pandas.Timestamp.ceil#
- Timestamp.ceil(freq, ambiguous='raise', nonexistent='raise')#
- Return a new Timestamp ceiled to this resolution. - Parameters:
- freqstr
- Frequency string indicating the ceiling resolution. 
- ambiguousbool or {‘raise’, ‘NaT’}, default ‘raise’
- The behavior is as follows: - bool contains flags to determine if time is dst or not (note that this flag is only applicable for ambiguous fall dst dates). 
- ‘NaT’ will return NaT for an ambiguous time. 
- ‘raise’ will raise an AmbiguousTimeError for an ambiguous time. 
 
- nonexistent{‘raise’, ‘shift_forward’, ‘shift_backward, ‘NaT’, timedelta}, default ‘raise’
- A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - ‘shift_forward’ will shift the nonexistent time forward to the closest existing time. 
- ‘shift_backward’ will shift the nonexistent time backward to the closest existing time. 
- ‘NaT’ will return NaT where there are nonexistent times. 
- timedelta objects will shift nonexistent times by the timedelta. 
- ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. 
 
 
- Raises:
- ValueError if the freq cannot be converted.
 
 - Notes - If the Timestamp has a timezone, ceiling will take place relative to the local (“wall”) time and re-localized to the same timezone. When ceiling near daylight savings time, use - nonexistentand- ambiguousto control the re-localization behavior.- Examples - Create a timestamp object: - >>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651') - A timestamp can be ceiled using multiple frequency units: - >>> ts.ceil(freq='H') # hour Timestamp('2020-03-14 16:00:00') - >>> ts.ceil(freq='T') # minute Timestamp('2020-03-14 15:33:00') - >>> ts.ceil(freq='S') # seconds Timestamp('2020-03-14 15:32:53') - >>> ts.ceil(freq='U') # microseconds Timestamp('2020-03-14 15:32:52.192549') - freqcan also be a multiple of a single unit, like ‘5T’ (i.e. 5 minutes):- >>> ts.ceil(freq='5T') Timestamp('2020-03-14 15:35:00') - or a combination of multiple units, like ‘1H30T’ (i.e. 1 hour and 30 minutes): - >>> ts.ceil(freq='1H30T') Timestamp('2020-03-14 16:30:00') - Analogous for - pd.NaT:- >>> pd.NaT.ceil() NaT - When rounding near a daylight savings time transition, use - ambiguousor- nonexistentto control how the timestamp should be re-localized.- >>> ts_tz = pd.Timestamp("2021-10-31 01:30:00").tz_localize("Europe/Amsterdam") - >>> ts_tz.ceil("H", ambiguous=False) Timestamp('2021-10-31 02:00:00+0100', tz='Europe/Amsterdam') - >>> ts_tz.ceil("H", ambiguous=True) Timestamp('2021-10-31 02:00:00+0200', tz='Europe/Amsterdam')