Intro to data structures#
We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started. The fundamental behavior about data types, indexing, axis labeling, and alignment apply across all of the objects. To get started, import NumPy and load pandas into your namespace:
In [1]: import numpy as np
In [2]: import pandas as pd
Fundamentally, data alignment is intrinsic. The link between labels and data will not be broken unless done so explicitly by you.
We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in separate sections.
Series#
Series
is a one-dimensional labeled array capable of holding any data
type (integers, strings, floating point numbers, Python objects, etc.). The axis
labels are collectively referred to as the index. The basic method to create a Series
is to call:
s = pd.Series(data, index=index)
Here, data
can be many different things:
a Python dict
an ndarray
a scalar value (like 5)
The passed index is a list of axis labels. Thus, this separates into a few cases depending on what data is:
From ndarray
If data
is an ndarray, index must be the same length as data. If no
index is passed, one will be created having values [0, ..., len(data) - 1]
.
In [3]: s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
In [4]: s
Out[4]:
a 0.469112
b -0.282863
c -1.509059
d -1.135632
e 1.212112
dtype: float64
In [5]: s.index
Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
In [6]: pd.Series(np.random.randn(5))
Out[6]:
0 -0.173215
1 0.119209
2 -1.044236
3 -0.861849
4 -2.104569
dtype: float64
Note
pandas supports non-unique index values. If an operation that does not support duplicate index values is attempted, an exception will be raised at that time.
From dict
Series
can be instantiated from dicts:
In [7]: d = {"b": 1, "a": 0, "c": 2}
In [8]: pd.Series(d)
Out[8]:
b 1
a 0
c 2
dtype: int64
If an index is passed, the values in data corresponding to the labels in the index will be pulled out.
In [9]: d = {"a": 0.0, "b": 1.0, "c": 2.0}
In [10]: pd.Series(d)
Out[10]:
a 0.0
b 1.0
c 2.0
dtype: float64
In [11]: pd.Series(d, index=["b", "c", "d", "a"])
Out[11]:
b 1.0
c 2.0
d NaN
a 0.0
dtype: float64
Note
NaN (not a number) is the standard missing data marker used in pandas.
From scalar value
If data
is a scalar value, an index must be
provided. The value will be repeated to match the length of index.
In [12]: pd.Series(5.0, index=["a", "b", "c", "d", "e"])
Out[12]:
a 5.0
b 5.0
c 5.0
d 5.0
e 5.0
dtype: float64
Series is ndarray-like#
Series
acts very similarly to a ndarray
and is a valid argument to most NumPy functions.
However, operations such as slicing will also slice the index.
In [13]: s.iloc[0]
Out[13]: 0.4691122999071863
In [14]: s.iloc[:3]
Out[14]:
a 0.469112
b -0.282863
c -1.509059
dtype: float64
In [15]: s[s > s.median()]
Out[15]:
a 0.469112
e 1.212112
dtype: float64
In [16]: s.iloc[[4, 3, 1]]
Out[16]:
e 1.212112
d -1.135632
b -0.282863
dtype: float64
In [17]: np.exp(s)
Out[17]:
a 1.598575
b 0.753623
c 0.221118
d 0.321219
e 3.360575
dtype: float64
Note
We will address array-based indexing like s.iloc[[4, 3, 1]]
in section on indexing.
Like a NumPy array, a pandas Series
has a single dtype
.
In [18]: s.dtype
Out[18]: dtype('float64')
This is often a NumPy dtype. However, pandas and 3rd-party libraries
extend NumPy’s type system in a few places, in which case the dtype would
be an ExtensionDtype
. Some examples within
pandas are Categorical data and Nullable integer data type. See dtypes
for more.
If you need the actual array backing a Series
, use Series.array
.
In [19]: s.array
Out[19]:
<NumpyExtensionArray>
[ 0.4691122999071863, -0.2828633443286633, -1.5090585031735124,
-1.1356323710171934, 1.2121120250208506]
Length: 5, dtype: float64
Accessing the array can be useful when you need to do some operation without the index (to disable automatic alignment, for example).
Series.array
will always be an ExtensionArray
.
Briefly, an ExtensionArray is a thin wrapper around one or more concrete arrays like a
numpy.ndarray
. pandas knows how to take an ExtensionArray
and
store it in a Series
or a column of a DataFrame
.
See dtypes for more.
While Series
is ndarray-like, if you need an actual ndarray, then use
Series.to_numpy()
.
In [20]: s.to_numpy()
Out[20]: array([ 0.4691, -0.2829, -1.5091, -1.1356, 1.2121])
Even if the Series
is backed by a ExtensionArray
,
Series.to_numpy()
will return a NumPy ndarray.
Series is dict-like#
A Series
is also like a fixed-size dict in that you can get and set values by index
label:
In [21]: s["a"]
Out[21]: 0.4691122999071863
In [22]: s["e"] = 12.0
In [23]: s
Out[23]:
a 0.469112
b -0.282863
c -1.509059
d -1.135632
e 12.000000
dtype: float64
In [24]: "e" in s
Out[24]: True
In [25]: "f" in s
Out[25]: False
If a label is not contained in the index, an exception is raised:
In [26]: s["f"]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key)
3804 try:
-> 3805 return self._engine.get_loc(casted_key)
3806 except KeyError as err:
File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc()
File pandas/_libs/hashtable_class_helper.pxi:7081, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas/_libs/hashtable_class_helper.pxi:7089, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'f'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
Cell In[26], line 1
----> 1 s["f"]
File ~/work/pandas/pandas/pandas/core/series.py:1112, in Series.__getitem__(self, key)
1109 return self._values[key]
1111 elif key_is_scalar:
-> 1112 return self._get_value(key)
1114 # Convert generator to list before going through hashable part
1115 # (We will iterate through the generator there to check for slices)
1116 if is_iterator(key):
File ~/work/pandas/pandas/pandas/core/series.py:1228, in Series._get_value(self, label, takeable)
1225 return self._values[label]
1227 # Similar to Index.get_value, but we do not fall back to positional
-> 1228 loc = self.index.get_loc(label)
1230 if is_integer(loc):
1231 return self._values[loc]
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key)
3807 if isinstance(casted_key, slice) or (
3808 isinstance(casted_key, abc.Iterable)
3809 and any(isinstance(x, slice) for x in casted_key)
3810 ):
3811 raise InvalidIndexError(key)
-> 3812 raise KeyError(key) from err
3813 except TypeError:
3814 # If we have a listlike key, _check_indexing_error will raise
3815 # InvalidIndexError. Otherwise we fall through and re-raise
3816 # the TypeError.
3817 self._check_indexing_error(key)
KeyError: 'f'
Using the Series.get()
method, a missing label will return None or specified default:
In [27]: s.get("f")
In [28]: s.get("f", np.nan)
Out[28]: nan
These labels can also be accessed by attribute.
Vectorized operations and label alignment with Series#
When working with raw NumPy arrays, looping through value-by-value is usually
not necessary. The same is true when working with Series
in pandas.
Series
can also be passed into most NumPy methods expecting an ndarray.
In [29]: s + s
Out[29]:
a 0.938225
b -0.565727
c -3.018117
d -2.271265
e 24.000000
dtype: float64
In [30]: s * 2
Out[30]:
a 0.938225
b -0.565727
c -3.018117
d -2.271265
e 24.000000
dtype: float64
In [31]: np.exp(s)
Out[31]:
a 1.598575
b 0.753623
c 0.221118
d 0.321219
e 162754.791419
dtype: float64
A key difference between Series
and ndarray is that operations between Series
automatically align the data based on label. Thus, you can write computations
without giving consideration to whether the Series
involved have the same
labels.
In [32]: s.iloc[1:] + s.iloc[:-1]
Out[32]:
a NaN
b -0.565727
c -3.018117
d -2.271265
e NaN
dtype: float64
The result of an operation between unaligned Series
will have the union of
the indexes involved. If a label is not found in one Series
or the other, the
result will be marked as missing NaN
. Being able to write code without doing
any explicit data alignment grants immense freedom and flexibility in
interactive data analysis and research. The integrated data alignment features
of the pandas data structures set pandas apart from the majority of related
tools for working with labeled data.
Note
In general, we chose to make the default result of operations between differently indexed objects yield the union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is typically important information as part of a computation. You of course have the option of dropping labels with missing data via the dropna function.
Name attribute#
Series
also has a name
attribute:
In [33]: s = pd.Series(np.random.randn(5), name="something")
In [34]: s
Out[34]:
0 -0.494929
1 1.071804
2 0.721555
3 -0.706771
4 -1.039575
Name: something, dtype: float64
In [35]: s.name
Out[35]: 'something'
The Series
name
can be assigned automatically in many cases, in particular,
when selecting a single column from a DataFrame
, the name
will be assigned
the column label.
You can rename a Series
with the pandas.Series.rename()
method.
In [36]: s2 = s.rename("different")
In [37]: s2.name
Out[37]: 'different'
Note that s
and s2
refer to different objects.
DataFrame#
DataFrame
is a 2-dimensional labeled data structure with columns of
potentially different types. You can think of it like a spreadsheet or SQL
table, or a dict of Series objects. It is generally the most commonly used
pandas object. Like Series, DataFrame accepts many different kinds of input:
Dict of 1D ndarrays, lists, dicts, or
Series
2-D numpy.ndarray
Structured or record ndarray
A
Series
Another
DataFrame
Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.
If axis labels are not passed, they will be constructed from the input data based on common sense rules.
From dict of Series or dicts#
The resulting index will be the union of the indexes of the various Series. If there are any nested dicts, these will first be converted to Series. If no columns are passed, the columns will be the ordered list of dict keys.
In [38]: d = {
....: "one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]),
....: "two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]),
....: }
....:
In [39]: df = pd.DataFrame(d)
In [40]: df
Out[40]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0
In [41]: pd.DataFrame(d, index=["d", "b", "a"])
Out[41]:
one two
d NaN 4.0
b 2.0 2.0
a 1.0 1.0
In [42]: pd.DataFrame(d, index=["d", "b", "a"], columns=["two", "three"])
Out[42]:
two three
d 4.0 NaN
b 2.0 NaN
a 1.0 NaN
The row and column labels can be accessed respectively by accessing the index and columns attributes:
Note
When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.
In [43]: df.index
Out[43]: Index(['a', 'b', 'c', 'd'], dtype='object')
In [44]: df.columns
Out[44]: Index(['one', 'two'], dtype='object')
From dict of ndarrays / lists#
All ndarrays must share the same length. If an index is passed, it must
also be the same length as the arrays. If no index is passed, the
result will be range(n)
, where n
is the array length.
In [45]: d = {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}
In [46]: pd.DataFrame(d)
Out[46]:
one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0
In [47]: pd.DataFrame(d, index=["a", "b", "c", "d"])
Out[47]:
one two
a 1.0 4.0
b 2.0 3.0
c 3.0 2.0
d 4.0 1.0
From structured or record array#
This case is handled identically to a dict of arrays.
In [48]: data = np.zeros((2,), dtype=[("A", "i4"), ("B", "f4"), ("C", "a10")])
In [49]: data[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")]
In [50]: pd.DataFrame(data)
Out[50]:
A B C
0 1 2.0 b'Hello'
1 2 3.0 b'World'
In [51]: pd.DataFrame(data, index=["first", "second"])
Out[51]:
A B C
first 1 2.0 b'Hello'
second 2 3.0 b'World'
In [52]: pd.DataFrame(data, columns=["C", "A", "B"])
Out[52]:
C A B
0 b'Hello' 1 2.0
1 b'World' 2 3.0
Note
DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.
From a list of dicts#
In [53]: data2 = [{"a": 1, "b": 2}, {"a": 5, "b": 10, "c": 20}]
In [54]: pd.DataFrame(data2)
Out[54]:
a b c
0 1 2 NaN
1 5 10 20.0
In [55]: pd.DataFrame(data2, index=["first", "second"])
Out[55]:
a b c
first 1 2 NaN
second 5 10 20.0
In [56]: pd.DataFrame(data2, columns=["a", "b"])
Out[56]:
a b
0 1 2
1 5 10
From a dict of tuples#
You can automatically create a MultiIndexed frame by passing a tuples dictionary.
In [57]: pd.DataFrame(
....: {
....: ("a", "b"): {("A", "B"): 1, ("A", "C"): 2},
....: ("a", "a"): {("A", "C"): 3, ("A", "B"): 4},
....: ("a", "c"): {("A", "B"): 5, ("A", "C"): 6},
....: ("b", "a"): {("A", "C"): 7, ("A", "B"): 8},
....: ("b", "b"): {("A", "D"): 9, ("A", "B"): 10},
....: }
....: )
....:
Out[57]:
a b
b a c a b
A B 1.0 4.0 5.0 8.0 10.0
C 2.0 3.0 6.0 7.0 NaN
D NaN NaN NaN NaN 9.0
From a Series#
The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).
In [58]: ser = pd.Series(range(3), index=list("abc"), name="ser")
In [59]: pd.DataFrame(ser)
Out[59]:
ser
a 0
b 1
c 2
From a list of namedtuples#
The field names of the first namedtuple
in the list determine the columns
of the DataFrame
. The remaining namedtuples (or tuples) are simply unpacked
and their values are fed into the rows of the DataFrame
. If any of those
tuples is shorter than the first namedtuple
then the later columns in the
corresponding row are marked as missing values. If any are longer than the
first namedtuple
, a ValueError
is raised.
In [60]: from collections import namedtuple
In [61]: Point = namedtuple("Point", "x y")
In [62]: pd.DataFrame([Point(0, 0), Point(0, 3), (2, 3)])
Out[62]:
x y
0 0 0
1 0 3
2 2 3
In [63]: Point3D = namedtuple("Point3D", "x y z")
In [64]: pd.DataFrame([Point3D(0, 0, 0), Point3D(0, 3, 5), Point(2, 3)])
Out[64]:
x y z
0 0 0 0.0
1 0 3 5.0
2 2 3 NaN
From a list of dataclasses#
Data Classes as introduced in PEP557, can be passed into the DataFrame constructor. Passing a list of dataclasses is equivalent to passing a list of dictionaries.
Please be aware, that all values in the list should be dataclasses, mixing
types in the list would result in a TypeError
.
In [65]: from dataclasses import make_dataclass
In [66]: Point = make_dataclass("Point", [("x", int), ("y", int)])
In [67]: pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)])
Out[67]:
x y
0 0 0
1 0 3
2 2 3
Missing data
To construct a DataFrame with missing data, we use np.nan
to
represent missing values. Alternatively, you may pass a numpy.MaskedArray
as the data argument to the DataFrame constructor, and its masked entries will
be considered missing. See Missing data for more.
Alternate constructors#
DataFrame.from_dict
DataFrame.from_dict()
takes a dict of dicts or a dict of array-like sequences
and returns a DataFrame. It operates like the DataFrame
constructor except
for the orient
parameter which is 'columns'
by default, but which can be
set to 'index'
in order to use the dict keys as row labels.
In [68]: pd.DataFrame.from_dict(dict([("A", [1, 2, 3]), ("B", [4, 5, 6])]))
Out[68]:
A B
0 1 4
1 2 5
2 3 6
If you pass orient='index'
, the keys will be the row labels. In this
case, you can also pass the desired column names:
In [69]: pd.DataFrame.from_dict(
....: dict([("A", [1, 2, 3]), ("B", [4, 5, 6])]),
....: orient="index",
....: columns=["one", "two", "three"],
....: )
....:
Out[69]:
one two three
A 1 2 3
B 4 5 6
DataFrame.from_records
DataFrame.from_records()
takes a list of tuples or an ndarray with structured
dtype. It works analogously to the normal DataFrame
constructor, except that
the resulting DataFrame index may be a specific field of the structured
dtype.
In [70]: data
Out[70]:
array([(1, 2., b'Hello'), (2, 3., b'World')],
dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])
In [71]: pd.DataFrame.from_records(data, index="C")
Out[71]:
A B
C
b'Hello' 1 2.0
b'World' 2 3.0
Column selection, addition, deletion#
You can treat a DataFrame
semantically like a dict of like-indexed Series
objects. Getting, setting, and deleting columns works with the same syntax as
the analogous dict operations:
In [72]: df["one"]
Out[72]:
a 1.0
b 2.0
c 3.0
d NaN
Name: one, dtype: float64
In [73]: df["three"] = df["one"] * df["two"]
In [74]: df["flag"] = df["one"] > 2
In [75]: df
Out[75]:
one two three flag
a 1.0 1.0 1.0 False
b 2.0 2.0 4.0 False
c 3.0 3.0 9.0 True
d NaN 4.0 NaN False
Columns can be deleted or popped like with a dict:
In [76]: del df["two"]
In [77]: three = df.pop("three")
In [78]: df
Out[78]:
one flag
a 1.0 False
b 2.0 False
c 3.0 True
d NaN False
When inserting a scalar value, it will naturally be propagated to fill the column:
In [79]: df["foo"] = "bar"
In [80]: df
Out[80]:
one flag foo
a 1.0 False bar
b 2.0 False bar
c 3.0 True bar
d NaN False bar
When inserting a Series
that does not have the same index as the DataFrame
, it
will be conformed to the DataFrame’s index:
In [81]: df["one_trunc"] = df["one"][:2]
In [82]: df
Out[82]:
one flag foo one_trunc
a 1.0 False bar 1.0
b 2.0 False bar 2.0
c 3.0 True bar NaN
d NaN False bar NaN
You can insert raw ndarrays but their length must match the length of the DataFrame’s index.
By default, columns get inserted at the end. DataFrame.insert()
inserts at a particular location in the columns:
In [83]: df.insert(1, "bar", df["one"])
In [84]: df
Out[84]:
one bar flag foo one_trunc
a 1.0 1.0 False bar 1.0
b 2.0 2.0 False bar 2.0
c 3.0 3.0 True bar NaN
d NaN NaN False bar NaN
Assigning new columns in method chains#
Inspired by dplyr’s
mutate
verb, DataFrame has an assign()
method that allows you to easily create new columns that are potentially
derived from existing columns.
In [85]: iris = pd.read_csv("data/iris.data")
In [86]: iris.head()
Out[86]:
SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
In [87]: iris.assign(sepal_ratio=iris["SepalWidth"] / iris["SepalLength"]).head()
Out[87]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
In the example above, we inserted a precomputed value. We can also pass in a function of one argument to be evaluated on the DataFrame being assigned to.
In [88]: iris.assign(sepal_ratio=lambda x: (x["SepalWidth"] / x["SepalLength"])).head()
Out[88]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
assign()
always returns a copy of the data, leaving the original
DataFrame untouched.
Passing a callable, as opposed to an actual value to be inserted, is
useful when you don’t have a reference to the DataFrame at hand. This is
common when using assign()
in a chain of operations. For example,
we can limit the DataFrame to just those observations with a Sepal Length
greater than 5, calculate the ratio, and plot:
In [89]: (
....: iris.query("SepalLength > 5")
....: .assign(
....: SepalRatio=lambda x: x.SepalWidth / x.SepalLength,
....: PetalRatio=lambda x: x.PetalWidth / x.PetalLength,
....: )
....: .plot(kind="scatter", x="SepalRatio", y="PetalRatio")
....: )
....:
Out[89]: <Axes: xlabel='SepalRatio', ylabel='PetalRatio'>
Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.
The function signature for assign()
is simply **kwargs
. The keys
are the column names for the new fields, and the values are either a value
to be inserted (for example, a Series
or NumPy array), or a function
of one argument to be called on the DataFrame
. A copy of the original
DataFrame
is returned, with the new values inserted.
The order of **kwargs
is preserved. This allows
for dependent assignment, where an expression later in **kwargs
can refer
to a column created earlier in the same assign()
.
In [90]: dfa = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
In [91]: dfa.assign(C=lambda x: x["A"] + x["B"], D=lambda x: x["A"] + x["C"])
Out[91]:
A B C D
0 1 4 5 6
1 2 5 7 9
2 3 6 9 12
In the second expression, x['C']
will refer to the newly created column,
that’s equal to dfa['A'] + dfa['B']
.
Indexing / selection#
The basics of indexing are as follows:
Operation |
Syntax |
Result |
---|---|---|
Select column |
|
Series |
Select row by label |
|
Series |
Select row by integer location |
|
Series |
Slice rows |
|
DataFrame |
Select rows by boolean vector |
|
DataFrame |
Row selection, for example, returns a Series
whose index is the columns of the
DataFrame
:
In [92]: df.loc["b"]
Out[92]:
one 2.0
bar 2.0
flag False
foo bar
one_trunc 2.0
Name: b, dtype: object
In [93]: df.iloc[2]
Out[93]:
one 3.0
bar 3.0
flag True
foo bar
one_trunc NaN
Name: c, dtype: object
For a more exhaustive treatment of sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.
Data alignment and arithmetic#
Data alignment between DataFrame
objects automatically align on both the
columns and the index (row labels). Again, the resulting object will have the
union of the column and row labels.
In [94]: df = pd.DataFrame(np.random.randn(10, 4), columns=["A", "B", "C", "D"])
In [95]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=["A", "B", "C"])
In [96]: df + df2
Out[96]:
A B C D
0 0.045691 -0.014138 1.380871 NaN
1 -0.955398 -1.501007 0.037181 NaN
2 -0.662690 1.534833 -0.859691 NaN
3 -2.452949 1.237274 -0.133712 NaN
4 1.414490 1.951676 -2.320422 NaN
5 -0.494922 -1.649727 -1.084601 NaN
6 -1.047551 -0.748572 -0.805479 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
When doing an operation between DataFrame
and Series
, the default behavior is
to align the Series
index on the DataFrame
columns, thus broadcasting
row-wise. For example:
In [97]: df - df.iloc[0]
Out[97]:
A B C D
0 0.000000 0.000000 0.000000 0.000000
1 -1.359261 -0.248717 -0.453372 -1.754659
2 0.253128 0.829678 0.010026 -1.991234
3 -1.311128 0.054325 -1.724913 -1.620544
4 0.573025 1.500742 -0.676070 1.367331
5 -1.741248 0.781993 -1.241620 -2.053136
6 -1.240774 -0.869551 -0.153282 0.000430
7 -0.743894 0.411013 -0.929563 -0.282386
8 -1.194921 1.320690 0.238224 -1.482644
9 2.293786 1.856228 0.773289 -1.446531
For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.
Arithmetic operations with scalars operate element-wise:
In [98]: df * 5 + 2
Out[98]:
A B C D
0 3.359299 -0.124862 4.835102 3.381160
1 -3.437003 -1.368449 2.568242 -5.392133
2 4.624938 4.023526 4.885230 -6.575010
3 -3.196342 0.146766 -3.789461 -4.721559
4 6.224426 7.378849 1.454750 10.217815
5 -5.346940 3.785103 -1.373001 -6.884519
6 -2.844569 -4.472618 4.068691 3.383309
7 -0.360173 1.930201 0.187285 1.969232
8 -2.615303 6.478587 6.026220 -4.032059
9 14.828230 9.156280 8.701544 -3.851494
In [99]: 1 / df
Out[99]:
A B C D
0 3.678365 -2.353094 1.763605 3.620145
1 -0.919624 -1.484363 8.799067 -0.676395
2 1.904807 2.470934 1.732964 -0.583090
3 -0.962215 -2.697986 -0.863638 -0.743875
4 1.183593 0.929567 -9.170108 0.608434
5 -0.680555 2.800959 -1.482360 -0.562777
6 -1.032084 -0.772485 2.416988 3.614523
7 -2.118489 -71.634509 -2.758294 -162.507295
8 -1.083352 1.116424 1.241860 -0.828904
9 0.389765 0.698687 0.746097 -0.854483
In [100]: df ** 4
Out[100]:
A B C D
0 0.005462 3.261689e-02 0.103370 5.822320e-03
1 1.398165 2.059869e-01 0.000167 4.777482e+00
2 0.075962 2.682596e-02 0.110877 8.650845e+00
3 1.166571 1.887302e-02 1.797515 3.265879e+00
4 0.509555 1.339298e+00 0.000141 7.297019e+00
5 4.661717 1.624699e-02 0.207103 9.969092e+00
6 0.881334 2.808277e+00 0.029302 5.858632e-03
7 0.049647 3.797614e-08 0.017276 1.433866e-09
8 0.725974 6.437005e-01 0.420446 2.118275e+00
9 43.329821 4.196326e+00 3.227153 1.875802e+00
Boolean operators operate element-wise as well:
In [101]: df1 = pd.DataFrame({"a": [1, 0, 1], "b": [0, 1, 1]}, dtype=bool)
In [102]: df2 = pd.DataFrame({"a": [0, 1, 1], "b": [1, 1, 0]}, dtype=bool)
In [103]: df1 & df2
Out[103]:
a b
0 False False
1 False True
2 True False
In [104]: df1 | df2
Out[104]:
a b
0 True True
1 True True
2 True True
In [105]: df1 ^ df2
Out[105]:
a b
0 True True
1 True False
2 False True
In [106]: -df1
Out[106]:
a b
0 False True
1 True False
2 False False
Transposing#
To transpose, access the T
attribute or DataFrame.transpose()
,
similar to an ndarray:
# only show the first 5 rows
In [107]: df[:5].T
Out[107]:
0 1 2 3 4
A 0.271860 -1.087401 0.524988 -1.039268 0.844885
B -0.424972 -0.673690 0.404705 -0.370647 1.075770
C 0.567020 0.113648 0.577046 -1.157892 -0.109050
D 0.276232 -1.478427 -1.715002 -1.344312 1.643563
DataFrame interoperability with NumPy functions#
Most NumPy functions can be called directly on Series
and DataFrame
.
In [108]: np.exp(df)
Out[108]:
A B C D
0 1.312403 0.653788 1.763006 1.318154
1 0.337092 0.509824 1.120358 0.227996
2 1.690438 1.498861 1.780770 0.179963
3 0.353713 0.690288 0.314148 0.260719
4 2.327710 2.932249 0.896686 5.173571
5 0.230066 1.429065 0.509360 0.169161
6 0.379495 0.274028 1.512461 1.318720
7 0.623732 0.986137 0.695904 0.993865
8 0.397301 2.449092 2.237242 0.299269
9 13.009059 4.183951 3.820223 0.310274
In [109]: np.asarray(df)
Out[109]:
array([[ 0.2719, -0.425 , 0.567 , 0.2762],
[-1.0874, -0.6737, 0.1136, -1.4784],
[ 0.525 , 0.4047, 0.577 , -1.715 ],
[-1.0393, -0.3706, -1.1579, -1.3443],
[ 0.8449, 1.0758, -0.109 , 1.6436],
[-1.4694, 0.357 , -0.6746, -1.7769],
[-0.9689, -1.2945, 0.4137, 0.2767],
[-0.472 , -0.014 , -0.3625, -0.0062],
[-0.9231, 0.8957, 0.8052, -1.2064],
[ 2.5656, 1.4313, 1.3403, -1.1703]])
DataFrame
is not intended to be a drop-in replacement for ndarray as its
indexing semantics and data model are quite different in places from an n-dimensional
array.
Series
implements __array_ufunc__
, which allows it to work with NumPy’s
universal functions.
The ufunc is applied to the underlying array in a Series
.
In [110]: ser = pd.Series([1, 2, 3, 4])
In [111]: np.exp(ser)
Out[111]:
0 2.718282
1 7.389056
2 20.085537
3 54.598150
dtype: float64
When multiple Series
are passed to a ufunc, they are aligned before
performing the operation.
Like other parts of the library, pandas will automatically align labeled inputs
as part of a ufunc with multiple inputs. For example, using numpy.remainder()
on two Series
with differently ordered labels will align before the operation.
In [112]: ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
In [113]: ser2 = pd.Series([1, 3, 5], index=["b", "a", "c"])
In [114]: ser1
Out[114]:
a 1
b 2
c 3
dtype: int64
In [115]: ser2
Out[115]:
b 1
a 3
c 5
dtype: int64
In [116]: np.remainder(ser1, ser2)
Out[116]:
a 1
b 0
c 3
dtype: int64
As usual, the union of the two indices is taken, and non-overlapping values are filled with missing values.
In [117]: ser3 = pd.Series([2, 4, 6], index=["b", "c", "d"])
In [118]: ser3
Out[118]:
b 2
c 4
d 6
dtype: int64
In [119]: np.remainder(ser1, ser3)
Out[119]:
a NaN
b 0.0
c 3.0
d NaN
dtype: float64
When a binary ufunc is applied to a Series
and Index
, the Series
implementation takes precedence and a Series
is returned.
In [120]: ser = pd.Series([1, 2, 3])
In [121]: idx = pd.Index([4, 5, 6])
In [122]: np.maximum(ser, idx)
Out[122]:
0 4
1 5
2 6
dtype: int64
NumPy ufuncs are safe to apply to Series
backed by non-ndarray arrays,
for example arrays.SparseArray
(see Sparse calculation). If possible,
the ufunc is applied without converting the underlying data to an ndarray.
Console display#
A very large DataFrame
will be truncated to display them in the console.
You can also get a summary using info()
.
(The baseball dataset is from the plyr R package):
In [123]: baseball = pd.read_csv("data/baseball.csv")
In [124]: print(baseball)
id player year stint team lg ... so ibb hbp sh sf gidp
0 88641 womacto01 2006 2 CHN NL ... 4.0 0.0 0.0 3.0 0.0 0.0
1 88643 schilcu01 2006 1 BOS AL ... 1.0 0.0 0.0 0.0 0.0 0.0
.. ... ... ... ... ... .. ... ... ... ... ... ... ...
98 89533 aloumo01 2007 1 NYN NL ... 30.0 5.0 2.0 0.0 3.0 13.0
99 89534 alomasa02 2007 1 NYN NL ... 3.0 0.0 0.0 0.0 0.0 0.0
[100 rows x 23 columns]
In [125]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 100 non-null int64
1 player 100 non-null object
2 year 100 non-null int64
3 stint 100 non-null int64
4 team 100 non-null object
5 lg 100 non-null object
6 g 100 non-null int64
7 ab 100 non-null int64
8 r 100 non-null int64
9 h 100 non-null int64
10 X2b 100 non-null int64
11 X3b 100 non-null int64
12 hr 100 non-null int64
13 rbi 100 non-null float64
14 sb 100 non-null float64
15 cs 100 non-null float64
16 bb 100 non-null int64
17 so 100 non-null float64
18 ibb 100 non-null float64
19 hbp 100 non-null float64
20 sh 100 non-null float64
21 sf 100 non-null float64
22 gidp 100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.1+ KB
However, using DataFrame.to_string()
will return a string representation of the
DataFrame
in tabular form, though it won’t always fit the console width:
In [126]: print(baseball.iloc[-20:, :12].to_string())
id player year stint team lg g ab r h X2b X3b
80 89474 finlest01 2007 1 COL NL 43 94 9 17 3 0
81 89480 embreal01 2007 1 OAK AL 4 0 0 0 0 0
82 89481 edmonji01 2007 1 SLN NL 117 365 39 92 15 2
83 89482 easleda01 2007 1 NYN NL 76 193 24 54 6 0
84 89489 delgaca01 2007 1 NYN NL 139 538 71 139 30 0
85 89493 cormirh01 2007 1 CIN NL 6 0 0 0 0 0
86 89494 coninje01 2007 2 NYN NL 21 41 2 8 2 0
87 89495 coninje01 2007 1 CIN NL 80 215 23 57 11 1
88 89497 clemero02 2007 1 NYA AL 2 2 0 1 0 0
89 89498 claytro01 2007 2 BOS AL 8 6 1 0 0 0
90 89499 claytro01 2007 1 TOR AL 69 189 23 48 14 0
91 89501 cirilje01 2007 2 ARI NL 28 40 6 8 4 0
92 89502 cirilje01 2007 1 MIN AL 50 153 18 40 9 2
93 89521 bondsba01 2007 1 SFN NL 126 340 75 94 14 0
94 89523 biggicr01 2007 1 HOU NL 141 517 68 130 31 3
95 89525 benitar01 2007 2 FLO NL 34 0 0 0 0 0
96 89526 benitar01 2007 1 SFN NL 19 0 0 0 0 0
97 89530 ausmubr01 2007 1 HOU NL 117 349 38 82 16 3
98 89533 aloumo01 2007 1 NYN NL 87 328 51 112 19 1
99 89534 alomasa02 2007 1 NYN NL 8 22 1 3 1 0
Wide DataFrames will be printed across multiple rows by default:
In [127]: pd.DataFrame(np.random.randn(3, 12))
Out[127]:
0 1 2 ... 9 10 11
0 -1.226825 0.769804 -1.281247 ... -1.110336 -0.619976 0.149748
1 -0.732339 0.687738 0.176444 ... 1.462696 -1.743161 -0.826591
2 -0.345352 1.314232 0.690579 ... 0.896171 -0.487602 -0.082240
[3 rows x 12 columns]
You can change how much to print on a single row by setting the display.width
option:
In [128]: pd.set_option("display.width", 40) # default is 80
In [129]: pd.DataFrame(np.random.randn(3, 12))
Out[129]:
0 1 2 ... 9 10 11
0 -2.182937 0.380396 0.084844 ... -0.023688 2.410179 1.450520
1 0.206053 -0.251905 -2.213588 ... -0.025747 -0.988387 0.094055
2 1.262731 1.289997 0.082423 ... -0.281461 0.030711 0.109121
[3 rows x 12 columns]
You can adjust the max width of the individual columns by setting display.max_colwidth
In [130]: datafile = {
.....: "filename": ["filename_01", "filename_02"],
.....: "path": [
.....: "media/user_name/storage/folder_01/filename_01",
.....: "media/user_name/storage/folder_02/filename_02",
.....: ],
.....: }
.....:
In [131]: pd.set_option("display.max_colwidth", 30)
In [132]: pd.DataFrame(datafile)
Out[132]:
filename path
0 filename_01 media/user_name/storage/fo...
1 filename_02 media/user_name/storage/fo...
In [133]: pd.set_option("display.max_colwidth", 100)
In [134]: pd.DataFrame(datafile)
Out[134]:
filename path
0 filename_01 media/user_name/storage/folder_01/filename_01
1 filename_02 media/user_name/storage/folder_02/filename_02
You can also disable this feature via the expand_frame_repr
option.
This will print the table in one block.
DataFrame column attribute access and IPython completion#
If a DataFrame
column label is a valid Python variable name, the column can be
accessed like an attribute:
In [135]: df = pd.DataFrame({"foo1": np.random.randn(5), "foo2": np.random.randn(5)})
In [136]: df
Out[136]:
foo1 foo2
0 1.126203 0.781836
1 -0.977349 -1.071357
2 1.474071 0.441153
3 -0.064034 2.353925
4 -1.282782 0.583787
In [137]: df.foo1
Out[137]:
0 1.126203
1 -0.977349
2 1.474071
3 -0.064034
4 -1.282782
Name: foo1, dtype: float64
The columns are also connected to the IPython completion mechanism so they can be tab-completed:
In [5]: df.foo<TAB> # noqa: E225, E999
df.foo1 df.foo2