pandas.core.resample.Resampler.median#

Resampler.median(numeric_only=False, *args, **kwargs)[source]#

Compute median of groups, excluding missing values.

For multiple groupings, the result index will be a MultiIndex

Parameters:
numeric_onlybool, default False

Include only float, int, boolean columns.

Changed in version 2.0.0: numeric_only no longer accepts None and defaults to False.

Returns:
Series or DataFrame

Median of values within each group.

Examples

For SeriesGroupBy:

>>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
>>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst)
>>> ser
a     7
a     2
a     8
b     4
b     3
b     3
dtype: int64
>>> ser.groupby(level=0).median()
a    7.0
b    3.0
dtype: float64

For DataFrameGroupBy:

>>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]}
>>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog',
...                   'mouse', 'mouse', 'mouse', 'mouse'])
>>> df
         a  b
  dog    1  1
  dog    3  4
  dog    5  8
mouse    7  4
mouse    7  4
mouse    8  2
mouse    3  1
>>> df.groupby(level=0).median()
         a    b
dog    3.0  4.0
mouse  7.0  3.0

For Resampler:

>>> ser = pd.Series([1, 2, 3, 3, 4, 5],
...                 index=pd.DatetimeIndex(['2023-01-01',
...                                         '2023-01-10',
...                                         '2023-01-15',
...                                         '2023-02-01',
...                                         '2023-02-10',
...                                         '2023-02-15']))
>>> ser.resample('MS').median()
2023-01-01    2.0
2023-02-01    4.0
Freq: MS, dtype: float64