pandas.testing.assert_extension_array_equal#
- pandas.testing.assert_extension_array_equal(left, right, check_dtype=True, index_values=None, check_exact=False, rtol=1e-05, atol=1e-08, obj='ExtensionArray')[source]#
- Check that left and right ExtensionArrays are equal. - Parameters:
- left, rightExtensionArray
- The two arrays to compare. 
- check_dtypebool, default True
- Whether to check if the ExtensionArray dtypes are identical. 
- index_valuesnumpy.ndarray, default None
- Optional index (shared by both left and right), used in output. 
- check_exactbool, default False
- Whether to compare number exactly. 
- rtolfloat, default 1e-5
- Relative tolerance. Only used when check_exact is False. 
- atolfloat, default 1e-8
- Absolute tolerance. Only used when check_exact is False. 
- objstr, default ‘ExtensionArray’
- Specify object name being compared, internally used to show appropriate assertion message. - New in version 2.0.0. 
 
 - Notes - Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. - Examples - >>> from pandas import testing as tm >>> a = pd.Series([1, 2, 3, 4]) >>> b, c = a.array, a.array >>> tm.assert_extension_array_equal(b, c)