Duplicate Labels#

Index objects are not required to be unique; you can have duplicate row or column labels. This may be a bit confusing at first. If you’re familiar with SQL, you know that row labels are similar to a primary key on a table, and you would never want duplicates in a SQL table. But one of pandas’ roles is to clean messy, real-world data before it goes to some downstream system. And real-world data has duplicates, even in fields that are supposed to be unique.

This section describes how duplicate labels change the behavior of certain operations, and how prevent duplicates from arising during operations, or to detect them if they do.

In [1]: import pandas as pd

In [2]: import numpy as np

Consequences of Duplicate Labels#

Some pandas methods (Series.reindex() for example) just don’t work with duplicates present. The output can’t be determined, and so pandas raises.

In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])

In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])

File ~/work/pandas/pandas/pandas/core/series.py:5133, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
   5116 @doc(
   5117     NDFrame.reindex,  # type: ignore[has-type]
   5118     klass=_shared_doc_kwargs["klass"],
   (...)
   5131     tolerance=None,
   5132 ) -> Series:
-> 5133     return super().reindex(
   5134         index=index,
   5135         method=method,
   5136         copy=copy,
   5137         level=level,
   5138         fill_value=fill_value,
   5139         limit=limit,
   5140         tolerance=tolerance,
   5141     )

File ~/work/pandas/pandas/pandas/core/generic.py:5604, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
   5601     return self._reindex_multi(axes, copy, fill_value)
   5603 # perform the reindex on the axes
-> 5604 return self._reindex_axes(
   5605     axes, level, limit, tolerance, method, fill_value, copy
   5606 ).__finalize__(self, method="reindex")

File ~/work/pandas/pandas/pandas/core/generic.py:5627, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)
   5624     continue
   5626 ax = self._get_axis(a)
-> 5627 new_index, indexer = ax.reindex(
   5628     labels, level=level, limit=limit, tolerance=tolerance, method=method
   5629 )
   5631 axis = self._get_axis_number(a)
   5632 obj = obj._reindex_with_indexers(
   5633     {axis: [new_index, indexer]},
   5634     fill_value=fill_value,
   5635     copy=copy,
   5636     allow_dups=False,
   5637 )

File ~/work/pandas/pandas/pandas/core/indexes/base.py:4426, in Index.reindex(self, target, method, level, limit, tolerance)
   4423     raise ValueError("cannot handle a non-unique multi-index!")
   4424 elif not self.is_unique:
   4425     # GH#42568
-> 4426     raise ValueError("cannot reindex on an axis with duplicate labels")
   4427 else:
   4428     indexer, _ = self.get_indexer_non_unique(target)

ValueError: cannot reindex on an axis with duplicate labels

Other methods, like indexing, can give very surprising results. Typically indexing with a scalar will reduce dimensionality. Slicing a DataFrame with a scalar will return a Series. Slicing a Series with a scalar will return a scalar. But with duplicates, this isn’t the case.

In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])

In [6]: df1
Out[6]: 
   A  A  B
0  0  1  2
1  3  4  5

We have duplicates in the columns. If we slice 'B', we get back a Series

In [7]: df1["B"]  # a series
Out[7]: 
0    2
1    5
Name: B, dtype: int64

But slicing 'A' returns a DataFrame

In [8]: df1["A"]  # a DataFrame
Out[8]: 
   A  A
0  0  1
1  3  4

This applies to row labels as well

In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])

In [10]: df2
Out[10]: 
   A
a  0
a  1
b  2

In [11]: df2.loc["b", "A"]  # a scalar
Out[11]: 2

In [12]: df2.loc["a", "A"]  # a Series
Out[12]: 
a    0
a    1
Name: A, dtype: int64

Duplicate Label Detection#

You can check whether an Index (storing the row or column labels) is unique with Index.is_unique:

In [13]: df2
Out[13]: 
   A
a  0
a  1
b  2

In [14]: df2.index.is_unique
Out[14]: False

In [15]: df2.columns.is_unique
Out[15]: True

Note

Checking whether an index is unique is somewhat expensive for large datasets. pandas does cache this result, so re-checking on the same index is very fast.

Index.duplicated() will return a boolean ndarray indicating whether a label is repeated.

In [16]: df2.index.duplicated()
Out[16]: array([False,  True, False])

Which can be used as a boolean filter to drop duplicate rows.

In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]: 
   A
a  0
b  2

If you need additional logic to handle duplicate labels, rather than just dropping the repeats, using groupby() on the index is a common trick. For example, we’ll resolve duplicates by taking the average of all rows with the same label.

In [18]: df2.groupby(level=0).mean()
Out[18]: 
     A
a  0.5
b  2.0

Disallowing Duplicate Labels#

New in version 1.2.0.

As noted above, handling duplicates is an important feature when reading in raw data. That said, you may want to avoid introducing duplicates as part of a data processing pipeline (from methods like pandas.concat(), rename(), etc.). Both Series and DataFrame disallow duplicate labels by calling .set_flags(allows_duplicate_labels=False). (the default is to allow them). If there are duplicate labels, an exception will be raised.

In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)

File ~/work/pandas/pandas/pandas/core/generic.py:507, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
    505 df = self.copy(deep=copy and not using_copy_on_write())
    506 if allows_duplicate_labels is not None:
--> 507     df.flags["allows_duplicate_labels"] = allows_duplicate_labels
    508 return df

File ~/work/pandas/pandas/pandas/core/flags.py:109, in Flags.__setitem__(self, key, value)
    107 if key not in self._keys:
    108     raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 109 setattr(self, key, value)

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [1, 2]

This applies to both row and column labels for a DataFrame

In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 
Out[20]: 
   A  B  C
0  0  1  2
1  3  4  5

This attribute can be checked or set with allows_duplicate_labels, which indicates whether that object can have duplicate labels.

In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 

In [22]: df
Out[22]: 
   A
x  0
y  1
X  2
Y  3

In [23]: df.flags.allows_duplicate_labels
Out[23]: False

DataFrame.set_flags() can be used to return a new DataFrame with attributes like allows_duplicate_labels set to some value

In [24]: df2 = df.set_flags(allows_duplicate_labels=True)

In [25]: df2.flags.allows_duplicate_labels
Out[25]: True

The new DataFrame returned is a view on the same data as the old DataFrame. Or the property can just be set directly on the same object

In [26]: df2.flags.allows_duplicate_labels = False

In [27]: df2.flags.allows_duplicate_labels
Out[27]: False

When processing raw, messy data you might initially read in the messy data (which potentially has duplicate labels), deduplicate, and then disallow duplicates going forward, to ensure that your data pipeline doesn’t introduce duplicates.

>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first()  # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False  # disallow going forward

Setting allows_duplicate_labels=False on a Series or DataFrame with duplicate labels or performing an operation that introduces duplicate labels on a Series or DataFrame that disallows duplicates will raise an errors.DuplicateLabelError.

In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)

File ~/work/pandas/pandas/pandas/core/frame.py:5754, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   5623 def rename(
   5624     self,
   5625     mapper: Renamer | None = None,
   (...)
   5633     errors: IgnoreRaise = "ignore",
   5634 ) -> DataFrame | None:
   5635     """
   5636     Rename columns or index labels.
   5637 
   (...)
   5752     4  3  6
   5753     """
-> 5754     return super()._rename(
   5755         mapper=mapper,
   5756         index=index,
   5757         columns=columns,
   5758         axis=axis,
   5759         copy=copy,
   5760         inplace=inplace,
   5761         level=level,
   5762         errors=errors,
   5763     )

File ~/work/pandas/pandas/pandas/core/generic.py:1139, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1137     return None
   1138 else:
-> 1139     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6256, in NDFrame.__finalize__(self, other, method, **kwargs)
   6249 if other.attrs:
   6250     # We want attrs propagation to have minimal performance
   6251     # impact if attrs are not used; i.e. attrs is an empty dict.
   6252     # One could make the deepcopy unconditionally, but a deepcopy
   6253     # of an empty dict is 50x more expensive than the empty check.
   6254     self.attrs = deepcopy(other.attrs)
-> 6256 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6257 # For subclasses using _metadata.
   6258 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
X        [0, 2]
Y        [1, 3]

This error message contains the labels that are duplicated, and the numeric positions of all the duplicates (including the “original”) in the Series or DataFrame

Duplicate Label Propagation#

In general, disallowing duplicates is “sticky”. It’s preserved through operations.

In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)

In [30]: s1
Out[30]: 
a    0
b    0
dtype: int64

In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})

File ~/work/pandas/pandas/pandas/core/series.py:5070, in Series.rename(self, index, axis, copy, inplace, level, errors)
   5063     axis = self._get_axis_number(axis)
   5065 if callable(index) or is_dict_like(index):
   5066     # error: Argument 1 to "_rename" of "NDFrame" has incompatible
   5067     # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
   5068     # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
   5069     # Hashable], Callable[[Any], Hashable], None]"
-> 5070     return super()._rename(
   5071         index,  # type: ignore[arg-type]
   5072         copy=copy,
   5073         inplace=inplace,
   5074         level=level,
   5075         errors=errors,
   5076     )
   5077 else:
   5078     return self._set_name(index, inplace=inplace, deep=copy)

File ~/work/pandas/pandas/pandas/core/generic.py:1139, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   1137     return None
   1138 else:
-> 1139     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6256, in NDFrame.__finalize__(self, other, method, **kwargs)
   6249 if other.attrs:
   6250     # We want attrs propagation to have minimal performance
   6251     # impact if attrs are not used; i.e. attrs is an empty dict.
   6252     # One could make the deepcopy unconditionally, but a deepcopy
   6253     # of an empty dict is 50x more expensive than the empty check.
   6254     self.attrs = deepcopy(other.attrs)
-> 6256 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
   6257 # For subclasses using _metadata.
   6258 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
     94 if not value:
     95     for ax in obj.axes:
---> 96         ax._maybe_check_unique()
     98 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
    712 duplicates = self._format_duplicate_message()
    713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [0, 1]

Warning

This is an experimental feature. Currently, many methods fail to propagate the allows_duplicate_labels value. In future versions it is expected that every method taking or returning one or more DataFrame or Series objects will propagate allows_duplicate_labels.