pandas.CategoricalIndex.categories#
- property CategoricalIndex.categories[source]#
- The categories of this categorical. - Setting assigns new values to each category (effectively a rename of each individual category). - The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. - Raises:
- ValueError
- If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories 
 
 - See also - rename_categories
- Rename categories. 
- reorder_categories
- Reorder categories. 
- add_categories
- Add new categories. 
- remove_categories
- Remove the specified categories. 
- remove_unused_categories
- Remove categories which are not used. 
- set_categories
- Set the categories to the specified ones. 
 - Examples - For - pandas.Series:- >>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser.cat.categories Index(['a', 'b', 'c'], dtype='object') - >>> raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], categories=['b', 'c', 'd']) >>> ser = pd.Series(raw_cat) >>> ser.cat.categories Index(['b', 'c', 'd'], dtype='object') - For - pandas.Categorical:- >>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat.categories Index(['a', 'b'], dtype='object') - >>> ci = pd.CategoricalIndex(['a', 'c', 'b', 'a', 'c', 'b']) >>> ci.categories Index(['a', 'b', 'c'], dtype='object') - >>> ci = pd.CategoricalIndex(['a', 'c'], categories=['c', 'b', 'a']) >>> ci.categories Index(['c', 'b', 'a'], dtype='object')