pandas.core.groupby.SeriesGroupBy.last#

SeriesGroupBy.last(numeric_only=False, min_count=-1, skipna=True)[source]#

Compute the last entry of each column within each group.

Defaults to skipping NA elements.

Parameters:
numeric_onlybool, default False

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.

min_countint, default -1

The required number of valid values to perform the operation. If fewer than min_count valid values are present the result will be NA.

skipnabool, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

New in version 2.2.1.

Returns:
Series or DataFrame

Last of values within each group.

See also

DataFrame.groupby

Apply a function groupby to each row or column of a DataFrame.

pandas.core.groupby.DataFrameGroupBy.first

Compute the first non-null entry of each column.

pandas.core.groupby.DataFrameGroupBy.nth

Take the nth row from each group.

Examples

>>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3]))
>>> df.groupby("A").last()
     B  C
A
1  5.0  2
3  6.0  3