pandas.read_sql_table#
- pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None, dtype_backend=<no_default>)[source]#
- Read SQL database table into a DataFrame. - Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. - Parameters:
- table_namestr
- Name of SQL table in database. 
- conSQLAlchemy connectable or str
- A database URI could be provided as str. SQLite DBAPI connection mode not supported. 
- schemastr, default None
- Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). 
- index_colstr or list of str, optional, default: None
- Column(s) to set as index(MultiIndex). 
- coerce_floatbool, default True
- Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. 
- parse_dateslist or dict, default None
- List of column names to parse as dates. 
- Dict of - {column_name: format string}where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps.
- Dict of - {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of- pandas.to_datetime()Especially useful with databases without native Datetime support, such as SQLite.
 
- columnslist, default None
- List of column names to select from SQL table. 
- chunksizeint, default None
- If specified, returns an iterator where chunksize is the number of rows to include in each chunk. 
- dtype_backend{‘numpy_nullable’, ‘pyarrow’}, default ‘numpy_nullable’
- Back-end data type applied to the resultant - DataFrame(still experimental). Behaviour is as follows:- "numpy_nullable": returns nullable-dtype-backed- DataFrame(default).
- "pyarrow": returns pyarrow-backed nullable- ArrowDtypeDataFrame.
 - Added in version 2.0. 
 
- Returns:
- DataFrame or Iterator[DataFrame]
- A SQL table is returned as two-dimensional data structure with labeled axes. 
 
 - See also - read_sql_query
- Read SQL query into a DataFrame. 
- read_sql
- Read SQL query or database table into a DataFrame. 
 - Notes - Any datetime values with time zone information will be converted to UTC. - Examples - >>> pd.read_sql_table('table_name', 'postgres:///db_name')