in version 1.2:
TextFileReader
is a context manager.- chunksizeint, optional
Number of lines to read from the file per chunk. Passing a value will cause the function to return a
TextFileReader
object for iteration. See the IO Tools docs for more information oniterator
andchunksize
.Changed in version 1.2:
TextFileReader
is a context manager.- compressionstr or dict, default ‘infer’
For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to
None
for no decompression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdDecompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary:compression={'method': 'zstd', 'dict_data': my_compression_dict}
.New in version 1.5.0: Added support for .tar files.
Changed in version 1.4.0: Zstandard support.
- thousandsstr (length 1), optional
Character acting as the thousands separator in numerical values.
- decimalstr (length 1), default ‘.’
Character to recognize as decimal point (e.g., use ‘,’ for European data).
- lineterminatorstr (length 1), optional
Character used to denote a line break. Only valid with C parser.
- quotecharstr (length 1), optional
Character used to denote the start and end of a quoted item. Quoted items can include the
delimiter
and it will be ignored.- quoting{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, 3 or csv.QUOTE_NONE}, default csv.QUOTE_MINIMAL
Control field quoting behavior per
csv.QUOTE_*
constants. Default iscsv.QUOTE_MINIMAL
(i.e., 0) which implies that only fields containing special characters are quoted (e.g., characters defined inquotechar
,delimiter
, orlineterminator
.- doublequotebool, default True
When
quotechar
is specified andquoting
is notQUOTE_NONE
, indicate whether or not to interpret two consecutivequotechar
elements INSIDE a field as a singlequotechar
element.- escapecharstr (length 1), optional
Character used to escape other characters.
- commentstr (length 1), optional
Character indicating that the remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as
skip_blank_lines=True
), fully commented lines are ignored by the parameterheader
but not byskiprows
. For example, ifcomment='#'
, parsing#empty\na,b,c\n1,2,3
withheader=0
will result in'a,b,c'
being treated as the header.- encodingstr, optional, default ‘utf-8’
Encoding to use for UTF when reading/writing (ex.
'utf-8'
). List of Python standard encodings .Changed in version 1.2: When
encoding
isNone
,errors='replace'
is passed toopen()
. Otherwise,errors='strict'
is passed toopen()
. This behavior was previously only the case forengine='python'
.Changed in version 1.3.0:
encoding_errors
is a new argument.encoding
has no longer an influence on how encoding errors are handled.- encoding_errorsstr, optional, default ‘strict’
How encoding errors are treated. List of possible values .
New in version 1.3.0.
- dialectstr or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the following parameters:
delimiter
,doublequote
,escapechar
,skipinitialspace
,quotechar
, andquoting
. If it is necessary to override values, aParserWarning
will be issued. Seecsv.Dialect
documentation for more details.- on_bad_lines{‘error’, ‘warn’, ‘skip’} or Callable, default ‘error’
Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are :
'error'
, raise an Exception when a bad line is encountered.'warn'
, raise a warning when a bad line is encountered and skip that line.'skip'
, skip bad lines without raising or warning when they are encountered.
New in version 1.3.0.
New in version 1.4.0:
Callable, function with signature
(bad_line: list[str]) -> list[str] | None
that will process a single bad line.bad_line
is a list of strings split by thesep
. If the function returnsNone
, the bad line will be ignored. If the function returns a newlist
of strings with more elements than expected, aParserWarning
will be emitted while dropping extra elements. Only supported whenengine='python'
- delim_whitespacebool, default False
Specifies whether or not whitespace (e.g.
' '
or'\t'
) will be used as thesep
delimiter. Equivalent to settingsep='\s+'
. If this option is set toTrue
, nothing should be passed in for thedelimiter
parameter.- low_memorybool, default True
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set
False
, or specify the type with thedtype
parameter. Note that the entire file is read into a singleDataFrame
regardless, use thechunksize
oriterator
parameter to return the data in chunks. (Only valid with C parser).- memory_mapbool, default False
If a filepath is provided for
filepath_or_buffer
, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.- float_precision{‘high’, ‘legacy’, ‘round_trip’}, optional
Specifies which converter the C engine should use for floating-point values. The options are
None
or'high'
for the ordinary converter,'legacy'
for the original lower precision pandas converter, and'round_trip'
for the round-trip converter.Changed in version 1.2.
- storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.New in version 1.2.
- dtype_backend{‘numpy_nullable’, ‘pyarrow’}, default ‘numpy_nullable’
Back-end data type applied to the resultant
DataFrame
(still experimental). Behaviour is as follows:"numpy_nullable"
: returns nullable-dtype-backedDataFrame
(default)."pyarrow"
: returns pyarrow-backed nullableArrowDtype
DataFrame.
New in version 2.0.
- Returns:
- DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
See also
DataFrame.to_csv
Write DataFrame to a comma-separated values (csv) file.
read_table
Read general delimited file into DataFrame.
read_fwf
Read a table of fixed-width formatted lines into DataFrame.
Examples
>>> pd.read_csv('data.csv')