pandas.api.interchange.from_dataframe#
- pandas.api.interchange.from_dataframe(df, allow_copy=True)[source]#
- Build a - pd.DataFramefrom any DataFrame supporting the interchange protocol.- Note - For new development, we highly recommend using the Arrow C Data Interface alongside the Arrow PyCapsule Interface instead of the interchange protocol. From pandas 2.3 onwards, from_dataframe uses the PyCapsule Interface, only falling back to the interchange protocol if that fails. - Warning - Due to severe implementation issues, we recommend only considering using the interchange protocol in the following cases: - converting to pandas: for pandas >= 2.0.3 
- converting from pandas: for pandas >= 3.0.0 
 - Parameters:
- dfDataFrameXchg
- Object supporting the interchange protocol, i.e. __dataframe__ method. 
- allow_copybool, default: True
- Whether to allow copying the memory to perform the conversion (if false then zero-copy approach is requested). 
 
- Returns:
- pd.DataFrame
 
 - Examples - >>> df_not_necessarily_pandas = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) >>> interchange_object = df_not_necessarily_pandas.__dataframe__() >>> interchange_object.column_names() Index(['A', 'B'], dtype='object') >>> df_pandas = (pd.api.interchange.from_dataframe ... (interchange_object.select_columns_by_name(['A']))) >>> df_pandas A 0 1 1 2 - These methods ( - column_names,- select_columns_by_name) should work for any dataframe library which implements the interchange protocol.